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A minha avo Delza (in memorian)

“Sabemos que todas as coisas
cooperam para o bem daqueles
que amam a Deus.”

Romanos 8:28
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Resumo

Resumo da dissertag@o apresentada ao PPGI/UFES como parte dos requisitos necessarios para
obtencdo do grau de Mestre em Ciéncia (M.Sc.)

Orientador: Maria Cristina Rangel
Maria Claudia Silva Boeres

Departamento: Informatica

Neste trabalho investigamos a utilizag@o de conceitos da Teoria Espectral de Grafos (TEG) a fim
de auxiliar a construcdo de algoritmos que solucionem o Problema de Isomorfismo de Grafos
(PIG). Trés resultados tedricos que consideram informacdes do espectro e das centralidades de
autovetor dos vértices dos grafos foram apresentados. Além disso, foi proposto um algoritmo
para deteccao de isomorfismo de grafos baseado em dois destes resultados. Por fim, apresenta-
mos os resultados computacionais da comparagdo deste algoritmo com outros da literatura.

PalavrasChaves: Problema de Isomorfismo de Grafos, Teoria Espectral de Grafos, Centralida-
des de Autovetor.



Abstract

Abstract of the dissertation presented to PPGI/UFES as a parcial fulfillment of the requirements
for the degree of Master in Science (M.Sc.)

Advisors: Maria Cristina Rangel
Maria Claudia Silva Boeres

Department: Informatica

In this work we investigated the use of concepts from Spectral Graph Theory (SGT) to sup-
port the construction of algorithms that solve the Graph Isomorphism Problem (GIP). Three
theoretical results which consider information from the spectrum of the graphs and from the
eigenvector centralities were presented. Furthermore, an algorithm for detection of graph iso-
morphism based on two of these results was proposed. Finally, we present the computational
results comparing this algorithm with others from literature.

Keywords: Graph Isomorphism Problem, Spectral Graph Theory, Eigenvector Centralities.



1 Introducao

O Problema de Isomorfismo de Grafos (PIG) tem sido amplamente pesquisado devido a
sua aplicabilidade em situagdes reais, que podem ser modeladas e solucionadas por meio dele.
A drea de quimica € um exemplo disto, onde constantemente torna-se necessdrio determinar se
uma molécula possui ou ndo estrutura similar a uma outra [Fortin, 1996, Oliveira e Greve, 2005].
Também encontramos aplicacdes no reconhecimento de imagens [Cordella et al., 2000] e na

comparacdo de impressoes digitais [Nandi, 2006].

O PIG consiste em estabelecer um mapeamento um a um entre os vértices de dois grafos,
que preserve a relagdo de adjacéncia entre os vértices. Atualmente ndo se conhece exatamente
a sua complexidade. Sabe-se que ele pertence a classe de problemas NP, no entanto é desco-
nhecido se estd em P ou em NP-completo [Jenner et al., 2003]. A suposi¢do comumente aceita

€ que ele esteja estritamente entre estas duas classes [Arvind e Tordn, 2005].

A Teoria Espectral de Grafos (TEG) foi sugerida inicialmente por Hiickel em 1931 no seu
trabalho na drea de quimica quantica [Hiickel, 1931], onde representou por um grafo a estrutura
da molécula dos hidrocarbonetos insaturados. Esta teoria vem atraindo um maior interesse
dos estudiosos desde a década de 80, em virtude da sua aplicacdo em diversas dreas, como na

quimica, na matemadtica, na engenharia e na ciéncia da computacdo, conforme [Abreu, 2005].

A TEG € uma parte da matematica discreta que estuda as propriedades de um grafo a partir
das informacdes fornecidas pelo espectro da matriz associada a este grafo, por exemplo, a matriz
de adjacéncia, a Laplaciana e a Laplaciana sem sinal [Hogben, 2009]. Para certas familias de
grafos € possivel caracterizar um grafo pelo espectro de uma destas matrizes que o representa,

mas em geral isto nao € possivel.

Alguns problemas de otimizagdo combinatdria, como € o caso do PIG, demandam um
tempo invidvel de processamento pela busca da solu¢do 6tima quando tentamos enumerar todas
as possiveis solucdes para o problema e verificar cada uma delas. Isto se deve ao fato de pos-
suirem um espago de solu¢des muito grande, o que requer um alto custo computacional para
avaliar cada possivel solucdo. Por isso, algumas estratégias para encontrar uma resposta para o

problema sem a necessidade de explorar todo o seu espaco de busca sdo implementadas.
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Alguns algoritmos para o PIG fazem uso desta estratégia, buscando informagdes estruturais
nos grafos de entrada a fim de reduzir o espaco de solucdes. Um exemplo € o algoritmo Nauty
[McKay, 1981], que realiza uma rotulacio canodnica nos vértices de ambos os grafos de entrada,

restringindo o mapeamento somente entre vértices de mesma rotulacao.

Fazendo uso desta estratégia de restringir o espaco de busca do problema, neste trabalho
propomos um algoritmo que utiliza propriedades da TEG na tentativa de auxiliar a busca pelo
isomorfismo entre dois grafos. Apresentamos também trés resultados tedricos (trés teoremas)
que consideram informagdes do espectro dos grafos e das centralidades de autovetor. Além
disso, comparamos o desempenho do algoritmo proposto com cinco algoritmos exatos da li-
teratura, a citar: os algoritmos propostos por [Ullmann, 1976], [Dharwadker e Tevet, 2009] e
[Lee, 2007], e os algoritmos VF2 [Cordella et al., 2001] e Nauty [McKay, 1981].

Este trabalho estd assim dividido: o capitulo seguinte trata do PIG, abordando suas defini-
coes, alguns exemplos e possiveis aplicacdes. No Capitulo 3 sdo descritos trés resultados tedri-
cos, bem como alguns conceitos de Algebra Linear, Teoria dos Grafos e TEG, a fim de auxiliar
o entendimento do algoritmo proposto, descrito no Capitulo 4. A especificacdo das instincias
de teste para a comparagdo dos algoritmos e os resultados computacionais obtidos sdo apresen-
tados no Capitulo 5. Por fim, o Capitulo 6 apresenta as conclusdes e propostas de trabalhos

futuros.



2 O Problema de Isomorfismo de Grafos

Ao longo deste capitulo s@o apresentados a definicdo matematica do Problema de Isomor-
fismo de Grafos (PIG), com exemplos de grafos isomorfos e ndo isomorfos, o estado da arte
deste problema, citando os principais algoritmos exatos para a sua resolucdo, e possiveis apli-

cacdes para o PIG.

2.1 Definicao do Problema

O Problema de Isomorfismo de Grafos tem sido amplamente estudado devido a sua grande
aplicabilidade em problemas reais, que podem ser modelados e solucionados por meio dele.
A érea de quimica é um exemplo disto, onde constantemente torna-se necessario determinar
se uma molécula possui ou ndo estrutura similar a uma outra, para que se possa atribuir-
lhe um nome exclusivo. Esta verificagdao pode ser realizada comparando a molécula a uma
base de dados molecular existente. Neste caso, as moléculas seriam representadas por um
grafo, sendo os vértices correspondentes aos dtomos e as arestas as suas ligacoes [Fortin, 1996,
Oliveira e Greve, 2005].

O processo de comparagdo supracitado pode ser classificado como um PIG, uma vez que
este problema consiste em verificar se dois grafos dados sdo estruturalmente idénticos, ou seja,
se existe um mapeamento um a um entre os vértices do primeiro grafo com os do segundo que

preserve a relacio de adjacéncia entre os vértices.

Podemos definir formalmente o PIG como: Dois grafos G; = (V1, E1) e Go = (Vs, E») sdo
ditos isomorfos se existe uma fungdo bijetora f : V; — V5 tal que, Va,b € Vi, (a,b) € F; &
(f(a), f(b)) € E5, onde V; e V5 sdo conjuntos de vértices, e F e Es, conjuntos de arestas,

respectivamente.

Um exemplo de dois grafos isomorfos pode ser visto na Figura 1, onde € possivel encontrar
uma fungdo f : Vi — Vo, f = {(1,1),(2,5),(3,3),(4,4),(5,2"),(6,6") }, que mantém as

adjacéncias existentes entre os vértices dos grafos.
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1] 5 4 6*

Figura 1: Exemplo de grafos isomorfos

Para que dois grafos sejam isomorfos, a0 menos as seguintes condi¢des sao necessarias

[Dalcumune, 2008]:

¢ Possuir o mesmo numero de vértices;
¢ Possuir o mesmo numero de arestas;

* Possuir a mesma sequéncia de graus dos vértices.

Cada uma destas condi¢des é chamada de invariante de um grafo, pois ndo varia para
qualquer grafo da classe de grafos isomorfos a ele. Ainda permanece em aberto o conhecimento
de uma lista completa de invariantes de um grafo capaz de o caracterizar. Se tal lista fosse

determinada, esta resolveria o Problema de Isomorfismo de Grafos.

Portanto, embora necessarias, estas trés condi¢cdes nao sdo suficientes para que dois grafos
sejam isomorfos. Como exemplo temos os grafos da Figura 2 que atendem tais condicoes,
porém ndo sdo isomorfos, pois nao € possivel estabelecer uma fungao bijetora entre os vértices

preservando as adjacéncias.

5 4 £* 4'

Figura 2: Exemplo de grafos ndo isomorfos com a mesma sequéncia de graus
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2.2 Algoritmos para o PIG

Atualmente ndo se conhece exatamente a complexidade do PIG. Sabe-se que ele pertence
a classe de problemas NP, no entanto, segundo [Jenner et al., 2003], é desconhecido se esta
em P ou em NP-completo. Conforme [Arvind e Tordn, 2005], a suposicdo comumente aceita
€ que ele esteja estritamente entre estas duas classes. Apesar disto, foram desenvolvidos algo-
ritmos de tempo polinomial dedicados a muitas classes de grafos. Em [Sorlin e Solnon, 2004],
[Uehara et al., 2005] e [Zager, 2005] sdo citadas algumas destas classes, que incluem grafos

planares, grafos de intervalo, grafos limitados por grau, arvores, entre outros.

O algoritmo exato mais eficiente para solucionar o PIG, segundo [Sorlin e Solnon, 2008],
foi desenvolvido por McKay [McKay, 1981], tendo sido denominado Nauty. Este algoritmo tem
por caracteristica determinar uma representacdo canonica dos grafos, que é um particionamento
ordenado dos vértices, onde todos os vértices de uma parti¢io possuem uma mesma rotulagdo,
distinguindo-os dos demais vértices do grafo. Este particionamento € calculado aplicando-se,
de maneira iterativa, um conjunto de invariantes de vértices a uma primeira parti¢do, a qual,
inicialmente, agrupa todos os vértices do grafo. Ao final do processo, dois grafos sdo isomorfos

se, € somente se, possuem a mesma representagio.

De acordo com [Cordella et al., 2001], o algoritmo de Ullmann [Ullmann, 1976] é um ou-
tro algoritmo exato amplamente utilizado devido a sua eficicia em tratar tanto o PIG quanto
o Problema de Isomorfismo de Subgrafos. Utilizando o processo de backtracking e um mé-
todo de refinamento, ele obtém considerdveis redugdes no espago de busca do problema. Este
refinamento tem por objetivo verificar se uma futura associagdo entre vértices ndo conduz
a um possivel isomorfismo, eliminando assim a possibilidade de mapeamento entre aqueles
vértices e, consequentemente, diminuindo o nimero de associa¢des que devem ser analisadas
[Messmer e Bunke, 1995]. Terminada a sua execuc¢ao, sendo os grafos de entrada isomorfos,
o algoritmo é capaz de apresentar como resultado todas as possiveis associacdes de vértices

existentes entre os dois grafos.

A técnica de backtracking também € empregada no algoritmo SD [Schmidt e Druffel, 1976]
e no algoritmo desenvolvido por Lee [Lee, 2007]. O primeiro utiliza a informacio contida na
matriz distdncia que representa o grafo para estabelecer uma partic@o inicial dos vértices. Esta
informacao € aplicada no procedimento de backtracking para limitar a procura por possiveis ma-
peamentos de vértices. O segundo realiza um processo de transcri¢do em cada grafo de entrada,
fazendo as arestas originais do grafo receberem valor 1 e as arestas inseridas entre vértices nao
adjacentes receberem valor 0, gerando assim grafos completos com pesos nas arestas. Ele im-
plementa também a criac@o de blocos de graus dos vértices, onde vértices de mesmo grau fazem

parte do mesmo bloco. Assim, a estratégia de busca em arvore deste algoritmo se baseia em
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associar vértices de mesmo bloco e que gerem apenas associacdes de arestas de mesmo peso,
ou seja, uma aresta com valor 1 de um grafo deve ser associada a uma Unica aresta de mesmo
valor do outro grafo, de igual modo as arestas de valor 0. Caso esta associa¢do de arestas nao
seja atendida, o algoritmo termina a explora¢do daquele ramo da 4rvore e realiza backtracking
para um determinado n6, continuando a exploragdo a partir deste. Por tratar-se de um algoritmo
exato, assim como o algoritmo SD, ele apresenta um isomorfismo ou uma impossibilidade de

correspondéncia entre os grafos de entrada ao final de sua execucao.

O algoritmo VF [Cordella et al., 1999] € outro algoritmo utilizado na detec¢do do isomor-
fismo que se fundamenta na estratégia de busca em profundidade. Para orientar eficiente-
mente a busca pelo isomorfismo, ele faz uso de um conjunto de regras que impdem condi-
cOes para o processo de mapeamento. Uma segunda versdo deste algoritmo, chamado VF2
[Cordella et al., 2001], tem como principal vantagem em relacdo ao seu antecessor, a baixa re-

quisi¢do de memoria, fazendo-o apropriado para trabalhar com grandes grafos.

Com a finalidade de analisar o desempenho de algoritmos exatos para a resolu¢do do PIG
que ndo impdem restricdes na estrutura dos grafos de entrada, ou seja, que ndo sdo projetados
apenas para uma classe especial de grafos, [Foggia et al., 2001] realizou a comparacao entre os
algoritmos Nauty, Ullmann, SD, VF e VF2. Foram utilizadas nos testes quatro classes de gra-
fos, num total de 10.000 pares de grafos isomorfos. Analisando os resultados, notou-se que os
algoritmos Nauty e VF2 se destacaram em relacdo aos demais, tendo cada um obtido melhores
resultados em determinadas classes de grafos. Também foi observado que somente os algorit-
mos SD, VF e VF2 foram capazes de encontrar uma solucio para o PIG, independentemente do

tamanho e do tipo dos grafos de entrada.

Nao obstante a incerteza quanto a complexidade do PIG, [Dharwadker e Tevet, 2009] pro-
puseram um algoritmo que executa em tempo polinomial para todas as classes de grafos. Se-
gundo eles, o algoritmo € necessario e suficiente para solucionar o PIG, mostrando que o pro-
blema estd em P. O algoritmo se baseia em calcular a forma candnica da matriz sinal de cada
um dos grafos de entrada, sendo estes isomorfos se, € somente se, suas matrizes sinal na forma

candnica forem idénticas.

A seguir, ilustraremos os passos do algoritmo utilizando um exemplo do préprio trabalho.
Os conceitos aqui presentes como matriz sinal, grafo par e vetor de frequéncia de sinal, sdo

apresentados com detalhes no artigo. A Figura 3 exibe os grafos de entrada para o exemplo.

O primeiro passo € calcular todos os grafos par para cada par de vértices de G; a fim de
que, a partir deles, seja possivel criar a matriz sinal S} de (51, ilustrada na Figura 4. Apds esta
constru¢do, calcula-se o nimero de vezes que cada sinal ocorre nas colunas de S, obtendo-se

os vetores de frequéncia de sinal V' F'S; para cada coluna de S;. Estes vetores podem ser vistos
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na Figura 5.
G]_ Gz
3 3
‘ \ 44 2
5/ \1 5/ 1
[ 8 6 8
7 7
Figura 3: Grafos de entrada do exemplo
S1 1 2 3 4 3 6 7 8
1 -01.0 | -2716 |-2716 | +257 | +257 | +245 | +24.5 [+2.45
2 2716 -01.0 | -27.16 | +257 | +257 | +245 | +24.5 | +2.4.5
3 |-2716]-2716| -01.0 | +257 | +257 | +245 | +2.4.5 | +2.4.5
4 +2.5.7 | £2.5.7 | +25.7 | -01.0 |-28.21 | +2.5.7 | +2.5.7 |+2.5.7
5 +257 | £2.5.7 | 4257 | -2821 | -0.1.0 | 4257 | +25.7 | +2.5.7
0 +2.45 | +245 | +245 | +257 | +257 | -0.1.0 |-27.16 |-2.7.16
7 +2.45 | +245 | 245 | +257 | +257 |-27.16 | -01.0 [-2.7.16
8 +2.45 | +245 | 245 | +257 | #2577 |-27.16 | -27.16 | -01.0
Figura 4: Matriz Sinal Sy
VFS; 1 2 3 4 5 6 7 8
-2.7.16 2 2 2 0 0 2 2 2
-2.8.21 0 0 0 1 1 0 0 0
-0.1.0 1 1 1 1 1 1 1 1
+2.4.3 3 3 3 0 0 3 3 3
+2.5.7 2 2 2 6 6 2 2 2

Figura 5: Vetores de frequéncia de sinal V F'S}

A seguir, reordenam-se as linhas e colunas de .S; de acordo com a ordem lexicografica dos

vetores de frequéncia de sinal para se obter a forma canonica da matriz sinal, chamada S;. Na
Figura 6 sdo exibidos os vetores de freqiiéncia de sinal V F'S; em ordem lexicogrifica e a S}

gerada por meio deles.
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Todo o processo anterior € realizado para o grafo (G5, a fim de se determinar os vetores de
frequéncia de sinal V' F'S; em ordem lexicografica e, consequentemente, a forma candnica da

matriz sinal S5, ambos vistos na Figura 7.

S1* 4 3 3 1 2 6 7 8

4 -0.1.0 | 2821 | +257 | +2.5.7 +2.5.7 | +2.5.7 | +2.5.7 | +2.5.7

) 2821 | -01.0 | +257 | +2.5.7 +2.5.7 | +25.7 | +2.5.7 | +2.57

3 +2.5.7 | +257 | -0.1.0 | 2716 | 2716 | 4245 | +2.4.5 | +2.45

1 +2.5.7 | #2577 | -2716 | -01.0 2716 | 1245 | 245 | +245

2 +2.5.7 | +257 | -2716 | -2.7.16 -01.0 | +245 | +245 | +245

6 +2.5.7 | +2.57 | +245 | +2.4.5 +2.4.5 -01.0 | -2716| -27.16

7 +2.57 | +257 | +245 | +2.4.5 +24.5 | -2716 | -01.0 | -2.7.16

8 +2.5.7 | +2.57 | +245 | +2.4.5 +24.5 | -2.716 | -2.716| -0.1.0
VFS, 4 5 3 1 2 6 7 8
-2.7.16 0 0 2 2 2 2 2 2
-2.8.21 1 | 0 0 0 0 0 0
-0.1.0 1 1 1 1 1 1 1 1
+2.4.5 0 0 3 3 3 3 3 3
+2.5.7 6 6 2 2 2 2 2 2

Figura 6: Forma canonica da matriz sinal S} e os vetores de frequéncia de sinal V' F'S; em
ordem lexicografica do grafo GGy

82 * 1 8 3 4 5 6 7 2

1 -0.1.0 | -2821 | 4257 | +2.57 | +2.5.7 | +25.7 | +257 | +2.5.7

8 2821 | -01.0 | +257 | +257 | +257 | +257 | +25.7 | +2.5.7

3 +2.57 | +2.57 | -01.0 | +245 | +245 | -2716| -27.16 | +24.5

4 +257 | 4257 | 4245 | 010 | -2716 | +245 | +245 | -2.7.16

5 +257 | +257 | +245 | 2716 | 010 | +245 | +245 | -2.7.16

6 +2.5.7 | ¥2.5.7 | 2716 | +245 | +245 | -0.1.0 | -27.16 | +24.5

7 +2.5.7 | ¥2.5.7 | 2716 | +245 | +245 | 2716 -0.1.0 | +24.5

2 +2.57 | ¥257 | +245 | -2.716 | -2716 | +245 | +245 | -0.1.0
VES, 1 8 3 4 5 6 7 2
-2.7.16 0 0 2 2 2 2 2 2
-2.8.21 1 1 0 0 0 0 0 0
-0.1.0 1 1 | 1 1 1 1 |
+2.4.5 0 0 3 3 3 3 3 3
+2.5.7 6 6 2 2 2 2 2 2

Figura 7: Forma candnica da matriz sinal S; e os vetores de frequéncia de sinal V F'S; em
ordem lexicografica do grafo G,

O préximo passo € comparar os vetores de frequéncia de sinal em ordem lexicografica.
Se forem distintos, G; e G ndo s@o isomorfos e o algoritmo termina sua execucdo. Se forem
iguais, o algoritmo compara as entradas A;; de A com as entradas B;; de B, onde 7 e j variam de

um até o nimero de vértices, A = ST e B = S;. Se todas as entradas forem iguais, o algoritmo
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termina e o isomorfismo é dado pela leitura dos rétulos dos vértices de A e B na ordem em que
estiverem no cabecalho das colunas (ou linhas). Caso contrario, o algoritmo tenta encontrar um
valor k > i, tal que, permutando as linhas (k, j) e as colunas (k, j) de B, garanta que a primeira

incompatibilidade ocorra apos B;;, ou que nenhuma incompatibilidade acontega.

Este processo se repete até que k£ ndo possa ser encontrado, caracterizando que G e Gs
ndo sdo isomorfos, ou todas as entradas correspondentes de A e B sejam iguais, concluindo
que existe um isomorfismo entre os grafos. No exemplo, como os vetores de frequéncia de
sinal V F'S; e V 'S, sdo iguais, deve-se comparar as entradas correspondentes de ST com as de
S3. Realizando esta comparag@o, observa-se que o elemento da terceira linha e quarta coluna
difere entre as duas matrizes, como pode ser observado na Figura 8. Entao, o algoritmo verifica
que permutando a quarta coluna com a sexta (e a quarta linha com a sexta) de .S; resolve-se a

primeira incompatibilidade. O resultado destas trocas de linhas e colunas de S5 € apresentado

na Figura 9.
S1* 4 5 3 1 2 6 7 8
4 -0.1.0 | -28.21 +257 | +257 | +25.7 | +257 | +25.7 | +2.5.7
5 -2.821 | -0.1.0 +2.57 | 257 | 4257 | +2.57 | +25.7 | +2.5.7
3 +2.5.7 | +2.5.7 010 [ -2716 | 2716 | +245 | +245 | +2.4.5
1 +257 | ¥257 | 2716 | -01.0 | 27716 | +2.45 | +245 | +2.4.5
2 +2.57 | #2577 | 2716 | -2716| -0.10 +245 | +245 | +2.45
6 +2.5.7 | +2.5.7 +24.5 | £245 | +245 -0.1.0 | -2.7.16 | -2.7.16
7 +2.5.7 | +2.5.7 +24.5 | +245 | +245 | 2716 | -0.1.0 | -2.7.16
8 +2.5.7 | +2.5.7 +245 | 245 | 4245 | -2716 | -2.716 | -0.1.0
S, * 1 8 3 4 5 6 7 2
1 -0.1.0 | -28.21 +257 | 4257 | 257 | 4257 | +25.7 | +2.5.7
8 -2.821 | -0.1.0 +257 | 4257 | 257 | 4257 | +25.7 | +2.5.7
3 +2.5.7 | +2.5.7 -0.1.0 +2.45 | +245 | -2.716 | -2716 | +2.4.5
4 +2.5.7 | +2.5.7 +2.4.5 -0.1.0 | 2716 | 4245 | +245 | -2.7.16
5 +2.5.7 | +2.5.7 +245 |-2716 ] -0.1.0 +2.45 | +245 | -2.7.16
6 +2.5.7 | #2557 | 2716 | +245 | +245 -0.1.0 | -27.16 | +2.4.5
7 +2.5.7 | ¥2.57 | 2716 | +245 | +245 | -2.716 | -0.1.0 | +2.4.5
2 +2.5.7 | +2.5.7 +245 | -27916 | 2716 | +245 | +245 | -0.1.0

Figura 8: O elemento da terceira linha e quarta coluna de S5 difere do seu correspondente em
St

Recomecando a comparag@o a partir do inicio de S} e S5, encontra-se uma segunda in-
compatibilidade entre os elementos da terceira linha e quinta coluna das matrizes, como visto
também na Figura 9. Com isso, o algoritmo verifica que com a troca da quinta coluna com a sé-

tima (e de mesmo modo com as linhas correspondentes) de S5, esta segunda incompatibilidade
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€ resolvida, o que € mostrado na Figura 10.

Sa* 1 8 3 6 5 4 7 2

1 -0.1.0 | -2821 | +2.57 | +25.7 | +2.5.7 | +2.5.7 | +2.5.7 | +2.5.7
8 2821 | -01.0 | +2.5.7 | +257 | +2.5.7 | +2.5.7 | +2.5.7 | +2.5.7
3 +2.57 | +2.57 | -0.1.0 | -27.16 | £24.5 | +245 | 2716 | +2.4.5
6 +2.5.7 | 257 | -2716 | -01.0 | +24.5 | +245 | 2716 | +2.4.5
5 +2.5.7 | 257 | +245 | +245 | -01.0 | -2.716 | +24.5 | -2.7.16
4 +2.57 | 257 | +245 | +245 | 2716 | -01.0 | +245 | -2.7.16
7 +2.5.7 | +2.57 | -2716 | 2716 | +24.5 | +245 | -01.0 | +2.4.5
2 +2.57 | 257 | +245 | +245 | 2716 | -27716 | +245 | -0.1.0

Figura 9: Resultado da troca de linhas e colunas de S5 e o surgimento da segunda incompatibi-

lidade entre S5 e S5

S2* 1 8 3 6 7 4 5 2

1 -01.0 | -2.821 | +2.57 | 4257 | 4257 | +2.5.7 | +2.5.7 | +2.5.7
8 2821 | -01.0 | +2.57 | 4257 | 257 | 4257 | +2.5.7 | +2.5.7
3 +2.57 | 4257 | -01.0 | 2716 | 2716 | 4245 | +245 | +2.4.5
6 +2.5.7 | +257 | -27.16 | -0.1.0 | -2.716 | +24.5 | +24.5 | +2.4.5
7 +2.57 | +257 | -27.16 | 2716 | -01.0 | +245 | +245 | +2.4.5
4 +2.57 | +257 | 4245 | +245 | +245 010 | 2716 | -2.7.16
5 +2.5.7 | +2.57 | 4245 | +245 | +245 | 2716 | -01.0 | -2.7.16
2 +2.5.7 | +2.57 | 4245 | +245 | +24.5 | -27.16 | -2.716 | -0.1.0

Figura 10: A Forma canonica da matriz sinal S} ap6s a resolucio da segunda incompatibilidade

Agora, realizando a comparagao entre todas as entradas correspondentes de S} e S5, verifica-
se que ndo existe mais qualquer incompatibilidade. Logo, o algoritmo finaliza sua execucao
informando que GG; e G2 sdo isomorfos e que a reordenacdo dos vértices de S5 para se conse-
guir S} = S5 prové uma funcdo de isomorfismo, como mostrada na Figura 11. Por fim, cabe
observar que o algoritmo realiza as permutacdes de linhas e colunas apenas em S; para tentar

torna-la idéntica a S} e para manté-la simétrica.

G 4 5 3 1 2 ) 7 8
& 1 8 3 6 7 4 5 2

Figura 11: Mapeamento entre os vértices de GG; e G2 fornecido pelo algoritmo proposto por
[Dharwadker e Tevet, 2009]

2.3 Aplicacoes do PIG

Grande parte dos problemas nos quais o PIG pode ser aplicado decorre da drea de reconhe-

cimento de padrdes [Bunke, 2000]. Uma dessas aplicacdes pode ser vista em [Nandi, 2006],
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onde o PIG € aplicado no processo de comparag@o de impressoes digitais. Neste trabalho, as
imagens das impressodes digitais a serem confrontadas sdo representadas por grafos, que sao
gerados a partir das caracteristicas encontradas em cada imagem, caracteristicas estas chama-
das de mindcias. Cada vértice representa uma mintcia, sendo rotulado com o tipo e a posi¢cdo
geométrica desta na imagem. As arestas representam uma relacdo de vizinhanga entre estas
minucias. A comparacdo € realizada por meio do célculo do isomorfismo entre os dois grafos

que representam as impressoes digitais.

Outra aplicac¢do do problema é apresentada em [Cordella et al., 2000], que trata da utiliza-
cdo do PIG na detec¢do de componentes em uma imagem. Nesta abordagem, considerando a
codificacdo adotada para as imagens a serem analisadas, as arestas representam as linhas dos
componentes e os vértices a jungdo ou pontos terminais destas linhas. Estes vértices possuem
rétulos de posicdo e formato, e as arestas rétulos de orientacdo e comprimento. Para reduzir
o esfor¢co computacional, o algoritmo utiliza regras de viabilidade no mapeamento de arestas.
Por exemplo, duas arestas sdo aceitas como similares somente se possuirem uma diferenca de
comprimento menor do que 30%. Assim, o algoritmo realiza o computo do isomorfismo entre
o grafo de entrada, que representa a imagem a ser pesquisada, e o grafo representante de uma

regido da imagem.



3  Teoria Espectral de Grafos

Neste capitulo sdo apresentadas nocdes bdsicas de Algebra Linear e Teoria dos Grafos,
bem como alguns resultados referentes a Teoria Espectral de Grafos, extraidos de [Abreu et
al., 2007], com o objetivo de auxiliar no entendimento de assuntos tratados posteriormente.
Sado descritos também trés resultados tedricos alcancados a partir dos testes computacionais

realizados para este trabalho.

3.1 Conceitos Basicos de Algebra Linear

Nesta se¢do apresentamos algumas defini¢des de dlgebra linear, como matriz, trago e poli-

ndémio, que podem ser encontradas em [Boldrini et al., 1986] e [Santos, 2009].

Uma matriz A,,,, € uma tabela de mn nimeros dispostos em m linhas e n colunas, como
mostrado na Figura 12. Dizemos que a;; € o elemento ou entrada presente na linha ¢ e coluna j
da matriz A. Se m = n, A é uma matriz quadrada de ordem n e os elementos a1, asa, - .., Uny
formam a diagonal principal de A. Uma matriz diagonal é aquela em que os elementos que

estdo fora da diagonal principal sdo iguais a zero. Um exemplo desta matriz pode ser visto na

Figura 13.
@13 A2 - Aip
Q21 Q22 - Q2pn
A=
m1 Am2 - Omp

Figura 12: Matriz A

2 0 00
0 10 0 O
B= 0 0 70
0 0 0 4

Figura 13: Exemplo de uma matriz diagonal
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Uma matriz que s6 possui uma linha é denominada matriz linha, e uma matriz que possui
somente uma coluna é denominada matriz coluna. Um exemplo de cada uma destas matrizes
pode ser visto, respectivamente, na Figura 14a e Figura 14b. Matrizes linha e matrizes coluna

sdo chamadas de vetores.

8
C=[14 5 11 20] D= 22
(a) Matriz linha 3

(b) Matriz coluna

Figura 14: Exemplo de matriz linha e matriz coluna

A multiplicagdo de uma matriz A = (@;j)mxn por um escalar (um nimero) A\ é obtida
multiplicando-se cada elemento de A pelo escalar A\, ou seja, AA = Aa;;. Exemplificando,
considere a matriz £ da Figura 15a. Realizando o produto desta matriz pelo escalar 3, temos

como resultado a matriz 3£, apresentada na Figura 15b.

8 6 11 24 18 33
E = 4 1 7 3E=1|12 3 21
12 5 1 36 15 3
(a) Matriz £ (b) Matriz 3FE

Figura 15: Matriz E e o resultado do seu produto pelo escalar 3 (Matriz 3F)

Chamamos de tra¢o de uma matriz quadrada A, denotado por tr(A), a soma dos elementos
da sua diagonal principal. Uma matriz quadrada de ordem n é denominada matriz identidade,
1,,, quando os elementos da sua diagonal principal sdo iguais a 1 e os demais iguais a 0. O tragco

de uma matriz identidade € igual a sua ordem, ou seja, tr([,) = n.

O determinante de uma matriz € a associacdo de um nimero real, segundo uma determi-

nada lei, a toda matriz quadrada de ordem n. Ou seja, o determinante € uma fun¢do

det : A, — R

do conjunto das matrizes quadradas de ordem n, A,,, no conjunto dos nimeros reais.

Um polinémio de grau n é uma funcdo da forma

P(l’) = anxn + anflxni1 + an72$n72 +...+ax+ ag

onde os coeficientes ag, ai, ..., a, sdo ndmeros reais, denominados coeficientes do polindmio.
Em um polindmio, o termo de mais alto grau que possui um coeficiente ndo nulo é chamado

termo dominante. O grau de um polindmio ndo nulo é o expoente de seu termo dominante.
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Definimos raiz (ou zero) de um polindmio um valor, tal que, atribuido a varidvel da fungao
polinomial, faz com que a fun¢fo resulte em 0. Assim, se r é dito raiz do polindmio P(x),
entdo P(r) = 0. Um polindmio de grau n sempre terd n raizes, podendo haver repeticao de

uma mesma raiz.

3.2 Conceitos Basicos de Teoria dos Grafos

Sao resumidos nesta se¢do alguns conceitos basicos da Teoria de Grafos necessarios a com-
preensdo do restante deste trabalho, os quais também podem ser encontrados em [Diestel, 2005]
e [Bondy e Murty, 1979]. Introduziremos também a notagado sobre grafos utilizada nesta disser-

tacdo.

Podemos visualizar um grafo utilizando uma representacdo geométrica, na qual pontos dis-
tintos do plano em posi¢des arbitrdrias equivalem a seus vértices e cada aresta corresponde a
uma linha ligando estes pontos, como faremos com os exemplos aqui apresentados. Computa-
cionalmente, os grafos podem ser representados através de matrizes, como a matriz distancia,
que veremos nesta se¢do, a matriz de adjacéncia, a Laplaciana e a Laplaciana sem sinal, que

serdo definidas na Sec¢do 3.3.

Assim, um grafo é uma estrutura G = (V| E), sendo V' um conjunto finito ndo vazio e F
um conjunto de pares ndo ordenados de V. Os elementos de V' sdo denominados vértices e os
de E' sdao denominados arestas de (G. O nimero de vértices (também conhecido como ordem
do grafo) e o nimero de arestas de GG sdo indicados, respectivamente, por n = |V | e m = |E]|.
Cada aresta e € F serd denotada por e = {v, w}, onde os vértices v e w sdo os extremos de
e. Neste caso, como a aresta e é incidente a ambos os vértices, eles sdo chamados de vértices
adjacentes. O nimero de arestas que incidem em um vértice v é chamado grau de v, denotado

por d(v). Arestas adjacentes sio aquelas que possuem um vértice em comum.

Um grafo pode ter arestas ligando um vértice a ele mesmo e arestas diferentes incidindo
em um mesmo par de vértices, o que chamamos de lacgos e arestas paralelas, respectivamente.
Dizemos que um grafo é orientado se {v, w} # {w, v}, ou seja, se as arestas possuem uma dada
orientacdo. No entanto, neste trabalho, consideramos apenas grafos simples nao orientados, ou

seja, sem lacos, sem arestas paralelas e sem orientacao.

Um exemplo de grafo simples nao orientado pode ser observado na Figura 16, onde V' =
{1,2,3,4,5,6}, E = {ey, eq,€3,€4,65,€¢,¢7,65}, n = 6 e m = 8. Neste exemplo, podemos
observar que os extremos da aresta e, sdo os vértices 2 e 3. Assim, como estes vértices possuem
uma aresta incidente a ambos, eles sdo adjacentes, ao contrario dos vértices 1 e 5, que ndo sao

adjacentes. Os graus dos vértices 4 e 6 s@o iguais a 3 e 4, respectivamente, e as arestas e; € e
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sdo arestas adjacentes.

Figura 16: Grafos simples ndo orientado

Dizemos que o grafo H é um subgrafo de um grafo G se, e somente se, V(H) C V(G) e

E(H) C E(G). Desta forma, G é um supergrafo de H. A Figura 17 apresenta um subgrafo

6 74 3
5 4

Figura 17: Um exemplo de subgrafo

do grafo da Figura 16.

Chamamos um grafo de k-regular se todos os seus vértices tém grau k e um grafo é dito
completo quando hd uma aresta entre cada par de seus vértices. Deste modo, todo grafo com-
pleto é (n — 1)-regular. Um grafo completo com n vértices é denotado por K,,. As Figuras 18

e 19 ilustram, respectivamente, um grafo 3-regular e um grafo completo K.

1
4‘2
3

Figura 18: Grafo 3-regular

Um grafo k-regular com v vértices é denominado fortemente regular se ha inteiros p e
1, tal que, dois vértices adjacentes t€m p vizinhos em comum e dois vértices ndo adjacentes
tém g vizinhos em comum. Assim, um grafo fortemente regular pode ser representado por

srg(v, k, p, ). Como exemplo, temos o grafo srg(6, 3,0, 3) da Figura 20.
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3 2

Figura 19: Grafo completo K

1 2 3

5
Figura 20: Grafo srg(6, 3,0, 3)

Um percurso ou cadeia é uma sequéncia de arestas sucessivamente adjacentes. Dizemos
que um percurso € fechado se a iltima aresta da sucessao € adjacente a primeira. Caso contrdrio,
o percurso € considerado aberto. O comprimento de um percurso é o nimero de arestas por

ele utilizado.

Definimos como caminho ou percurso elementar um percurso em que todos os vértices
s@o distintos. Um caminho fechado € chamado de ciclo e um grafo que nao possui ciclos € dito
aciclico. Exemplificando, o grafo da Figura 21 possui o ciclo (2, 3,4, 2). O grafo que contém
um caminho ligando quaisquer dois de seus vértices ¢ denominado conexo, sendo chamado
desconexo caso contrario. Denominamos arvore um grafo conexo e aciclico. O grafo da

Figura 22 é uma arvore comn = 5 e m = 4.

1 2

4 3

Lh

Figura 21: Grafo com o ciclo (2, 3, 4, 2)

A matriz distancia de um grafo simples € uma matriz V' x V', onde V representa o conjunto
de vértices do grafo, na qual o elemento d;; indica o comprimento do menor caminho entre os
vértices v; e v;. Se ¢ = j, entdo d;; = 0. Caso ndo exista caminho entre dois vértices, o

comprimento é definido como infinito. A Figura 23 apresenta um grafo e a sua matriz distancia.

Um grafo é chamado k-partido se o seu conjunto de vértices permite uma particdo em k
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4 3

Figura 22: Arvore: grafo conexo e aciclico

1
2 B ]'

Lh
L
— a3 ot

1
0
2
3
2

S I A

2

3 2
12
0 1
1 0]

4 L

Figura 23: Um grafo e sua matriz distancia

subconjuntos nao vazios, tendo os extremos de cada aresta em subconjuntos distintos. Um grafo

2-partido, também chamado de bipartido, pode ser visto na Figura 24.

) 1
5 2
4 3

Figura 24: Grafo bipartido

4 3 4" 3

Figura 25: Um grafo e seu complementar

Um grafo G é dito complementar de um grafo G se possuir a mesma ordem de G e se cada

uma de suas arestas ndo pertencer a G. Um grafo planar ¢ aquele que pode ser representado no
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3 2

Figura 26: Grafo planar

plano de tal forma que suas arestas ndo se cruzem. A Figura 25 exibe um grafo e seu comple-

mentar, e a Figura 26 um grafo planar.

O grafo linha de um grafo G, denotado por I(G), é o grafo cujos vértices sdo as arestas de
(7, sendo estes conectados se, e somente se, as arestas correspondentes em G forem adjacentes.

Na Figura 27 podemos observar um grafo e seu grafo linha correspondente.

1 a 2 a b

4 3 d c

Figura 27: Um grafo e seu grafo linha

3.3 Conceitos Basicos de Teoria Espectral de Grafos

A Teoria Espectral de Grafos (TEG) é uma parte da matemética discreta e da Algebra Linear
que estuda as propriedades de um grafo a partir das informagdes fornecidas pelo espectro da ma-

triz associada a este grafo, por exemplo, a matriz de adjacéncia e a Laplaciana [Hogben, 2009].

Nesta se¢@o veremos o conceito destas duas matrizes, como também da matriz Laplaciana

sem sinal, e alguns resultados associados a elas.

Seja G = (V, E) um grafo simples, ndo orientado, com n vértices e m arestas. A matriz
n X n cujas entradas sdo iguais a 1, se v e v sdo adjacentes, e 0 caso contrario, comue v € V,

¢ denominada matriz de adjacéncia de G.



3.3 Conceitos Bdsicos de Teoria Espectral de Grafos 19

O polindmio caracteristico da matriz de adjacéncia A(G) de um grafo G é chamado poli-
némio caracteristico de G e denotado por pi(A). Assim, pg(A\) = det(A] — A(G)), onde \ é
uma raiz deste polinomio e dito ser um autovalor de G. Como o grafo tem n vértices, entdo ele

possui n autovalores, sendo o maior deles o raio espectral de (G, denominado indice do grafo.

O espectro de G, indicado por spect(G), € definido como uma matriz 2 X d, tendo na pri-
meira linha os d autovalores distintos de GG dispostos em ordem decrescente e na segunda linha
as suas respectivas multiplicidades algébricas. Como a matriz de adjacéncia de GG é simétrica,

todos os seus autovalores sdo reais.

Como exemplo, observe o grafo (G; da Figura 28.

1 2

3 4
Figura 28: Grafo G,

A matriz de adjacéncia de G, é:

0100
101 1
AlGy) = 0101
01 10

O seu polindmio caracteristico € pg, (A) = A* — 42 — 2) + 1, tendo como espectro:

2,1701 0,3111 —1 —1,4812

spect(G1) =
pect(G1) 1 1 1 1

Como um exemplo inicial de como propriedades da estrutura de um grafo podem ser des-

critas a partir da TEG, considere a Proposi¢do 3.1.

Proposicao 3.1. Seja G um grafo com n vértices e m arestas, cujo polindmio caracteristico é

0 que se segue

pa(N) = A"+ a N ap " ap A+ ay

Logo, os coeficientes deste polinomio satisfazem:
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a) a; =0;
b) as = —m;
c) az = —2t, sendo t o niimero de tridngulos contidos no grafo.

Deste modo, analisando o grafo (G; da Figura 28, verifica-se que os coeficientes do seu
polindmio caracteristico atendem as afirmativas anteriores, pois a; = 0, as = —4, sendo 4 o

nimero de arestas de G, e a3 = —2, resultando ¢t = 1, que é o nimero de tridngulos em G;.

Agora, vejamos outros resultados onde a TEG determina caracteristicas estruturais de um

grafo.

Considere GG um grafo com n vértices, m arestas e autovalores Ay, Aa, ..., A\,_1, A,,. Entdo:

a) se C, é o nimero total de cadeias fechadas de comprimento p em G, entdo C), = tr(AP),
onde ¢r € o trago da matriz. Logo, C), = Y| A”. Porém, nem sempre ciclos de compri-

mento p (p > 4) sdo determinados em fungao de tr(AP);

b) a soma dos quadrados dos autovalores € igual a duas vezes o nimero de arestas do grafo,
ouseja, » . A7 = tr(A?) =2m;

¢) caso G seja um grafo regular de grau k, entdo y ;| A7 = kn, uma vez que kn = 2m;
d) a soma dos cubos dos autovalores € igual a seis vezes o nimero ¢ de tridngulos no grafo,

ouseja, » . A2 = tr(A%) = 6t.

Dada uma matriz A, um vetor ndo nulo z, tal que Az = Az, é dito autovetor associado
ao autovalor A. A centralidade de autovetor x; ¢ definida como a i-ésima componente do

autovetor nao-negativo x associado ao indice do grafo.

Exemplificando, considere novamente o grafo G; da Figura 28, que como foi visto tem in-
diceigual a 2, 1701. Um autovetor associado a este indice é: [0, 2818, 0,6116, 0, 5227, 0, 5227],

onde cada vértice ¢ do grafo tem uma centralidade de autovetor z;,7 = 1, ..., n, associada a ele.

Proposicao 3.2. Seja G um grafo k-regular. Entdo:

a) k é um autovalor de G;
b) G é conexo se, se somente se, a multiplicidade de k for igual a 1;

c) |\l <k paral <i<n
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Por exemplo, considere o grafo GG, da Figura 29. O seu espectro é:

2 0,6180 0,6180 —1,6180 —1,6180

spect(Gy) =
pect(G) 11 1 1 1

4 3
Figura 29: Grafo G4

Assim, como G5 € 2-regular, ele possui um autovalor igual a 2, que € o indice do grafo.
Visto que este autovalor tem multiplicidade igual a 1, entdo (G5 é conexo. Portanto, todas as

assertivas anteriores foram atendidas.

Um grafo GG com n vértices possui um unico autovalor se, e somente se, ele é totalmente

desconexo, ou seja, um grafo sem arestas. Seu polindmio caracteristico é pg(A) = A" e seu

1

O grafo completo com n vértices, K,,, é o grafo complementar do grafo totalmente desco-

espectro:

spect(G) =

nexo. O espectro do grafo K, é:

n—1 -1
spect(K,) = . .
n ju—

Assim, observe o grafo completo da Figura 30. Seu espectro é:

spect(Ky) = [ ? _31 ]

Dois grafos G; e (G5 sao chamados co-espectrais quando seus autovalores sdo iguais consi-
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4 3
Figura 30: Grafo K4

derando suas multiplicidades, ou seja, quando spect(G1) = spect(Gs). Dizemos que um grafo

G ¢é caracterizado pelo seu espectro se os grafos co-espectrais com G sdo isomorfos a ele.
Como resultado desta defini¢do, temos que se dois grafos sdo isomorfos, entdo eles t€m o
mesmo espectro. Entretanto, a reciproca desta afirmacao nao € sempre verdadeira. Para exem-
plificar, considere os grafos G e G4 da Figura 31. Estes grafos possuem o mesmo polindmio
caracteristico:
_ _\6 4 3 2
Pas(A) = pay(A) = A = TAT — 4N — TN +4X — 1

Portanto, sdo co-espectrais. Contudo, ndo isomorfos.

G3 G4

1 2 3 1

N ®
° A
[ 5 4 G 5 4 3 2

Figura 31: Grafos co-espectrais, porém ndo isomorfos (Extraidos de [Abreu, 2005])

A matriz laplaciana L(G) do grafo G é definida como:

onde D(G) é a matriz diagonal composta pelos graus dos vértices de G e A(G) é a matriz de

adjacéncia de G. Vejamos o grafo GG5 da Figura 32.

A matriz diagonal dos graus dos vértices de G5 e sua matriz de adjacéncia sdo, respectiva-

mente:
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5 4
Figura 32: Grafo G5

(290000 0|

030000

001100
D(Gg,):

000200

000030

00000 1

c

(01001 0]

101100

010000
A(Gs) =

010010

10010 1

000010

Logo, a matriz laplaciana de G5 é:

9 -1 0 0 -1 0

13 -1 -1 0 0

11 0 0 0

LiGs) = 10 10
10 0 -1 3 -1

0 0 0 0 -1 —1

Assim como na matriz de adjacéncia, € possivel encontrar o espectro da matriz laplaciana

de um grafo, chamado de espectro do laplaciano.

O espectro do laplaciano de G, denotado por ((G), é uma matriz 1 X n na qual as entradas

sd0 os autovalores de L(G) ordenados de maneira ndo-crescente. Entdo,
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C(G) = (1, pas -+, fin)

onde 1y > po > ... > fip_1 > My, s80 os autovalores de L(G). O maior autovalor, p, é

chamado indice do laplaciano de G.

Assim, para o grafo GG5 da Figura 32, temos como espectro do laplaciano:

C(Gs) = (4,7321, 3,4142, 2, 1,2679, 0,5858, 0)

Proposicao 3.3. Sendo pi; > ... > 1 >y, 0s autovalores de L(G), entdo:

a) p, =0eovetor (1, 1, ..., 1)1 é um autovetor associado;
b) G é conexo se, e somente se, (i, _1 > 0;

c) se G é regular de grau k, entdo j1; = k — \,_;, onde os \; sdo os autovalores de A(G) e

1< n.

th
(2]

4 3

Figura 33: Grafo K5

Para ilustrar, considere o grafo G5 da Figura 29. Seu espectro do laplaciano é:

((Gs) = (3,6180, 3,6180, 1,3820, 1,3820, 0)

Portanto, as afirmacdes anteriores sdo validas, pois us; = 0, G5 € conexo, uma vez que
gy = 1,3820 > 0, e como G, é 2-regular, seus autovalores seguem a formagdo da terceira

afirmativa.

O espectro do laplaciano de um grafo completo com n vértices é:
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O grafo completo K5 da Figura 33 tem o seguinte espectro do laplaciano:
C(K5) = (57 57 57 57 O)

Uma arvore geradora de um grafo G é um subgrafo que tem os mesmos vértices de G e é
uma arvore. O resultado a seguir apresenta a determinacdo do nimero de arvores geradoras de

um grafo mediante a utilizacao de sua matriz laplaciana.

O ndmero de drvores geradoras 7(G) de G com n vértices é dado por:
7(G) = n~2det(J + L(Q))

onde J € uma matrix n X n cujos elementos sdo todos iguais a 1.

Considerando o grafo da Figura 34, suas 8 drvores geradoras sio apresentadas na Figura 35.

1 2

4 3

Figura 34: Grafo Gg

Figura 35: As 8 arvores geradoras do grafo Gg

Um dos principais resultados descritos pelo espectro do laplaciano € a conectividade algé-
brica, que exerce funcdo importante na caracterizacao das propriedades de um grafo, possuindo
vdrias aplicacOes em problemas reais, como na vulnerabilidade de redes de computadores. Ela
estd relacionada com as conectividades de vértices e arestas, como pode ser visto na Proposi-

cdo 3.4.
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A conectividade algébrica de um grafo (G, denotada por a(G), é o segundo menor auto-
valor da matriz laplaciana de G. O nimero minimo de vértices de um grafo G' que ao serem
removidos torna-o desconexo é chamado de conectividade de vértices de (G, denotado por
z(G). O ndmero minimo de arestas de um grafo G que ao serem removidas torna-o desconexo

¢ chamado de conectividade de arestas de GG, denotado por u(G).

Proposicio 3.4. Sendo G um grafo ndo completo, entdo a(G) < z(G) < u(G).

Este resultado pode ser visto utilizando o grafo G7 da Figura 36, onde a(G~;) = 1, 2(G7) =
2e U(G7) = 2.

4

Figura 36: Grafo G

A matriz laplaciana sem sinal de um grafo GG é dada por:
Q(G) = D(G) + A(G)

onde D(G) é a matriz diagonal composta pelos graus dos vértices de G e A(G) é a matriz de
adjacéncia de GG. O polinomio caracteristico da matriz laplaciana sem sinal ¢ denotado por

po(A) e seus autovalores por ¢; > ga > ... > @y—1 > @y, tendo ¢; como o indice de Q).

A seguir veremos alguns resultados sobre a estrutura de grafos a partir de informagdes

espectrais da matriz laplaciana sem sinal.

Seja G um grafo com n vértices e m arestas, e p; o coeficiente de A\"~! no polinémio
caracteristico de (). Assim, m = |p;|/2. Vejamos um exemplo com o grafo Gg da Figura 37. O
polindmio caracteristico da matriz laplaciana sem sinal de G € po(cs)(A) = At —6A3+9N2—4\,

Como p; = —6,logom = | — 6]/2 = 3.

Considerando grafos bipartidos, o espectro da matriz laplaciana sem sinal € igual ao espec-
tro da matriz laplaciana, ou seja, ¢; = p;, onde ¢ = 1,2, ..., n. Ainda utilizando o grafo Gg

como exemplo, pois é um grafo bipartido, o polindmio caracteristico da sua matriz laplaciana é
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4@ &2
3

Figura 37: Grafo Gg

PLGs)(A) = At — 6A% + 9A% — 4\, Ou seja, os polindmios caracteristicos de Q(Gs) e de L(Gy)

sdo iguais. Logo, eles t€ém o0 mesmo espectro.

Considere GG um grafo com n vértices e m arestas. GG é regular se, e somente se, nq; = 4m,
sendo ¢; /2 os graus dos vértices. Como exemplo, observe o grafo Gy da Figura 38. O espectro
da matriz laplaciana sem sinal de Gy € spec(Q(Gy)) = (2, 2, 0, 0). Entdo, como ¢; = 2, os

vértices tém grau igual a 1.

Figura 38: Grafo Gy

3.4 Alguns Resultados Teéricos

Nesta secdo propomos trés resultados tedricos, sendo que dois deles ddo suporte ao algo-
ritmo que serd apresentado no Capitulo 4 para deteccio de isomorfismo de grafos. Todos estes
resultados foram obtidos durante a andlise dos experimentos computacionais realizados com
grafos isomorfos e ndo isomorfos. Nos testes, observamos que, se existia um isomorfismo entre
dois grafos, entdo as suas centralidades de autovetor eram proporcionais. Este resultado é enun-
ciado no Teorema 1. O segundo resultado € proposto como Teorema 2, que diz respeito a grafos
fortemente regulares serem co-espectrais em relacdo a matriz de adjacéncia. O terceiro, apre-
sentado no Teorema 3, afirma que grafos com vetores de centralidades proporcionais, porém

cada um com suas componentes distintas entre si, sdo isomorfos.

Teorema 1. Se dois grafos sdo isomorfos entdo suas centralidades de autovetor sdo proporci-

onais.

Prova: Sendo dois grafos GG; e G isomorfos, entdo o espectro de (G; € igual ao espectro

de GG5. Assim, os seus respectivos indices A% e /\% também sao iguais. Além disso, ambos t€m
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multiplicidade igual a 1. Os autoespacos associados ao indice de cada grafo também sao iguais,
e dado que a multiplicidade deles € 1, os autoespagos tém que ter dimensao 1. Logo, qualquer
autovetor dos respectivos autoespagos sao multiplos um dos outros e, portanto, o autovetor de
um grafo também serd multiplo escalar do autovetor do outro [Horn e Johnson, 1985]. Assim,
se 2! é 0 autovetor de G 1 correspondente ao indice A} e 22 é 0 autovetor de G, correspondente
ao fndice \?, tem-se que 7l = k:);?, para algum real k. Sabendo-se que a i-ésima coordenada
z} do autovetor associado ao indice de G; € a centralidade do vértice i(G;) e que 0 mesmo
acontece para i-ésima coordenada x? do autovetor associado ao indice de G, ou seja, que este

é a centralidade do vértice i(G5), € dado que x! = kz?, entdo z} = kz?. B

Analisando os resultados de todos os testes computacionais, dos quais sabiamos a priori se
os grafos eram ou nao isomorfos, observamos que na totalidade dos casos de isomorfismo as
centralidades de autovetor de ambos eram proporcionais. Nos casos em que essa caracteristica
ndo se verificava, os grafos ndo eram isomorfos. Contudo, esta propriedade, apesar de ser
necessdria, nao € suficiente para assegurar a existéncia de isomorfismo entre dois grafos. Ou
seja, existem grafos que possuem as mesmas centralidades de autovetor e nao sdo isomorfos.
Assim, vejamos alguns exemplos de pares de grafos nos quais podemos observar o resultado

apresentado.

4 3

Figura 39: Grafos Isomorfos

Os grafos da Figura 39 sdo isomorfos e, assim como verificamos em todos os testes entre
grafos isomorfos, as suas centralidades de autovetor sdo proporcionais. Contudo, ndo podemos
afirmar que quaisquer dois grafos com centralidades proporcionais sejam isomorfos, uma vez
que existem pares de grafos ndo isomorfos que satisfazem esta proporcionalidade. Um destes

pares, que analisamos em nossos testes, é apresentado na Figura 40.

Verificamos também que em todos os pares de grafos nos quais as centralidades de auto-
vetor ndo eram proporcionais, nao existia um isomorfismo entre eles. Um exemplo € o par de

grafos da Figura 41.
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5 4 5 4
Figura 40: Grafos nao isomorfos cujas centralidades de autovetor sdo proporcionais

1 1 2

2
L

. . ®
4 3 4 3

Figura 41: Grafos nao isomorfos cujas centralidades de autovetor sdo distintas

Teorema 2. Grafos fortemente regulares com os mesmos conjuntos de pardmetros sdo co-

espectrais em relacdo a matriz de adjacéncia.

Prova: Seja GG um grafo fortemente regular com matriz de adjacéncia A. De acordo com
[Cameron, 2001], A tem somente trés autovalores distintos k, A\ e A3 com multiplicidades
1, f e g, respectivamente, onde f e g sdo inteiros ndo negativos. Como G € regular, entdo
k* + X2 + A2 = 2m [Abreu et al., 2007]. Considere G e G’ grafos fortemente regulares com

autovalores k, Ao, A3 e k', A}, A5, respectivamente. Assim:

E? 4+ M2+ A2 =2m (3.1)

E? + X7+ Ny =2m (3.2)

Subtraindo (3.2) de (3.1), temos:

A+ A) - (NF+M2)=0 (3.3)
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Suponha que ), tenha a mesma multiplicidade de \,. Entao:

A4+ 90 = A7+ gA}
FO2—X2) + g3 —XB) = 0

Como f e g sdo ndo negativos, Ay = A, e A3 = ;.

Agora suponha que ), tenha a mesma multiplicidade de \;. Assim:

FOS =MD +g(\—A5) =0 (3.4)

Logo, Aa = Ay e A3 = A

Portanto, G e GG’ sdo co-espectrais. ll

Teorema 3. Sejam G e G4 dois grafos simples, conexos e com mesmo indice. Se suas centra-

lidades de autovetor forem proporcionais e distintas entre si entdo os grafos sdo isomorfos.

Prova: Sejam 2!l e 22 autovetores positivos associados, respectivamente, aos indices dos
grafos G, e Gs. Suponha que |V;| = |Va| = n, |Ey| = |Fo| = me que 2 = (2, ..., 1), tal
que 2% # x, j,k =1, ...,n,j # ke i = 1,2. Suponha ainda que 71 = 22 para alguma
ordenacdo dos componentes de fi, 1 = 1,2. Pela definicao de centralidade de autovetor em
[Abreu et al., 2007], ¢ define as centralidades de autovetor associadas aos vértices dos grafos
G; para alguma ordenacdo de V;, ¢ = 1,2. Desta forma supomos que G; e GG possuem as

mesmas centralidades de autovetor para alguma ordenacg@o de seus conjuntos de vértices. Seja:
f Vi — V5 uma fung@o biunivoca, tal que f(v) = w se, e somente se, c¢(v) = c(w) (3.5)

onde v € Vi, w € V5 e ¢(-) representa a centralidade do vértice. Assim:

— —

c(v) = 2 = aj, = c(w), paraalgum j, k€ {1, ...,n} (3.6)

Em [Bonacich, 2007], temos que:

A\r; = Z a;xj, 1 =1,...,n,ondea;; € A(G)e A éoindice de G. (3.7
j=1
Desta forma podemos afirmar que a centralidade de um vértice pode ser obtida a partir do

somatorio das centralidades de seus vizinhos dividido pelo indice do grafo.
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Assim, reescrevendo (3.7) na forma de matriz de G;, temos:

[ 1 1 1 ][ 1] [ 1]
aj; Ao a1n Ty Ty
5 3

2= (3.8)

1 1 1 1 1

L anl anQ ann 1 L l’n ] | ‘TTL ]

N TV
A(Gr)
onde A(G1) é a matriz de adjacéncia de GG e, portanto, a;; =0, i =1,...,n.

Considere agora uma reordenacgdo de 22 dada pela fungdo f de acordo com (3.5) originando

/7

22 . Sendo G, e G de mesmo indice, Al = A2 = )\ . Entdo, Mzl = \z2. Dai e de (3.7) temos:

2 / /

2 2 2 2
aip  aig a1pn xy xy
i i
3 3
=\ 3.9
2 2 2 2 2
| anl an2 a’rm | ZEn | | ZEn i
~ VT
A (Gz)
Assim, de (3.8) e (3.9) temos que:
[ 1 1 1] ) 2 2
ap; Qg a1n ay;  aig ain
= (3.10)
1 1 1 2 2 2
| anl an2 ann ] | anl an2 ann ]

Ou seja, A(G) = A'(G3), onde A (G) decorre de uma permutagio de linhas e colunas de
A(Gs) dada pela fungdo f. Desta forma, todas as arestas de (G; se preservam em Go. Assim,
(v,u) € Ej se, e somente se, (f(v), f(u)) € E. Entdo, por defini¢do, a fun¢do f define um

mapeamento entre V; e V5 que € um isomorfismo. Logo, G; e G5 s@o isomorfos. B



4  Algoritmo para Deteccdo do
Isomorfismo de Grafos

No decorrer deste capitulo apresentaremos o algoritmo proposto neste trabalho, descre-
vendo as trés fases que o compde: cdlculo dos indices dos grafos e dos autovetores associados,
verificagdo da distin¢do das centralidades de um mesmo autovetor e a descida na arvore de

busca.

4.1 Algoritmo Proposto

Como vimos, embora o PIG seja aplicado a diversos problemas préticos, a sua classe de
complexidade ainda permanece uma incégnita. Apesar disto, encontramos na literatura algo-
ritmos exatos para soluciond-lo, entre eles o algoritmo VF2 [Cordella et al., 2001], o Nauty
[McKay, 1981], o SD [Schmidt e Druffel, 1976] e o proposto por [Dharwadker e Tevet, 2009].
Algumas metaheuristicas também foram implementadas para o mesmo fim, como o GRASP e o

Algoritmo Genético [Boeres e Sarmento, 2005], e o Simulated Annealing [ Xiutang e Kai, 2008].

Embora outros algoritmos que solucionam o PIG em seu caso geral ja tenham sido propos-
tos, neste trabalho apresentamos um novo algoritmo que o resolve utilizando propriedades da
Teoria Espectral de Grafos, em especial os indices dos grafos e as centralidades de autovetor,

descritos no Capitulo 3.

A intenc¢do na utilizagdo destas propriedades € contribuir para a reducdo do espago de so-
lucdes do problema. Este espaco pode ser descrito, para grafos de n vértices, como sendo o
conjunto de permutagdes dos n vértices de um dos grafos de entrada do problema, fixando os
vértices do outro grafo, uma vez que o objetivo do PIG é encontrar uma associa¢ao biunivoca
entre os vértices dos dois grafos de maneira a preservar suas adjacéncias. Assim, o tamanho do

espaco de busca é igual a n!.

Deste modo, utilizamos “filtros” com o objetivo de eliminar solu¢des que nao exibem efeti-

vamente um isomorfismo entre os grafos, reduzindo assim o espaco de busca do problema. De
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acordo com a literatura, consideramos apenas os grafos que t€m o mesmo nimero de vértices
e arestas, e a mesma sequéncia de graus, pois sdo estes os candidatos a serem topologicamente
equivalentes. Consideramos como “filtro” uma condi¢ido que auxilia o algoritmo a tomar de-
cisdes com o objetivo de tornar mais simples a busca pela resposta do problema. Além destes
filtros, nesta dissertacdo propomos a andlise das componentes do autovetor associado ao in-
dice do grafo. Com essa informagdo, geramos blocos de centralidades em ambos os grafos de
entrada, tendo em um mesmo bloco vértices com centralidades proporcionais. Desta forma, a
tentativa de associacdo fica restrita a vértices de mesmo bloco, sendo respeitados os graus dos
vértices, pois segundo [Grassi et al., 2007], vértices com centralidades proporcionais podem ter
graus diferentes, o que inviabiliza a associacdo. Para efeito de comparagdo das centralidades
consideramos que dois autovetores sdo proporcionais quando um € multiplo escalar do outro
[Santos, 2006].

Esta estratégia de gerar blocos de centralidade € utilizada pelo algoritmo proposto, deno-
minado AEPIG (Algoritmo Espectral para o Problema de Isomorfismo de Grafos), para gerar a
arvore de solugdes, que serd descrita na Secdo 4.1.3. Contudo, o pior caso para esta estratégia
ocorre quando os grafos de entrada sdo grafos regulares, uma vez que, para grafos desta classe,
as centralidades de autovetor sdo todas iguais, o que gera apenas um bloco para cada grafo,

resultando em um conjunto de n! possiveis solucdes para o problema.

Assim, a fim de evitar a exploracdo da drvore de busca para a detec¢do do isomorfismo,
o AEPIG implementa dois filtros exatos. O primeiro filtro exato fundamenta-se no Teorema 1
(enunciado na Se¢do 3.4), que apresenta o autovetor associado ao indice do grafo como uma
invariante. O segundo filtro exato, baseado no Teorema 3 (enunciado na Se¢do 3.4), verifica a

distin¢do das centralidades dos autovetores de ambos os grafos de entrada.

O algoritmo proposto € aplicado apenas sobre um par de grafos que possuirem o mesmo
ndmero de vértices, de arestas e mesma sequéncia de graus. Satisfeitas estas condi¢des (invari-
antes), podemos dividir o algoritmo em trés fases, as quais sdo descritas a seguir. A entrada do

algoritmo s@o as matrizes de adjacéncia dos grafos G| = (V4, Ey) e Gy = (Va, Es).

4.1.1 Fase 1: Calculo dos indices dos grafos e do autovetor associado

Nesta primeira fase ocorre o cdlculo dos indices (A e A7) de cada grafo G e G5 de entrada
do problema e dos seus respectivos autovetores associados (Z! e #?). Como foi visto, cada
componente x;'-, ¢ = 1, 2, do autovetor associado ao indice € a centralidade do vértice v; do

grafo GG;, para alguma ordenacdo dos rétulos de seus vértices.

Ap6s calcularmos os indices dos grafos e os autovetores associados, ordenamos as centra-
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lidades dos vértices de cada grafo de maneira crescente e as comparamos proporcionalmente.
Caso o vetor de centralidade le do grafo (G; seja proporcionalmente igual ao vetor de centra-
lidade x? do grafo G, onde j = 1, ..., n, o algoritmo segue para a Fase 2, uma vez que hd a
possibilidade dos grafos serem isomorfos. Caso contrdrio, consideramos estes grafos ndo iso-
morfos. Estas decisdes sdo baseadas no Teorema 1, o que faz esta primeira fase corresponder

ao primeiro filtro exato do algoritmo.

4.1.2 Fase 2: Verificacao da distincao das centralidades de um mesmo
autovetor

Alcancando esta fase, os autovetores de ambos os grafos sdao igualmente proporcionais e
estdo ordenados de maneira crescente. Como a intenc¢do € somente tentar associar vértices que
tenham centralidades proporcionais, o objetivo desta fase € verificar se as centralidades de cada
autovetor sdo distintas entre si. Neste caso, o nimero de blocos em cada grafo serd igual ao
ndmero de vértices. Com isso, cada vértice de um grafo sé poderd ser associado a um tnico
vértice do outro grafo, respeitando a igualdade dos graus. Se este fato acontecer, de acordo com
o Teorema 3, os grafos s@o considerados isomorfos. Caso contrario, o algoritmo avanga para a
Fase 3, onde fard a descida na drvore de busca de solucdes do PIG. Assim, esta segunda fase

corresponde ao segundo filtro exato do algoritmo.

4.1.3 Fase 3: Descida na Arvore de Busca

O algoritmo atinge este ponto quando o segundo filtro exato ndo pode ser aplicado, ou seja,
se existe pelo menos uma repeticao de algum valor dentre as centralidades de cada autovetor
associados aos indices dos grafos de entrada. Neste caso € construida uma arvore de solucdes
baseada nos blocos de centralidades dos vértices, sendo explorada utilizando a estratégia de

backtracking.

Na exploracdo da drvore o algoritmo tenta associar vértices que estejam em um mesmo
bloco, que possuam 0 mesmo grau e que gerem associagdes entre arestas de mesmo valor. Esta
ultima condi¢do € para atender ao teorema (aqui denotado por Teorema PIG-PQA) proposto
por [Lee, 2007], que serd utilizado para avaliar a solu¢do encontrada na descida da arvore. Caso
estas trés condicdes nao sejam atendidas, o algoritmo termina a exploracdo daquele ramo da
arvore e realiza backtracking para um nivel acima, continuando a exploracdo a partir deste

ponto.

Como a cada nivel da drvore uma nova associacio de vértices € inserida na solugdo, ela

possui profundidade igual ao niimero de vértices dos grafos. Deste modo, quando um né folha
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¢ atingido, um isomorfismo entre os grafos € identificado, finalizando a execucao do algoritmo.
Caso contrério, quando a exploragdo da drvore termina no seu né raiz, ou seja, quando todas
as possibilidades de associagdo entre os vértices foram examinadas, porém sem sucesso, o al-
goritmo conclui que os grafos de entrada ndo sdo isomorfos. Entdo, para ratificar a solugdo
encontrada, sendo os grafos isomorfos ou ndo, utilizamos o Teorema PIG-PQA, que enuncia-

mos a seguir.

Teorema 4 (Teorema PIG-PQA). Considere G e G5 dois grafos que definem o PIG(Gy, G3),
onde G e Gy apresentem o mesmo niimero de vértices v, nimero de arestas n e graus dos
vértices. Considerando os grafos G/1 e G/2 (grafos resultantes da transcricdo dos grafos G, e
G, respectivamente), seja 0 PQA(G', Gy) adaptado para o PIG(G1, Gs). O valor da solugdo
otima do PQA(G'), Gy) é igual ao niimero de arestas n do grafo G, (ou Gy) < G ~ G,

O referido teorema € a consolidacao da reformulacao do PIG como um Problema Quadra-
tico de Alocacdo (PQA, [Koopmans e Beckmann, 1957]). Para isso, os grafos de entrada Gy
e (G5 sdo transcritos em grafos completos valorados G'1 e G;, respectivamente, cujas arestas
recebem valor 1 se existirem nos grafos originais, e valor 0 caso contrario. Com isso, a inten¢ao
¢ permitir apenas a associacdo entre arestas de G/1 e G'2 que tenham o mesmo valor, ou seja,
associar uma aresta de valor 1 em G, a uma tnica aresta de valor 1 em G\, procedendo da
mesma maneira para arestas de valor 0. Com isso, o teorema garante que o valor da solucdo do
PQA relativo aos grafos G} e G, deve ser igual ao niimero de arestas de G, e G, para que estes

sejam isomorfos.

O Algoritmo 1 apresenta o pseudocddigo do algoritmo proposto. Para ilustrar os passos do
algoritmo na detec¢do ou ndo do isomorfismo entre dois grafos, apresentamos um exemplo na

secdo seguinte.

4.1.4 Exemplo de Execucao do Algoritmo Proposto

Como entrada para o algoritmo utilizaremos as matrizes de adjacéncia dos grafos G e Gy
ilustrados na Figura 42. Ambos os grafos possuem seis vértices, nove arestas € mesma sequén-
cia de graus (2,3,3,3,3,4). Deste modo, eles obedecem as primeiras invariantes necessarias
para que dois grafos sejam isomorfos e o algoritmo execute a sua primeira fase. Nesta fase, os
indices dos grafos e seus autovetores associados sao calculados (linhas 1 e 2 do Algoritmo 1)
para uma posterior comparagdo. Calculados os autovalores dos grafos, verificamos que eles sdo

co-espectrais:

3,08680 1,15580 0,10963 —1 —1,17357 —2,17865

spect(Gh) = spect(Ga) = . . | ) . .
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Algoritmo 1: Algoritmo Espectral para o Problema de Isomorfismo de Grafos (AEPIG)

4
5
6
7

8

9
10
11
12
13
14
15
16
17
18

Entrada: As matrizes de adjacéncia dos grafos G; e G

Saida: Sim (se os grafos sdo isomorfos) ou Nao (caso contrario)

1 Calcular os indices A\ e \; de GGy e (o, respectivamente //Fase 1

2 Calcular os autovetores positivos Z* e 72 associados, respectivamente, 2 A\; € Ay
3 Ordenar de maneira crescente os componentes dos autovetores

se (7' # k7% k € R*) entdo
(GG1 e G5 ndo sao isomorfos
senao

se (7' = (¢, ..., 2"), tal que xé £t 5, k=1,...,n,7#ke i=1,2)/Fase 2

entao
G e G5 sdo isomorfos
senao

Calcular G| e G5, a partir de G e G, respectivamente //Fase 3

Realizar a descida na arvore de busca

se (o Teorema PIG-PQA for satisfeito) entao

G e G4 sdo isomorfos
senao
(1 e (G5 ndo sdo isomorfos
fim se
fim se
fim se

4

5 3

4

Figura 42: Grafos de entrada para o exemplo

Portanto, ambos possuem como indice:

Al =2 = 3,08680

Os autovetores associados aos indices de G; e (G5, respectivamente, ja ordenados de ma-

neira crescente (linha 3) e com seus vértices correspondentes sdo apresentados na Figura 43.

Estando as centralidades em ordem crescente, elas sio comparadas para verificar se sdo ou nao

proporcionalmente iguais (linha 4 - Primeiro Filtro Exato). Caso nio sejam, o algoritmo ter-

mina a sua execuc¢do e os grafos sdo considerados ndo isomorfos. Porém, neste exemplo, as
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centralidades sdo igualmente proporcionais (k = 1). Portanto, hd a possibilidade de G; e G-
serem isomorfos, o que faz o algoritmo seguir para a Fase 2.

¥1= [0.28371, 038203, 040182, 042915, 042915, 0.49373]

Vértices 6 5 4 2 3 1

de (1

Vertices = [0.28371, 038203, 040182, 042915, 042915, 049373
Gy —> & 6 1 y 5 3

Figura 43: Autovetores associados aos indices de (G; e (G5, respectivamente, ja ordenados de
maneira crescente € com seus vértices correspondentes

Alcancando a segunda fase, as centralidades sdo comparadas a fim de verificar se elas sao
distintas entre si (linha 7 - Segundo Filtro Exato), sendo ja considerados isomorfos os grafos que
possuirem esta caracteristica. Contudo, podemos perceber que isto ndo acontece no exemplo (a
centralidade 0,42915 se repete), fazendo o algoritmo avangar para a Fase 3, onde serd feita a

busca na drvore de solugdes.

Nesta udltima fase, aplica-se a transcri¢do (descrita na Secao 4.1.3) nos grafos de entrada
para se obter os grafos completos valorados G| e G, (linha 11), que podem ser observados
na Figura 44, cujas arestas de valor O (arestas de cor vermelha) sdo acrescentadas aos grafos
originais para torni-los completos. As arestas originais do grafo (arestas de cor preta) recebem

valor 1.

Figura 44: Grafos transcritos G e G,

Os blocos de centralidades sdo de extrema importancia na Fase 3 para reduzir o espago de
solucdo do PIG, que sdo utilizados para gerar a arvore de solugdes explorada pelo algoritmo na
tentativa de encontrar um isomorfismo entre os grafos (linha 11). Os blocos de centralidades

para cada grafo e a drvore de solucdes podem ser vistos nas Figuras 45 e 46, respectivamente.
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Como explicado anteriormente, vértices de mesma centralidade permanecem em um mesmo

2 0t / e / ~
bloco. No exemplo, os vértices 2 e 3 de GG} e os vértices 2’ e 5’ de G, estdo no bloco D. Os
demais permanecem um em cada bloco. Com isso foram criados cinco blocos de centralidades,

uma vez que temos cinco centralidades de autovetor distintas para ambos os grafos.

A B C D E
A

Vertices de 3] ——» F 5 4 y) 3 1

Verticesde (35 alel1r] 2] s| 3

NSRS, Ly | NS S N——
A B C D E

Figura 45: Blocos de centralidades

Analisando a arvore de solu¢des podemos perceber que, a menos dos vértices 2 e 3, cada
vértice de G} é associado a um tinico vértice de G Os vértices 2 e 3 podem ser associados aos
vértices 2’ ou 5. Com isso, mesmo os grafos possuindo 4 vértices de grau 3, as centralidades
auxiliam a reduzir as possibilidades de associagdo destes vértices se comparado ao uso somente

dos graus para guiar esta correspondéncia.

Ydeey A > vértices
Iy 6 » o deGy
5 5]
4 (1)
2 @ (8
3 (80 (2]
1 3 3

Figura 46: Arvore de solugdes criada a partir dos blocos de centralidades

Deste modo, o algoritmo inicia a busca em arvore pela raiz e a cada nivel da arvore ocorre
uma nova tentativa de associagdo entre os vértices. A nova associa¢do apenas serd inserida na
~ .~ . . / / .
solugdo se ela agregar sobreposi¢des de arestas com valores iguais de GG} e GG, € se os vértices
forem de mesmo grau. A viabilidade das centralidades dos vértices é garantida pelo fato de

associarmos apenas vértices pertencentes a0 mesmo bloco.

Na primeira tentativa, o algoritmo tenta fazer a associagdo dos vértices 6 ¢ 4/, que é bem
sucedida, pois os vértices t€ém o mesmo grau (grau 2) e estdo no mesmo bloco de centralidade
(centralidade igual a 0,28371). Com isso, o vértice 4’ € inserido na solu¢@o, sem a necessidade

de analisar as sobreposicdes de arestas.
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A segunda tentativa consiste em associar os vértices 5 e 6/, que gera uma sobreposicdo de
arestas de mesmo valor. Como esta associagcdo atende as trés condi¢des (mesma centralidade,
mesmo grau e sobreposigdes de arestas de valores iguais), ela € valida e o vértice 6’ € inserido

na solugdo.

O préximo passo do algoritmo € tentar estabelecer uma correspondéncia entre os vértices
4 ¢ 1’. Também nesta associa¢do as centralidades e os graus dos vértices sdo preservados, e
ocorre a sobreposi¢cdo de arestas de valores equivalentes. L.ogo, esta correspondéncia é vilida,

sendo inserido na solugdo o vértice 1'.

Para o proximo vértice, de acordo com a arvore, existem duas possibilidades de associagao,
os vértices 2’ e 5. Como foi utilizada a busca em profundidade, o algoritmo tenta fazer a
associagdo 2 e 2'. Caso esta ndo fosse possivel, o algoritmo tentaria a associagdo 2 e 5. Ndo
sendo esta também valida, o algoritmo realizaria backtracking. Se sucessivos mecanismos de
backtracking na arvore fizerem a busca da associacao retornar a raiz, o algoritmo termina, sendo

possivel concluir que os grafos ndo sdo isomorfos.

z z

No entanto, como a associagdo dos vértices 2 e 2’ € possivel, o algoritmo insere o vértice
2’ na solugdo e segue a descida na arvore tentando uma associag@o entre os vértices 3 e 5’ e
posteriormente entre os vértices 1 e 3’. Uma vez que estas duas associagoes obedecem as trés

condigdes, os vértices 5’ e 3’ sdo inseridos na solucéo.

Portanto, como podemos observar, descendo os seis niveis da drvore conseguimos associar
todos os vértices do grafo G; aos vértices do grafo G’l, ou seja, encontramos um isomorfismo
quando alcancamos um vértice folha da arvore. A Figura 47 mostra o vetor com os vértices
pertencentes a solucdo, onde podemos perceber que os vértices visitados foram exatamente
0s que apresentaram um isomorfismo entre os grafos, ndo sendo necessdrio realizar nenhum

backtracking para encontrar a solugao.

Vetor Solucio

4| 6| 1| 2| 5| 3|

Figura 47: Vetor com os vértices pertencentes a solugao

Além disso, a fim de ratificar a resposta encontrada pela exploragdo da drvore de busca (se
os grafos sdo ou ndo isomorfos), utilizamos o Teorema PIG-PQA (linha 12) descrito na Se-
¢do 4.1.3. No exemplo, o valor do mapeamento das sobreposi¢des de arestas entre os grafos G
e G'2 foi igual ao nimero de arestas de G; e G2, confirmando o resultado de isomorfismo apre-
sentado pela descida na arvore de busca. Caso estes nimeros ndo fossem iguais, os grafos nao

seriam isomorfos. Assim, apds a avaliacdo deste teorema, o algoritmo termina a sua execucao.
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A fim de avaliarmos o desempenho do algoritmo AEPIG descrito no Capitulo 4, realizamos
a comparacao do tempo de processamento deste com os algoritmos propostos por [Lee, 2007],
[Dharwadker e Tevet, 2009] e [Ullmann, 1976], e os algoritmos VF2 [Cordella et al., 2001] e
Nauty [McKay, 1981]. Neste capitulo apresentamos os resultados desta comparacao efetuada
sobre parte da base de dados da biblioteca VFLib [Santo et al., 2003] e sobre pares de grafos

nao isomorfos.

O AEPIG foi implementado utilizando a Linguagem C, fazendo uso da biblioteca time.h
para a obten¢do dos tempos de execugdo. Os cddigos dos cinco algoritmos citados anterior-
mente foram obtidos na literatura, com o objetivo de que todos, inclusive o AEPIG, fossem
executados sob as mesmas condi¢des de hardware. Assim, os testes foram realizados em um
computador com processador Intel® Core™2 Duo E7500 de 2.93GHz, 3GB de memoéria RAM,
Sistema Operacional Linux Ubuntu 9.10, kernel 2.6.31 — 20 e compilador gcc versao 4.4.1. A
funcao utilizada para o célculo dos autovalores e autovetores dos grafos foi extraida da biblio-
teca CLAPACK versao 3.2.1 [Anderson et al., 1999].

5.1 Instancias de Teste

Para a avaliacdo de desempenho entre os algoritmos, utilizamos 3.000 pares de grafos iso-
morfos e 11 pares ndo isomorfos, sendo 4 destes extraidos de [Dharwadker e Tevet, 2009] e os
demais gerados aleatoriamente. Os pares isomorfos foram obtidos da biblioteca VFLib, que foi
desenvolvida para servir de benchmark tanto para o Problema de Isomorfismo de Grafos quanto
para o Problema de Isomorfismo de Subgrafos. Esta biblioteca € formada por pares de grafos
divididos em categorias, que possui um total de 72.800 pares, sendo 18.200 pares isomorfos e

54.600 pares para os quais existe um isomorfismo de subgrafo.

Neste trabalho utilizamos a categoria dos grafos isomorfos conectados aleatoriamente, que
possui 3.000 pares de grafos divididos em trés grupos de densidade n = 0,1, n = 0,05 e

n = 0,01. Cada grupo possui 100 pares de grafos (que chamamos de instancias) de tamanhos
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20, 40, 60, 80, 100, 200, 400, 600, 800 e 1.000 vértices, totalizando 1.000 pares de grafos por
grupo. As arestas dos grafos desta categoria conectam vértices sem qualquer regra determinada,

assumindo que a probabilidade de uma aresta conectar dois vértices nao depende destes.

Na geracdo dos grafos desta base foi fixado o valor 77 de probabilidade de uma aresta estar
presente entre dois vértices distintos do grafo, tendo assumida como uniforme a distribui¢ao
de probabilidade. Este pardmetro 7 significa que o niimero de arestas serd igual a .n.(n — 1),
onde n € o nimero total de vértices do grafo. Porém, se o grafo obtido com este nimero for

desconexo, mais arestas sdo devidamente inseridas até a geracao de um grafo conexo.

5.2 Algoritmos Exatos VF2, Nauty e o proposto por Ullmann

Para analisar a eficiéncia do AEPIG, o comparamos com outros cinco algoritmos que tam-
bém tratam o Problema de Isomorfismo de Grafos (os algoritmos propostos por [Lee, 2007],
[Dharwadker e Tevet, 2009] e [Ullmann, 1976], e os algoritmos Nauty [McKay, 1981] e VF2
[Cordella et al., 2001]). Nesta secdo descrevemos os algoritmos VF2, Nauty e o proposto por

Ullmann, uma vez que os demais foram apresentados na Secao 2.2.

O algoritmo VF2 foi desenvolvido por [Cordella et al., 2001] como uma segunda versao do
algoritmo VF, também proposto pelos mesmos autores. A sua principal vantagem em relacdo
ao seu antecessor € a utilizacdo de estruturas de dados adequadas a fim de reduzir a requisi¢ao

de memoria durante a sua execugao, possibilitando-o ser aplicado a grafos de ordem grande.

Este algoritmo realiza uma busca enumerativa no espago de solugdes, utilizando o método
de busca em profundidade para a exploracdo deste espaco. Ele trabalha com um conjunto
M, inicialmente vazio, de pares ordenados que representam o mapeamento entre os grafos de
entrada, ou seja, cada par representa a correspondéncia de um vértice do primeiro grafo com

um vértice do segundo grafo.

A cada passo, o algoritmo tenta incluir um novo par ao conjunto M. Os pares candidatos a
inclusdo sdo gerados a partir de regras que consideram as ligagdes dos vértices que ja estdo em M
com os vértices que ainda ndo estdo. Assim, um destes pares € inserido em M caso uma fun¢do
de viabilidade seja atendida, o que gera o célculo de novos pares candidatos. Caso contrdrio,
o algoritmo abandona a exploracdo daquele caminho, desfazendo-se de algumas associacdes ja
realizadas, e segue para o caminho seguinte na arvore de busca. Ao final de sua execug¢do, sendo
os grafos isomorfos, o algoritmo apresenta o conjunto M, que possui uma correspondéncia entre

os vértices dos grafos.

O algoritmo Nauty apresentado por [McKay, 1981] tem a particularidade de determinar



5.3 Andlise dos Resultados 42

uma rotulag@o canodnica nos grafos de entrada, que € um particionamento ordenado dos vértices,
onde vértices de mesmo rétulo pertencem a mesma particio. Com isso, o algoritmo constréi

uma 4rvore de busca, onde cada n6 corresponde a uma parti¢do dos grafos de entrada.

Caso uma particdo contenha dois ou mais vértices, o algoritmo utiliza sucessivos procedi-
mentos de refinamento na tentativa de distinguir estes vértices, buscando assim gerar nds tinicos
na arvore de busca. Além disso, faz uso da técnica de busca em profundidade para percorrer a
arvore a fim de encontrar uma correspondéncia entre os vértices dos grafos. Todo este processo
€ realizado em ambos os grafos de entrada, que sdo considerados isomorfos se, e somente se,

possuirem a mesma rotulagdo canonica.

O algoritmo proposto por Ullmann [Ullmann, 1976] também utiliza a técnica de descida em
profundidade para explorar o espago de solugdes. Trabalhando com os dois grafos de entrada
ao mesmo tempo, ele define uma matriz de isomorfismo para armazenar os vértices associados

durante a busca, além de utilizar as matrizes de adjacéncias de ambos os grafos.

Esta matriz de isomorfismo possui apenas células com valores 1 e 0, sendo a inten¢ao
do algoritmo definir uma célula de valor 1 por linha, de maneira que em cada coluna haja
apenas uma célula deste valor ao final da sua execucao. Ele explora as adjacéncias dos vértices
para reduzir o espaco de busca. Como cada linha da matriz de isomorfismo representa uma
associacdo de vértices, a cada nivel da drvore uma linha € definida e antes de seguir para o nivel
seguinte, o algoritmo descarta as associagoes de vértices ndo adjacentes aos recém-associados

com outros adjacentes a eles.

Quando todas as células de alguma linha da matriz de isomorfismo estiverem com valor
0, o algoritmo termina a busca em um ramo da arvore. A altura maxima da arvore de busca
serd igual ao ndmero de vértices dos grafos. Alcancando uma folha, o algoritmo finaliza sua
execucao, uma vez que encontrou uma correspondéncia entre os vértices. Caso sejam esgotadas

todas as possibilidades de associacdes, os grafos sdo considerados ndo isomorfos.

5.3 Analise dos Resultados

Para analisar os resultados, a partir da base de dados de grafos isomorfos, nomeamos cada
grupo de grafos de acordo com a sua densidade de arestas, sendo r01 para grafos com n = 0, 1,
r005 para os de n = 0,05 e r001 para aqueles de n = 0,01. Como explicado anteriormente,
os grafos destes grupos t€ém tamanhos 20, 40, 60, 80, 100, 200, 400, 600, 800 e 1.000 vértices,
sendo 100 pares de cada tamanho, com um total de 1.000 pares de grafos em cada grupo. Para
todos os testes realizados, o tempo maximo de processamento considerado foi de uma hora,

sendo cancelada a execugdo do algoritmo que ultrapassasse este limite. Denotamos por Lee e
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DT os algoritmos propostos, respectivamente, por [Lee, 2007] e [Dharwadker e Tevet, 2009].

5.3.1 Grafos Isomorfos

A seguir apresentamos os resultados computacionais sobre a base de grafos isomorfos,
sendo exibidos por meio de graficos. As tabelas com as informagdes referentes aos gréificos sao

apresentadas no Apéndice A.
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Figura 48: Grafico das médias do tempo de execucao dos algoritmos para as instancias do grupo
r01

A Figura 48 apresenta o grafico com as médias do tempo de processamento dos algoritmos
AEPIG, Lee, DT, VF2, Ullmann e Nauty para os 1.000 pares de grafos do grupo 701. Anali-
sando o grafico, podemos notar que o algoritmo Nauty possuiu menor tempo de execugao que
os demais para todas as instincias do grupo. Vemos também que o algoritmo AEPIG apresenta
melhor desempenho que o algoritmo Lee para grafos de até 80 vértices e para todos os grafos, se
comparado com os algoritmos Ullmann e DT. Este ultimo teve suas execugdes canceladas por
limite de tempo para grafos de ordem maior que 200 vértices. O algoritmo Lee possui tempo de
processamento menor que o algoritmo VF2 para as instancias acima de 100 vértices, ficando, a

partir dai, com tempo maior apenas em relacdo ao algoritmo Nauty.

As médias do tempo de execucao dos algoritmos para cada conjunto de instancias do grupo
r005 sdo apresentadas na Figura 49. Nela observamos que, para todos os grafos deste grupo,
novamente o algoritmo Nauty foi o que obteve melhor desempenho, seguido pelo algoritmo
VF2. O algoritmo AEPIG apresentou menor tempo de processamento que os algoritmos Ull-
mann e DT para todas as instancias do grupo e para as de até 400 vértices se comparado com
o algoritmo Lee, que obteve desempenho pior que o algoritmo DT nas instancias de ordem 80.
Este ultimo apresentou resultado, dentro do limite de tempo estipulado, somente para grafos de

até 200 vértices, sendo este o algoritmo que apresentou pior desempenho nos testes deste grupo.
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Figura 49: Gréfico das médias do tempo de execucdo dos algoritmos para as instancias do grupo
r005

A Figura 50 mostra o grafico comparativo das médias do tempo de execucdo dos algoritmos
para os grafos do grupo r7001. Podemos observar que o algoritmo Nauty obteve maior tempo
de processamento que o algoritmo VF2 apenas nos grafos de ordem 20, tendo apresentado os
melhores resultados para as demais instancias do grupo. Como ocorrido com testes nos grupos
anteriores, o algoritmo AEPIG apresentou tempo de execucao inferior aos algoritmos Ullmann
e DT para todos os grafos. Este comportamento também foi observado em relagdo ao algoritmo
Lee e para os grafos de 60 vértices se comparado com o algoritmo VF2. Os algoritmos Lee e
DT tiveram suas execugdes canceladas para os grafos acima de 20 e 100 vértices, respectiva-
mente, por excederem o limite de tempo estipulado. Além disso, para o par de grafos de 20
vértices deste grupo, exibido na Figura 51, o algoritmo DT apresentou um resultado incorreto,
indicando que o par ndo era isomorfo, demonstrando assim que ele ndo é necessario e suficiente

para o isomorfismo entre dois grafos, como afirmam os autores do trabalho.
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Figura 50: Grafico das médias do tempo de execucao dos algoritmos para as instancias do grupo
r001
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Figura 51: Par de grafos do grupo r001 para o qual o algoritmo DT apresentou resultado incor-
reto

Analisando os resultados apresentados, verificamos que o algoritmo Nauty obteve os me-
lhores resultados para todas as instincias testadas, com excecdo apenas dos grafos de ordem
20 do grupo 001, para os quais o algoritmo VF2 apresentou menores tempos de execucdo.
Observamos também que o algoritmo AEPIG tem tempo de processamento menor do que os
algoritmos Ullmann e DT em todos os conjuntos de instancias, para todos os valores de densi-
dade, e que este ultimo apresenta o pior desempenho entre os algoritmos para todos os grupos

testados.

Além disso, comparando os algoritmos AEPIG e Lee, vemos que o tempo de execucdo do
primeiro torna-se menor a medida que a densidade de arestas dos grafos diminui. Isso pode ser
explicado pelo fato do AEPIG gerar blocos de vértices de centralidades proporcionais a fim de
conduzir eficientemente a descida na arvore de busca (descrita na Secao 4.1.3), reduzindo assim
o espaco de solucdes do problema. Com a mesma finalidade, o algoritmo desenvolvido por Lee
gera blocos de vértices de mesmo grau. Com isso, em ambos os algoritmos, um vértice de um
grafo somente pode ser associado a um vértice de outro grafo se eles estiverem em um mesmo

bloco (de centralidade e de grau, respectivamente).

Desta forma, o nimero de blocos gerados influencia a complexidade da busca pela solugao,
pois quanto maior € este nlimero, menor serd o numero de vértices por bloco, ocasionando
uma diminui¢do do espaco de solugdes vidveis do problema, consequentemente melhorando os
tempos de processamento dos algoritmos. Podemos visualizar este comportamento analisando
os resultados apresentados na Tabela 1. Nela verificamos que o algoritmo AEPIG gera mais
blocos de centralidade do que o algoritmo Lee gera blocos de graus, tendo assim a descida
na arvore de busca mais eficiente, caso seja necessaria a sua utilizacdo. Em média, nos testes
para todos os conjuntos de densidades, o nimero de blocos de centralidades distintas foi maior
que o de graus distintos. E possivel observar que para o grupo 7001, o ndmero de blocos de
graus € bastante inferior, o que explica o tempo invidvel (ou seja, superior ao limite de tempo

estipulado) para o algoritmo Lee neste conjunto de instancias.
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r01 r005 r001
Instancias | BC BG | BC BG | BC BG
20 20 7 19 5 16 4
40 40 10 | 40 8 34 6
60 60 14 | 60 11 55 7
80 80 16 | 80 13 | 75 7
100 100 18 | 100 14 | 97 8

200 200 27 | 200 22 | 200 11
400 400 41 | 400 33 | 400 17
600 600 52 | 600 41 | 600 21
800 800 62 | 800 48 | 800 25
1000 1000 70 | 1000 55 | 1000 28

Tabela 1: Numero médio de blocos de centralidades (BC) e de graus (BG) dos algoritmos
AEPIG e Lee, respectivamente

4 4

Figura 52: Grafos G e G,

Para exemplificar como o espago de solucdes para o problema estd relacionado aos blocos
produzidos pelos algoritmos AEPIG e Lee, observe os grafos da Figura 52. Os autovetores

associados aos indices de (G; e G5, respectivamente, sao:

7 = [0,39780, 0,31955, 0,50949, 0,50949, 0,39780, 0, 24950]
c
2 = [0, 39780, 0,50949, 0,39780, 0,24950, 0,31955, 0, 50949)]

Deste modo, o nimero de blocos gerados a partir das centralidades dos autovetores e da
sequéncia de graus dos vértices € igual a 4 e 3, respectivamente, para ambos os grafos. Assim,
baseado nestes blocos, é possivel criar as drvores de solu¢des com os vértices de (o, fixando os
vértices de (G; em ordem crescente das centralidades, podendo ser vistas na Figura 53(a) e Fi-
gura 53(b), respectivamente. Portanto, como ja mencionado, a busca pela resposta do problema

na drvore de solucdes, sendo ela necessaria, € altamente influenciada pela quantidade de blocos

gerados.
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(a) {h)

Figura 53: Arvores de solugdo para o isomorfismo entre G, e G5 geradas a partir dos blocos de
centralidades (a) e dos blocos de graus (b)

5.3.2 Grafos Nao Isomorfos

Finalizada a andlise dos testes realizados sobre a base de grafos isomorfos, apresentamos os
resultados computacionais da execucao dos algoritmos sobre 11 pares de grafos conhecidamente
ndo isomorfos. Os resultados serdo demonstrados por meio de graficos e as tabelas com as

informacdes referentes a eles sdo apresentadas no Apéndice A.

A Figura 54 exibe os resultados obtidos da execucdo dos algoritmos sobre quatro destes
pares, extraidos de [Dharwadker e Tevet, 2009], que possuem, respectivamente, 20, 25, 25 e 40
vértices. Para a instincia de ordem 20, o algoritmo que apresentou melhor desempenho foi o
Nauty, seguido do VF2 e AEPIG, respectivamente. Com pequena diferenca a frente do algo-
ritmo VF2, o Nauty também foi o que obteve menor tempo de processamento para o segundo
grafo. J4 para o grafo Mathon, o algoritmo Ullmann obteve o melhor comportamento, seguido
dos algoritmos VF2 e AEPIG, nesta ordem. Para esta instancia, o algoritmo Lee ultrapassou o
limite de tempo pré-estabelecido, tendo a sua execucao cancelada. Isto pode ser explicado pelo
fato desta instancia possuir uma certa homogeneidade em relacdo aos graus dos vértices, tendo
10 vértices de grau 6 e os demais de grau 4. Com isso, o algoritmo gera apenas dois blocos
de graus, tornando custosa a busca em arvore. Para o grafo de 40 vértices, novamente o algo-
ritmo Nauty executou em menor tempo que os demais, ficando os algoritmos VF2 e Ullmann,

respectivamente, na ordem de desempenho.

Os resultados dos testes realizados sobre os grafos ndao isomorfos gerados aleatoriamente
podem ser vistos na Figura 55. As instancias deste grupo obedecem a seguinte nomenclatura:
gZW , onde Z representa o nimero de vértices do grafo e W o seu identificador (A, B, ..., H)
formando os pares A — B,C — D, E — FeG — H.

Para o primeiro par de grafos com 6 vértices, o algoritmo com menor tempo de proces-
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Figura 54: Tempo (em segundos) dos algoritmos para instancias ndo isomorfas extraidas de
[Dharwadker e Tevet, 2009]

samento € o VF2, seguido dos algoritmos Nauty e AEPIG. Para o segundo par de ordem 6,
o algoritmo Lee obteve melhor desempenho que os demais, € os algoritmos Nauty e AEPIG
possuem pequena diferenca nos tempos de execucao, sendo que o primeiro obteve tempo me-
nor de processamento. Para os grafos com 7 vértices, o algoritmo VF2 apresentou tempo de
execucao inferior a todos os outros, contudo, o algoritmo Lee executa muito préximo do seu
tempo. Este ultimo conseguiu melhores resultados para grafos de 8 vértices, a excegdo do par
C — D, onde o algoritmo VF2 teve o melhor comportamento. Para as duas ultimas instancias,

estes dois algoritmos apresentaram pequena diferenca nos tempos de processamento.

Nos testes com as instincias A — B, F — F e G — H, todas com 8 vértices, o primeiro filtro
exato do algoritmo AEPIG (descrito na Secdo 4.1.1) indicou que os grafos tinham autovetores

diferentes, portanto eles foram considerados ndo isomorfos.
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Figura 55: Tempo (em segundos) dos algoritmos para instancias ndo isomorfas geradas aleato-
riamente

Analisando os resultados dos testes sobre os dois grupos de grafos ndo isomorfos, percebe-

mos que o algoritmo Nauty foi o que obteve melhores resultados para as instancias do primeiro
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grupo, porém este comportamento nao se manteve para o grupo dos grafos gerados aleatoria-
mente, onde ele nao foi melhor em nenhuma das instancias testadas. Neste segundo grupo, o
algoritmo Lee prevaleceu sobre os demais, tendo o algoritmo VF2 alcangado menores tempos
para as instancias g6 A — g6B, g7TA — g7B e ¢8C' — ¢g8D. Para ambos os grupos, o algoritmo

DT foi o que apresentou o pior desempenho entre todos os algoritmos.



6 Conclusdao e Trabalhos Futuros

Neste trabalho investigamos a utilizacdo de conceitos da Teoria Espectral de Grafos a fim
de auxiliar a construcao de algoritmos que solucionem o Problema de Isomorfismo de Grafos.
Trés resultados tedricos que consideram informacdes do espectro dos grafos e das centralidades
de autovetor foram apresentados. Além disso, foi proposto o algoritmo AEPIG para detec¢ao

de isomorfismo de grafos baseado em dois destes resultados.

Validamos dois filtros exatos que auxiliam o AEPIG na busca pela solu¢do do problema,
sendo o primeiro fundamentado no Teorema 1 (Secdo 3.4), o qual afirma que grafos isomorfos
possuem as centralidades de autovetor proporcionalmente iguais, € o segundo € baseado no
Teorema 3 (Secdo 3.4), indicando que grafos com centralidades proporcionais, porém distintas

entre si, sdo isomorfos.

Realizamos uma andlise comparativa de desempenho entre o AEPIG e outros cinco al-
goritmos exatos: os algoritmos propostos por [Ullmann, 1976], [Dharwadker e Tevet, 2009] e
[Lee, 2007], e os algoritmos VF2 [Cordella et al., 2001] e Nauty [McKay, 1981]. Aplicamos es-
tes algoritmos sobre parte da base de grafos isomorfos da biblioteca VFLib [Santo et al., 2003]
e sobre pares de grafos ndo isomorfos (alguns extraidos de [Dharwadker e Tevet, 2009] e outros

gerados aleatoriamente).

A partir dos resultados obtidos, observamos que o nimero de blocos de centralidades ge-
rados estd relacionado com a densidade de arestas dos grafos, uma vez que hd a diminui¢do
deste nimero com a redu¢do da densidade. Outro fator influenciador na geracao destes blocos
¢ a regularidade com relagcdo aos graus dos vértices, pois grafos regulares possuem todas as
centralidades de autovetor iguais, resultando na criacdo de apenas um bloco. Deste modo, a
complexidade da busca pela solucao € influenciada pelo nimero de blocos, pois quanto maior
¢ este nimero, menor serd o nimero de vértices por bloco, ocasionando uma diminuicdo do
espaco de solugdes vidveis do problema, consequentemente melhorando os tempos de proces-

samento dos algoritmos.

Comparando o desempenho dos algoritmos nos testes com grafos isomorfos, verificamos

que o algoritmo Nauty obteve os melhores resultados para todas as instincias testadas, exceto



6 Conclusdo e Trabalhos Futuros 51

para os grafos de 20 vértices do grupo 7001, que teve o algoritmo VF2 com os menores tempos
de processamento. Observamos também que o algoritmo AEPIG tem tempo de execugio infe-
rior aos algoritmos Ullmann e DT em todos os conjuntos de instancias, para todos os valores de
densidade. Este dltimo apresentou o pior desempenho entre os algoritmos, ndo executando para
grafos maiores que 200 vértices em todos os grupos testados, bem como apresentou resultado
incorreto para um par de grafos de 20 vértices do grupo 7001, indicando que o par nio era iso-
morfo, demonstrando assim que ele ndo é necessario e suficiente para o isomorfismo entre dois

grafos.

Analisando os resultados dos testes realizados sobre os dois grupos de grafos ndo isomorfos,
vimos que o algoritmo Nauty apresentou os menores tempos de execucdo para as instancias
extraidas de [Dharwadker e Tevet, 2009], porém isto ndo se repetiu para o grupo dos grafos
gerados aleatoriamente, onde ele ndo foi melhor em nenhuma das instancias. Neste segundo
grupo, o algoritmo Lee prevaleceu sobre os demais, tendo o algoritmo VF2 alcancado tempos
inferiores para alguns grafos. Para ambos os grupos, novamente o algoritmo DT foi o que

apresentou o pior desempenho entre todos os algoritmos.

Além disso, comparando os algoritmos AEPIG e Lee, vemos que o tempo de execu¢do do
primeiro torna-se menor a medida que a densidade de arestas dos grafos diminui. Isso pode ser
explicado pelo fato de ele gerar mais blocos de centralidade do que o algoritmo Lee gera blocos
de graus, tendo assim a descida na arvore de busca mais eficiente, caso seja necessdria a sua
utilizagdo. Em média, nos testes para todos os conjuntos de densidades, o nimero de blocos de

centralidades foi bastante superior ao de graus distintos.

Ainda de acordo com os testes, verificamos que um gargalo computacional do algoritmo
AEPIG € a fun¢do para calculo dos autovalores e autovetores dos grafos. A funcdo utilizada
oriunda da biblioteca CLAPACK [Anderson et al., 1999], contribuiu com uma parcela conside-
ravel no tempo total de processamento do algoritmo, sendo responsavel, em média, por 90%
deste tempo, uma vez que na maioria dos testes a Fase 3 ndo foi executada, ou seja, a arvore
de busca de solu¢des ndo precisou ser gerada. Mais precisamente, dos 1.000 testes realizados
com o AEPIG para o conjunto de instancias 01, em apenas 0, 7% delas a arvore de busca foi
necessdria para encontrar o isomorfismo. Para o conjunto 005, apenas 7, 1% e, finalmente, no

ultimo conjunto (r001) foi necessdria a geragdo da arvore para um nimero maior de instancias,
52,3%.

Portanto, concluimos que a utilizacdo de propriedades da TEG para a resolucdo do PIG
¢ vantajosa, visto que o Teorema 3 se mostrou poderoso na detec¢do do isomorfismo para a
grande maioria dos testes realizados. Nos outros casos, a exploragdo da arvore de busca de

solucdes guiada pelos blocos de centralidades se mostrou bastante eficiente, principalmente
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quando tratamos de grafos com uma grande diversidade de graus de vértices.

Como propostas para trabalhos futuros, pretendemos investigar na literatura fun¢des mais
eficientes para o cdlculo de autovalores e autovetores, na tentativa de melhorar o desempenho
do algoritmo proposto, bem como compara-lo com os demais algoritmos sobre uma base mais

extensa de grafos ndo isomorfos.
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APENDICE A - Tabelas dos Resultados
Computacionais

Instancias | AEPIG Lee DT VEF2 Ullmann  Nauty
20 0,000170 0,000582  0,761822  0,000067 0,000200 0,000046
40 0,000449 0,001569  8,008165  0,000188 0,000858 0,000054
60 0,000896 0,001143  30,953340  0,000371 0,002049 0,000099
80 0,000998 0,002599  81,035536  0,000583 0,003582 0,000116
100 0,001665 0,001051 170,121170 0,000816 0,006553 0,000162
200 0,010055 0,002180 2103,660660 0,003707 0,038574 0,000499

400 0,070377 0,010047 - 0,013507 0,270611 0,002029
600 0,229744  0,027049 - 0,032634 0,830004 0,003522
800 0,591548 0,055887 - 0,058337 1,800550 0,005696
1000 1,402799 0,094803 - 0,096865 3,435734 0,008842

Tabela 2: Tempo médio (em segundos) da execucdo dos algoritmos para as instancias do grupo
r01

Instancias | AEPIG Lee DT VE2 Ullmann Nauty
20 0,000131  0,064017 0,726549  0,000059 0,000219 0,000052
40 0,000325 5,389129 7,619884  0,000120 0,000664 0,000048
60 0,000590 27,843959  29,599965  0,000259 0,002189 0,000083
80 0,000998 42,007933  29,599965  0,000373 0,003700 0,000097
100 0,001664 12,298832 179,678340 0,000555 0,006742 0,000130
200 0,010090 1,299386 2340,182519 0,001886 0,041314 0,000364

400 0,070791  0,202869 - 0,007855 0,280004 0,001141
600 0,230232  0,044740 - 0,018361 0,895888 0,002344
800 0,594165 0,077939 - 0,032370 1,849139 0,003440
1000 1,380830 0,121431 - 0,050769 3,469621 0,005469

Tabela 3: Tempo médio (em segundos) da execucdo dos algoritmos para as instancias do grupo
005
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r001

Instancias | AEPIG Lee DT VEF2 Ullmann  Nauty

20 0,000120 51,878369  0,665118  0,000063 0,000223 0,000081

40 0,000291 - 6,912850  0,000172 0,000826 0,000102

60 0,000579 - 29,173299  0,000600 0,003163 0,000158

80 0,001030 - 83,335449  0,000570 0,005546 0,000170

100 0,001751 - 185,153810 0,000828 0,010253 0,000156

200 0,010102 - - 0,001811 0,054749 0,000236

400 0,070463 - - 0,003943  0,342845 0,001072

600 0,231004 - - 0,008556 0,958771 0,001507

800 0,596862 - - 0,015172  2,218356 0,001760

1000 1,369227 - - 0,024450 4,081362 0,001996

Tabela 4: Tempo médio (em segundos) da execucdo dos algoritmos para as instancias do grupo

Instancias | AEPIG Lee DT VEF2 Ullmann Nauty
Siberian | 19,609318 63,977461 243,291000 0,038255 10,773584 0,000687
Weisfeiler | 0,064125  0,040066 1,191310  0,006480 0,091121 0,005882
Mathon 0,000198 - 12,508300 0,000045 0,000001  0,002632
Praust 0,009030  0,016708  4,433540 0,004170 0,018658 0,000216

Tabela 5: Tempo (em segundos) dos algoritmos para instdncias ndo isomorfas extraidas de
[Dharwadker e Tevet, 2009]

Instancias

AEPIG

Lee

DT

VEF2

Ullmann

Nauty

g6C - g6D
g6E - g6F
g7A - ¢7B
g8A - g8B
g8C - g8D
g8E - g8F
28G - g8H

0,000096
0,000075
0,000072
0,000075
0,000104
0,000072
0,000075

0,000115
0,000021
0,000020
0,000005
0,000136
0,000004
0,000010

0,024244
0,026451
0,034142
0,046095
0,044584
0,053096
0,047372

0,000038
0,000095
0,000016
0,000016
0,000063
0,000007
0,000012

0,000097
0,000110
0,000034
0,000031
0,000225
0,000012
0,000031

0,000071
0,000070
0,000041
0,000067
0,000075
0,000045
0,000049

Tabela 6: Tempo (em segundos) dos algoritmos para instancias ndo isomorfas geradas aleatori-
amente





