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Resumo

O Problema da Partição Cromática de Custo Mínimo (PPCCM), considerado uma
das diversas variantes do Problema Clássico de Coloração de Grafos (PCG), utiliza nú-
meros reais como custos das cores, tendo como objetivo colorir os vértices de um grafo de
modo que os adjacentes tenham cores diferentes e a soma dos custos das cores utilizadas
seja mínima. Embora seja um problema NP-Difícil para grafos em geral, foram elabo-
rados algoritmos polinomiais para algumas classes de grafos. Do ponto de vista prático,
o mesmo foi empregado no projeto de circuitos VLSI e na solução de determinados pro-
blemas de escalonamento modelados como grafos de intervalo. Nesta tese são propostos
algoritmos para o PPCCM considerando um grafo simples não-direcionado como entrada.
Inicialmente foram desenvolvidas duas heurísticas baseadas na metaheurística Algoritmos
Genéticos com Chaves Aleatórias Tendenciosas (Biased Random Key Genetic Algorithms
- BRKGA, em inglês). Posteriormente, foi implementada uma heurística de trajetória que
faz uso de duas estratégias de busca local seguidas por um procedimento de path-relinking.
Para os experimentos computacionais foram geradas instâncias para o problema a partir
de grafos comumente empregados no PCG.

Palavras-chave: Problema da Partição Cromática de Custo Mínimo, Coloração de Gra-
fos, Heurísticas, Metaheurísticas, Busca Local, Algoritmos Genéticos.



Abstract

The Minimum Cost Chromatic Partition Problem (MCCPP) is one of several variants
of the classical Graph Coloring Problem (GCP), in which there are real number as color
costs and the aim is to color the vertices of a graph so that the adjacent ones have di�erent
colors and the sum of the costs of the used colors is minimal. Although the MCCPP is
a NP-hard problem for general graphs, polynomial time algorithms were developed for
some classes of graphs. From a practical point of view, the MCCPP has application in
the design of VLSI circuits and in the solution of scheduling problems modeled as interval
graphs. In this thesis, algorithms for the problem considering undirected simple graphs
are proposed. Initially, two heuristics based on the metaheuristic Biased Random Key
Genetic Algorithm (BRKGA) were developed. Following, we propose a trajectory search
heuristic using local search and path-relinking. For computational experiments, instances
for the problem from graphs commonly used in PCG were generated.

Keywords: Minimum Cost Chromatic Partition Problem, Graph Coloring, Heuristics,
Metaheuristics, Local Search, Genetic Algorithms.
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Capítulo 1

Introdução

1.1 Motivação

O Problema Clássico de Coloração de Grafos (PCG) tem como objetivo colorir os

vértices de um grafo G qualquer com um número mínimo de cores, chamado número

cromático e representado por χ(G), de modo que sejam atribuídas cores distintas para

vértices adjacentes. O PCG é amplamente estudado em virtude da sua importância teó-

rica e aplicabilidade prática, comumente modelando problemas como grafos de con�itos,

onde os vértices representam elementos distintos, as arestas de�nem con�itos entre esses

elementos e cada cor determina um componente a ser otimizado. Como exemplo, são

encontradas aplicações na área de escalonamento [Malkawi et al., 2008], redes de comuni-

cação [Woo et al., 1991] e alocação de frequências [Narayanan e Shende, 2001]. Do ponto

de vista teórico, por ser um problema NP-Difícil para grafos em geral [Garey e Johnson,

1979], ainda não foi possível elaborar um algoritmo em tempo polinomial que o resolva

considerando grafos genéricos.

Estabelecido como uma das diversas variantes do PCG, o Problema da Soma Cromá-

tica (PSC) foi introduzido por Kubicka [Kubicka, 1989]. Dado um grafo não-direcionado

G e números naturais em sequência como custos das cores, ele consiste em colorir os vérti-

ces de G de forma que tenham cores diferentes os que são adjacentes e a soma dos custos

das cores dos vértices seja mínima. Esse problema não é equivalente ao PCG, no sentido

de que não basta encontrar o número cromático do grafo G e, utilizando as χ(G) cores de

menor custo, obter a menor soma possível.

O Problema da Partição Cromática de Custo Mínimo (PPCCM) é considerado uma

generalização do PSC que, diferente deste, utiliza números reais como custos para as
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cores. O mesmo foi apresentado em 1980 por Mead e Conway [Mead e Conway, 1980],

que propuseram uma máquina hipotética com um grande número de processadores distri-

buídos como em uma árvore, a �m de aumentar sua capacidade computacional ao gerar

paralelismo entre eles. Sendo ele um problema NP-Difícil, considerando um processa-

mento sequencial, os autores apresentaram um algoritmo paralelo para a sua resolução na

referida máquina, o que resultaria em um tempo de execução O(n2), dado um grafo não-

direcionado com n vértices e um conjunto de n cores. No entanto, os mesmos veri�caram

que era necessário um número muito grande de processadores (2nn− 1) para alcançar tal

tempo polinomial.

Apesar da complexidade do PPCCM para grafos em geral, foram elaborados algorit-

mos polinomiais para algumas classes de grafos, como árvores, grafos co-bipartidos e para

o complementar do grafo sem triângulos. Do ponto de vista prático, Supowit [Supowit,

1987] e Sen et al. [Sen et al., 1992] o empregaram no projeto de circuitos VLSI, onde

terminais precisam ser eletricamente conectados em diferentes camadas que possuem ca-

racterísticas distintas, tendo assim um custo associado ao posicionamento de um terminal

em uma camada. O objetivo é particionar tais terminais em camadas, tentando não

interceptá-los, de modo que o custo total seja mínimo. Problemas de escalonamento mo-

delados como grafos de intervalo também são exemplos de aplicações para o problema

[Kroon et al., 1997].

Devido à sua complexidade, inexiste algoritmo e�ciente a �m de tratar o problema

para o caso geral. A utilização de métodos exatos baseados em formulações simples, na

tentativa de obter a melhor solução possível, torna-se impraticável para instâncias de

tamanho médio e grande, por demandar elevado tempo computacional. Nesses casos, é

sugerida a aplicação de métodos heurísticos, que permitem a obtenção de uma solução de

boa qualidade, em um tempo de processamento aceitável.

1.2 Objetivo da Tese

Assim, o objetivo deste trabalho consiste em propor e avaliar algoritmos para o Pro-

blema da Partição Cromática de Custo Mínimo considerando como entrada um grafo

simples não-direcionado. Para isso, inicialmente foram desenvolvidas duas heurísticas

baseadas na metaheurística Algoritmos Genéticos com Chaves Aleatórias Tendenciosas

(Biased Random Key Genetic Algorithms - BRKGA, em inglês), onde uma delas realiza,

em cada um dos indivíduos elite, uma busca em vizinhança considerada uma modi�cação
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da metaheurística VNS. Posteriormente, foi proposta uma heurística de trajetória que faz

uso de duas estratégias de busca local, seguidas por um procedimento de path-relinking

(reconexão por caminhos).

1.3 Organização da Tese

Este trabalho está organizado da seguinte forma, o PCG e algumas de suas variantes

com custos nos vértices e nas cores são apresentados no próximo capítulo. O PPCCM é

descrito no Capítulo 3, incluindo a sua formulação como um problema de programação

inteira binária. As heurísticas baseadas na metaheurística BRKGA e os experimentos

destas sobre um conjunto de instâncias desenvolvido para o problema são detalhados no

Capítulo 4. O Capítulo 5 especi�ca a heurística de trajetória com busca local e path-

relinking, bem como seus experimentos e os testes de comparação das três heurísticas

propostas. Por �m, o Capítulo 6 apresenta as conclusões e sugestões para trabalhos

futuros.



Capítulo 2

Problemas de Coloração de Grafos

Neste capítulo será especi�cado o Problema Clássico de Coloração de Grafos, com uma

breve revisão dos principais algoritmos desenvolvidos para solucioná-lo e apresentação de

determinadas variantes que consideram pesos nos vértices e nas cores, como o Problema

da Soma Cromática, descrito na Seção 2.2.

2.1 O Problema Clássico de Coloração

Em 1852, Francis Guthrie conjecturou que seriam necessárias apenas quatro cores

para colorir as regiões de qualquer mapa, de modo que regiões vizinhas não possuíssem a

mesma cor, dando origem assim ao Problema das Quatro Cores. Apesar da sua aparente

simplicidade, esse problema permaneceu em aberto por mais de cem anos, pois somente

em 1976 conseguiu-se provar, utilizando computadores, que a conjectura estava correta,

sendo instituído o Teorema das Quatro Cores.

Uma vez que é possível associar um mapa a um grafo planar, onde os vértices repre-

sentam as regiões e as arestas a vizinhança entre as mesmas, outro problema estabelecido,

intitulado Problema de Coloração de Grafos, tem como objetivo colorir um grafo qual-

quer com um número mínimo de cores de modo que sejam atribuídas cores distintas para

vértices adjacentes.

De modo formal, considere um grafo não-direcionado G = (V,E), onde V é o conjunto

de vértices e E o conjunto de arestas. Uma coloração própria dos vértices de G consiste em

atribuir cores diferentes para vértices adjacentes, sendo imprópria caso contrário. Assim,

o Problema Clássico de Coloração de Grafos (PCG) consiste em encontrar uma coloração

própria em G de modo que o número de cores utilizado seja mínimo. Este número mínimo
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de cores é chamado número cromático de G e representado por χ(G). Uma k-coloração

é uma coloração de G que utiliza k cores. A versão de decisão relacionada ao PCG

é o Problema da k-coloração, que compreende determinar se é possível encontrar uma

coloração própria de G com k cores. Como exemplo, considere o grafo G da Figura 2.1

que possui 7 vértices e 11 arestas. Foi possível encontrar uma 3-coloração própria em G,

sendo esse o número mínimo de cores necessário para colori-lo, resultando em um número

cromático χ(G) = 3.

�

Figura 2.1: Grafo G com 7 vértices, 11 arestas e χ(G) = 3.

O PCG desperta interesse de pesquisa em diversas áreas devido a sua aplicabilidade

prática, comumente modelando problemas como grafos de con�itos, onde os vértices re-

presentam elementos distintos, as arestas de�nem con�itos entre esses elementos e cada

cor um componente a ser otimizado. Como exemplo, são encontradas aplicações na área

de escalonamento [Malkawi et al., 2008], redes de comunicação [Woo et al., 1991] e aloca-

ção de frequências [Narayanan e Shende, 2001], �uxo de tráfego aéreo [Barnier e Brisset,

2004], registradores [Pereira e Palsberg, 2005] e timetabling [Bello et al., 2008].

2.1.1 Algoritmos para o PCG

Do ponto de vista teórico, por ser o PCG um problema NP-Difícil para grafos em

geral [Garey e Johnson, 1979], ainda não foi possível elaborar um algoritmo em tempo

polinomial para solucioná-lo. Apesar disso, alguns métodos exatos foram desenvolvidos

na tentativa de encontrar a solução ótima para o problema. O primeiro deles, aplicando

a técnica de enumeração implícita, foi proposto em [Brown, 1972] e utiliza as cores já

empregadas na coloração atual, ou uma nova cor, para colorir um vértice de cada vez,

seguindo uma determinada ordem dos mesmos. Outro algoritmo, chamado DSATUR

[Brélaz, 1979], fundamentado na mesma técnica e que propõe uma melhoria no algoritmo

de Brown, utiliza como regra para a escolha do próximo vértice a ser colorido aquele que
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tiver o maior grau de saturação, que é o número de cores distintas dos vértices adjacentes

a um determinado vértice. Em caso de empate, o vértice escolhido é o que apresentar

maior grau no subgrafo não colorido. Sewell [Sewell, 1996] promove melhorias no algo-

ritmo DSATUR estabelecendo uma regra de desempate alternativa na seleção do vértice

para branching, escolhendo aquele que gera a maior diminuição no número de cores dis-

poníveis para os vértices restantes sem cor. Outros algoritmos empregando a estratégia

de enumeração implícita são encontrados em [Kubale e Jackowski, 1985] e [Sager e Lin,

1991].

Um método baseado em geração de colunas para solucionar o PCG utilizando uma

formulação de conjuntos independentes foi apresentado por Mehrotra e Trick [Mehrotra e

Trick, 1996] que, embora necessite de so�sticadas regras de branching e a solução de um

subproblema difícil, resolve rapidamente grafos de tamanho pequeno a médio. Visto como

uma variação da formulação de Mehrotra e Trick, Campêlo et al. [Campêlo et al., 2004]

estabeleceram um modelo para o problema, denominado Formulação de Representantes,

que de�ne um vértice representante para cada classe de cor, impondo que somente uma

cor possa ser utilizada se a classe de cor for inicializada pelo vértice representante corres-

pondente. Em [Campêlo et al., 2008] esta formulação foi revista a �m de eliminar soluções

simétricas, visto que qualquer vértice de uma classe de cor poderia ser o representante

dessa classe.

Malaguti et al. [Malaguti et al., 2011] propuseram um algoritmo branch-and-price

também com base na formulação de cobertura de conjuntos do PCG apresentado em

[Mehrotra e Trick, 1996]. No entanto, eles incorporaram a heurística MMT [Malaguti

et al., 2008] a �m de gerar uma solução inicial viável e um conjunto de colunas para serem

utilizadas pelo método exato. Uma abordagem baseada em modelos de programação

inteira foi igualmente empregada no trabalho de Méndez-Díaz e Zabala [Méndez-Díaz e

Zabala, 2008], utilizando algumas famílias de facetas do politopo 0/1 associadas a um

desses modelos em um algoritmo de plano de corte, com o objetivo de remover soluções

simétricas obtidas pela permutação das cores.

Tendo como base o algoritmo DSATUR e as melhorias propostas por Sewell [Sewell,

1996], Segundo [Segundo, 2012] desenvolveu um algoritmo exato introduzindo uma nova

estratégia de desempate com o objetivo de reduzir o número de subproblemas gerados,

sendo executada mais rápido do que a estratégia apresentada por Sewell, pois se restringe

a um conjunto particular de vértices.

Devido à complexidade do PCG, grande parte dos algoritmos exatos tem a capacidade
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de solucionar somente pequenas instâncias em tempo computacional aceitável, tipicamente

com poucas centenas de vértices, sendo assim necessária a utilização de heurísticas e

metaheurísticas para grafos que modelam aplicações do mundo real, comumente com

milhares de vértices.

A heurística gulosa mais simples para o PCG, denominada Heurística Sequencial,

assume que os vértices estão em uma determinada ordem de entrada e atribui a cada

vértice a cor de menor índice que não tenha sido utilizada em vértices adjacentes. A

versão gulosa do DSATUR [Brélaz, 1979] segue esse princípio, inicialmente organizando

os vértices em ordem não-crescente dos graus e colorindo aquele de maior grau com a

primeira cor. A coloração prossegue com a cor de menor índice possível, escolhendo como

próximo vértice o que possui maior grau de saturação, que é atualizado a cada iteração.

Outro que utiliza a primeira cor no vértice de grau maior é o algoritmo Recursive Largest

First (RLF) de Leighton [Leighton, 1979], que a partir disso constrói uma classe de cor de

cada vez, de maneira gulosa, separando os vértices ainda não coloridos em dois conjuntos:

os que podem ser alocados na classe que está sendo criada e os que não podem.

Chams et al. [Chams et al., 1987] aplicaram a metaheurística Simulated Annealing à

versão de decisão do PCG, explorando um conjunto de k-colorações (próprias ou não) e

tendo como objetivo minimizar o número de arestas con�itantes (arestas que conectam

vértices com a mesma cor). Uma solução vizinha é alcançada trocando a cor de um único

vértice na solução corrente. Outra metaheurística de busca local aplicada ao problema foi

a Busca Tabu em [Hertz e de Werra, 1987]. Esse algoritmo, intitulado TABUCOL, tem

o mesmo espaço de soluções e a mesma função objetivo daquele apresentado em [Chams

et al., 1987]. Contudo, somente os vértices adjacentes a arestas con�itantes são candidatos

para a troca de cor. Quando a cor de um vértice é alterada, obtendo uma solução vizinha,

esse vértice e sua cor anterior são armazenados em uma lista tabu, impossibilitando-o

de receber tal cor por um determinado número de iterações, chamado prazo tabu. Essa

restrição tabu não é considerada caso a troca de cor conduza a uma solução com valor de

função objetivo menor do que um valor de�nido.

A comparação de três algoritmos Simulated Annealing, cada um com uma estrutura

de vizinhança diferente, foi realizada em [Johnson et al., 1991], em que dois deles permi-

tiam soluções completas inviáveis e o outro somente colorações completas próprias, tendo

um número variável de classes de cor. Os autores também projetaram o algoritmo XRLF,

que combina uma variante do RLF [Leighton, 1979] com a remoção de conjuntos inde-

pendentes no grafo, mostrando-se competitivo com os outros algoritmos implementados.



2.1 O Problema Clássico de Coloração 8

Uma importante contribuição de Morgenstern [Morgenstern, 1996] foi a de�nição da vi-

zinhança Impasse Class Neighborhood, utilizada para transformar uma coloração parcial

em uma completa de mesmo valor. O autor apresentou um algoritmo Simulated Anne-

aling empregando essa vizinhança juntamente com um método para a recombinação de

soluções.

Um dos primeiros estudos a integrar busca local com algoritmos baseados em popu-

lação, como os Algoritmos Genéticos (AGs), foi o trabalho de Costa et al. [Costa et al.,

1995]. Esse tipo de algoritmo, conhecido como Algoritmo Evolucionário (AE), emprega

uma população de soluções e um operador de cruzamento, como os AGs. Porém, o opera-

dor de mutação é substituído por uma busca local. No algoritmo desenvolvido, os autores

utilizaram um método de descida simples como busca local. Na mesma época, Fleurent e

Ferland [Fleurent e Ferland, 1996] elaboraram um AE utilizando o cruzamento uniforme

padrão como operador de recombinação e uma versão com melhorias do algoritmo TABU-

COL como operador de mutação. Em [Galinier e Hao, 1999], o algoritmo evolucionário

híbrido (HEA) proposto igualmente utiliza uma versão atualizada do TABUCOL e um

operador de cruzamento especí�co para o PCG, chamado Greedy Partitioning Crossover

(GPX), que tem a característica de transmitir aos �lhos gerados as estruturas dos pais.

Segundo Malaguti e Toth [Malaguti e Toth, 2010], esse operador é o responsável por

posicionar o HEA entre os melhores já desenvolvidos para o PCG.

No trabalho de Malaguti et al. [Malaguti et al., 2008] foi anunciado o algoritmo

MMT, que realiza uma fase de inicialização, onde um limite superior e um inferior para

o problema são obtidos, e duas etapas de otimização, que podem ser �nalizadas assim

que uma solução comprovadamente ótima é encontrada. Na primeira etapa, um AE é

executado utilizando a combinação de uma Busca Tabu e o operador GPX, adaptado para

a vizinhança Impasse Class Neighborhood, a �m de encontrar uma k-coloração que melhore

a melhor solução encontrada na fase de inicialização. Na etapa seguinte, uma heurística

soluciona o Problema de Cobertura de Conjuntos utilizando os conjuntos independentes

armazenados durante a execução do AE na primeira etapa. Ainda que o AE resolva o

problema para um valor �xo de k, o algoritmo MMT como um todo aborda a versão de

otimização do PCG, sendo considerada uma das melhores heurísticas para o problema

[Malaguti e Toth, 2010].

Em outro modelo de algoritmo evolucionário, denominado Algoritmo de Memória

Adaptativa, a população constitui-se de partes das soluções, ao invés de soluções comple-

tas, e utiliza um método de recombinação dessas partes a �m de gerar novas soluções.
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Fazendo uso desse modelo, Galinier et al. [Galinier et al., 2008] desenvolveram o algo-

ritmo AMACOL para o problema com um número �xo de cores (k-coloração), tendo como

população conjuntos independentes encontrados durante a execução e o TABUCOL como

o operador de busca local.

Blöchliger e Zu�erey [Blöchliger e Zu�erey, 2008] apresentaram dois métodos de Busca

Tabu considerando como solução uma k-coloração parcial viável, isto é, uma solução di-

vidida em k conjuntos independentes e um conjunto de vértices ainda não coloridos. Em-

bora baseada na vizinhança Impasse Class Neighborhood, a estratégia utilizada apresenta-

se muito mais simples do que a proposta em [Morgenstern, 1996], tendo como objetivo

simplesmente minimizar o número de vértices não coloridos. Além disso, os autores ana-

lisaram o uso de um prazo tabu dinâmico e outro reativo.

O desenvolvimento de um AE aplicando também uma Busca Tabu como método

de busca local foi realizado por Lü e Hao [Lü e Hao, 2010]. Denominado MACOL,

o algoritmo a princípio utiliza a Busca Tabu para melhorar as soluções da população

inicial, que são k-colorações inviáveis, minimizando o número de arestas em con�ito. A

cada iteração, aplica-se o operador de cruzamento AMPaX (uma extensão do GPX) em

duas ou mais soluções escolhidas aleatoriamente da população, tendo como resultado uma

k-coloração, que também será melhorada pela busca local. Em seguida, para determinar

se a solução resultante será inserida na população, o algoritmo avalia a estratégia de�nida

para a atualização da mesma, estabelecendo ainda qual solução será substituída caso

ocorra a inserção. Um dos autores utilizou o MACOL como segunda fase do algoritmo

EXTRACOL em [Wu e Hao, 2012a]. Na primeira fase, ele utiliza uma Busca Tabu

Adaptativa para identi�car um conjunto independente máximo e tentar encontrar outros

conjuntos independentes disjuntos do mesmo tamanho, fazendo em seguida a extração dos

mesmos no grafo original. Esse processo se repete até não haver mais do que 800 vértices

no grafo residual, que será colorido pelo MACOL na fase seguinte.

Recentemente, Moalic e Gondran [Moalic e Gondran, 2015] propuseram o algoritmo

evolucionário HEAD, considerado uma variação do algoritmo HEA [Galinier e Hao, 1999].

Ambos utilizam como busca local uma versão atualizada do TABUCOL e o operador de

cruzamento GPX, tendo como objetivo encontrar uma coloração com o número mínimo de

arestas con�itantes. No entanto, HEAD propõe uma estratégia diferente para gerenciar a

diversi�cação: reduzir o tamanho da população para somente duas soluções. Para tratar

uma das principais desvantagens da utilização de uma população pequena, que é não

proporcionar uma diversi�cação su�ciente para o algoritmo evoluir, após um determinado
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número de gerações (chamado pelos autores de ciclo), a melhor solução (solução elite) da

população é armazenada e a solução elite de ciclos anteriores é reintroduzida na população,

substituindo um dos seus dois membros. Como resultado, o algoritmo conseguiu reduzir

o número de cores necessárias para colorir três grafos considerados difíceis na literatura.

Analisando os experimentos realizados pelos autores com as heurísticas mencionadas

anteriormente, é possível identi�car que TABUCOL, HEA, AMACOL, MMT, MACOL,

EXTRACOL e HEAD são as que proporcionaram os melhores resultados na solução do

PCG, sendo consideradas o estado da arte até o momento. Outros algoritmos utilizando

outras estratégias para solucionar o problema encontram-se em [Laguna e Martí, 2001],

[Chiarandini e Stützle, 2002], [Avanthay et al., 2003], [Hertz et al., 2008], [Plumettaz

et al., 2010] e [Titiloye e Crispin, 2011]. Considerações adicionais sobre o PCG podem

ser encontrados em [Galinier e Hertz, 2006], [Chiarandini et al., 2007], [Malaguti e Toth,

2010] e [Galinier et al., 2013].

2.1.2 Variantes do PCG com Pesos

Alguns problemas considerados variantes do PCG têm recebido atenção na literatura e

motivado o desenvolvimento de algoritmos, tanto pela aplicação em situações reais quanto

pela importância teórica, por serem igualmente NP-Difíceis. Dentre eles, encontram-se

os que consideram pesos (ou custos) nos vértices e nas classes de cores do grafo. Esses

pesos podem representar, por exemplo, as bandas de frequência a serem distribuídas em

antenas de transmissão, de modo a evitar interferências, em um Problema de Alocação

de Canais de Rádio [McDiarmid e Reed, 2000].

A modelagem para tal aplicação pode ser realizada pelo Problema de Multicoloração

de Grafos (PMG), onde cada vértice i ∈ V tem um peso positivo pi associado, indicando

o número de cores a serem atribuídas ao vértice i. Essas cores representam as bandas de

frequência designadas às antenas, simbolizadas pelos vértices, sendo que, para cada aresta

(i, j) ∈ E, a interseção das cores atribuídas aos vértices i e j tem que ser vazia, reprodu-

zindo a tentativa de evitar interferências entre as bandas. Respeitando esta restrição, o

objetivo é colorir o grafo com o menor número de cores possível.

Para solucionar o PMG, métodos exatos foram desenvolvidos, como em [Mehrotra

e Trick, 2007], que apresentaram um algoritmo de geração de colunas para otimizar a

relaxação linear de uma formulação para o problema, a qual utiliza uma variável para

cada conjunto independente do grafo. Essa mesma abordagem foi aplicada no trabalho de

Gualandi e Malucelli [Gualandi e Malucelli, 2012], onde os autores utilizaram programação
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por restrições e novas técnicas de branching a �m de melhorar a performance do algoritmo.

Com a �nalidade de solucionar instâncias maiores do problema, estratégias heurísticas

também foram implementadas. Em [Lim et al., 2005], um algoritmo guloso constrói uma

solução a partir de uma sequência de vértices gerada por duas metaheurísticas (Squeaky

Wheel Optimization e Busca Tabu), que também são utilizadas posteriormente na tenta-

tiva de melhorar a solução. No Algoritmo Genético proposto em [Han e Kim, 2015] são

aplicados dois operadores de cruzamento, sendo um desenvolvido especi�camente para

o problema. Além disso, o grafo de entrada não sofre transformação com a inclusão de

novos vértices, como normalmente é feito para a resolução do PMG.

Outro exemplo de variante que admite pesos nos vértices é o Problema de Coloração

de Grafos Ponderados (PCGP), no qual um peso positivo pi é atribuído a cada vértice

i ∈ V . De igual modo, cada classe de cor possui um custo associado, que é dado pelo peso

máximo dos vértices coloridos com aquela cor. Diferentemente do PCG, onde o objetivo

é colorir o grafo com o menor número de cores, no PCGP a intenção é encontrar uma

coloração cuja soma dos custos das cores utilizadas seja a menor possível. Esse problema

pode modelar aplicações reais, como o Problema de Escalonamento em Máquinas com

Compatibilidade de Tarefas [Boudhar e Finke, 2000] e o Problema da Decomposição de

Matrizes [Ribeiro et al., 1989,Prais e Ribeiro, 2000].

Como proposta de algoritmo para solucionar o PCGP, Malaguti et al. [Malaguti

et al., 2009] apresentaram duas formulações de programação inteira com um número

polinomial de variáveis e restrições. Um desses modelos é utilizado na inicialização de um

algoritmo de duas fases, gerando um limite inferior para o problema. Na primeira fase,

algumas heurísticas gulosas são aplicadas em sequência para produzir um grande número

de conjuntos independentes. Na fase �nal, para melhorar a solução, uma formulação do

Problema de Cobertura de Conjuntos (PCC), associada a alguns conjuntos gerados, é

solucionada por uma heurística lagrangeana da literatura.

Uma heurística também segmentada em fases foi apresentada em [Oliveira et al.,

2011]. Na primeira fase realiza-se um pré-processamento a �m de reduzir o tamanho

do grafo de entrada. Na segunda, uma solução inicial é construída por uma heurística

construtiva, aplicando na última fase, para melhorar a solução inicial, uma heurística VND

que utiliza como busca local um algoritmo backtracking. Recentemente, uma abordagem

exata foi proposta por Furini e Malaguti [Furini e Malaguti, 2012], que desenvolveram um

algoritmo branch-and-price para o problema a partir de uma extensão da formulação do

PCC apresentada no trabalho de Malaguti et al. [Malaguti et al., 2009].
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Outro problema considerado uma variante do PCG, mas que admite custos somente

para as classes de cores, o Problema da Soma Cromática (PSC) utiliza números naturais

em sequência como tais custos. A sua descrição detalhada é apresentada na seção seguinte.

2.2 O Problema da Soma Cromática

O Problema da Soma Cromática (PSC) foi introduzido por Kubicka [Kubicka, 1989],

que o de�niu como: dado um grafo simples não-direcionado G e números naturais em

sequência como custos das cores, deseja-se encontrar uma coloração própria, entre todas

as colorações próprias de G, onde a soma total dos custos das cores dos vértices seja

mínima. Essa soma total mínima é chamada de soma cromática de G e é denotada por

Σ(G). A força de G, s(G), é o número mínimo de cores necessário para obter a sua soma

cromática.

Esse problema não é equivalente ao PCG, no sentido de que não basta encontrar

o número cromático do grafo e, utilizando o menor número de cores, obter a menor

soma possível. Para ilustrar, considere a árvore T da Figura 2.2. Se somente duas cores

com custos 1 e 2 forem utilizadas (Figura 2.2 (a)), a soma dos custos é igual a 12. No

entanto, a melhor solução é encontrada inserindo mais uma cor de custo 3 (Figura 2.2

(b)), resultando em Σ(T ) = 11, s(T ) = 3. Assim, não é possível obter a coloração de soma

ótima utilizando apenas duas cores, que é o valor de χ(T ). De forma geral, considerando

um grafo G qualquer, s(G) ≥ χ(G) [Kokosi«ski e Kwarciany, 2007]. No exemplo da

Figura 2.2, s(T ) > χ(T ).

� �

�

�

��� ���

� � � � �

� � �� � �

�

�

�

Figura 2.2: Árvore T : (a) colorida com duas cores, com soma igual a 12 e (b) colorida
com três cores, resultando Σ(T ) = 11 e s(T ) = 3 (Extraída de [Kubicka e Schwenk,

1989]).
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Um exemplo de sua aplicação é dado em [Bar-Noy et al., 1998] para o Problema

de Alocação de Recursos Distribuídos. Para representar as restrições do problema, eles

utilizam um grafo de con�ito, onde os vértices representam os processadores e as ares-

tas indicam uma concorrência pelos recursos. Assim, dois vértices são adjacentes se os

processadores correspondentes não podem executar seus trabalhos simultaneamente. A

intenção é minimizar o tempo médio de resposta do sistema ou, de forma equivalente, mi-

nimizar a soma dos tempos de execução dos trabalhos. Esse problema pode ser modelado

como PSC assumindo um tempo de execução �xo para os trabalhos. Outras aplicações

são encontradas em escalonamento [Halldórsson et al., 2003,Bar-noy e Kortsarz, 1998] e

em projetos VLSI [Szkaliczki, 1999,Nicoloso et al., 1999].

2.2.1 Formulação

O PSC pode ser formulado como um problema de programação inteira binária. Con-

sidere um grafo não-direcionado G = (V,E), onde V é o conjunto de n vértices e E o

conjunto de arestas. Seja xih uma variável binária, tal que xih = 1 se o vértice i ∈ V for

colorido com a cor h e xih = 0 caso contrário. Uma formulação para o PSC como um

Problema de Programação Inteira 0-1 é dada em [Wang et al., 2013]:

Min
n∑

i=1

n∑
h=1

h · xih (2.1)

sujeito a:

n∑
h=1

xih = 1, ∀ i ∈ V (2.2)

xih + xjh ≤ 1, ∀ i, j ∈ V : (i, j) ∈ E, h = 1, . . . , n (2.3)

xih ∈ {0, 1}, ∀ i ∈ V, h = 1, . . . , n. (2.4)

A função objetivo (2.1) minimiza a soma dos custos das cores utilizadas. A restrição

(2.2) requer que cada vértice seja colorido por apenas uma cor, enquanto a restrição (2.3)

impõe que, para cada par de vértices adjacentes, somente um deles receba a cor h, caso

ela seja utilizada. Por �m, a restrição (2.4) indica a integralidade da variável xih.

Observa-se que essa formulação de programação inteira, que trata apenas de viabi-

lidade, é muito fraca e que outras mais fortes podem ser desenvolvidas, baseadas, por

exemplo, na ideia de formulação por representantes [Bahiense et al., 2014, Frota et al.,

2010].
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Solucionar o PSC para um grafo qualquer pertence à classe de problemas NP-Difícil,

segundo Kubicka e Schwenk [Kubicka e Schwenk, 1989]. Nesse sentido, encontrar limites

superiores e inferiores para Σ(G) e s(G) torna-se muito útil, uma vez que possibilita, por

exemplo, veri�car que uma determinada solução não apresenta resultado de boa quali-

dade quando seu valor ultrapassar algum limite superior. Na literatura são encontrados

resultados para tais limites, que comumente são obtidos com base em determinadas ca-

racterísticas do grafo, como seu maior grau (∆(G)), número de vértices (n), número de

arestas (m) e seu número cromático (χ(G)). Alguns resultados serão apresentados, po-

dendo a prova matemática ser encontrada no trabalho citado.

2.2.2 Limites para a Soma Cromática de um Grafo - Σ(G)

Um primeiro limite, embora não justo para a soma cromática de um grafo G, pode

ser obtido analisando a estrutura do grafo [Kubicka e Schwenk, 1989]:

n ≤ Σ(G) ≤ n(n+ 1)

2
· (2.5)

O limite inferior é atingido se G não possuir arestas, resultando na necessidade de

apenas uma cor para colorir todos os n vértices. Se G for um grafo completo, cada vértice

terá que ser colorido com uma cor exclusiva, sendo o limite superior alcançado.

Um trabalho pioneiro que apresenta limites para a soma cromática de grafos em geral

encontra-se em [Thomassen et al., 1989]. O primeiro limite apresentado pelos autores

resulta da aplicação de um algoritmo guloso considerando uma ordenação qualquer dos

vértices do grafo:

Σ(G) ≤ n+m. (2.6)

O segundo resultado mostra um limite inferior e superior para a soma cromática, para

qualquer grafo conexo, em relação ao número de arestas:

d
√

8me ≤ Σ(G) ≤ b3(m+ 1)/2c. (2.7)

Ainda segundo Thomassen et al. [Thomassen et al., 1989], para qualquer grafo G sem

vértices isolados:

d
√

8me ≤ Σ(G) ≤ 3m. (2.8)
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Limites para a soma cromática também são exibidos em [Kokosi«ski e Kwarciany,

2007]:

Σ(G) ≤ n(χ(G) + 1)

2
(2.9)

n+
χ(G)(χ(G)− 1)

2
≤ Σ(G) (2.10)

n+
s(G)(s(G)− 1)

2
≤ Σ(G). (2.11)

Kokosi«ski [Kokosi«ski, 2011] fez comparações de limites teóricos e experimentais para

Σ(G). Segundo ele, os melhores limites inferiores teóricos são os apresentados nas equações

(2.7) e (2.10), tendo a segunda retornado melhores resultados em praticamente todos os

experimentos. Ainda segundo o autor, as equações (2.6) e (2.9) exibem os melhores limites

superiores teóricos, sendo o segundo melhor na maioria dos testes.

2.2.3 Limites para a Força de um Grafo - s(G)

No caso de limites para s(G), um limite inferior e superior para um grafo G é

[Kokosi«ski e Kwarciany, 2007]:

χ(G) ≤ s(G) ≤ n. (2.12)

Uma vez que são necessárias no mínimo χ(G) cores para colorir G, o limite inferior

é alcançado. O limite superior é atingido quando for preciso atribuir uma cor diferente

para cada vértice de G.

Outros limites para s(G) são apresentados em [Hajiabolhassan et al., 2000]. O pri-

meiro deles envolve o maior grau de G:

s(G) ≤ ∆(G) + 1. (2.13)

Além disso, eles demonstram que a igualdade s(G) = ∆(G) + 1 é atendida se, e

somente se, G for um grafo completo ou um ciclo ímpar.

O terceiro limite exibido pelos autores envolve, além de ∆(G), outro parâmetro do
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grafo chamado número de coloração, denotado por col(G). O número de coloração de um

grafo G é o menor número d tal que, dada alguma ordenação dos vértices de G, o número

de arestas para todos os vértices listados antes de i (i ∈ V ) é estritamente menor do que

d. Assim, para qualquer grafo G:

s(G) ≤ d(col(G) + ∆(G))/2e. (2.14)

Ainda segundo os autores, considerando o número de coloração, para todo grafo G,

χ(G) ≤ col(G). No entanto, s(G) ≤ col(G) nem sempre é verdade. A desigualdade

χ(G) ≤ col(G) ≤ ∆(G) sempre se aplica, exceto para grafos regulares. O trabalho de

Kokosi«ski e Kwarciany [Kokosi«ski e Kwarciany, 2007] também apresenta um limite para

s(G):

s(G) ≤ b
√
n(χ(G) + 1)c. (2.15)

Alguns resultados aplicam-se especi�camente para determinadas classes de grafos.

Kubicka [Kubicka, 2004] a�rma que para todo inteiro positivo k, existe uma árvore T com

s(T ) = k. Além disso, Jiang e West [Jiang e West, 1999] garantem que para cada inteiro

positivo k, existe uma árvore Tk com s(Tk) = k e ∆(Tk) = 2k − 2. Ainda para árvores,

o seguinte resultado foi apresentado em [Hajiabolhassan et al., 2000] considerando uma

árvore T :

s(T ) ≤ d∆(T )/2e+ 1. (2.16)

Os mesmos autores melhoraram esse limite considerando o diâmetro (d(T )) de T :

s(T ) ≤ dmin(d(T ),∆(T ))/2e+ 1. (2.17)

Para grafos bipartidos, Mala�ejski et al. [Mala�ejski et al., 2004] a�rmam que a soma

cromática de um grafo conexo bipartido regular é igual a 3n/2, para n > 1. Ainda,

Kosowski [Kosowski, 2009] provou que o resultado (2.16) não se aplica somente para

árvores, mas para qualquer grafo bipartido.

2.2.4 Algoritmos para o PSC

Como já mencionado, o PSC pertence à classe NP-Difícil para um grafo qualquer

[Kubicka e Schwenk, 1989]. Esse resultado se mantém para determinadas classes de grafos,
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como grafos de intervalo [Szkaliczki, 1999], grafos split [Kubicka, 2004] e grafos bipartidos

[Salavatipour, 2003]. No entanto, para algumas classes é possível solucioná-lo em tempo

polinomial, como árvores [Kubicka e Schwenk, 1989], grafos k-split [Salavatipour, 2003],

grafos unicíclicos e outerplanar [Kubicka, 2005].

Em [Douiri e Elbernoussi, 2011], os autores propuseram uma heurística híbrida que

combina um Algoritmo Genético (AG) com um método de restrições derivadas. Esse

método é utilizado para construir a população inicial do AG, que tem como indivíduo

uma atribuição de cores para todos os vértices do grafo. Como essa atribuição pode

gerar con�itos entre vértices, uma vez que vértices adjacentes podem apresentar cores

iguais, o objetivo do AG é minimizar o número de con�itos. Ele utiliza o método da

roleta para seleção dos indivíduos que poderão passar pelo cruzamento de dois pontos e

pela mutação, com probabilidade de ocorrência de 0.8 e 0.2, respectivamente. Para as

instâncias testadas, o algoritmo melhorou o limite superior de quatro delas e alcançou os

melhores resultados conhecidos para as demais.

O algoritmo proposto em [Helmar e Chiarandini, 2011], chamado MDS(5)+LS, em-

prega uma heurística construtiva na geração da solução inicial. Além disso, ele explora

soluções que atribuem cores diferentes para vértices adjacentes, chamadas de soluções pró-

prias, bem como as que não respeitam essa atribuição, denominadas soluções impróprias.

Essa exploração é realizada utilizando as estruturas de vizinhança Swap Neighborhood e

One-Move Neighborhood, considerando que esta pode aumentar o número de cores a �m

de garantir o retorno de uma solução viável. Essa solução então é modi�cada de modo

que os vértices sejam realocados nas menores classes de cores possível, sem que vértices

adjacentes tenham a mesma cor, podendo eventualmente diminuir a quantidade de cores

utilizadas. Em seguida, aplica-se um procedimento de perturbação à solução, que consiste

em alterar a cor de uma fração do número de vértices, selecionando-os aleatoriamente. A

nova cor desses vértices é escolhida também de forma aleatória de 1 até k + 1, sendo k a

quantidade de cores da solução. O algoritmo �naliza a sua execução ao atingir um limite

de tempo, ou um número máximo de iterações, ou um número de iterações sem melhoria.

Comparando o MDS(5)+LS aos experimentos encontrados na literatura, ele melhora as

soluções conhecidas de 27 das 38 instâncias analisadas e não apresenta resultado pior do

que os demais métodos.

Uma heurística para o PSC que segue o método da metaheurística Busca Local Ite-

rada foi desenvolvida por Benlic e Hao [Benlic e Hao, 2012] e denominada Breakout Local

Search (BLS). A ideia básica é usar uma busca local para descobrir ótimos locais e empre-
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gar um certo número de perturbações, cujo tipo é determinado adaptativamente, com a

intenção de explorar melhor o espaço de soluções. O algoritmo começa com uma solução

inicial randômica que, caso apresente con�itos entre vértices (coloração imprópria), sofre

a aplicação de um método de busca local. Esse método avalia a variação no número de

con�itos e a soma dos custos das cores considerando todas as possíveis trocas de cores

para cada vértice do grafo, de maneira que torne a coloração própria. Caso a solução

inicial não apresente con�itos, ou tenha passado pelo método anterior, são realizadas tro-

cas de cores nos vértices, mantendo a coloração própria, para identi�car a troca que mais

decresce o valor da função objetivo. Esse processo é repetido até que um ótimo local seja

alcançado.

Após a fase de busca local, o BLS aplica perturbações na solução para diversi�car a

busca e explorar outros pontos do espaço de soluções. O primeiro tipo de perturbação

é a mais comum realizada para problemas de coloração: a troca de cor de cada vértice,

mantendo a coloração própria. Cada vez que um vértice tem a cor alterada, ele é inserido

em uma lista tabu que o proíbe de retornar para a cor anterior durante as próximas

t iterações (o valor de t é determinado aleatoriamente em um dado intervalo). Essa

proibição somente é desconsiderada se a troca conduzir a uma nova solução melhor que

a melhor solução já encontrada. A segunda forma de perturbação consiste em realizar a

troca válida de cores (que não causou con�itos entre vértices) mais recente que trouxe a

maior redução no valor da função objetivo, desde que o conjunto da cor no qual o vértice

estava não �que vazio. A última perturbação é a troca de cores aleatória. Primeiro

seleciona-se randomicamente dois subconjuntos de cores Si e Sj, tal que |Si| ≤ |Sj|, e
em seguida move-se um vértice de Si (também selecionado de forma aleatória) para o

subconjunto Sj. Para variar entre os três tipos de perturbações, o BLS utiliza parâmetros

que dependem do estado da busca, ou seja, do número de tentativas que não levaram à

melhora de uma solução. Os testes realizados mostraram que o BLS melhorou o melhor

resultado conhecido para quatro instâncias e atingiu o limite superior para outras 15,

tendo falhado na obtenção do limite apenas em oito grafos.

O algoritmo EXSCOL [Wu e Hao, 2012b] tem por característica extrair iterativamente

conjuntos independentes do grafo. Ele identi�ca inicialmente um conjunto independente

de maior tamanho e em seguida procura o maior número possível de conjuntos indepen-

dentes disjuntos daquele tamanho. Feito isso, retira-os do grafo e atribui a cada um a

cor de menor custo disponível. Esse processo é repetido até que o grafo torne-se vazio.

O fundamento dessa abordagem é que, pela extração de muitos conjuntos independentes

disjuntos, naturalmente grandes classes de cores são construídas, o que reduz o número
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necessário de cores e consequentemente a soma total dos custos das cores. Uma vez que

encontrar um conjunto independente máximo de um grafo é NP-Difícil [Garey e Johnson,

1979], o EXSCOL utiliza uma heurística baseada em busca tabu para realizar essa tarefa.

Como resultado da sua aplicação à instâncias do problema, o EXSCOL melhorou o limite

superior de 17 grafos e alcançou o melhor resultado conhecido para nove deles, tendo

falhado somente duas vezes na obtenção do limite.

No algoritmo memético MA-MSCP apresentado em [Moukrim et al., 2013], cada um

dos 20 indivíduos (soluções) da população representa uma partição Vi (i = 1, . . . , k) do

conjunto de vértices, de modo que |V1| ≥ |V2| ≥ . . . ≥ |Vk|. Na população inicial, 25% dos

indivíduos são gerados por algoritmos gulosos e o restante aleatoriamente, não permitindo

que dois indivíduos diferentes tenham o mesmo valor de função de avaliação para manter a

diversidade dessa população. Para a evolução, quatro indivíduos são selecionados de forma

aleatória na população, sendo o primeiro pai o melhor (menor valor de avaliação) dos dois

primeiros selecionados e o segundo pai o melhor dos demais. Esses pais são submetidos

ao operador de cruzamento, que é uma adaptação do GPX desenvolvido por Galinier e

Hao [Galinier e Hao, 1999]. Em seguida, uma busca local é empregada utilizando duas

estruturas de vizinhança a �m de melhorar o novo indivíduo produzido por esse operador.

Para formar a próxima população, esse novo indivíduo substitui aquele com o mesmo

valor de avaliação, se existir. No entanto, caso esse valor seja menor do que o de algum

indivíduo, o novo é inserido na população e o pior indivíduo é excluído. Como critério

de parada, o algoritmo utiliza um determinado tempo máximo. Com essa estratégia, o

MA-MSCP encontrou o ótimo em 27 das 81 instâncias testadas para o PSC.

Outro algoritmo memético para o problema, denominado MASC, foi desenvolvido por

Jin et al. [Jin et al., 2014]. Ele apresenta três componentes importantes, sendo o primeiro

um procedimento de busca tabu com dupla vizinhança desenvolvido especialmente para o

problema, que tem a �nalidade de melhorar a qualidade de uma dada solução gerada pelo

operador de crossover. Para isso, ele utiliza duas vizinhanças diferentes que são aplicadas

alternadamente até que a melhor solução encontrada não consiga ser mais atualizada

(intensi�cação). A primeira vizinhança é alcançada com a troca de alguns vértices de

uma cor por outros vértices adjacentes de outra cor, enquanto que a segunda é obtida

trocando apenas um vértice de uma cor por outra, sendo que em ambas o resultado das

trocas tem que manter o grafo com uma coloração própria. Essas trocas de vértices entre

classes de cores são inseridas na lista tabu e não podem se repetidas até um determinado

número de iterações. A �m de escapar de ótimos locais, o procedimento utiliza uma fase

de diversi�cação, onde, dada uma solução ótima local S∗ com k classes de cores diferentes
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e Vl a classe com maior número de vértices, ele cria uma classe adicional Vk+1 e move

aleatoriamente um terço dos vértices de Vl para Vk+1. Para prevenir que a busca retorne

para S∗, Vl e Vk+1 são inseridas na lista tabu e não podem fazer parte das vizinhanças

durante um certo número de iterações.

O segundo componente é a utilização de um operador de crossover com vários pais.

Esse operador gera somente um �lho a partir de α pais escolhidos aleatoriamente da

população, onde α varia de dois até quatro de acordo com o número de vértices e o

número cromático do grafo. A intenção desse operador é transmitir grandes classes de

cores dos pais para o �lho, que sempre é uma coloração própria e pode ter um número de

cores maior do que os seus pais.

O terceiro componente importante do MASC é o mecanismo de atualização da po-

pulação. Ele utiliza duas funções, uma para medir a qualidade da solução (f) e a outra

para analisar a sua diversidade (H). Considerando duas k-colorações próprias S1 e S2,

pode-se dizer que S1 é melhor do que S2 se f(S1) < f(S2), onde f(Si) indica a soma dos

custos das cores da k-coloração própria Si. Para estimar a diversidade de duas colorações

Si e Sj, o algoritmo utiliza a função Hi,j, que é o número de vértices em Si e Sj que têm

diferentes cores: Hi,j = |{v ∈ V : Si(v) 6= Sj(v)}|. Um pequeno valor de Hi,j indica uma

alta similaridade entre Si e Sj. Assim, o MASC combina as funções f e H para decidir se

um �lho substitui ou não um indivíduo na nova população. Aplicado à instâncias do pro-

blema, o algoritmo melhorou 17 limites superiores conhecidos, incluindo grafos com mais

de 500 vértices, tendo também igualado 30 melhores resultados. Além disso, apresentou

pela primeira vez limites superiores para 18 grafos.

Em [Jin e Hao, 2016], um novo algoritmo memético é aplicado ao PSC. Intitulado

HESA, ele emprega uma heurística de obtenção de conjuntos independentes para gerar

cada indivíduo da população inicial (de tamanho 20), de modo que não sejam inseridos

indivíduos em duplicata na mesma. A cada geração, duas soluções da população, que

não foram escolhidas em gerações passadas, são selecionadas aleatoriamente e utilizadas

por um duplo procedimento de crossover para gerar duas novas soluções, que podem ser

próprias ou não. Cada solução gerada é submetida a uma Busca Tabu de duas fases com o

objetivo de melhorá-la, bem como torná-la própria caso ela não seja. A solução resultante

passa pelo procedimento de atualização da população, onde a sua inserção será analisada,

assim como de�nida a solução que será substituída, baseado na qualidade da solução e

na distância entre as soluções da população. Esse processo de evolução acontece até o

limite de tempo de duas horas. Como resultado, o algoritmo melhorou, de um total de
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94 instâncias testadas, o limite superior de 24 delas e o limite inferior de 27 grafos.

Ao analisar de forma geral os resultados apresentados pelos algoritmos desenvolvidos

para solucionar o PSC, Jin et al. [Jin et al., 2017] concluem que os seis últimos apre-

sentados anteriormente são os que possibilitam alcançar as melhores soluções, embora

não possam ser comparados estatisticamente por não terem sido testados com a mesma

quantidade de instâncias.

Uma possibilidade de generalização do PSC é admitir números reais como custos das

cores, sem qualquer sequência para os mesmos, mantendo o objetivo de encontrar uma

coloração própria no grafo, onde a soma total desses custos seja mínima. Tal problema

denomina-se Problema da Partição Cromática de Custo Mínimo (PPCCM), que é objeto

de estudo desta tese e especi�cado detalhadamente no capítulo seguinte.



Capítulo 3

O Problema da Partição Cromática de

Custo Mínimo

Neste capítulo será descrito em detalhes o Problema da Partição Cromática de Custo

Mínimo, objeto de estudo desta tese. São apresentados sua de�nição, uma formulação

como um problema de programação inteira binária, sua complexidade para grafos em

geral e classes especí�cas, exemplos de sua aplicação, bem como algoritmos aproximativos

existentes para determinados tipos de grafos.

3.1 Introdução

O Problema da Partição Cromática de Custo Mínimo (PPCCM) foi formulado por

Mead e Conway [Mead e Conway, 1980], que propuseram uma hipotética máquina com

um grande número de processadores distribuídos como em uma árvore, onde cada nó

corresponderia a um processador, a �m de aumentar sua capacidade computacional ao

gerar paralelismo entre eles. Sendo ele um problema NP-Difícil para grafos em geral [Sen

et al., 1992], os autores apresentaram um algoritmo paralelo para a sua resolução na

referida máquina, o que resultaria em um tempo de execução da ordem de O(n2), dado

um grafo não-direcionado com n vértices e um conjunto de n cores. No entanto, embora

ocorresse uma redução na complexidade do problema, seria necessário um número muito

grande de processadores (2nn − 1) para alcançar tal tempo polinomial.

Apesar disso, para algumas classes de grafos, o PPCCM pode ser solucionado em

tempo polinomial, como árvores, grafos co-bipartidos e o complementar de grafos sem

triângulos [Kroon et al., 1997, Jansen, 1996]. O projeto de circuitos VLSI [Supowit,

1987, Sen et al., 1992] e a solução de um problema de escalonamento sobre grafos de
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intervalos [Kroon et al., 1997] são exemplos de sua aplicação.

O PPCCM se diferencia do PSC quanto aos custos das cores. Enquanto neste tais

custos obrigatoriamente são valores naturais sequenciais, no PPCCM os mesmos admitem

valores reais, sem qualquer sequência. Para ilustrar essa diferença, dado o grafo G da

Figura 3.1, uma solução viável do PSC em G é mostrada na Figura 3.1 (a). Considerando

cores com custos 3.9, 4.4, 2.2, 3.6, 1.4 e 3.5, uma coloração viável do PPCCM no mesmo

grafo é apresentada na Figura 3.1 (b).
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Figura 3.1: Grafo G: (a) coloração viável para o PSC e (b) coloração viável para o
PPCCM.

3.2 Formulação e Complexidade

Seja G = (V,E) um grafo simples não-direcionado, onde V é o conjunto de vértices e

E o conjunto de arestas. Considere um conjunto de cores C = {c1, . . . , c|C|} e um custo

wc ≥ 0 associado a cada cor c ∈ C. Seja xic uma variável binária, tal que xic = 1 se o

vértice i ∈ V for colorido com a cor c ∈ C e xic = 0 caso contrário. Sen et al. [Sen et al.,

1992] formularam o PPCCM como o seguinte Problema de Programação Inteira 0-1:

Min
∑
i∈V

∑
c∈C

wc · xic (3.1)

sujeito a: ∑
c∈C

xic = 1, ∀ i ∈ V (3.2)

xic + xjc ≤ 1, ∀ i, j ∈ V : (i, j) ∈ E, ∀ c ∈ C (3.3)

xic ∈ {0, 1}, ∀ i ∈ V, c ∈ C. (3.4)
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A função objetivo (3.1) minimiza a soma dos custos das atribuições de cores. A

restrição (3.2) impõe que cada vértice tenha apenas uma cor associada a ele e a restrição

(3.3) exige que, dados dois vértices adjacentes, somente um deles possa receber a cor

c ∈ C, caso ela seja utilizada. Por �m, a restrição (3.4) indica que cada variável xic é

binária.

Assim como observado para o PSC na Seção 2.2.1, essa formulação de programação

inteira é muito simples por tratar apenas de viabilidade, sendo possível apresentar outras

mais fortes, como uma baseada em formulação por representantes [Bahiense et al., 2014,

Frota et al., 2010].

Importante notar que, como no PSC, para solucionar o PPCCM não basta encontrar

o número cromático do grafo e obter a menor soma possível utilizando o número mínimo

de cores. Para exempli�car, considere a mesma árvore T da Figura 2.2 (Seção 2.2) e cores

com custos 5.9, 4.4, 2.5, 4.6, 1.2, 3.5, 5.4 e 6.7. Caso fossem utilizadas somente as duas

cores de menor custo 1.2 e 2.5 (Figura 3.2 (a)), a soma dos custos seria igual a 14.8. No

entanto, a melhor combinação é encontrada usando também a cor de custo 3.5 (Figura 3.2

(b)), resultando em uma solução ótimo de custo 13.2.
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Figura 3.2: Árvore T : (a) colorida com as duas cores de menor custo, com soma igual a
14.8 e (b) colorida com as três cores de menor custo, resultando na solução ótima de

custo 13.2.

Apesar da sua relevância teórica, o PPCCM também possui aplicabilidade prática,

como em [Supowit, 1987] e [Sen et al., 1992] para projetos de circuitos VLSI. Nesses

projetos, a conexão de dois ou mais terminais é chamada de net. Um conjunto predeter-

minado de nets deve ser distribuído em camadas, de modo que as nets que se interceptam

não sejam alocadas na mesma camada. Considerando que cada camada possui um custo

associado, o objetivo é distribuir tais nets nas camadas com o menor custo possível.



3.2 Formulação e Complexidade 25

Esse problema torna-se equivalente ao PPCCM utilizando a representação por grafos,

onde cada vértice representa uma net, sendo dois vértices adjacentes caso as respectivas

nets se interceptem, e uma cor indicando cada camada. Desse modo, ao solucionar o

PPCCM associado, é possível determinar a utilização de camadas com o custo mínimo.

Para exempli�cação dessa modelagem, considere um conjunto de nets que, se forem

distribuídos em uma mesma camada, provoca a interceptação de alguns deles, como apre-

sentado na Figura 3.3 (a). A representação desse problema por grafo é ilustrada na

Figura 3.3 (b), onde pode ser encontrada uma coloração viável para o mesmo utilizando,

por exemplo, as duas cores (camadas) de menor custo. Por �m, a Figura 3.3 (c) apresenta

a visualização em camadas dessa solução.

� �

��� ��� �� ��� ��� ��� ��� ��	 ��


���� ���� ��� ���� ���� ���� ��	� ��
� ����

��� ��� �� ��� ��� ��� ��� ��	 ��


���� ���� ��� ���� ���� ���� ��	� ��
� ����

��� ��� �� ��� ��� ��� ��� ��	 ��


���� ���� ��� ���� ���� ���� ��	� ��
� ����

���
�

���
�

���

���

��

���

���

���

��	

���

��



�� 
��


��

Figura 3.3: (a) Exemplo de um conjunto de nets distribuídos em uma camada, (b) o
problema modelado por grafo e (c) a solução representada em camadas.

Outra aplicação é dada no trabalho de Kroon et al. [Kroon et al., 1997], onde os

autores mostraram que o PPCCM para grafos de intervalo é equivalente ao Problema de

Escalonamento de Intervalos Fixos com custo de processamento dependente da máquina.

Nesse tipo de escalonamento, cada tarefa t requer processamento durante um intervalo

de tempo �xo (st, ft). Assume-se que um número su�ciente de máquinas está disponível

e que cada tarefa tem que ser executada por uma das máquinas. Como o custo de

processamento depende da máquina, se a tarefa t for executada pela máquina m, então
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o custo de processamento associado é cm. O objetivo é encontrar um escalonamento não-

preemptivo viável para todas as tarefas de modo que o custo total de processamento seja

mínimo.

Modelando esse problema como um grafo de intervalo, cada vértice corresponde ao

tempo do intervalo (st, ft) e cada aresta conecta dois vértices se os intervalos correspon-

dentes se sobrepõem. Assim, o PPCCM pode ser considerado como o problema de colorir

os correspondentes intervalos (vértices), onde as cores representam as máquinas, de ma-

neira que intervalos sobrepostos obtenham cores diferentes (máquinas diferentes) e que o

custo total da coloração (custo total de processamento) seja mínimo.

Sen et al. [Sen et al., 1992] veri�caram a complexidade do PPCCM restringindo-o

ao Problema da Soma Cromática, que foi provado ser NP-Difícil para grafos em geral

[Kubicka e Schwenk, 1989]. Para isso, consideraram números naturais em sequência como

custos das cores. Desse modo, o PPCCM também é NP-Difícil para tais tipos de grafos.

Kroon et al. [Kroon et al., 1997] mostraram que o PPCCM pode ser resolvido em

tempo linear para árvores. Considerando grafos de intervalos, provaram também que

existe um algoritmo polinomial para o problema caso haja somente dois valores diferentes

para os custos das cores e que o mesmo é NP-Difícil se esses custos tiverem quatro ou

mais valores distintos.

Supondo ainda que os custos das cores tenham dois valores distintos, Jansen [Jansen,

1996] a�rma que ainda assim o PPCCM é NP-Difícil para k-árvores com k não limitado,

grafos split, bem como para grafos caminho não-direcionados e seus complementares.

Ainda, o autor mostra que o problema pode ser resolvido em tempo polinomial para

algumas classes de grafos (tais como, cografos, grafos co-bipartidos e o complementar

dos grafos sem triângulos). Porém, segundo Sen et al. [Sen et al., 1992], o PPCCM é

NP-Difícil para grafos circulares.

3.3 Algoritmos para o PPCCM

Jansen [Jansen, 2000] provou que não existe algoritmo aproximativo polinomial com

razão O(|V |0.5−ε), com ε > 0, para o PPCCM restrito a grafos bipartidos e de intervalo,

a menos que P = NP. Contudo, ele propôs algoritmos com razão O(|V |0.5) para ambas

as classes. Além disso, ele demonstrou que, para grafos split e cordais, não há algoritmos

aproximativos polinomiais com razão O(|V |1−ε), com ε > 0, a menos que P = NP.
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Nos experimentos que serão relatados nas Seções 4.2.1.1 e 4.2.1.2, foi utilizado o re-

solvedor CPLEX na tentativa de obter soluções ótimas para o PPCCM. No entanto, o

mesmo não conseguiu encontrar tais soluções para instâncias com algumas centenas de

vértices, nem se quer soluções viáveis para algumas com mais de 900 vértices dentro do

limite de tempo de 3600 segundos. Nesse caso, é sugerida a aplicação de métodos heu-

rísticos que permitem a obtenção de soluções de qualidade, em tempos de processamento

aceitáveis.

Assim, nesta tese inicialmente foram desenvolvidas duas heurísticas baseadas na me-

taheurística Algoritmos Genéticos com Chaves Aleatórias Tendenciosas para solucionarem

o PPCCM, ambas descritas no capítulo seguinte. Posteriormente, uma heurística de tra-

jetória que faz uso de duas estratégias de busca local, seguidas por um procedimento de

path-relinking, também foi desenvolvida para tratar o problema, sendo esta detalhada no

Capítulo 5.



Capítulo 4

Algoritmos Genéticos com Chaves Alea-

tórias Tendenciosas

Neste capítulo são desenvolvidas heurísticas baseadas nos Algoritmos Genéticos com

Chaves Aleatórias Tendenciosas (BRKGA) para o PPCCM, com a descrição de cada um

dos seus componentes, como o decodi�cador utilizado pelas mesmas, e os experimentos

computacionais sobre um conjunto de instâncias desenvolvidas para o problema. Também

é detalhada a busca em vizinhança utilizada por uma das heurísticas.

4.1 Introdução

Em um Algoritmo Genético (AG), as soluções para o problema tratado são representa-

das pelos indivíduos (ou cromossomos), compostos por genes, reunidos em uma população

que evolui a cada geração utilizando os operadores genéticos de cruzamento, para recom-

binar indivíduos e gerar novos, e de mutação, a �m de diversi�car a nova população e

evitar que o processo de evolução �que estagnado em ótimos locais. A qualidade (ou

aptidão) de cada indivíduo é dada pelo seu �tness, cujo valor é resultado da aplicação de

uma função de avaliação sobre ele.

Com a intenção de evitar a produção de �lhos inviáveis a partir de pais viáveis no

processo de cruzamento, uma nova forma de representar um indivíduo foi proposta por

Bean [Bean, 1994] ao utilizar, para cada alelo (valor de um gene), um número real gerado

aleatoriamente no intervalo [0, 1), denominado chave aleatória. Ele empregou, então,

um algoritmo determinístico, que chamou de decodi�cador, para associar um indivíduo

de�nido por chaves aleatórias a uma solução viável do problema, sendo o valor de �tness

o custo dessa solução. Esse novo método foi intitulado Algoritmos Genéticos com Chaves
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Aleatórias (Random Key Genetic Algorithms - RKGA, em inglês).

Nesse algoritmo, os P indivíduos da população inicial são gerados de maneira randô-

mica. A população da geração corrente k é dividida em um pequeno grupo de Pe indivíduos

elite, que possuem os melhores valores de �tness, e o restante em Pne indivíduos não-elite.

Portanto, P = Pe +Pne. Com o objetivo de evoluir a população, todos os indivíduos elite

são copiados sem qualquer modi�cação para a população da geração k+ 1, onde também

é introduzido um pequeno número de Pm mutantes, que são indivíduos gerados do mesmo

modo que aqueles da população inicial e com �nalidade idêntica ao operador de mutação

presente nos AGs. Os demais indivíduos (P − Pe − Pm) são gerados pelo cruzamento

de outros dois, que são selecionados aleatoriamente de toda a população corrente (elite e

não-elite). A Figura 4.1 ilustra esse processo de evolução da população.

� �
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Figura 4.1: Processo de evolução da população no RKGA.

A partir dessa estrutura estabelecida pelo RKGA, Ericsson et al. [Ericsson et al.,

2002] propuseram uma alteração na escolha de um dos dois indivíduos que serão sub-

metidos ao cruzamento, dando origem aos Algoritmos Genéticos com Chaves Aleatórias

Tendenciosas (Biased Random Key Genetic Algorithms - BRKGA, em inglês). Assim, a

única diferença entre eles é que, no BRKGA, um desses indivíduos é escolhido de forma

aleatória do grupo elite e outro do grupo não-elite da população corrente, diferentemente

do algoritmo elaborado por Bean, onde ambos são selecionados de toda a população.

Com essa modi�cação foi possível obter melhores resultados do que os apresentados pelo

RKGA [Gonçalves et al., 2014].

Como o algoritmo de Bean, o BRKGA utiliza o método Uniforme Parametrizado de

Spears e Jong [Spears e Jong, 1991] como operador de cruzamento. Esse método recorre

a uma probabilidade ρ do descendente herdar o alelo do indivíduo proveniente do grupo

elite e 1 − ρ de herdar do outro indivíduo. Para o seu funcionamento, um número real

ri aleatório no intervalo [0, 1) é gerado para cada alelo i (i = 1, . . . , n) e comparado com
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a probabilidade ρ. Se ri < ρ, o alelo é herdado do indivíduo elite, sendo recebido do

indivíduo não-elite caso contrário. A Figura 4.2 apresenta um exemplo da execução desse

método, adotando ρ = 0.7 e n = 5. Nesse exemplo, o descendente herdou o alelo do

indivíduo elite para i = 1, 3 e 5.

Indivíduo elite 0.55 0.37

0.92

0.26 0.75

Indivíduo não-elite 0.48 0.87 0.16 0.61 0.31

   Número aleatório 0.38 0.76 0.49 0.82 0.53

Comparação com ρ = 0.7 < > < > <

Descendente 0.87 0.610.55

0.92

0.75

Figura 4.2: Exemplo de cruzamento uniforme parametrizado.

Um ponto importante observado na estrutura desses dois algoritmos de chaves aleató-

rias é que ambos possuem componentes que são totalmente independentes do problema a

ser solucionado. O único componente dependente é o decodi�cador, que é responsável por

associar o algoritmo ao problema tratado, retornando uma solução viável para o problema

e o seu valor de �tness dado um indivíduo de chaves aleatórias. A Figura 4.3 apresenta o

�uxograma de um BRKGA, destacando os componentes que dependem e aquele que não

depende do problema.

Na literatura são encontradas aplicações do BRKGA aos mais variados problemas da

área de otimização combinatória, como em telecomunicações [Ericsson et al., 2002,Buriol

et al., 2007,Noronha et al., 2011,Resende, 2012], carregamento de containers [Gonçalves

e Resende, 2012,Gonçalves e Resende, 2013,Zheng et al., 2015], planejamento de tráfego

[Buriol et al., 2010, Stefanello et al., 2017], otimização em redes [Fontes e Gonçalves,

2007,Fontes e Gonçalves, 2013,Andrade et al., 2015], entre outros.

A título de exemplo, Gonçalves et al. [Gonçalves et al., 2005] empregaram o BRKGA

para solucionar o Problema de Escalonamento Job Shop, que considera um conjunto de

n jobs e um grupo de m máquinas, onde cada job é composto por uma sequência de

x operações. Toda operação precisa ser executada em uma única máquina durante um

período de tempo �xo e ininterrupto, sendo que cada máquina processa, no máximo, uma

operação por vez. As operações de um job têm que ser processadas em uma dada or-
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Figura 4.3: Fluxograma de um BRKGA, destacando os componentes que dependem e
aquele que não depende do problema (Extraída de [Gonçalves e Resende, 2011a]).

dem. Perante tais restrições, o problema consiste em encontrar um escalonamento das

operações nas referidas máquinas que minimize o tempo de término da última operação

completa do escalonamento, conhecido como makespan. Os testes realizados compara-

ram o algoritmo com outros 12 sobre um conjunto de 43 instâncias da literatura. Os

experimentos revelaram que a heurística proposta alcançou o melhor resultado conhecido

em 72% das instâncias testadas, com um desvio relativo médio de 0.39% para a melhor

solução conhecida.

Outra aplicação pode ser encontrada em [Gonçalves e Resende, 2011b], onde os au-

tores apresentam uma heurística híbrida que combina o BRKGA com um novo método

de posicionamento para solucionar o Problema de Empacotamento Bidimensional Não-

guilhotinado Restrito. Nesse problema, uma quantidade �xa de pequenas peças retan-

gulares têm que ser dispostas em um grande retângulo plano, de forma a maximizar o

valor das peças alocadas. Especialmente nesse caso, as peças não podem sofrer rotação e

devem ser posicionadas sempre com suas arestas paralelas às arestas do retângulo maior.

A heurística proposta foi testada sobre um conjunto de 703 instâncias da literatura e

comparada a outros quatro algoritmos. Os testes demonstraram que a heurística ob-

teve excelentes resultados em termos de qualidade de solução, apresentando robustez em

relação aos demais algoritmos.

O BRKGA também foi empregado na resolução do Problema de Alocação Tática

de Berços no trabalho de Lalla-Ruiz et al. [Lalla-Ruiz et al., 2014]. Este problema se
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manifesta no contexto de terminais portuários e consiste em alocar navios aos berços do

terminal, atribuindo per�s de guindastes para atendê-los no carregamento e descarrega-

mento de cargas. Os seus objetivos são minimizar os custos do serviço de transporte de

cargas entre os navios ancorados e maximizar o total de per�s de guidastes designados a

eles. Esses per�s são uma representação do número de guindastes que serão atribuídos

para um certo navio enquanto ele estiver ancorado, tendo cada per�l um valor especí�co

que re�ete aspectos técnicos. Para avaliar a e�ciência da heurística desenvolvida, tes-

tes computacionais foram realizados com instâncias elaboradas pelos autores, além das

clássicas encontradas na literatura. Os resultados foram comparados aos de outros três

algoritmos e aos reportados por um modelo matemático para o problema, que foi sub-

metido a um resolvedor. Os experimentos indicaram que o BRKGA foi capaz de prover

soluções de alta qualidade em um reduzido tempo de processamento, bem como de poder

se adaptar a problemas de tamanho real. Em razão da sua �exibilidade em resolver ins-

tâncias de diferentes dimensões, também foi possível veri�car que o esforço computacional

requerido não é altamente in�uenciado pelo tamanho das mesmas.

Em [Lalla-Ruiz et al., 2016] outro importante problema da área de otimização foi tra-

tado utilizando uma heurística híbrida baseada no BRKGA. Considerando um conjunto

de n facilidades, que requer um certo �uxo simétrico entre cada par, e outro de n locali-

zações, com uma distância simétrica entre duas, o Problema de Alocação Quadrática tem

como objetivo minimizar o custo derivado da distância e �uxos entre as facilidades. Na

abordagem proposta, cada gene do indivíduo representa uma facilidade, que será atribuída

a uma localização disponível. Esta atribuição será dada seguindo a ordem das facilidades

após os genes do indivíduo serem ordenados de maneira não-decrescente pelas suas chaves.

Os testes computacionais foram realizados sobre um conjunto de instâncias clássicas

da literatura divididas em esparsas e densas. Foram analisados os resultados da heurística

híbrida com outros dois algoritmos e com um BRKGA sem a utilização da vizinhança.

A qualidade das soluções da heurística indica a sua grande e�cácia quando comparada

a um dos algoritmos, independentemente da densidade das instâncias. Além disso, ela

apresentou, na média, uma performance melhor do que os demais métodos, sendo capaz

de retornar novas melhores soluções para três instâncias. Um estudo adicional também

foi realizado, a �m de veri�car o desempenho da aplicação da busca em vizinhança na me-

lhoria dos indivíduos elite. Nesse estudo, os autores comparam a heurística implementada

com o BRKGA sem a vizinhança e com duas versões de um RKGA, uma com o emprego

da busca e a outra sem o seu uso. Os resultados demonstraram que a incorporação da

busca melhorou a qualidade das soluções e que os dois métodos que a utilizam apresenta-
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ram comportamentos semelhantes, embora com uma performance um pouco melhor para

a heurística híbrida proposta. Essa pequena vantagem também é vista na convergência

para a melhor solução, que acontece de maneira mais rápida do que o outro método.

Recentemente, Brandão et al. [Brandão et al., 2017] empregaram o BRKGA na reso-

lução do Problema de Escalonamento de Cargas Divisíveis em Múltiplos Períodos. Uma

carga divisível é uma quantidade de trabalho computacional que pode ser dividida e

distribuída de forma aleatória entre processadores distintos para serem executadas em

paralelo. Esses processadores estão dispostos de modo que o processador central, denomi-

nado master, armazena e divide a carga em porções de tamanhos arbitrários para serem

transmitidos aos demais P processadores, chamados de operários. Dentre as restrições

para o problema, o processador master pode enviar uma carga somente para um operário

de cada vez, que só pode iniciar o processamento da mesma após recebê-la completa-

mente. Assim, com o objetivo de minimizar o makespan, o problema tratado consiste em

selecionar um subconjunto A ⊆ P de n operários que executarão as cargas, chamados

operários ativos; de�nir uma ordem, intitulada ordem de ativação, pela qual as cargas

serão transmitidas para cada um deles; de�nir o número m de períodos de transmissão

que serão utilizados; e decidir a quantidade de carga que será transmitida para cada ope-

rário i ∈ A em cada período k ∈ {1, . . . ,m}. A �m de investigar a qualidade das soluções

obtidas pelo BRKGA, os resultados dos experimentos realizados, sobre um conjunto de

seis instâncias, foram comparados aos de outras duas heurísticas para o problema, sendo

uma a melhor da literatura até então. Os testes demonstraram que a heurística proposta

encontra melhores soluções mais rápido que os demais métodos e que converge para o me-

lhor valor antes de um segundo para todas as instâncias, além de melhorar os makespans

em 11.68%, na média.

4.2 BRKGA Aplicado ao PPCCM

Como a associação do BRKGA ao problema tratado é feita exclusivamente pelo deco-

di�cador, sendo necessário para cada problema em particular, esse componente é essencial

para o êxito do algoritmo. Na heurística baseada no BRKGA proposta neste trabalho

para a resolução do PPCCM, o decodi�cador recebe um indivíduo de n chaves aleatórias,

onde cada gene corresponde a um dos n vértices do grafo tratado. Para alcançar uma

solução viável, inicialmente ele obtém uma determinada sequência dos vértices ordenando

de maneira não-decrescente as n chaves. Em seguida, inicia a coloração dos mesmos a

partir da ordem dada por essa ordenação, utilizando a cor de menor custo. Quando mais



4.2 BRKGA Aplicado ao PPCCM 34

nenhum vértice puder ser colorido com essa cor e considerando que ela não será novamente

empregada, a cor com o segundo menor custo é selecionada a �m de colorir os vértices

que ainda não tenham cor associada. Essa estratégia prossegue até que todos os vértices

do grafo tenham sido coloridos, sempre respeitando a ordem dos mesmos de acordo com

as chaves e colorindo os adjacentes com cores distintas. Nessa abordagem, os indivíduos

mais aptos são os que apresentam o menor valor de �tness, que é a soma dos custos das

cores atribuídas a cada vértice.

O Algoritmo 1 apresenta o pseudocódigo do decodi�cador proposto. A solução S

que será gerada é inicializada nas linhas 1�4. Ci denota as classes de cores da solução

S associadas às cores i = 1, . . . , n, sendo indexadas na ordem não-decrescente pelos seus

custos na linha 5. Na linha 6, os vértices são copiados para um conjunto auxiliar V ′, sendo

ordenados na linha 7 de maneira não-decrescente pelas suas chaves aleatórias correspon-

dentes. A alocação dos vértices nas classes de cores é realizada no laço 9�19 seguindo a

ordenação dos mesmos, iniciando pela classe de menor custo C1 (linha 8). Se o vértice

que está sendo analisado ainda não foi colorido (linha 10), o mesmo é atribuído à classe

atual Ci na linha 11. No laço interno 12�16, os demais vértices são alocados a esta mesma

classe, desde que ainda não tenham sido coloridos e que não sejam adjacentes aos vértices

pertencentes à ela. Uma vez que a classe de cor atual não será mais utilizada, a classe de

menor custo seguinte é selecionada (linha 17), a �m de colorir os vértices ainda sem classe

associada. Finalizada a alocação de todos os vértices, o valor de �tness do indivíduo I é

calculado na linha 20.

Na tentativa de aprimorar a qualidade dos indivíduos presentes no grupo elite, uma

variação do BRKGA proposto, fazendo uso do mesmo decodi�cador, também foi desenvol-

vida. A nova heurística, denominada BRKGA+RVNS, diferencia-se da primeira apenas

pela aplicação de uma busca em vizinhança sobre cada indivíduo que fará parte daquele

grupo na geração seguinte, realizando a substituição do indivíduo caso encontre outro

com valor de �tness menor. A Figura 4.4 demonstra o processo de evolução da população

dessa heurística.

A estratégia de busca utilizada foi a Busca em Vizinhança Variável Reduzida (Re-

duced Variable Neighborhood Search - RVNS, em inglês) [Hansen e Mladenovi¢, 1999],

considerada uma modi�cação da metaheurística Busca em Vizinhança Variável (VNS,

do inglês Variable Neighborhood Search) [Mladenovi¢ e Hansen, 1997], onde o procedi-

mento de busca local não é aplicado. No RVNS, dado um conjunto de vizinhanças Nh

(h = 1, . . . , hmax), uma solução S ′ é obtida aleatoriamente em uma vizinhança Nh(S) de
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Algoritmo 1: Decodi�cador
Entrada: Indivíduo I.
Saída: Valor de �tness do indivíduo I.
S : 〈C1, . . . , Cn〉;1

para i = 1, . . . , n faça2

Ci ← ∅;3

�m para4

Ordene as classes de cores da solução S pelos seus custos: wCi
≤ wCi+1

, 1 ≤ i < n;5

V ′ ← V ;6

Ordene os vértices de V ′ pelas suas chaves aleatórias: IV ′
j
≤ IV ′

j+1
, 1 ≤ j < n;7

i← 1;8

para j = 1, . . . , n faça9

se V ′j /∈ Ck, 1 ≤ k ≤ i então10

Ci ← Ci ∪ {V ′j };11

para ` = j + 1, . . . , n : V ′` /∈ Ck, 1 ≤ k ≤ i faça12

se V ′` não é adjacente a u, ∀u ∈ Ci então13

Ci ← Ci ∪ {V ′` };14

�m se15

�m para16

i← i+ 1;17

�m se18

�m para19

fitness ← f(S);20

uma solução corrente S. Se S ′ for melhor do que S, a exploração prossegue a partir de S ′

e recomeça pela primeira estrutura de vizinhança N1(S
′). Caso contrário, a busca avança

para a vizinhança seguinte Nh+1(S) da solução corrente. Quando todas as vizinhanças de

uma solução forem exploradas, a busca retorna à primeira, reiniciando o processo. Essas

etapas acontecem até que um critério de parada seja satisfeito. A aplicação do RVNS para

a melhoria dos indivíduos elite também foi empregada por Ma et al. [Ma et al., 2017],

porém com uma estratégia diferente para a alteração dos alelos, ao fazer somente um tipo

de operação (mutação) em genes selecionados aleatoriamente.

No procedimento RVNS proposto neste trabalho, as estruturas de vizinhança cor-

respondem a alterações nos alelos dos indivíduos, que são as suas chaves aleatórias. O

Algoritmo 2 descreve esse procedimento, que recebe como entrada cada indivíduo elite I.

Inicialmente, na linha 1 uma cópia de I é efetuada, para que a mesma armazene o melhor

indivíduo Ibest (com o menor valor de �tness) encontrado durante a busca. O laço externo

das linhas 3�24 permite que o processo de melhoria seja executado duas vezes. No laço

interno das linhas 5�22, este processo explora a vizinhança do indivíduo Iaux, que é uma

cópia do melhor indivíduo até o momento (linha 6).
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Figura 4.4: Processo de evolução da população no BRKGA+RVNS.

De�nido o indivíduo a ser examinado, acontece a busca na vizinhança h (h = 1, . . . , 4)

do mesmo, que consiste em alterar o valor de h genes do indivíduo. Iniciando pela pri-

meira vizinhança (h = 1), no laço das linhas 7�15 são selecionados h genes aleatoriamente

e diferentes entre si para receberem, como alteração, uma nova chave aleatória na linha

11 ou a operação (1 − o valor da chave atual) na linha 13. A escolha de uma dessas alte-

rações é feita com probabilidade igual a 0.5 (linha 10). Essas duas mudanças pretendem

proporcionar, ao vértice associado a cada gene, a variação da sua posição no processo de

coloração, uma vez que este processo ocorre seguindo a ordenação das chaves do indivíduo.

Na primeira, essa posição é dada aleatoriamente pela geração da nova chave. Na segunda

alteração, a posição é trocada utilizando a chave atual, podendo o vértice associado passar

a ser colorido no início ou no �m do processo, dependendo da sua posição original.

Após as modi�cações em h genes de Iaux, caso o seu valor de �tness seja menor

que o do melhor indivíduo (linha 16), este último é atualizado na linha 17 e a busca

reinicia sobre ele na primeira vizinhança (linha 18). Caso contrário, a exploração segue

para a vizinhança seguinte na linha 20. Esse processo de busca acontece até que todas

as vizinhanças sejam examinadas (linhas 5�22), sendo retomado novamente na primeira

delas na linha 4 para a segunda e última repetição. Ao �nal, caso o melhor indivíduo

encontrado na busca seja mais apto do que o de entrada, este é atualizado nas linhas

25�26.

4.2.1 Experimentos Computacionais

Os experimentos realizados têm como �nalidade ajustar os parâmetros das heurísticas

BRKGA e BRKGA+RVNS propostas, bem como avaliar a qualidade das soluções produ-

zidas por elas sobre um conjunto de instâncias. A biblioteca brkgaAPI [Toso e Resende,
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Algoritmo 2: RVNS
Entrada: Indivíduo I do grupo elite.
Saída: Indivíduo I.
Ibest ← I;1

cont ← 1;2

enquanto cont ≤ 2 faça3

h ← 1;4

enquanto h ≤ 4 faça5

Iaux ← Ibest;6

para i de 1 até h faça7

g ← aleatório[1, n], g ∈ Z e ainda não escolhido;8

a ← aleatório[0, 1), a ∈ R;9

se a < 0.5 então10

Iauxg ← nova chave aleatória;11

senão12

Iauxg ← 1− Iauxg ;13

�m se14

�m para15

se f(Iaux) < f(Ibest) então16

Ibest ← Iaux;17

h ← 1;18

senão19

h ← h+ 1;20

�m se21

�m enquanto22

cont ← cont+ 1;23

�m enquanto24

se f(Ibest) < f(I) então25

I ← Ibest;26

�m se27

2015], que é um framework na linguagem C++ para o desenvolvimento de BRKGAs, foi

utilizada para implementar os dois algoritmos, sendo compilados com g++ versão 5.4.0.

O computador empregado nos testes dispõe de um processador Intel Core i7-4790K de

4 GHz, com 16 GB de memória RAM e sistema operacional Linux Ubuntu 16.04 LTS

64 bits. Para a avaliação dos resultados obtidos nesses dois conjuntos de experimentos,

foram empregadas medidas de qualidade aplicadas em [Ribeiro et al., 2002], [Resende

et al., 2010], [Pessoa et al., 2013], [Brandão et al., 2015], entre outros:

� Best : valor da melhor solução obtida para uma determinada instância, considerando

todas as execuções até então realizadas.

� Sum Best : número de execuções para as quais o valor Best foi alcançado por uma
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determinada heurística. Quanto maior o valor de Sum Best, melhor é a performance

do algoritmo.

� #Best : número de instâncias para as quais o valor Best foi alcançado por uma

determinada heurística. Quanto maior o valor de #Best, melhor é a performance

do algoritmo.

� Dev : desvio relativo entre Best e o valor da solução obtida em uma execução de

uma instância por uma dada heurística. Quanto menor o valor de Dev, melhor é a

performance do algoritmo.

� Avg Dev : valor médio de Dev sobre todas as instâncias e execuções de uma dada

heurística. Quanto menor o valor de Avg Dev, melhor é a performance do algoritmo.

� #Score: para cada instância, representa o número de algoritmos que encontram

uma solução melhor do que uma heurística especí�ca. Caso duas ou mais heurísticas

apresentem o mesmo resultado, todas recebem valor igual de #Score, indicando o

número de algoritmos estritamente melhores do que todas elas.

� Score: soma dos #Score de uma heurística especí�ca, sobre todas as instâncias do

experimento. Quanto menor o valor de Score, melhor é a performance do algoritmo.

4.2.1.1 Ajustes de Parâmetros

Para esse experimento foram selecionados aleatoriamente 20 grafos de benchmarks

amplamente utilizados para o PCG, obtidos em http://mat.gsia.cmu.edu/COLOR03 e

http://mat.gsia.cmu.edu/COLOR/instances.html. Como no PPCCM os custos das

cores podem assumir qualquer valor real, para cada instância foram gerados custos alea-

tórios com valores inteiros variando de 1 até 1000, que, embora sejam inteiros, mantém

o problema diferente do PSC, uma vez que neste tais valores são números naturais em

sequência. Foi empregado o gerador Mersenne Twister [Matsumoto e Nishimura, 1998]

para a geração de números aleatórios.

Os grafos utilizados são apresentados na Tabela 4.1, acompanhados do número de

vértices (n), de arestas (m) e o valor ótimo (em negrito) de cada um. Este último foi

obtido aplicando o resolvedor CPLEX 12.8.0 com o modelo das Equações (3.1) a (3.4)

(Seção 3.2) e ajuste automático de parâmetros, adotando como critério de parada o tempo

máximo de execução de 3600 segundos. Este experimento foi realizado em uma máquina

virtual VMware ESXi 6.5 dispondo de 8 núcleos do processador Intel Xeon E5-2690 v4 2.6
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GHz, 48 GB de memória RAM e sistema operacional Linux Ubuntu 16.04 LTS 64 bits.

Para as instâncias que o valor ótimo não foi determinado pelo CPLEX dentro do limite

de tempo, a tabela informa o melhor valor conhecido para a instância ao longo de todos

os experimentos realizados nesta tese, por todos os algoritmos e variantes desenvolvidos.

Instância n m
Ótimo ou

melhor valor
myciel3 11 20 3097

myciel4 23 71 2068

queen5_5 25 160 3960

2-Insertions_3 37 72 695

myciel5 47 236 2212

queen7_7 49 476 2590

2-FullIns_3 52 201 832

3-Insertions_3 56 110 914

huck 74 301 1967

jean 80 254 2307

david 87 406 2819

myciel6 95 755 1657

mug100_25 100 166 3177

games120 120 638 4351

anna 138 493 1137

DSJC125.1 125 736 1081
DSJC250.1 250 3218 1941
DSJC500.1 500 12458 5848
2-FullIns_5 852 12201 1319
DSJC1000.1 1000 49629 10587

Tabela 4.1: Instâncias utilizadas para o ajuste de parâmetros das heurísticas BRKGA e
BRKGA+RVNS.

Uma vez de�nida a quantidade de alelos de cada indivíduo, considerada igual ao

número de vértices do grafo tratado (Seção 4.2), de acordo com Gonçalves e Resende

[Gonçalves e Resende, 2011a], os parâmetros necessários para a execução de um BRKGA

são: o tamanho da população (P ), a quantidade de indivíduos que pertencerão ao grupo

elite (Pe), o número de indivíduos mutantes que serão gerados (Pm) e a probabilidade do

descendente herdar um alelo do indivíduo elite no procedimento de cruzamento (ρ).

No entanto, para as heurísticas propostas, também há a necessidade de análise do

parâmetro r, uma vez que será utilizada a técnica de restarts (reinicializações), por reco-

nhecidamente contribuir com a redução do tempo necessário para alcançar boas soluções

em algoritmos randomizados [Resende e Ribeiro, 2011]. Em ambas as heurísticas, duas

estratégias de restarts foram testadas para a reconstrução total da população: (a) após

r gerações sem melhoria da melhor solução e (b) após r gerações ininterruptas. Na
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Parâmetro Valor BRKGA BRKGA+RVNS
P 100, 150, 200 150 150
Pe 0.20×P , 0.25×P 0.25×P 0.20×P
Pm 0.10×P , 0.20×P 0.10×P 0.10×P
ρ 0.70, 0.80 0.70 0.70
r 50(a), 50(b), 100(a), 100(b) 100(a) 100(b)

Tabela 4.2: Valores dos parâmetros utilizados para ajuste e os melhores valores obtidos
para as heurísticas BRKGA e BRKGA+RVNS.

Tabela 4.2, o valor utilizado para restarts é acompanhado dessas letras para indicar a

estratégia aplicada.

Os valores analisados dos parâmetros, especi�cados na segunda coluna da Tabela 4.2,

com exceção dos valores para r, seguiram como referência Gonçalves e Resende [Gonçalves

e Resende, 2011a], tendo a combinação dos mesmos originado 96 versões de cada heurís-

tica. A �m de aplicar um critério de parada justo para todas elas, utilizou-se o tempo

máximo de processamento, onde cada versão faz dez execuções independentes (utilizando

sementes distintas para o gerador de números aleatórios) para cada instância com tal li-

mite de tempo. Para a obtenção desse limite, a heurística BRKGA+RVNS foi executada

uma única vez para cada instância por 200 gerações, usando como parâmetros P = 200,

Pe = 0.25×P , Pm = 0.10×P , ρ = 0.70 e r = 50(b).

Na avaliação dos resultados das versões, foram adotadas as medidas Sum Best e Avg

Dev, utilizando como critério de qualidade um alto valor para a primeira e, em caso de

empate, o menor valor para a segunda. As Figuras 4.5 e 4.6 mostram grá�cos com os

valores dessas medidas para BRKGA e BRKGA+RVNS, respectivamente. Nesses grá�cos,

cada ponto corresponde a uma ou mais versões, onde a coordenada de cada ponto são

as duas medidas adotadas. Os pontos mais acima e à esquerda dos grá�cos representam

aquelas versões que alcançaram os melhores valores para as referidas medidas. Observa-

se que, para o BRKGA, a versão que atingiu Sum Best = 160 e Avg Dev = 0.041 foi

a que obteve a melhor combinação de parâmetros, segundo os critérios de�nidos. Esses

parâmetros são identi�cados na terceira coluna da Tabela 4.2. Para o BRKGA+RVNS,

a melhor versão alcançou Sum Best = 160 e Avg Dev = 0.034, tendo os parâmetros

apresentados na quarta coluna da Tabela 4.2.

4.2.1.2 Análise de Qualidade das Soluções

Com o objetivo de avaliar a qualidade das soluções apresentadas pelas heurísticas

BRKGA e BRKGA+RVNS, empregando os melhores parâmetros determinados nos ex-
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Figura 4.5: Resultados das medidas Sum Best e Avg Dev para as versões de ajuste de
parâmetros do BRKGA. O critério de qualidade adotado foi apresentar um alto valor
para a primeira medida e, em caso de empate, o menor valor na segunda. Neste caso, a

melhor versão obteve Sum Best = 160 e Avg Dev = 0.041.
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Figura 4.6: Resultados das medidas Sum Best e Avg Dev para as versões de ajuste de
parâmetros do BRKGA+RVNS. O critério de qualidade adotado foi apresentar um alto
valor para a primeira medida e, em caso de empate, o menor valor na segunda. Neste

caso, a melhor versão obteve Sum Best = 160 e Avg Dev = 0.034.



4.2 BRKGA Aplicado ao PPCCM 42

perimentos de ajuste (Tabela 4.2), foram geradas 50 novas instâncias do mesmo modo

como descrito na Seção 4.2.1.1. Sobre cada uma delas, cada heurística realizou dez exe-

cuções independentes, tendo, como critério de parada, um limite de tempo máximo para

cada execução, que foi obtido pela aplicação do BRKGA+RVNS uma única vez por 200

gerações, utilizando os melhores parâmetros identi�cados na etapa de ajuste para essa

heurística. Na tentativa de obter a solução ótima de cada instância, novamente foi utili-

zado o resolvedor CPLEX, sob as mesmas condições especi�cadas na Seção 4.2.1.1.

Os resultados detalhados dos experimentos são descritos nas Tabelas A.1 e A.2 (Apên-

dice A), que apresentam, para cada instância, o número de vértices (n), de arestas (m),

o valor da melhor solução conhecida ao longo de todos os experimentos realizados, por

todos os algoritmos e variantes desenvolvidos, e o valor da melhor solução alcançada pelo

CPLEX, sublinhando os valores das soluções ótimas e sinalizando com o símbolo '−' caso
uma solução viável não tenha sido obtida no tempo máximo de execução (3600 segundos).

As colunas seguintes indicam, para cada heurística, o valor da melhor solução obtida, in-

dicando em negrito quando este é igual ao melhor conhecido, a média dos valores das

soluções alcançadas nas 10 execuções, o número de vezes que o melhor valor conhecido foi

atingido, o desvio relativo médio percentual entre o valor da solução obtida e o valor da

melhor solução conhecida, e o valor médio do índice da geração em que a melhor solução

é encontrada. A última coluna indica o tempo (em segundos) utilizado como critério de

parada em cada execução das heurísticas.

A Tabela 4.4 resume os resultados obtidos pelos dois algoritmos, apresentando para

cada um deles somente o melhor valor de solução e o desvio relativo médio percentual.

Analisando essas informações é possível observar que o CPLEX alcançou o melhor valor

conhecido para 18 instâncias (em negrito), a solução ótima para 12 e não obteve solução

viável, considerando o limite de tempo, para outras 13. Para seis instâncias, as duas

heurísticas não encontraram um valor de solução tão bom quanto o encontrado pelo

CPLEX.

Além disso, veri�ca-se que BRKGA atinge o melhor valor conhecido para 16 instâncias

e o ótimo para nove delas, enquanto BRKGA+RVNS atinge o melhor valor conhecido

para 14, sendo 10 ótimos. Este último alcançou o melhor valor conhecido em todas as

10 execuções para seis instâncias e BRKGA para quatro. A instância em que ambos não

atingiram o melhor valor conhecido e que apresentaram maior di�culdade para tal, foi a

mesma para os dois algoritmos (�at1000_60_0), porém BRKGA+RVNS alcançou desvio

médio de 26.24%, inferior aos 28.86% do BRKGA.
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BRKGA BRKGA+RVNS
Avg Dev (%) 8.70 8.72
Sum Best 92 93

#Best 16 (9 ótimos) 14 (10 ótimos)
Score 16 21

Tabela 4.3: Comparativo da performance das heurísticas BRKGA e BRKGA+RVNS.

Analisando a performance de cada heurística utilizando os resultados das medidas de

qualidade, resumidos na Tabela 4.3, pode-se veri�car que BRKGA encontrou o melhor

valor conhecido em 92 execuções e BRKGA+RVNS em 93, tendo BRKGA encontrado tal

valor para duas instâncias a mais. Nota-se também que este apresentou um desvio médio

de todo o experimento ligeiramente menor, bem como um valor de Score inferior.

Além dessas medidas, com o intuito de avaliar a distribuição do tempo de processa-

mento de ambas as heurísticas, foram utilizados os grá�cos Time-To-Target [Feo et al.,

1994], ou TTT-Plots, que apresentam a probabilidade de um algoritmo encontrar uma

solução de custo, no mínimo, tão bom quanto um dado valor alvo, em um determinado

tempo. Para isso, seguindo a metodologia proposta em [Aiex et al., 2002] e [Aiex et al.,

2007], cada heurística realiza 200 execuções independentes sobre uma instância, cada uma

�nalizada ao alcançar uma solução de custo menor ou igual a um valor alvo ou ao atingir

um dado limite de tempo, quando este recurso for utilizado. Em seguida, os tempos dessas

execuções são ordenados de maneira não-decrescente e a probabilidade pi = (i − 1
2
)/200

é associada ao i-ésimo tempo de processamento ti, permitindo então plotar os pontos

di = (ti, pi), para i = 1, . . . , 200. Para a análise dos resultados, quanto mais à esquerda a

curva de um determinado algoritmo, melhor ele é, pois indica que o mesmo atinge o valor

alvo mais rapidamente.

Em conjunto a esses grá�cos, a �m de se obter um resultado numérico da compara-

ção das duas heurísticas, foi empregada a ferramenta tttplots-compare desenvolvida por

Ribeiro e Rosseti [Ribeiro e Rosseti, 2015], cujo suporte teórico encontra-se em [Ribeiro

et al., 2012]. Considerando dois algoritmos estocásticos A1 e A2, TA1 (resp. TA2) é uma

variável aleatória contínua que representa o tempo para atingir o alvo do algoritmo A1

(resp. A2). Assim, a ferramenta informa a probabilidade Pr(TA1 ≤ TA2) de o algoritmo

A1 convergir de maneira mais rápida do que o algoritmo A2.

Os TTT-Plots para a instância 3-FullIns_4 são encontrados na Figura 4.7, onde foi

de�nido como alvo o valor da melhor solução conhecida (2951) e 1000 segundos como

tempo de execução máximo. BRKGA consegue 100% de probabilidade de atingir o alvo
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em menos de seis segundos de processamento, enquanto BRKGA+RVNS necessita de

16.3 segundos para obter a mesma probabilidade. Para essa instância, BRKGA apresenta

Pr(TBRKGA ≤ TBRKGA+RV NS) = 0.886. As Figuras 4.8 e 4.9 mostram, respectivamente,

que a população do BRKGA e do BRKGA+RVNS convergem para o melhor valor durante

os quatro segundos iniciais de execução, sendo possível notar que nesse período o processo

de restarts de nenhuma das heurísticas foi executado.

Os resultados para a instância inithx.i.1 são apresentados na Figura 4.10. Nesse ex-

perimento foi empregada como alvo a média dos valores das soluções encontradas pelo

BRKGA (3937) e 1000 segundos como tempo máximo. BRKGA+RVNS para essa instân-

cia atinge o valor alvo com probabilidade 100% em 209 segundos, sendo de 402.5 segundos

para BRKGA. Ainda, BRKGA+RVNS obteve Pr(TBRKGA+RV NS ≤ TBRKGA) = 0.529, in-

dicando que tem maior probabilidade de convergir mais rapidamente para o alvo do que

a outra heurística. Na evolução da população durante 50 segundos iniciais de execução,

BRKGA atingiu 3935 como custo de solução (Figura 4.11), tendo BRKGA+RVNS alcan-

çado o melhor valor conhecido 3934 (Figura 4.12). No tempo analisado, somente para

BRKGA veri�cou-se a execução do processo de restarts.

4.2.1.3 Conclusões

De�nindo um tempo de processamento �xo como critério de parada para as heurís-

ticas, veri�cou-se que a heurística BRKGA encontrou soluções ligeiramente melhores do

que BRKGA+RVNS, com valores, em média, 8.70% e 8.72%, respectivamente, acima dos

melhores valores conhecidos para as instâncias examinadas. Embora BRKGA tenha en-

contrado estes valores para um maior número de instâncias, BRKGA+RVNS atingiu 10

valores ótimos, contra nove do BRKGA.

Esse equilíbrio também foi observado nos experimentos para avaliar a probabilidade de

um algoritmo convergir de maneira mais rápida para um valor alvo. Percebeu-se também

que, apesar de o procedimento RVNS tornar mais custosa as gerações do BRKGA+RVNS

em termos de tempo de execução, ele foi capaz de auxiliar na redução do número de gera-

ções para a obtenção das soluções. Desse modo, considerando os experimentos realizados

e os resultados obtidos, não é possível determinar qual heurística apresenta-se superior a

outra, uma vez que ambas se alternam em qualidade dependendo da instância tratada.

Assim, com o propósito de desenvolver um outro algoritmo para solucionar o PPCCM,

foi proposta uma heurística de trajetória que faz uso de duas estratégias de busca local

seguidas por um procedimento de path-relinking, sendo descrita no capítulo seguinte.
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BRKGA BRKGA+RVNS Tempo de

Instância n m
Melhor
valor

CPLEX
(3600 s)

Melhor
valor

Avg
Dev
(%)

Melhor
valor

Avg
Dev
(%)

execução
heurísticas

(s)
school1-nsh 352 14612 7647.00 13193.00 8999.00 20.47 9020.00 25.13 30.95
school1 385 19095 7158.00 14687.00 7723.00 12.13 7733.00 14.87 36.03
3-FullIns_4 405 3524 2951.00 2951.00 2951.00 0.00 2951.00 0.00 29.85
fpsol2.i.3 425 8688 3738.00 3738.00 3738.00 0.00 3738.00 0.00 35.15
le450_5c 450 9803 2610.00 2610.00 2642.00 2.34 2645.00 3.28 45.98
le450_5d 450 9757 2700.00 3421.00 2710.00 1.59 2711.00 1.61 47.64
le450_15c 450 16680 9556.00 11335.00 11131.00 17.05 10683.00 12.94 55.07
le450_15d 450 16750 10799.00 13011.00 12629.00 20.42 12441.00 15.93 54.71
le450_25a 450 8260 9730.00 9730.00 10258.00 6.63 10485.00 8.33 38.63
le450_25b 450 8263 7564.00 7564.00 8028.00 7.08 8241.00 9.43 42.11
le450_25c 450 17343 10447.00 11776.00 11940.00 14.77 11643.00 12.14 54.25
le450_25d 450 17425 11676.00 12791.00 13074.00 12.74 12816.00 10.44 54.21
fpsol2.i.2 451 8691 4694.00 4694.00 4694.00 0.02 4694.00 0.03 38.47
4-Insertions_4 475 1795 999.00 999.00 1001.00 0.75 999.00 0.67 27.18
fpsol2.i.1 496 11654 8364.00 8364.00 8364.00 0.00 8364.00 0.00 28.50
DSJC500.5 500 62624 18333.00 22845.00 22935.00 25.72 21892.00 21.41 152.42
C500.9 500 112332 63147.00 77015.00 71823.00 17.21 74360.00 18.83 276.35
DSJC500.9 500 112437 65373.00 78869.00 72535.00 12.72 74194.00 15.28 290.00
DSJR500.1 500 3555 6253.00 6253.00 6646.00 6.87 6724.00 8.33 46.68
DSJR500.1c 500 121275 27395.00 35554.00 27575.00 1.30 27462.00 1.49 149.89
DSJR500.5 500 58862 54392.00 64892.00 56453.00 5.72 58269.00 9.05 191.11
2-Insertions_5 597 3936 2999.00 2999.00 2999.00 0.13 2999.00 0.29 58.76
1-Insertions_6 607 6337 1347.00 1367.00 1347.00 0.24 1347.00 0.30 63.88
inithx.i.3 621 13969 3633.00 3633.00 3633.00 0.02 3633.00 0.00 96.46
inithx.i.2 645 13979 4073.00 4073.00 4073.00 0.01 4073.00 0.00 95.31
ash331GPIA 662 4185 1513.00 1513.00 1537.00 3.19 1539.00 3.45 65.85
4-FullIns_4 690 6650 2443.00 2443.00 2443.00 0.02 2443.00 0.07 82.17
will199GPIA 701 7065 4829.00 5428.00 4919.00 3.07 4948.00 3.87 79.01
inithx.i.1 864 18707 3934.00 3934.00 3934.00 0.05 3934.00 0.01 106.34
qg.order30 900 26100 11940.00 11940.00 12084.00 1.38 12027.00 0.94 270.78
latin_sqr_10 900 307350 48822.00 � 57949.00 20.27 56677.00 16.76 620.77
wap05 905 43081 12593.00 14181.00 13803.00 10.17 14039.00 12.31 254.86
wap06 947 43571 18453.00 20434.00 19495.00 6.39 19905.00 8.23 267.59
DSJC1000.5 1000 249826 46790.00 � 58453.00 25.90 57538.00 23.49 920.84
�at1000_50_0 1000 245000 41915.00 � 51719.00 25.22 51032.00 22.90 934.90
�at1000_60_0 1000 245830 40468.00 � 51900.00 28.86 50629.00 26.24 908.07
�at1000_76_0 1000 246708 41729.00 � 51205.00 23.59 50425.00 21.34 920.24
DSJC1000.9 1000 449449 103906.00 � 130627.00 27.59 129308.00 25.12 1869.64
C1000.9 1000 450079 105709.00 � 134237.00 28.22 131064.00 25.47 1874.78
5-FullIns_4 1085 11395 2212.00 2212.00 2212.00 0.00 2212.00 0.01 192.97
ash608GPIA 1216 7844 3859.00 4215.00 3859.00 0.42 3866.00 1.32 254.75
3-Insertions_5 1406 9695 1406.00 1406.00 1406.00 0.00 1406.00 0.00 262.40
abb313GPIA 1557 65390 4597.00 � 4597.00 0.63 4655.00 3.87 562.43
qg.order40 1600 62400 15280.00 � 15486.00 1.48 15438.00 1.13 1053.18
wap07 1809 103368 13380.00 � 15113.00 13.40 15205.00 14.24 1071.05
wap08 1870 104176 14497.00 � 15790.00 9.30 15855.00 10.43 1106.13
ash958GPIA 1916 12506 2886.00 3171.00 2886.00 0.71 2927.00 2.19 606.65
3-FullIns_5 2030 33751 4082.00 5845.00 4082.00 0.09 4082.00 0.31 872.03
wap01 2368 110871 18719.00 � 20584.00 10.48 20917.00 12.41 1842.69
wap02 2464 111742 17439.00 � 18853.00 8.47 19145.00 10.28 1920.90

Tabela 4.4: Resultados resumidos das heurísticas BRKGA e BRKGA+RVNS.
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Figura 4.7: TTT-Plots para a instância 3-FullIns_4, com alvo 2951 e tempo máximo de
1000 segundos.
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Figura 4.8: Evolução da população do BRKGA para a instância 3-FullIns_4 durante os
quatro segundos iniciais de processamento. A heurística encontrou o melhor valor

conhecido (2951) nesse período.
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Figura 4.9: Evolução da população do BRKGA+RVNS para a instância 3-FullIns_4
durante os quatro segundos iniciais de processamento. A heurística encontrou o melhor

valor conhecido (2951) nesse período.
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Figura 4.10: TTT-Plots para a instância inithx.i.1, com alvo 3937 e tempo máximo de
1000 segundos.
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Figura 4.11: Evolução da população do BRKGA para a instância inithx.i.1 durante os
50 segundos iniciais de processamento. A heurística não encontrou o melhor valor

conhecido (3934) nesse período, tendo atingido 3935.
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Figura 4.12: Evolução da população do BRKGA+RVNS para a instância inithx.i.1
durante os 50 segundos iniciais de processamento. A heurística encontrou o melhor valor

conhecido (3934) nesse período.



Capítulo 5

Heurística de Trajetória com Busca Local

e Path-relinking

Neste capítulo serão descritos os componentes da heurística de trajetória com busca

local e path-relinking desenvolvida para solucionar o PPCCM, seu pseudocódigo, bem

como resultados dos experimentos da sua aplicação em um conjunto de instâncias teste e

da sua comparação com os algoritmos BRKGAs propostos no capítulo anterior.

5.1 Introdução

A heurística HBLPR utiliza duas estratégias de busca local, uma a �m de tornar viável

a solução recebida e outra para tentar uma melhoria na solução corrente, seguidas pela

aplicação de um procedimento de path-relinking. Uma perturbação na solução corrente

é realizada como técnica de diversi�cação, sendo utilizada uma lista tabu para que essa

solução não seja novamente visitada na próxima iteração. Todos os componentes da

HBLPR são detalhados nas seções seguintes.

5.2 Função de Avaliação

A função de avaliação utilizada na HBLPR foi obtida a partir de uma modi�cação

nos custos das cores da função proposta por Helmar e Chiarandini [Helmar e Chiarandini,

2011], uma vez que no PPCCM esses valores são reais. Considera-se uma solução, qualquer

coloração S (própria ou não) que utiliza k cores e atribui exatamente uma cor para cada

vértice. A função que avalia a qualidade da solução S, a qual deve ser minimizada, é dada
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por:

f(S) =
k∑

c=1

(wc · |Cc|+M · |E(Cc)|), (5.1)

onde wc representa o custo atribuído à cor c (wc ∈ R), Cc é o conjunto de vértices com

a cor c (também chamado de classe de cor c), E(Cc) conjunto de arestas con�itantes

(conectando vértices coloridos com a mesma cor c) e M um valor positivo. O primeiro

termo da Função (5.1) calcula o custo da classe de cor c de acordo com o número de

vértices coloridos com essa cor e o segundo termo, para garantir viabilidade, penaliza esse

valor caso existam arestas con�itantes nessa classe.

5.3 Procedimento para Obter a Solução Inicial

De modo a obter uma solução inicial não totalmente aleatória, mas já com algumas

classes de cores, foi empregada a heurística RLF (Recursive Largest First) [Leighton,

1979], que implementa uma estratégia similar à de encontrar conjuntos independentes

maximais, colorindo os vértices, uma classe de cada vez, seguindo uma estratégia gulosa.

Considerando que o algoritmo RLF sempre retornará uma coloração própria dado

um grafo G, na HBLPR foi realizada uma adaptação: quando restarem d0.10 × |V |e
vértices ainda não coloridos, a execução do RLF é �nalizada e tais vértices são atribuídos

aleatoriamente às classes de cores anteriormente criadas. Com isso, a solução gerada pode

ou não ser uma coloração própria. Essa geração não é completamente gulosa para poder

randomizar o algoritmo e o fator de randomização poderia ser de 100%, mas foi decisão

de projeto deixá-lo em 10%.

O pseudocódigo do procedimento de geração da solução inicial é apresentado no Al-

goritmo 3. O número de classes de cores e o conjunto de vértices não coloridos são

inicializados nas linhas 1 e 2, respectivamente. O laço externo nas linhas 3�15 é execu-

tado enquanto o critério de parada não for atingido. A cada iteração, a próxima classe de

cor Ck a ser gerada é inicializada nas linhas 4�5. O vértice ainda não colorido v0 com o

maior número de vértices adjacentes em V ′ é selecionado na linha 6 e atribuído à classe

de cor Ck na linha 7. Todos os vértices não coloridos adjacentes a v0 são movidos para

um conjunto temporário de vértices não coloridos U na linha 8. O laço interno nas linhas

9�13 repete os passos acima para completar a classe de cor Ck, diferenciando apenas no

conjunto a partir do qual o vértice v selecionado terá o maior número de vértices adjacen-

tes, que neste caso é o conjunto U . Os vértices não coloridos temporariamente mantidos

em U , que não podem ser movidos para a classe Ck, são novamente atribuídos a V ′ na
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linha 14 e uma nova iteração do laço externo é executada. O algoritmo é interrompido

quando há d0.10 × |V |e vértices sem cor. Neste momento, estes vértices são atribuídos

aleatoriamente às classes de cores já criadas na linha 16 e as demais são inicializadas na

linha 17. Tipicamente, a solução inicial obtida será uma k-coloração imprópria.

Algoritmo 3: SoluçãoInicial
Entrada: Grafo G = (V,E).
Saída: Coloração S : 〈C1, . . . , Cn〉.
k ← 0;1

V ′ ← V ;2

enquanto |V ′| ≥ d0.10× |V |e faça3

k ← k + 1;4

Ck ← ∅;5

Selecione o vértice v0 ∈ V ′ com o maior número de vértices adjacentes em V ′;6

Mova v0 de V ′ para Ck;7

U ← todos os vértices em V ′ adjacentes a v0;8

enquanto V ′ 6= ∅ faça9

Selecione o vértice v ∈ V ′ com o maior número de vértices adjacentes em U ;10

Mova v de V ′ para Ck;11

U ← U∪ todos os vértices em V ′ adjacentes a v;12

�m enquanto13

V ′ ← U ;14

�m enquanto15

Atribua aleatoriamente os vértices não coloridos em V ′ às classes de cores16

C1, . . . , Ck;
Ci ← ∅, i = k + 1, . . . , n;17

5.4 Busca Local por uma Coloração Própria

Considere S uma k-coloração imprópria, i a classe de cor do vértice v ∈ V (S(v) = i),

j uma classe de cor diferente de i e Nj(v) os vértices adjacentes a v na classe de cor

j. Na estrutura de vizinhança utilizada por essa fase da heurística HBLPR, denominada

Critical One-Move Neighborhood, aplicada em problemas de coloração [Hertz e de Werra,

1987,Avanthay et al., 2003,Chiarandini et al., 2007,Bouziri e Jouini, 2010], troca-se em

S a cor do vértice v de i para j, sendo 1 6 j 6 k + 1, i 6= j, |Nj(v)| = 0 e v um vértice

con�itante (adjacente a outro(s) vértice(s) na mesma classe de cor). O vértice v escolhido

para a troca é o que promove a maior redução no valor da função de avaliação de S. Além

disso, o par 〈v, j〉 não pode estar classi�cado como movimento tabu, oriundo da Fase de

Perturbação, que será descrita na Seção 5.8. No entanto, esse movimento é permitido

se ele conduzir a uma solução vizinha melhor do que a melhor solução encontrada até o
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momento.

Um vértice con�itante v é movido a cada vez que esse procedimento é empregado,

sendo ele executado até que uma coloração própria seja alcançada, o que pode eventual-

mente aumentar o número de cores utilizado por S, pois v sempre será movido para uma

classe de cor que não contenha vértices adjacentes a ele. Um exemplo de movimento na

vizinhança Critical One-Move Neighborhood pode ser visto na Figura 5.1, onde o vértice

v7 é trocado da classe de cor Ci para Cj, uma vez que ele proporciona, entre os vértices

con�itantes, maior redução no valor de avaliação da solução, considerando que wCj
≤ wCi

e 〈v, Cj〉 não é tabu.
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Figura 5.1: Exemplo de movimento na estrutura de vizinhança Critical One-Move
Neighborhood

O custo de uma solução vizinha S ′, considerando a troca do vértice v da classe de cor

i para a j, é determinado pela seguinte função:

f(S ′) = f(S)− (wi +M · |Ni(v)|) + wj, (5.2)

onde f(S) é o custo da solução S, wi é o custo da classe de cor i, M um valor positivo,

Ni(v) é o conjunto de vértices adjacentes a v na classe de cor i e wj é o custo da classe de

cor j. Esse cálculo retira do valor de S o custo da classe de cor atual de v, juntamente com

a penalidade gerada por suas arestas con�itantes, e adiciona o custo da classe de cor j,

uma vez que o mesmo será movido para uma classe que não contenha vértices adjacentes

a ele (|Nj(v)| = 0), anulando assim o fator de penalização para essa classe.

O Algoritmo 4 apresenta o pseudocódigo do procedimento de busca por uma coloração

própria, que investiga cada vértice em con�ito na solução corrente imprópria S e seleciona

o melhor movimento na vizinhança Critical One-Move Neighborhood. A solução S∗ denota

a melhor solução própria já encontrada pelo algoritmo. Smelhor é a melhor solução vizinha

de S e é inicializada na linha 1. O laço externo nas linhas 2�11 investiga os movimentos
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originados por cada vértice em con�ito na vizinhança Critical One-Move Neighborhood.

Para cada vértice em con�ito v investigado, a solução corrente S é temporariamente

copiada para a solução vizinha S ′ na linha 3 e a classe de cor i do vértice v em S é salva

na linha 4. No laço interno 5�10, os movimentos do vértice v para cada classe de cor j,

j = 1, . . . , k + 1: j 6= i, na qual seus vértices não estejam envolvidos em con�itos com

v, são avaliadas. O vértice v é temporariamente movido para a classe de cor j em S ′ na

linha 6. Se (a) o movimento do vértice v para a classe de cor j não é proibido e a solução

S ′ é melhor do que a melhor solução vizinha já encontrada na vizinhança de v ou (b) a

solução S ′ é estritamente melhor do que a melhor solução encontrada S∗, então a melhor

vizinha Smelhor é atualizada na linha 8. O laço externo prossegue até que todos os vértices

em con�ito sejam examinados uma vez. O procedimento retorna a melhor solução vizinha

Smelhor com no mínimo um con�ito a menos do que a solução inicial S.

Algoritmo 4: BuscaColoraçãoPrópria
Entrada: k-coloração S e a melhor solução S∗.
Saída: Coloração Smelhor.
Smelhor ← S;1

para cada vértice con�itante v ∈ V faça2

S ′ ← S;3

i← S(v);4

para j = 1, . . . , k + 1 : |Nj(v)| = 0, j 6= i faça5

S ′(v)← j;6

se (〈v, j〉 não é um movimento tabu e f(S ′) < f(Smelhor)) ou f(S ′) < f(S∗)7

então

Smelhor ← S ′;8

�m se9

�m para10

�m para cada11

5.5 Busca Local para Melhoria da Solução

Após uma coloração própria S ser encontrada pela aplicação do movimento de vizi-

nhança Critical One-Move Neighborhood, ocorre a Fase de Melhoria em S, que realoca

os vértices à menor classe de cor possível na tentativa de reduzir o custo de S, de modo

que a coloração permaneça própria. Essa fase segue a seguinte estratégia [Helmar e Chi-

arandini, 2011]: as cores atribuídas aos conjuntos de vértices criados são rearranjadas,

de maneira que a cor de menor custo é atribuída ao conjunto de vértices de maior car-

dinalidade e, seguindo a ordem não-crescente de cardinalidade dos conjuntos, os demais
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vértices são reposicionados nessa classe ou em uma nova, de modo que não sejam criadas

arestas con�itantes.

A �m de exempli�cação, considere uma coloração própria S1 resultante da aplicação

da vizinhança Critical One-Move Neighborhood (Figura 5.2 (a)), onde w1 = 1.2, w2 = 2.4,

w3 = 3.8 e w4 = 6.3, representam, respectivamente, os custos das classes de cores Ci,

i = 1, . . . , 4, resultando em f(S1) = 22.5, de acordo com a Função (5.1). Seguindo a

estratégia de melhoria, a cor de menor custo (i = 1) é atribuída ao conjunto de vértices

de maior cardinalidade (v4, v6 e v7). Em seguida, para cada vértice do segundo conjunto de

maior cardinalidade (v1 e v3), ocorre a tentativa de reposicioná-lo na classe anteriormente

criada, porém ambos geram arestas con�itantes (v1 é adjacente a v4 e v6, e v3 é adjacente

a v4), fazendo com que os mesmos recebam a cor com segundo menor custo (i = 2).

Os demais conjuntos de vértices têm a mesma cardinalidade, o que torna indiferente por

qual vértice iniciar a tentativa de realocação (v5 ou v2). Desse modo, procura-se realocar

o vértice v5 nas classes ora criadas C1 e C2. No entanto, em ambas ele origina arestas

con�itantes, �cando o mesmo na classe de cor C3, que tem custo w3 = 3.8. Na tentativa

de realocar o vértice v2 nas classes já estabelecidas, percebe-se que arestas con�itantes

são geradas nas classes C1 e C2, mas não na classe C3, uma vez que ele não é adjacente

ao vértice v5. Assim, ele é inserido nesta última classe. Com isso, essa nova solução S2,

apresentada na Figura 5.2 (b), tem valor f(S2) = 16. Essa Fase de Melhoria retornará a

melhor solução (menor valor de função de avaliação) entre a solução gerada por ela e a

que é recebida como entrada.
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Figura 5.2: (a) Solução S1 recebida como entrada com f(S1) = 22.5; (b) Solução S2

gerada pela fase de melhoria com f(S2) = 16.

O Algoritmo 5 descreve em detalhes o procedimento de melhoria da solução, que inicia

a partir de uma k-coloração própria S. Ci e C ′i denotam as classes de cores das colorações

S e S ′ associadas às cores i = 1, . . . , n, respectivamente. As classes de cores C1, . . . , Ck da

solução S são indexadas na ordem não-crescente pelas suas cardinalidades na linha 1. O
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laço nas linhas 2�4 cria classes de cores inicialmente vazias C ′1, . . . , C
′
n da nova solução S ′

indexadas na ordem não-decrescente pelos custos das cores. Os índices i e j são utilizados

para visitar todas as classes de cores da solução inicial e da nova solução, respectivamente,

S e S ′. A classe de cor de maior cardinalidade da solução S é copiada para a classe de

cor de menor custo da solução S ′ nas linhas 5 e 6. O laço nas linhas 7�24 realoca os

vértices de cada classe de cor restante Ci, i = 2, . . . , Ck, da solução S. O laço nas linhas

8�23 é executado para cada vértice v ∈ Ci. O laço interno 10�16 determina a classe de

cor de menor custo C ′` ∈ S ′ sem qualquer con�ito com o vértice v. Se nenhuma classe for

encontrada, uma nova C ′j+1 formada inicialmente pelo vértice v é criada nas linhas 18�19.

Caso contrário, v é movido para a classe de cor C ′` na linha 21. Finalizada a análise de

todas as classes de cor da solução S, se a nova solução S ′ for melhor do que S, então S é

atualizada nas linhas 25 e 26.

5.6 Procedimento de Path-relinking

A técnica de path-relinking foi originalmente proposta por Glover [Glover, 1997] como

uma estratégia de intensi�cação que explora trajetórias que ligam soluções de boa qua-

lidade no espaço de busca, introduzindo características de uma ou mais soluções guia à

solução inicial [Glover et al., 2003]. O emprego bem sucedido dessa técnica pode ser ve-

ri�cado em [Bastos e Ribeiro, 2002], [Ho e Gendreau, 2006], [Lai e Hao, 2015] e [Resende

e Ribeiro, 2016], entre outros.

Galinier e Hao [Galinier e Hao, 1999] introduziram uma nova medida para determinar

a distância entre duas colorações, que interpreta as soluções como partições de vértices.

A distância entre elas corresponde ao número de transformações elementares necessárias

para transformar uma solução em outra. Como cada transformação elementar signi�ca

mover um vértice de uma classe de cor para outra, Hamiez e Hao [Hamiez e Hao, 2002]

chamaram essa medida deMove Distance (MD). Na heurística HBLPR, o valor MD entre

duas soluções é utilizado para determinar se o path-relinking será executado. Seguindo

Ribeiro e Resende [Ribeiro e Resende, 2012], essa execução ocorrerá somente se a distância

MD entre a solução inicial (Sinicial) e a solução guia (Sguia) for maior ou igual a quatro, o

que garante uma busca por soluções melhores do que ambas.

O algoritmo para calcular a distância Move Distance entre duas colorações próprias

é descrito na Seção 5.6.1. Este algoritmo será utilizado na Seção 5.6.2 como parte do

procedimento empregado para executar o path-relinking entre duas colorações próprias.
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Algoritmo 5: MelhoriaSolução
Entrada: k-coloração S : 〈C1, . . . , Cn〉.
Saída: Coloração S.
Ordene as classes de cores da solução S pelas suas cardinalidades: |Ci| ≥ |Ci+1|,1

1 ≤ i < k;
para i = 1, . . . , n faça2

C ′i ← ∅;3

�m para4

j ← 1; i← 1;5

C ′j ← Ci;6

para i = 2, . . . , k faça7

para cada v ∈ Ci faça8

`← 1; encontrado ← falso;9

enquanto ` ≤ j e encontrado = falso faça10

se v é adjacente a qualquer vértice em C ′` então11

`← `+ 1;12

senão13

encontrado ← verdadeiro;14

�m se15

�m enquanto16

se encontrado = falso então17

j ← j + 1;18

C ′j ← v;19

senão20

C ′` ← C ′` ∪ {v};21

�m se22

�m para cada23

�m para24

se f(S ′) < f(S) então25

S ← S ′;26

�m se27

5.6.1 Move Distance

Considerando duas colorações próprias Sinicial e Sguia, a distânciaMove Distance (MD)

entre elas corresponde ao número de vértices que devem ser movidos de uma classe de cor

de Sinicial para outra até que seja obtida uma solução com os vértices organizados como

em Sguia [Galinier e Hao, 1999,Hamiez e Hao, 2002].

O exemplo da Figura 5.3 ilustra o cálculo da distância Move Distance entre Sinicial na

Figura 5.3 (a) e Sguia na Figura 5.3 (b). A solução inicial é estabelecida como S ′ = Sinicial

na Figura 5.3 (c), com C1 = {v1, v3, v5}, C2 = {v4, v7} e C3 = {v2, v6}. As classes de

cores de Sguia são examinadas em ordem não-crescente de suas cardinalidades: Cguia
2 =

{v3, v5, v7} é a primeira a ser examinada. Uma vez que os vértices v3 e v5 já estão na classe
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C1 de S ′, mas o vértice v7 não, v7 deverá ser movido para C1, gerando a primeira solução

modi�cada S ′ na Figura 5.3 (d) (o movimento do vértice v7 é a primeira transformação

elementar). Uma vez que as duas classes restantes de Sguia têm a mesma cardinalidade,

pode-se prosseguir a partir de qualquer uma delas. Seja Cguia
1 = {v1, v4} a próxima classe

a ser examinada. Vértices v1 e v4 estão em classes distintas da solução S ′ na Figura 5.3

(d). O vértice v4 não pode ser movido para a mesma classe de v1, porque os vértices v3, v5

e v7 já estão de�nitivamente posicionados nesta classe. No entanto, uma vez que não há

outro vértice na segunda classe C2 de S ′ exceto v4, o vértice v1 pode ser movido para C2,

resultando em uma nova segunda solução modi�cada S ′, mostrada na Figura 5.3 (e) (o

movimento do vértice v1 é a segunda transformação elementar). A última classe de Sguia

a ser examinada é Cguia
3 = {v2, v6}. Uma vez que todos os seus vértices estão na classe C3

da solução S ′, eles não tem que ser movidos. A Figura 5.3 (f) ilustra a solução �nal S ′,

onde os vértices estão organizados como em Sguia.

O Algoritmo 6 apresenta o pseudocódigo do procedimento que calcula a distância

Move Distance entre Sinicial e Sguia. Denota-se por C inicial
i e Cguia

i as classes de cores das

soluções Sinicial e Sguia, i = 1, . . . , n. A solução inicial S ′ = Sinicial é estabelecida na linha

1 e será progressivamente modi�cada pelas transformações elementares, até que todos os

vértices estejam organizados como em Sguia. O conjunto A é inicializado na linha 2 e

contém os vértices que estão de�nitivamente organizados como em Sguia. O conjunto ∆ é

inicializado na linha 3 e contém os vértices que serão movidos de uma classe para outra.

As classes de cores em Sguia são indexadas em ordem não-crescente de suas cardinalidades

na linha 4. Cada uma delas será tratada em uma iteração do laço externo nas linhas 5�27.

A cada iteração, a maior classe de cor ainda não tratada Cguia
i guiará os movimentos dos

vértices que ainda estão em suas posições incorretas em S ′. Uma partição Pj dos vértices

em Cguia
i é criada na linha 6, com cada conjunto Pj contendo os vértices Cj ∩ Cguia

i ,

Cj ∈ S ′. Os conjuntos Pj são indexados em ordem não-crescente de suas cardinalidades

na linha 7. Um indicador de movimento é �xado como falso na linha 8. Cada conjunto

Pj, j = 1, . . . , n, é analisado no laço interno nas linhas 9�18. Na linha 10, é veri�cado

se os vértices em Cguia
i \ Pj podem ser movidos para a classe de cor Cj ∈ S ′. Isto será

possível se (a) os vértices em Pj e Cj coincidem ou (b) os vértices em Cj \ Pj ainda

não estão de�nitivamente organizados como em Sguia. Sendo possível a movimentação,

o indicador de movimento é atualizado na linha 11 e todos os vértices em Cguia
i \ Pj são

movidos para a classe Cj na solução S ′ nas linhas 12�14 e inseridos no conjunto ∆ de

vértices movimentados na linha 15. Todos os vértices em Cguia
i são inseridos no conjunto

A na linha 16, uma vez que todos eles agora estão organizados em S ′ como em Sguia. Se
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nenhum movimento possível é encontrado, os vértices em Cguia
i são movidos para uma

classe vazia nas linhas 19�26. Após todas as classes de cores de Sguia serem examinadas,

a distância MD é determinada na linha 28.

Observou-se que a distância Move Distance (MD = |∆|) calculada pelo Algoritmo 6

apresenta, na verdade, uma aproximação no número de transformações elementares que

são necessárias para transformar Sinicial em Sguia. Isto acontece porque o procedimento

calcula o número de vértices que têm que ser movidos entre as classes de cores de Sinicial

até os vértices do grafo serem organizados como em Sguia, mas não necessariamente nas

mesmas classes de cores.
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(a) Sinicial (b) Sguia
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(c) Início dos cálculos S ′ = Sinicial (d) 1a solução modi�cada S ′:
Cguia

2 examinada e v7 movido
para C1 em S ′
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(e) 2a solução modi�cada S ′: (f) Solução �nal S ′ com as mesmas classes de
Cguia

1 examinada e v1 movido Sguia: Cguia
3 examinada, sem necessidade

para C2 em S ′ de movimentos

Figura 5.3: Soluções Sinicial e Sguia com MD = 2 (vértices v1 e v7 são movidos).
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Algoritmo 6: MoveDistance

Entrada: Coloração Sinicial e coloração Sguia.
Saída: Coloração S ′, conjunto ∆ de vértices movidos e Move Distance (MD).
S ′ : 〈C1, . . . , Cn〉 ← Sinicial;1

A← ∅;2

∆← ∅;3

Ordene as classes de cores da solução Sguia pelas suas cardinalidades:4

|Cguia
i | ≥ |Cguia

i+1 |, 1 ≤ i < n;
para i = 1, . . . , n : Cguia

i 6= ∅ faça5

Crie uma partição Pj = Cj ∩ Cguia
i , j = 1, . . . , n, dos vértices em V guia

i ;6

Ordene os conjuntos Pj pelas suas cardinalidades: |Pj| ≥ |Pj+1|, 1 ≤ j < n;7

move ← falso;8

para j = 1, . . . , n : Pj 6= ∅ e move = falso faça9

se Pj = Cj ou (Cj \ Pj) ∩ A = ∅ então10

move ← verdadeiro;11

para cada v ∈ Cguia
i \ Pj faça12

S ′(v)← j;13

�m para cada14

∆← ∆ ∪ Cguia
i \ Pj;15

A← A ∪ Cguia
i ;16

�m se17

�m para18

se move = falso então19

`← argmin{wj, j = 1, . . . , n : Cj = ∅};20

para cada v ∈ Cguia
i faça21

S ′(v)← `;22

�m para cada23

∆← ∆ ∪ Cguia
i ;24

A← A ∪ Cguia
i ;25

�m se26

�m para27

MD ← |∆|;28

5.6.2 Path-relinking

O procedimento de path-relinking entre duas soluções na HBLPR será sempre prece-

dido pelo cálculo da distância Move Distance entre elas pelo Algoritmo 6, que também

retorna uma solução S ′ com os vértices organizados como em Sguia e o conjunto ∆ dos

vértices para serem movidos entre as classes de cores até que S ′ seja obtida. Importante

observar que o path-relinking proposto apresenta alteração na sua concepção a �m de

eliminar as simetrias naturalmente geradas nos problemas de coloração.

O Algoritmo 7 descreve o pseudocódigo do procedimento de path-relinking. A solução
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corrente Spath e a melhor solução S visitada pelo path-relinking são inicializadas com

Sinicial nas linhas 1 e 2, respectivamente. O laço externo nas linhas 3�18 é executado

enquanto a solução �nal S ′ não é alcançada, ou seja, enquanto o conjunto de movimentos

∆ não está vazio. O melhor vértice para ser movido é determinado nas linhas 4�12. O

laço interno nas linhas 5�12 investiga todos os possíveis movimentos. Na linha 7, cada

vértice disponível v é provisoriamente movido para a mesma classe de cor que ele ocupa

na solução �nal S ′. O melhor movimento é atualizado nas linhas 8�11. Uma vez que o

melhor vértice v∗ para ser movido nesta iteração foi determinado, a solução corrente Spath

é atualizado na linha 13 e o conjunto de movimentos é atualizado na linha 14. Se a nova

solução corrente melhora a melhor solução S encontrada pelo path-relinking, então S é

atualizado nas linhas 15 e 16.

Algoritmo 7: PathRelinking

Entrada: Coloração Sinicial, coloração Sguia, coloração S ′ e o conjunto ∆ de
movimentos.

Saída: Coloração S.
Spath ← Sinicial;1

S ← Sinicial;2

enquanto ∆ 6= ∅ faça3

fmin ←∞;4

para cada v ∈ ∆ faça5

Stemp ← Spath;6

Stemp(v)← S ′(v);7

se f(Stemp) < fmin então8

fmin ← f(Stemp);9

v∗ ← v;10

�m se11

�m para cada12

Spath(v∗)← S ′(v∗);13

∆ ← ∆ \ {v∗};14

se f(Spath) < f(S) então15

S ← Spath;16

�m se17

�m enquanto18

5.7 Procedimento de Atualização da População Elite

A heurística HBLPR faz uso de uma população com um número �xo de soluções de

boa qualidade, chamada população elite. Essa população é preenchida com as soluções

próprias encontradas enquanto seu número máximo de soluções possível não for atingido,
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passando a ser atualizada a partir do momento que este valor é alcançado. Para isso, a

solução corrente (S) substitui a pior solução (de maior custo) da população se S não for

similar a qualquer solução da população e caso tenha custo menor do que a pior solução,

sendo duas soluções consideradas estruturalmente similares se a Move Distance entre elas

for menor do que b0.10× |V |c, seguindo Lai et al. [Lai et al., 2014].

O pseudocódigo para o procedimento de atualização da população elite é apresentado

no Algoritmo 8. A solução elite de maior custo Smaior é determinada na linha 1. Um

indicador de similaridade é inicializado com falso na linha 2. O laço nas linhas 3�8

determina se a solução S é similar a, no mínimo, uma solução elite Selite, caso em que

é atribuído verdadeiro ao indicador na linha 6. Se S não é similar a qualquer solução

Selite ∈ E e é melhor do que Smaior, a população elite é atualizada na linha 10.

Algoritmo 8: AtualizaçãoPopulaçãoElite
Entrada: Coloração S e a população elite E .
Saída: População elite E .
Seja Smaior a solução de maior custo em E ;1

similar ← falso;2

para cada Selite ∈ E e similar = falso faça3

MoveDistance(S, Selite, S
′,∆,MD);4

se MD ≤ b0.10× |V |c então5

similar ← verdadeiro;6

�m se7

�m para cada8

se similar = falso e f(S) < f(Smaior) então9

E ← (E \ Smaior) ∪ S;10

�m se11

5.8 Procedimento de Perturbação

A estratégia de diversi�cação utilizada pela heurística HBLPR, com a intenção de

explorar novas regiões do espaço de soluções, foi realizar uma técnica de perturbação na

solução corrente S. Essa técnica consiste em selecionar aleatoriamente, a partir de uma

k-coloração própria, um determinado número de vértices do grafo e realocá-los, também

de maneira aleatória, em k+ 1 classes de cor, se k < |V |, ou em k classes, caso contrário,

sendo a nova classe de cada vértice distinta da atual e k o número de classes utilizadas

por S. Com isso, a solução resultante pode ser uma coloração própria ou imprópria.

Além disso, para auxiliar a exploração desse espaço evitando a repetição de S na

próxima iteração, foi utilizada uma lista tabu de tamanho �xo, onde os vértices realocados,
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juntamente com as suas cores anteriores à perturbação, são inseridos. Dessa forma, na fase

de busca local para obtenção da uma coloração própria (Seção 5.4) da iteração seguinte,

tais vértices não podem retornar às suas cores se estiverem presentes na lista, exceto se

esses movimentos produzirem uma solução melhor do que a melhor encontrada até então.

Os vértices são inseridos na lista somente neste procedimento de perturbação, sendo ela

apenas consultada na fase de busca por uma coloração própria e esvaziada ao �m desta.

O Algoritmo 9 descreve em detalhes o procedimento de perturbação. O laço nas linhas

1�13 aplica perturbações a exatamente numPerturbacoes vértices da k-coloração própria

inicial. Na linha 2 um vértice v ainda não perturbado é selecionado. O índice da classe

de cor atual i do vértice v é armazenado na linha 3. O laço interno nas linhas 4�10 é

repetido até que uma nova classe de cor j, distinta de i, seja determinada e atribuída ao

vértice v na linha 11. O movimento associado a atribuir novamente a classe de cor i ao

vértice v é inserido na lista tabu na linha 12.

Algoritmo 9: Perturbação
Entrada: k-coloração S e o número de perturbações numPerturbacoes .
Saída: Coloração S.
para z = 1, . . . , numPerturbacoes faça1

v ← aleatório[1, |V |], v ainda não selecionado;2

i← S(v);3

repita4

se k < |V | então5

j ← aleatório[1, k + 1];6

senão7

j ← aleatório[1, k];8

�m se9

até i 6= j ;10

S(v)← j;11

Insira na lista tabu 〈v, i〉;12

�m para13

5.9 Pseudocódigo da Heurística HBLPR

O Algoritmo 10 descreve em detalhes a heurística HBLPR. Na linha 1, o algoritmo

ordena as cores de maneira não-decrescente pelos seus custos. Uma solução inicial S é

gerada na linha 2 pelo Algoritmo 3 � SoluçãoInicial(G,S) � descrito na Seção 5.3. A

melhor solução S∗ e seu custo f(S∗) são inicializados na linha 3. O contador de soluções

elite e a população elite são inicializados na linha 4, sendo ambos atualizados na linha

6 caso a solução inicial S seja uma coloração própria. O laço externo nas linhas 8�34
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é executado enquanto um critério de parada não é satisfeito. Se a solução corrente S é

uma coloração própria, o laço nas linhas 9�12 é ignorado. Caso contrário, o Algoritmo 4

� BuscaColoraçãoPrópria(S, S∗, Smelhor) � apresentado na Seção 5.4 é aplicado na linha

10 para reduzir a inviabilidade da solução corrente S, que é substituída pela sua solução

vizinha Smelhor na linha 11 até se tornar viável. A lista tabu com os movimentos proibidos

é esvaziada na linha 13. O Algoritmo 5 � MelhoriaSolução(S) � apresentado na Seção 5.5

é aplicado à coloração própria corrente S na linha 14 na tentativa de melhorá-la.

Na linha 15 é veri�cado se a população elite E está completa. Caso não esteja, o

contador de soluções elite é atualizado e a solução corrente S é simplesmente inserida

na população na linha 16. Caso contrário, a solução S é utilizada na linha 18 para

atualizar a população E empregando o Algoritmo 8 � AtualizaçãoPopulaçãoElite(S, E)

� apresentado na Seção 5.7. O procedimento de path-relinking é aplicado somente se a

população elite apresentar um mínimo de cinco soluções. Neste caso, uma solução elite

Se é aleatoriamente selecionada da população na linha 21. A solução Sinicial é determi-

nada como a melhor entre S e Se na linha 22 e Sguia como a outra. O Algoritmo 6

� MoveDistance(Sinicial, Sguia, S ′,∆,MD) � descrito na Seção 5.6.1 é aplicado na linha

23 para calcular a distância MD entre Sinicial e Sguia, assim como a solução S ′ com o

conjunto de vértices organizados como em Sguia e o conjunto ∆ de vértices que serão

efetivamente movidos de uma classe para outra. Resende e Ribeiro [Resende e Ribeiro,

2016] mostraram que o path-relinking deve ser aplicado entre duas soluções somente se

o número de transformações elementares entre elas é maior ou igual a quatro. Por-

tanto, na linha 24 é descartada a aplicação do path-relinking se a distância MD entre

as soluções Sinicial e Sguia for menor do que quatro. Caso contrário, o Algoritmo 7 �

PathRelinking(Sinicial, Sguia, S ′,∆, S) � apresentado na Seção 5.6.2 é aplicado na linha

25 e a solução corrente S é atualizada na linha 26 com a solução S obtida pelo path-

relinking e, novamente, submetida ao Algoritmo 5 � MelhoriaSolução(S) � na linha 27.

A melhor solução S∗ é atualizada nas linhas 30�31 e na linha 33 o Algoritmo 9 � Per-

turbação(S, numPerturbacoes) � descrito na Seção 5.8 é aplicado para gerar uma solução

perturbada para a iteração seguinte.

5.10 Experimentos Computacionais

Para a heurística HBLPR proposta, foram realizados experimentos computacionais

para o ajuste de parâmetros, bem como para avaliar a qualidade das soluções produzidas

por ela sobre um conjunto de instâncias. A mesma foi implementada utilizando a lingua-
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Algoritmo 10: Heurística de Trajetória com Busca Local e Path-relinking
(HBLPR)

Entrada: Grafo G = (V,E) e os custos w das cores.
Saída: Coloração própria S∗.
Ordene as cores pelos seus custos: wi ≤ wi+1, 1 ≤ i < n;1

SoluçãoInicial(G,S);2

S∗ ← S; f(S∗) ← f(S);3

contElite ← 0; E ← ∅;4

se S é uma coloração própria então5

contElite← contElite+ 1; E ← {S};6

�m se7

enquanto critério de parada não for satisfeito faça8

enquanto S não é uma coloração própria faça9

BuscaColoraçãoPrópria(S, S∗, Smelhor);10

S ← Smelhor;11

�m enquanto12

Esvazie a Lista Tabu;13

MelhoriaSolução(S);14

se contElite < maxElite então15

contElite← contElite+ 1; E ← E ∪ {S};16

senão17

AtualizaçãoPopulaçãoElite(S, E);18

�m se19

se contElite > 5 então20

Selecione uma solução Se ∈ E aleatoriamente;21

Sinicial ← melhor{S, Se}; Sguia ← pior{S, Se};22

MoveDistance(Sinicial, Sguia, S ′,∆,MD);23

se MD ≥ 4 então24

PathRelinking(Sinicial, Sguia, S ′,∆, S);25

S ← S;26

MelhoriaSolução(S);27

�m se28

�m se29

se f(S) < f(S∗) então30

S∗ ← S; f(S∗) ← f(S);31

�m se32

Perturbação(S, numPerturbacoes);33

�m enquanto34

gem C e compilada com gcc versão 5.4.0. Em todos os testes, o valor de M , utilizado nas

Funções 5.1 e 5.2, seguiu a estratégia de Helmar e Chiarandini [Helmar e Chiarandini,

2011] para o PSC, ao empregar os custos das cores para determinar esse valor, que deve

ser grande o su�ciente para descartar a presença de arestas con�itantes em qualquer so-

lução de minimização. Uma vez que o PPCCM admite valores reais para tais custos, esse
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valor foi de�nido como M = (|wmax|+ |wmin|+ 10), onde wmax = max{wc : c = 1, . . . , n}
e wmin = min{wc : c = 1, . . . , n}, sendo wc o custo da classe de cor c. O ambiente

computacional empregado nesses experimentos foi o mesmo descrito na Seção 4.2.1.

5.10.1 Ajustes de Parâmetros

Uma vez que todos os vértices realocados na Fase de Perturbação (Seção 5.8) serão

inseridos na Lista Tabu, um parâmetro a ser determinado é o tamanho dessa lista, que

ao mesmo tempo indica o número de vértices a serem perturbados. Outro parâmetro que

necessita ser ajustado é o tamanho da População Elite (Seção 5.7), que corresponde à

quantidade de indivíduos que farão parte desse conjunto.

A Tabela 5.1 apresenta, na segunda coluna, os valores determinados para o ajuste

desses dois parâmetros, cuja combinação deu origem a 18 versões de teste do algoritmo.

As instâncias utilizadas nesses testes e o tempo máximo de processamento, aplicado como

critério de parada para cada uma das dez execuções independentes de cada versão, foram

os mesmos empregados nesta etapa de ajuste das heurísticas BRKGA e BRKGA+RVNS,

todos detalhados na Seção 4.2.1.1.

Como para os BRKGAs, na avaliação dos resultados dessas versões, foram adotadas as

mesmas medidas Sum Best e Avg Dev, utilizando como critério de qualidade um alto valor

para a primeira medida e, em caso de empate, o menor valor para a segunda. O grá�co

da Figura 5.4 apresenta os valores dessas medidas obtidos por cada uma das versões.

Os pontos mais acima e à esquerda do grá�co representam aquelas que alcançaram os

melhores valores para as referidas medidas. Pode-se observar que a versão que atingiu

Sum Best = 120 e Avg Dev = 0.013 foi a que obteve a melhor combinação de parâmetros,

apresentados na última coluna da Tabela 5.1.

Parâmetro Valores avaliados HBLPR

Lista Tabu
b
√
nc, blog10 nc, b10 + log10 nc,

d0.03× ne, d0.05× ne, d0.10× ne
b10 + log10 nc

População Elite 10, 20, 30 30

Tabela 5.1: Valores dos parâmetros utilizados para ajuste e os melhores valores obtidos
para o algoritmo HBLPR.
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Figura 5.4: Resultados das medidas Sum Best e Avg Dev para as versões de ajuste de
parâmetros do HBLPR. O critério de qualidade adotado foi apresentar um alto valor
para a primeira medida e, em caso de empate, o menor valor na segunda. Neste caso, a

melhor versão obteve Sum Best = 120 e Avg Dev = 0.013.

5.10.2 Análise de Qualidade das Soluções

A �m de avaliar a qualidade das soluções produzidas pela heurística HBLPR, empre-

gando os melhores valores de parâmetros identi�cados na etapa de ajuste, foram utili-

zadas as 50 instâncias desenvolvidas para os experimentos com as heurísticas BRKGA e

BRKGA+RVNS, bem como os resultados obtidos pelo CPLEX para as mesmas. Sobre

cada instância, a HBLPR realizou dez execuções independentes, utilizando igualmente,

como critério de parada, o limite de tempo máximo aplicado por aquelas duas heurísticas

para cada execução. O processo de desenvolvimento dessas instâncias e da obtenção desses

limites de tempo, assim como dos resultados do CPLEX, são descritos na Seção 4.2.1.2.

Os resultados detalhados dos experimentos são apresentados na Tabela 5.2, que for-

nece, para cada instância, o número de vértices (n), de arestas (m), o valor da melhor

solução conhecida ao longo de todos os experimentos realizados, por todos os algoritmos e

variantes desenvolvidos, e o valor da melhor solução obtida pelo CPLEX, sublinhando-se

os valores das soluções ótimas e sinalizando-se com o símbolo '−' caso uma solução viável
não tenha sido encontrada no tempo máximo de execução (3600 segundos). As colunas se-

guintes descrevem o valor da melhor solução obtida pela heurística, indicando em negrito
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quando este é igual ao melhor conhecido, a média dos valores das soluções alcançadas nas

dez execuções, o número de vezes que o melhor valor conhecido foi alcançado, o desvio

relativo médio percentual entre o valor da solução obtida e o valor da melhor solução

conhecida, e o índice médio da iteração na qual a melhor solução foi encontrada. A úl-

tima coluna indica o tempo (em segundos) aplicado como critério de parada para cada

execução da heurística.

Analisando-se os resultados, pode-se observar que HBLPR alcançou o melhor valor

conhecido para 38 das 50 instâncias tratadas, tendo encontrado a solução ótima para sete

delas. Em três instâncias, tal valor foi atingido em todas as dez execuções, sendo que

para duas delas (le450_5c e 3-Insertions_5), o algoritmo convergiu na primeira iteração.

A instância em que o mesmo não encontrou o melhor valor conhecido e apresentou maior

di�culdade para isso foi abb313GPIA, onde obteve um desvio médio de 6.13%. Esses

experimentos mostraram ainda que os valores das soluções encontradas pela heurística são,

em média, apenas 1.08% acima dos melhores valores conhecidos para todas as instâncias

examinadas.

Assim como os BRKGAs, a heurística foi submetida a testes para analisar a distribui-

ção do seu tempo de execução na busca por uma solução com um valor tão bom quanto um

determinado alvo. As instâncias utilizadas para mostrar esse desempenho foram inithx.i.1,

qg.order30 e qg.order40, todas com alvos 0.10% e 0.15% acima dos melhores valores co-

nhecidos para as mesmas (3934, 11940 e 15280, respectivamente). Os TTT-Plots para

essas instâncias são apresentados nas Figuras 5.5 a 5.7, onde pode ser observado que

a distribuição empírica se apresenta abaixo da distribuição teórica para probabilidades

superiores a 80%, sendo um indicativo de estagnação no aprimoramento das soluções,

segundo Stützle e Hoos [Stützle e Hoos, 1999]. É possível que esse comportamento ocorra

devido à convergência da população elite empregada pelo procedimento de path-relinking

(Seção 5.6). Como a mesma tende a se apresentar mais diversi�cada no início da busca e

mais homogênea ao longo da execução, essa característica pode comprometer a melhoria

das soluções ao �nal do processo.
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HBLPR Tempo de

Instância n m
Melhor
valor

CPLEX
(3600 s)

Melhor
valor

Valor
médio

#
Melhor
valor

Avg
Dev
(%)

Média
melhor
iteração

execução
heurística

(s)
school1-nsh 352 14612 7647.00 13193.00 7647.00 7658.90 6 0.16 17514.3 30.95
school1 385 19095 7158.00 14687.00 7158.00 7159.20 5 0.02 12003.1 36.03
3-FullIns_4 405 3524 2951.00 2951.00 2951.00 2951.60 9 0.02 2282.7 29.85
fpsol2.i.3 425 8688 3738.00 3738.00 3738.00 3738.30 7 0.01 2318.5 35.15
le450_5c 450 9803 2610.00 2610.00 2610.00 2610.00 10 0.00 1.0 45.98
le450_5d 450 9757 2700.00 3421.00 2700.00 2711.40 4 0.42 2502.9 47.64
le450_15c 450 16680 9556.00 11335.00 9556.00 9729.90 1 1.82 31159.0 55.07
le450_15d 450 16750 10799.00 13011.00 10799.00 10965.20 1 1.54 30700.0 54.71
le450_25a 450 8260 9730.00 9730.00 9875.00 9962.60 0 2.39 26305.4 38.63
le450_25b 450 8263 7564.00 7564.00 7765.00 7816.80 0 3.34 23571.0 42.11
le450_25c 450 17343 10447.00 11776.00 10447.00 10586.10 1 1.33 30043.7 54.25
le450_25d 450 17425 11676.00 12791.00 11676.00 11755.80 1 0.68 32653.7 54.21
fpsol2.i.2 451 8691 4694.00 4694.00 4694.00 4695.40 4 0.03 5424.0 38.47
4-Insertions_4 475 1795 999.00 999.00 1035.00 1035.00 0 3.60 665.5 27.18
fpsol2.i.1 496 11654 8364.00 8364.00 8365.00 8365.00 0 0.01 1832.7 28.50
DSJC500.5 500 62624 18333.00 22845.00 18333.00 18678.20 1 1.88 32214.5 152.42
C500.9 500 112332 63147.00 77015.00 63147.00 63806.90 1 1.05 19492.4 276.35
DSJC500.9 500 112437 65373.00 78869.00 65373.00 65904.60 1 0.81 22769.1 290.00
DSJR500.1 500 3555 6253.00 6253.00 6484.00 6518.00 0 4.24 29492.8 46.68
DSJR500.1c 500 121275 27395.00 35554.00 27395.00 27569.40 1 0.64 18217.3 149.89
DSJR500.5 500 58862 54392.00 64892.00 54392.00 54660.20 1 0.49 15783.7 191.11
2-Insertions_5 597 3936 2999.00 2999.00 3080.00 3087.70 0 2.96 20442.8 58.76
1-Insertions_6 607 6337 1347.00 1367.00 1347.00 1360.00 8 0.97 11714.6 63.88
inithx.i.3 621 13969 3633.00 3633.00 3633.00 3636.90 3 0.11 2820.9 96.46
inithx.i.2 645 13979 4073.00 4073.00 4073.00 4077.00 8 0.10 4387.5 95.31
ash331GPIA 662 4185 1513.00 1513.00 1554.00 1574.90 0 4.09 33298.0 65.85
4-FullIns_4 690 6650 2443.00 2443.00 2447.00 2450.00 0 0.29 7678.9 82.17
will199GPIA 701 7065 4829.00 5428.00 4829.00 4923.70 2 1.96 30939.5 79.01
inithx.i.1 864 18707 3934.00 3934.00 3934.00 3935.20 4 0.03 1257.0 106.34
qg.order30 900 26100 11940.00 11940.00 11940.00 11945.50 1 0.05 18618.6 270.78
latin_sqr_10 900 307350 48822.00 � 48822.00 49108.00 1 0.59 16879.1 620.77
wap05 905 43081 12593.00 14181.00 12593.00 12652.90 1 0.48 26149.4 254.86
wap06 947 43571 18453.00 20434.00 18453.00 18565.90 1 0.61 23501.2 267.59
DSJC1000.5 1000 249826 46790.00 � 46790.00 47272.40 1 1.03 33067.0 920.84
�at1000_50_0 1000 245000 41915.00 � 41915.00 42441.50 1 1.26 32380.6 934.90
�at1000_60_0 1000 245830 40468.00 � 40468.00 41110.60 1 1.59 29948.8 908.07
�at1000_76_0 1000 246708 41729.00 � 41729.00 42040.00 1 0.75 30091.8 920.24
DSJC1000.9 1000 449449 103906.00 � 103906.00 104748.70 1 0.81 25742.4 1869.64
C1000.9 1000 450079 105709.00 � 105709.00 106807.80 1 1.04 23889.3 1874.78
5-FullIns_4 1085 11395 2212.00 2212.00 2212.00 2214.10 7 0.09 578.5 192.97
ash608GPIA 1216 7844 3859.00 4215.00 3922.00 3931.60 0 1.88 36678.9 254.75
3-Insertions_5 1406 9695 1406.00 1406.00 1406.00 1406.00 10 0.00 1.0 262.40
abb313GPIA 1557 65390 4597.00 � 4847.00 4878.80 0 6.13 24751.0 562.43
qg.order40 1600 62400 15280.00 � 15285.00 15289.00 0 0.06 24849.8 1053.18
wap07 1809 103368 13380.00 � 13380.00 13463.50 1 0.62 40110.5 1071.05
wap08 1870 104176 14497.00 � 14497.00 14564.90 1 0.47 34883.6 1106.13
ash958GPIA 1916 12506 2886.00 3171.00 2897.00 2909.10 0 0.80 40967.1 606.65
3-FullIns_5 2030 33751 4082.00 5845.00 4082.00 4082.00 10 0.00 2569.4 872.03
wap01 2368 110871 18719.00 � 18719.00 18798.70 1 0.43 43886.8 1842.69
wap02 2464 111742 17439.00 � 17439.00 17487.60 1 0.28 36614.2 1920.90

Tabela 5.2: Resultados detalhados da heurística HBLPR.
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Figura 5.5: TTT-Plots para a instância inithx.i.1 com alvos (a) 0.10% e (b) 0.15% acima
do melhor valor conhecido (3934).
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Figura 5.6: TTT-Plots para a instância qg.order30 com alvos (a) 0.10% e (b) 0.15%
acima do melhor valor conhecido (11940).
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Figura 5.7: TTT-Plots para a instância qg.order40 com alvos (a) 0.10% e (b) 0.15%
acima do melhor valor conhecido (15280).

5.11 Comparação das Heurísticas HBLPR, BRKGA e

BRKGA+RVNS

Com o intuito de comparar diretamente as três heurísticas propostas neste trabalho,

foram utilizados os resultados obtidos sobre as 50 instâncias tratadas nos experimentos

anteriores, descritos nas Seções 4.2.1.2 (BRKGA e BRKGA+RVNS) e 5.10.2 (HBLPR).

Na Tabela 5.4 encontram-se os resultados de cada heurística apresentados de maneira

resumida, com apenas o valor da melhor solução alcançada, o desvio relativo médio per-

centual e o tempo limite para cada execução. Outras informações do experimento são

fornecidas nas Tabelas B.1 e B.2 (Apêndice B). Os resultados mostram que a heurística

HBLPR encontrou o melhor valor conhecido para 38 instâncias e a solução ótima para sete

delas. BRKGA atingiu esse valor para 16 instâncias e o valor ótimo para nove, enquanto

BRKGA+RVNS para 14, sendo dez soluções ótimas.

Para 28 instâncias, HBLPR encontrou uma solução que não foi alcançada por nenhuma

das outras duas heurísticas, ao passo que em sete instâncias pelo menos um dos BRKGAs

atingiu um valor não obtido pela HBLPR e em cinco instâncias nenhuma das três heurís-

ticas conseguiu atingir o melhor valor conhecido. A heurística HBLPR alcançou este valor

em todas as execuções para três instâncias, BRKGA para quatro e BRKGA+RVNS para

seis. No entanto, para apenas uma instância as três heurísticas alcançaram esse valor em
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todas as dez execuções (3-Insertions_5). O desvio médio máximo obtido pelo BRKGA

foi de 28.86%, BRKGA+RVNS alcançou 26.24% e HBLPR atingiu apenas 6.13%.

Também foram produzidos TTT-Plots para avaliar o comportamento das três heu-

rísticas na busca por um valor alvo. Na Figura 5.8 são encontrados esses grá�cos para a

instância 3-FullIns_4 com alvo 2951, custo da melhor solução conhecida, e 1000 segundos

como tempo limite. Nota-se que a heurística HBLPR consome o maior tempo de pro-

cessamento para atingir 100% desse alvo, 793.5 segundos. BRKGA e BRKGA+RVNS

gastam 5.5 e 16.3 segundos, respectivamente. No entanto, HBLPR apresentou maior pro-

babilidade de convergir mais rapidamente para o alvo do que as outras duas heurísticas,

uma vez que Pr(THBLPR ≤ TBRKGA) = 0.547 e Pr(THBLPR ≤ TBRKGA+RV NS) = 0.611.

Esse comportamento pode ser observado na Figura 5.9, onde, dada a evolução da melhor

solução no decorrer de quatro segundos iniciais de processamento, todas as três heurísti-

cas atingiram o melhor valor conhecido nesse período, sendo que HBLPR de forma mais

rápida.

Os TTT-Plots para a instância inithx.i.1 são apresentados na Figura 5.10. Nesse

experimento, o valor médio das soluções obtidas por BRKGA (3937) foi de�nido como

alvo, sendo o tempo máximo de execução limitado a 1000 segundos. Para essa instância,

HBLPR atinge o valor alvo, com 100% de probabilidade, em 134.8 segundos, ao passo

que BRKGA+RVNS e BRKGA necessitam, respectivamente, de 209.0 e 402.5 segun-

dos. Novamente a heurística HBLPR atinge o valor alvo antecipadamente, apresentando

Pr(THBLPR ≤ TBRKGA+RV NS) = 0.995 e Pr(THBLPR ≤ TBRKGA) = 0.989. A evolução

da melhor solução, durante os 50 segundos iniciais de processamento, é mostrada na Fi-

gura 5.11, onde veri�ca-se que somente HBLPR, em menor tempo, e BRKGA+RVNS

convergiram para o melhor valor conhecido (3934), uma vez que BRKGA obteve 3935

durante essa execução.

5.11.1 Conclusões

Um resumo dos resultados desses experimentos pode ser observado na Tabela 5.3,

que apresenta um comparativo da performance dos algoritmos conforme as medidas de

qualidade descritas na Seção 4.2.1. Analisando esses resultados, é possível concluir que a

heurística HBLPR mostrou-se mais e�caz nos experimentos sobre as 50 instâncias trata-

das, encontrando o melhor valor conhecido para um número maior de instâncias. Além

disso, os valores de suas soluções são, em média, 1.08% acima dos melhores valores co-

nhecidos, ao passo que essa média para BRKGA e BRKGA+RVNS é de 8.70% e 8.72%,
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respectivamente. Por �m, a medida Score rati�ca o domínio da HBLPR sobre as demais,

uma vez que apresenta o menor valor entre os três algoritmos.

Finalizadas as comparações das heurísticas propostas, no próximo capítulo são reali-

zadas as considerações �nais sobre este trabalho e apresentadas possibilidades de investi-

gações futuras.

BRKGA BRKGA+RVNS HBLPR
Avg Dev (%) 8.70 8.72 1.08

Sum Best 92 93 120

#Best 16 14 38

Score 48 54 15

Tabela 5.3: Comparativo da performance dos algoritmos BRKGA, BRKGA+RVNS e
HBLPR sobre as 50 instâncias.
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Figura 5.8: TTT-Plots para a instância 3-FullIns_4, com alvo 2951 e tempo máximo de
1000 segundos. Utilizando a ferramenta tttplots-compare:

Pr(THBLPR ≤ TBRKGA) = 0.547 e Pr(THBLPR ≤ TBRKGA+RV NS) = 0.611.
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BRKGA BRKGA+RVNS HBLPR Tempo de

Instância n m
Melhor
valor

CPLEX
(3600 s)

Melhor
valor

Avg
Dev
(%)

Melhor
valor

Avg
Dev
(%)

Melhor
valor

Avg
Dev
(%)

execução
heurísticas

(s)
school1-nsh 352 14612 7647.00 13193.00 8999.00 20.47 9020.00 25.13 7647.00 0.16 30.95
school1 385 19095 7158.00 14687.00 7723.00 12.13 7733.00 14.87 7158.00 0.02 36.03
3-FullIns_4 405 3524 2951.00 2951.00 2951.00 0.00 2951.00 0.00 2951.00 0.02 29.85
fpsol2.i.3 425 8688 3738.00 3738.00 3738.00 0.00 3738.00 0.00 3738.00 0.01 35.15
le450_5c 450 9803 2610.00 2610.00 2642.00 2.34 2645.00 3.28 2610.00 0.00 45.98
le450_5d 450 9757 2700.00 3421.00 2710.00 1.59 2711.00 1.61 2700.00 0.42 47.64
le450_15c 450 16680 9556.00 11335.00 11131.00 17.05 10683.00 12.94 9556.00 1.82 55.07
le450_15d 450 16750 10799.00 13011.00 12629.00 20.42 12441.00 15.93 10799.00 1.54 54.71
le450_25a 450 8260 9730.00 9730.00 10258.00 6.63 10485.00 8.33 9875.00 2.39 38.63
le450_25b 450 8263 7564.00 7564.00 8028.00 7.08 8241.00 9.43 7765.00 3.34 42.11
le450_25c 450 17343 10447.00 11776.00 11940.00 14.77 11643.00 12.14 10447.00 1.33 54.25
le450_25d 450 17425 11676.00 12791.00 13074.00 12.74 12816.00 10.44 11676.00 0.68 54.21
fpsol2.i.2 451 8691 4694.00 4694.00 4694.00 0.02 4694.00 0.03 4694.00 0.03 38.47
4-Insertions_4 475 1795 999.00 999.00 1001.00 0.75 999.00 0.67 1035.00 3.60 27.18
fpsol2.i.1 496 11654 8364.00 8364.00 8364.00 0.00 8364.00 0.00 8365.00 0.01 28.50
DSJC500.5 500 62624 18333.00 22845.00 22935.00 25.72 21892.00 21.41 18333.00 1.88 152.42
C500.9 500 112332 63147.00 77015.00 71823.00 17.21 74360.00 18.83 63147.00 1.05 276.35
DSJC500.9 500 112437 65373.00 78869.00 72535.00 12.72 74194.00 15.28 65373.00 0.81 290.00
DSJR500.1 500 3555 6253.00 6253.00 6646.00 6.87 6724.00 8.33 6484.00 4.24 46.68
DSJR500.1c 500 121275 27395.00 35554.00 27575.00 1.30 27462.00 1.49 27395.00 0.64 149.89
DSJR500.5 500 58862 54392.00 64892.00 56453.00 5.72 58269.00 9.05 54392.00 0.49 191.11
2-Insertions_5 597 3936 2999.00 2999.00 2999.00 0.13 2999.00 0.29 3080.00 2.96 58.76
1-Insertions_6 607 6337 1347.00 1367.00 1347.00 0.24 1347.00 0.30 1347.00 0.97 63.88
inithx.i.3 621 13969 3633.00 3633.00 3633.00 0.02 3633.00 0.00 3633.00 0.11 96.46
inithx.i.2 645 13979 4073.00 4073.00 4073.00 0.01 4073.00 0.00 4073.00 0.10 95.31
ash331GPIA 662 4185 1513.00 1513.00 1537.00 3.19 1539.00 3.45 1554.00 4.09 65.85
4-FullIns_4 690 6650 2443.00 2443.00 2443.00 0.02 2443.00 0.07 2447.00 0.29 82.17
will199GPIA 701 7065 4829.00 5428.00 4919.00 3.07 4948.00 3.87 4829.00 1.96 79.01
inithx.i.1 864 18707 3934.00 3934.00 3934.00 0.05 3934.00 0.01 3934.00 0.03 106.34
qg.order30 900 26100 11940.00 11940.00 12084.00 1.38 12027.00 0.94 11940.00 0.05 270.78
latin_sqr_10 900 307350 48822.00 - 57949.00 20.27 56677.00 16.76 48822.00 0.59 620.77
wap05 905 43081 12593.00 14181.00 13803.00 10.17 14039.00 12.31 12593.00 0.48 254.86
wap06 947 43571 18453.00 20434.00 19495.00 6.39 19905.00 8.23 18453.00 0.61 267.59
DSJC1000.5 1000 249826 46790.00 - 58453.00 25.90 57538.00 23.49 46790.00 1.03 920.84
�at1000_50_0 1000 245000 41915.00 - 51719.00 25.22 51032.00 22.90 41915.00 1.26 934.90
�at1000_60_0 1000 245830 40468.00 - 51900.00 28.86 50629.00 26.24 40468.00 1.59 908.07
�at1000_76_0 1000 246708 41729.00 - 51205.00 23.59 50425.00 21.34 41729.00 0.75 920.24
DSJC1000.9 1000 449449 103906.00 - 130627.00 27.59 129308.00 25.12 103906.00 0.81 1869.64
C1000.9 1000 450079 105709.00 - 134237.00 28.22 131064.00 25.47 105709.00 1.04 1874.78
5-FullIns_4 1085 11395 2212.00 2212.00 2212.00 0.00 2212.00 0.01 2212.00 0.09 192.97
ash608GPIA 1216 7844 3859.00 4215.00 3859.00 0.42 3866.00 1.32 3922.00 1.88 254.75
3-Insertions_5 1406 9695 1406.00 1406.00 1406.00 0.00 1406.00 0.00 1406.00 0.00 262.40
abb313GPIA 1557 65390 4597.00 - 4597.00 0.63 4655.00 3.87 4847.00 6.13 562.43
qg.order40 1600 62400 15280.00 - 15486.00 1.48 15438.00 1.13 15285.00 0.06 1053.18
wap07 1809 103368 13380.00 - 15113.00 13.40 15205.00 14.24 13380.00 0.62 1071.05
wap08 1870 104176 14497.00 - 15790.00 9.30 15855.00 10.43 14497.00 0.47 1106.13
ash958GPIA 1916 12506 2886.00 3171.00 2886.00 0.71 2927.00 2.19 2897.00 0.80 606.65
3-FullIns_5 2030 33751 4082.00 5845.00 4082.00 0.09 4082.00 0.31 4082.00 0.00 872.03
wap01 2368 110871 18719.00 - 20584.00 10.48 20917.00 12.41 18719.00 0.43 1842.69
wap02 2464 111742 17439.00 - 18853.00 8.47 19145.00 10.28 17439.00 0.28 1920.90

Tabela 5.4: Resultados resumidos das heurísticas BRKGA, BRKGA+RVNS e HBLPR
para as 50 instâncias.
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Figura 5.9: Evolução da melhor solução para a instância 3-FullIns_4. Todas as
heurísticas alcançaram o melhor valor conhecido (2951) ao longo dos quatro segundos

iniciais de processamento.
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Figura 5.10: TTT-Plots para a instância inithx.i.1, com alvo 3937 e tempo máximo de
1000 segundos. Utilizando a ferramenta tttplots-compare:

Pr(THBLPR ≤ TBRKGA+RV NS) = 0.995 e Pr(THBLPR ≤ TBRKGA) = 0.989.
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Figura 5.11: Evolução da melhor solução para a instância inithx.i.1. Somente as
heurísticas HBLPR e BRKGA+RVNS alcançaram o melhor valor conhecido (3934) ao
longo dos 50 segundos iniciais de processamento, tendo o BRKGA obtido 3935 nesse

mesmo período.



Capítulo 6

Conclusão e Trabalhos Futuros

Nesta tese foi abordado o Problema da Partição Cromática de Custo Mínimo (PPCCM),

considerado uma generalização do Problema da Soma Cromática (PSC). Diferentemente

deste, que utiliza números naturais em sequência como custos das cores, o PPCCM consi-

dera custos reais, tendo como objetivo colorir os vértices de um grafo de modo que vértices

adjacentes tenham cores diferentes e a soma dos custos das cores utilizadas seja mínima.

Sendo NP-Difícil para grafos em geral, a utilização de algoritmos exatos para obter a me-

lhor solução possível torna-se impraticável para instâncias de grande porte, por necessitar

de elevado tempo computacional, sendo sugerido o emprego de métodos heurísticos para

a sua resolução.

Foram propostos algoritmos aproximados para solucionar o PPCCM considerando

um grafo simples não-direcionado. Inicialmente foram desenvolvidas duas heurísticas

baseadas na metaheurística Algoritmos Genéticos com Chaves Aleatórias Tendenciosas,

denominadas BRKGA e BRKGA+RVNS. Ambas fazem uso do mesmo codi�cador, porém

a segunda aplica a estratégia de busca em vizinhança RVNS, considerada uma modi�cação

da metaheurística VNS, nos indivíduos que farão parte do grupo elite na geração seguinte,

com a intenção de aprimorar sua qualidade.

Posteriormente, foi desenvolvida a heurística HBLPR, que faz uso de duas estratégias

de busca local. Tais buscas são seguidas por um procedimento de path-relinking, que

explora a trajetória de conexão entre duas soluções. Por último, ocorre uma perturbação

nos vértices da solução corrente, ocasionando a inclusão dos mesmos em uma lista tabu,

a �m de evitar que essa solução se repita na iteração seguinte.

Para avaliar o desempenho das heurísticas implementadas, foram criadas instâncias

para o problema a partir de grafos selecionados aleatoriamente de benchmarks amplamente
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utilizados do Problema de Coloração de Grafos (PCG).

Os experimentos mostraram que as heurísticas BRKGA e BRKGA+RVNS apresen-

taram praticamente a mesma performance sobre o conjunto de instâncias testado, não

sendo possível de�nir a predominância de uma sobre a outra. Na análise dos resultados

também veri�cou-se que a heurística HBLPR foi a que se mostrou mais e�caz, encon-

trando o melhor valor conhecido para 76% das instâncias tratadas, além de obter soluções

com custo médio 1.08% acima dos melhores valores conhecidos.

Assim, as principais contribuições deste trabalho foram a retomada do estudo de um

problema da literatura para o qual inexistia algoritmo e�ciente (exato ou aproximado)

para o caso geral, bem como o desenvolvimento das primeiras heurísticas para tratar o

problema.

Como trabalho futuro, pretende-se investigar a aplicação de uma estratégia de restarts

após certo limite para tentar evitar a estagnação do algoritmo, como sugerido em [Stützle e

Hoos, 1999] para esses casos. Também como pesquisa futura, deseja-se avaliar a utilização

de outras técnicas de diversi�cação na HBLPR que inclua uma lista tabu adaptativa, que

possa variar seu tamanho de acordo com a evolução da melhor solução.

Outra oportunidade de investigação é o desenvolvimento de algoritmos exatos para o

PPCCM com base em técnicas de programação inteira, com a intenção de hibridizá-los

com metaheurísticas para tratar instâncias de tamanhos maiores em tempos computaci-

onais viáveis. Além disso, também podem ser gerados modelos de programação inteira

mais fortes baseados em formulações por representantes de classes de cores.
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