Predicción de rendimiento de cosechas utilizando aprendizaje profundo multimodal
Predicción de rendimiento de cosechas utilizando aprendizaje profundo multimodal
-
DOI: https://doi.org/10.22533/at.ed.7242428056
-
Palavras-chave: Agricultura de precisión; sensores remotos; aprendizaje profundo multimodal; IoT; agentes inteligentes; computación aplicada.
-
Keywords: Precision agriculture; remote sensing; convolutional neural networks; recurrent neural networks; multimodal deep learning; IoT; intelligent agents; applied computation.
-
Abstract: Precision agriculture is a vital practice for improving the production of crops. The present work is aimed to develop a multimodal deep learning model that is able to produce a prediction map of the health of crops. The model takes multispectral images and field sensor data (humidity, temperature, soil status, etc.) as an input and creates a yield map of a crop. The utilization of multimodal data is aimed to extract hidden patterns in the status of crops and in this way obtain better results than the use of vegetation indices.
- Luis Roberto Jácome Galarza