Artigo - Atena Editora

Artigo

Baixe agora

Livros

INTELIGÊNCIAS ARTIFICIAIS GENERATIVAS COM PYTHON: FUNDAMENTOS, APRENDIZADO DE MÁQUINA, REDES NEURAIS CLÁSSICAS E PROFUNDAS, TRANSFORMERS E ENGENHARIA DE PROMPT PARA GERAÇÃO DE IMAGENS

O texto apresenta uma visão geral do campo de inteligências artificiais generativas, com ênfase no uso de Python e na evolução de métodos e arquiteturas. Destaca conceitos fundamentais do aprendizado de máquina, passando das abordagens clássicas de redes neurais para modelos mais complexos de aprendizado profundo. Enfatiza o papel dos Transformers, originalmente voltados à linguagem, em tarefas visuais, bem como a importância do “prompt engineering” para direcionar e controlar a qualidade e o estilo das criações. Além disso, menciona exemplos práticos, códigos em Python, estudos de caso e aplicações concretas na geração de imagens. Por fim, o artigo conclui sugerindo futuros estudos e aprofundamentos no tema.
Ler mais

INTELIGÊNCIAS ARTIFICIAIS GENERATIVAS COM PYTHON: FUNDAMENTOS, APRENDIZADO DE MÁQUINA, REDES NEURAIS CLÁSSICAS E PROFUNDAS, TRANSFORMERS E ENGENHARIA DE PROMPT PARA GERAÇÃO DE IMAGENS

  • DOI: https://doi.org/10.22533/at.ed.4972527016

  • Palavras-chave: Redes Neurais Artificiais, Machine Learning, Arquiteturas e Topologias de Redes Neurais

  • Keywords: Artificial Neural Networks, Machine Learning, Neural Network Architectures and Topologies

  • Abstract: The text provides an overview of the field of generative artificial intelligence, emphasizing the use of Python and the evolution of methods and architectures. It highlights fundamental machine learning concepts, moving from classical neural network approaches to more complex deep learning models. It underscores the role of Transformers—originally geared towards language—in visual tasks and the importance of “prompt engineering” to guide and control the quality and style of generated content. Additionally, it references practical examples, Python code, case studies, and concrete applications in image generation. In conclusion, the article suggests avenues for future research and further topic exploration.

  • Marcio Mendonca
  • Guilherme Cyrino Geromel
  • Fabio Rodrigo Milanez
  • Angelo Feracin Neto
  • Marcos Antônio de Matos Laia
  • Marcos Banheti Rabello Vallim
  • Vitor Blanc Milani
  • Marta Rúbia Pereira dos Santos
  • Vicente de Lima Gongora
  • Henrique Cavalieri Agonilha
  • Pedro Henrique Calegari
  • Andressa Haiduk
  • Kazuyochi Ota Junior
  • Gabriel Henrique Oliveira Uliam
  • Fabio Nogueira de Queiroz
  • Edinei Aparecido Furquim dos Santos
  • Francisco de Assis Scannavino Junior
Fale conoscoWhatsapp