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Resumo

O Problema da Parti¢do Cromatica de Custo Minimo (PPCCM), considerado uma
das diversas variantes do Problema Classico de Coloragao de Grafos (PCQG), utiliza nui-
meros reais como custos das cores, tendo como objetivo colorir os vértices de um grafo de
modo que os adjacentes tenham cores diferentes e a soma dos custos das cores utilizadas
seja minima. Embora seja um problema NP-Dificil para grafos em geral, foram elabo-
rados algoritmos polinomiais para algumas classes de grafos. Do ponto de vista pratico,
o mesmo foi empregado no projeto de circuitos VLSI e na solugao de determinados pro-
blemas de escalonamento modelados como grafos de intervalo. Nesta tese sao propostos
algoritmos para o PPCCM considerando um grafo simples nao-direcionado como entrada.
Inicialmente foram desenvolvidas duas heuristicas baseadas na metaheuristica Algoritmos
Genéticos com Chaves Aleatorias Tendenciosas (Biased Random Key Genetic Algorithms
- BRKGA, em inglés). Posteriormente, foi implementada uma heuristica de trajetoria que
faz uso de duas estratégias de busca local seguidas por um procedimento de path-relinking.
Para os experimentos computacionais foram geradas instancias para o problema a partir
de grafos comumente empregados no PCG.

Palavras-chave: Problema da Particao Cromatica de Custo Minimo, Coloracao de Gra-
fos, Heuristicas, Metaheuristicas, Busca Local, Algoritmos Genéticos.



Abstract

The Minimum Cost Chromatic Partition Problem (MCCPP) is one of several variants
of the classical Graph Coloring Problem (GCP), in which there are real number as color
costs and the aim is to color the vertices of a graph so that the adjacent ones have different
colors and the sum of the costs of the used colors is minimal. Although the MCCPP is
a NP-hard problem for general graphs, polynomial time algorithms were developed for
some classes of graphs. From a practical point of view, the MCCPP has application in
the design of VLSI circuits and in the solution of scheduling problems modeled as interval
graphs. In this thesis, algorithms for the problem considering undirected simple graphs
are proposed. Initially, two heuristics based on the metaheuristic Biased Random Key
Genetic Algorithm (BRKGA) were developed. Following, we propose a trajectory search
heuristic using local search and path-relinking. For computational experiments, instances
for the problem from graphs commonly used in PCG were generated.

Keywords: Minimum Cost Chromatic Partition Problem, Graph Coloring, Heuristics,
Metaheuristics, Local Search, Genetic Algorithms.
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Capitulo 1

Introducao

1.1 Motivacao

O Problema Cléssico de Coloragao de Grafos (PCG) tem como objetivo colorir os
vértices de um grafo GG qualquer com um nimero minimo de cores, chamado nimero
cromatico e representado por x(G), de modo que sejam atribuidas cores distintas para
vértices adjacentes. O PCG é amplamente estudado em virtude da sua importancia teo-
rica e aplicabilidade pratica, comumente modelando problemas como grafos de conflitos,
onde os vértices representam elementos distintos, as arestas definem conflitos entre esses
elementos e cada cor determina um componente a ser otimizado. Como exemplo, sao
encontradas aplicagoes na area de escalonamento [Malkawi et al., 2008], redes de comuni-
cacao [Woo et al., 1991] e alocagao de frequéncias [Narayanan e Shende, 2001]. Do ponto
de vista teorico, por ser um problema NP-Dificil para grafos em geral |Garey e Johnson,
1979], ainda nao foi possivel elaborar um algoritmo em tempo polinomial que o resolva

considerando grafos genéricos.

Estabelecido como uma das diversas variantes do PCG, o Problema da Soma Croma-
tica (PSC) foi introduzido por Kubicka |[Kubicka, 1989]. Dado um grafo nao-direcionado
GG e nimeros naturais em sequéncia como custos das cores, ele consiste em colorir os vérti-
ces de G de forma que tenham cores diferentes os que sao adjacentes e a soma dos custos
das cores dos vértices seja minima. Esse problema nao é equivalente ao PCG, no sentido
de que nao basta encontrar o nimero croméatico do grafo G e, utilizando as x(G) cores de

menor custo, obter a menor soma possivel.

O Problema da Particdo Cromatica de Custo Minimo (PPCCM) é considerado uma

generalizacao do PSC que, diferente deste, utiliza niimeros reais como custos para as
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cores. O mesmo foi apresentado em 1980 por Mead e Conway [Mead e Conway, 1980],
que propuseram uma maquina hipotética com um grande ntimero de processadores distri-
buidos como em uma arvore, a fim de aumentar sua capacidade computacional ao gerar
paralelismo entre eles. Sendo ele um problema NP-Dificil, considerando um processa-
mento sequencial, os autores apresentaram um algoritmo paralelo para a sua resolucao na
referida maquina, o que resultaria em um tempo de execugao O(n?), dado um grafo nao-
direcionado com n vértices e um conjunto de n cores. No entanto, os mesmos verificaram
que era necessario um nimero muito grande de processadores (2n™ — 1) para alcangar tal

tempo polinomial.

Apesar da complexidade do PPCCM para grafos em geral, foram elaborados algorit-
mos polinomiais para algumas classes de grafos, como arvores, grafos co-bipartidos e para
o complementar do grafo sem triangulos. Do ponto de vista pratico, Supowit [Supowit,
1987] e Sen et al. [Sen et al., 1992] o empregaram no projeto de circuitos VLSI, onde
terminais precisam ser eletricamente conectados em diferentes camadas que possuem ca-
racteristicas distintas, tendo assim um custo associado ao posicionamento de um terminal
em uma camada. O objetivo é particionar tais terminais em camadas, tentando nao
intercepta-los, de modo que o custo total seja minimo. Problemas de escalonamento mo-
delados como grafos de intervalo também sao exemplos de aplicacoes para o problema
[Kroon et al., 1997].

Devido & sua complexidade, inexiste algoritmo eficiente a fim de tratar o problema
para o caso geral. A utilizacao de métodos exatos baseados em formulagoes simples, na
tentativa de obter a melhor solucao possivel, torna-se impraticavel para instancias de
tamanho médio e grande, por demandar elevado tempo computacional. Nesses casos, é
sugerida a aplicagao de métodos heuristicos, que permitem a obtencao de uma solucao de

boa qualidade, em um tempo de processamento aceitavel.

1.2 Objetivo da Tese

Assim, o objetivo deste trabalho consiste em propor e avaliar algoritmos para o Pro-
blema da Partigao Cromatica de Custo Minimo considerando como entrada um grafo
simples nao-direcionado. Para isso, inicialmente foram desenvolvidas duas heuristicas
baseadas na metaheuristica Algoritmos Genéticos com Chaves Aleatorias Tendenciosas
(Biased Random Key Genetic Algorithms - BRKGA, em inglés), onde uma delas realiza,

em cada um dos individuos elite, uma busca em vizinhanca considerada uma modificacao
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da metaheuristica VNS. Posteriormente, foi proposta uma heuristica de trajetoria que faz
uso de duas estratégias de busca local, seguidas por um procedimento de path-relinking

(reconexao por caminhos).

1.3 Organizacao da Tese

Este trabalho esta organizado da seguinte forma, o PCG e algumas de suas variantes
com custos nos vértices e nas cores sao apresentados no proximo capitulo. O PPCCM é
descrito no Capitulo 3, incluindo a sua formulacao como um problema de programacao
inteira binaria. As heuristicas baseadas na metaheuristica BRKGA e os experimentos
destas sobre um conjunto de instancias desenvolvido para o problema sao detalhados no
Capitulo 4. O Capitulo 5 especifica a heuristica de trajetoria com busca local e path-
relinking, bem como seus experimentos e os testes de comparacao das trés heuristicas
propostas. Por fim, o Capitulo 6 apresenta as conclusoes e sugestoes para trabalhos

futuros.



Capitulo 2

Problemas de Coloracao de Grafos

Neste capitulo seré especificado o Problema Classico de Coloracao de Grafos, com uma
breve revisao dos principais algoritmos desenvolvidos para soluciona-lo e apresentacao de
determinadas variantes que consideram pesos nos vértices e nas cores, como o Problema

da Soma Cromética, descrito na Secao 2.2.

2.1 O Problema Classico de Coloracao

Em 1852, Francis Guthrie conjecturou que seriam necessarias apenas quatro cores
para colorir as regioes de qualquer mapa, de modo que regioes vizinhas nao possuissem a
mesma cor, dando origem assim ao Problema das Quatro Cores. Apesar da sua aparente
simplicidade, esse problema permaneceu em aberto por mais de cem anos, pois somente
em 1976 conseguiu-se provar, utilizando computadores, que a conjectura estava correta,

sendo instituido o Teorema das Quatro Cores.

Uma vez que é possivel associar um mapa a um grafo planar, onde os vértices repre-
sentam as regioes e as arestas a vizinhanca entre as mesmas, outro problema estabelecido,
intitulado Problema de Coloracao de Grafos, tem como objetivo colorir um grafo qual-
quer com um numero minimo de cores de modo que sejam atribuidas cores distintas para

vértices adjacentes.

De modo formal, considere um grafo nao-direcionado G = (V, E), onde V' é o conjunto
de vértices e E o conjunto de arestas. Uma coloracdao prépria dos vértices de G consiste em
atribuir cores diferentes para vértices adjacentes, sendo imprdpria caso contrario. Assim,
o Problema Classico de Coloracao de Grafos (PCG) consiste em encontrar uma coloragao

propria em GG de modo que o ntimero de cores utilizado seja minimo. Este nimero minimo
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de cores é chamado nidmero cromdtico de G e representado por x(G). Uma k-coloragdo
é uma coloracao de G que utiliza k£ cores. A versao de decisao relacionada ao PCG
é o Problema da k-coloragao, que compreende determinar se é possivel encontrar uma
coloracao propria de G com k cores. Como exemplo, considere o grafo G da Figura 2.1
que possui 7 vértices e 11 arestas. Foi possivel encontrar uma 3-coloracao propria em G,
sendo esse 0 ntimero minimo de cores necessario para colori-lo, resultando em um ntimero

cromético x(G) = 3.

Figura 2.1: Grafo G com 7 vértices, 11 arestas e x(G) = 3.

O PCG desperta interesse de pesquisa em diversas areas devido a sua aplicabilidade
pratica, comumente modelando problemas como grafos de conflitos, onde os vértices re-
presentam elementos distintos, as arestas definem conflitos entre esses elementos e cada
cor um componente a ser otimizado. Como exemplo, sao encontradas aplicagoes na area
de escalonamento [Malkawi et al., 2008], redes de comunica¢ao [Woo et al., 1991] e aloca-
¢ao de frequéncias [Narayanan e Shende, 2001], fluxo de trafego aéreo |Barnier e Brisset,

2004|, registradores |Pereira e Palsberg, 2005] e timetabling |Bello et al., 2008].

2.1.1 Algoritmos para o PCG

Do ponto de vista teorico, por ser o PCG um problema NP-Dificil para grafos em
geral [Garey e Johnson, 1979, ainda néao foi possivel elaborar um algoritmo em tempo
polinomial para solucionéa-lo. Apesar disso, alguns métodos exatos foram desenvolvidos
na tentativa de encontrar a solucao 6tima para o problema. O primeiro deles, aplicando
a técnica de enumeragao implicita, foi proposto em [Brown, 1972| e utiliza as cores ja
empregadas na coloracao atual, ou uma nova cor, para colorir um vértice de cada vez,
seguindo uma determinada ordem dos mesmos. Outro algoritmo, chamado DSATUR
[Brélaz, 1979|, fundamentado na mesma técnica e que propoe uma melhoria no algoritmo

de Brown, utiliza como regra para a escolha do proximo vértice a ser colorido aquele que
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tiver o maior grau de saturacao, que é o numero de cores distintas dos vértices adjacentes
a um determinado vértice. Em caso de empate, o vértice escolhido ¢ o que apresentar
maior grau no subgrafo ndo colorido. Sewell [Sewell, 1996] promove melhorias no algo-
ritmo DSATUR estabelecendo uma regra de desempate alternativa na selecao do vértice
para branching, escolhendo aquele que gera a maior diminuicao no nimero de cores dis-
poniveis para os vértices restantes sem cor. Outros algoritmos empregando a estratégia
de enumeracao implicita sdo encontrados em [Kubale e Jackowski, 1985] e [Sager e Lin,
1991].

Um método baseado em geracao de colunas para solucionar o PCG utilizando uma
formulacao de conjuntos independentes foi apresentado por Mehrotra e Trick [Mehrotra e
Trick, 1996] que, embora necessite de sofisticadas regras de branching e a solugao de um
subproblema dificil, resolve rapidamente grafos de tamanho pequeno a médio. Visto como
uma variagao da formulagdo de Mehrotra e Trick, Campélo et al. [Campélo et al., 2004|
estabeleceram um modelo para o problema, denominado Formulagao de Representantes,
que define um vértice representante para cada classe de cor, impondo que somente uma
cor possa ser utilizada se a classe de cor for inicializada pelo vértice representante corres-
pondente. Em [Campélo et al., 2008| esta formulagao foi revista a fim de eliminar solu¢oes
simétricas, visto que qualquer vértice de uma classe de cor poderia ser o representante

dessa classe.

Malaguti et al. [Malaguti et al., 2011| propuseram um algoritmo branch-and-price
também com base na formulagao de cobertura de conjuntos do PCG apresentado em
[Mehrotra e Trick, 1996]. No entanto, eles incorporaram a heuristica MMT [Malaguti
et al., 2008] a fim de gerar uma solugdo inicial viavel e um conjunto de colunas para serem
utilizadas pelo método exato. Uma abordagem baseada em modelos de programacgao
inteira foi igualmente empregada no trabalho de Méndez-Diaz e Zabala |[Méndez-Diaz e
Zabala, 2008|, utilizando algumas familias de facetas do politopo 0/1 associadas a um
desses modelos em um algoritmo de plano de corte, com o objetivo de remover solucoes

simétricas obtidas pela permutacao das cores.

Tendo como base o algoritmo DSATUR e as melhorias propostas por Sewell [Sewell,
1996], Segundo [Segundo, 2012] desenvolveu um algoritmo exato introduzindo uma nova
estratégia de desempate com o objetivo de reduzir o nimero de subproblemas gerados,
sendo executada mais rdpido do que a estratégia apresentada por Sewell, pois se restringe

a um conjunto particular de vértices.

Devido & complexidade do PCG, grande parte dos algoritmos exatos tem a capacidade
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de solucionar somente pequenas instancias em tempo computacional aceitavel, tipicamente
com poucas centenas de vértices, sendo assim necessaria a utilizacao de heuristicas e
metaheuristicas para grafos que modelam aplicacoes do mundo real, comumente com

milhares de vértices.

A heuristica gulosa mais simples para o PCG, denominada Heuristica Sequencial,
assume que os vértices estao em uma determinada ordem de entrada e atribui a cada
vértice a cor de menor indice que nao tenha sido utilizada em vértices adjacentes. A
versao gulosa do DSATUR |Brélaz, 1979] segue esse principio, inicialmente organizando
os vértices em ordem nao-crescente dos graus e colorindo aquele de maior grau com a
primeira cor. A coloracao prossegue com a cor de menor indice possivel, escolhendo como
proximo vértice o que possui maior grau de saturacao, que é atualizado a cada iteracao.
Outro que utiliza a primeira cor no vértice de grau maior é o algoritmo Recursive Largest
First (RLF) de Leighton [Leighton, 1979], que a partir disso constr6i uma classe de cor de
cada vez, de maneira gulosa, separando os vértices ainda nao coloridos em dois conjuntos:

os que podem ser alocados na classe que esta sendo criada e os que nao podem.

Chams et al. [Chams et al., 1987] aplicaram a metaheuristica Simulated Annealing a
versao de decisao do PCG, explorando um conjunto de k-coloragbes (proprias ou nao) e
tendo como objetivo minimizar o nimero de arestas conflitantes (arestas que conectam
vértices com a mesma cor). Uma solucao vizinha é alcangada trocando a cor de um tnico
vértice na solucao corrente. Outra metaheuristica de busca local aplicada ao problema foi
a Busca Tabu em [Hertz e de Werra, 1987|. Esse algoritmo, intitulado TABUCOL, tem
o mesmo espago de solugdes e a mesma funcio objetivo daquele apresentado em [Chams
et al., 1987|. Contudo, somente os vértices adjacentes a arestas conflitantes sdo candidatos
para a troca de cor. Quando a cor de um vértice é alterada, obtendo uma solucao vizinha,
esse vértice e sua cor anterior sao armazenados em uma lista tabu, impossibilitando-o
de receber tal cor por um determinado nimero de iteracoes, chamado prazo tabu. Essa
restricao tabu nao é considerada caso a troca de cor conduza a uma solugao com valor de

funcao objetivo menor do que um valor definido.

A comparagao de trés algoritmos Simulated Annealing, cada um com uma estrutura
de vizinhanca diferente, foi realizada em [Johnson et al., 1991|, em que dois deles permi-
tiam solucoes completas inviaveis e o outro somente coloragoes completas proprias, tendo
um ntmero variavel de classes de cor. Os autores também projetaram o algoritmo XRLF,
que combina uma variante do RLF [Leighton, 1979] com a remocao de conjuntos inde-

pendentes no grafo, mostrando-se competitivo com os outros algoritmos implementados.
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Uma importante contribuicao de Morgenstern [Morgenstern, 1996] foi a defini¢ao da vi-
zinhanca Impasse Class Neighborhood, utilizada para transformar uma coloragao parcial
em uma completa de mesmo valor. O autor apresentou um algoritmo Simulated Anne-
aling empregando essa vizinhancga juntamente com um método para a recombinacao de

solucoes.

Um dos primeiros estudos a integrar busca local com algoritmos baseados em popu-
lagao, como os Algoritmos Genéticos (AGs), foi o trabalho de Costa et al. [Costa et al.,
1995]. Esse tipo de algoritmo, conhecido como Algoritmo Evolucionario (AE), emprega
uma populacao de solugoes e um operador de cruzamento, como os AGs. Porém, o opera-
dor de mutagao é substituido por uma busca local. No algoritmo desenvolvido, os autores
utilizaram um método de descida simples como busca local. Na mesma época, Fleurent e
Ferland |Fleurent e Ferland, 1996] elaboraram um AE utilizando o cruzamento uniforme
padrao como operador de recombinacgao e uma versao com melhorias do algoritmo TABU-
COL como operador de mutagao. Em [Galinier e Hao, 1999|, o algoritmo evolucionario
hibrido (HEA) proposto igualmente utiliza uma versao atualizada do TABUCOL e um
operador de cruzamento especifico para o PCG, chamado Greedy Partitioning Crossover
(GPX), que tem a caracteristica de transmitir aos filhos gerados as estruturas dos pais.
Segundo Malaguti e Toth [Malaguti e Toth, 2010], esse operador é o responsavel por

posicionar o HEA entre os melhores ja desenvolvidos para o PCG.

No trabalho de Malaguti et al. [Malaguti et al., 2008| foi anunciado o algoritmo
MMT, que realiza uma fase de inicializacao, onde um limite superior e um inferior para
o problema sao obtidos, e duas etapas de otimizacao, que podem ser finalizadas assim
que uma solucao comprovadamente 6tima é encontrada. Na primeira etapa, um AE é
executado utilizando a combinacao de uma Busca Tabu e o operador GPX, adaptado para
a vizinhanca Impasse Class Neighborhood, a fim de encontrar uma k-coloracao que melhore
a melhor solugao encontrada na fase de inicializacao. Na etapa seguinte, uma heuristica
soluciona o Problema de Cobertura de Conjuntos utilizando os conjuntos independentes
armazenados durante a execucao do AE na primeira etapa. Ainda que o AE resolva o
problema para um valor fixo de k, o algoritmo MMT como um todo aborda a versao de
otimizacao do PCG, sendo considerada uma das melhores heuristicas para o problema
[Malaguti e Toth, 2010].

Em outro modelo de algoritmo evolucionario, denominado Algoritmo de Memoria
Adaptativa, a populacdo constitui-se de partes das solugoes, ao invés de solugoes comple-

tas, e utiliza um método de recombinacao dessas partes a fim de gerar novas solucoes.
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Fazendo uso desse modelo, Galinier et al. |Galinier et al., 2008] desenvolveram o algo-
ritmo AMACOL para o problema com um namero fixo de cores (k-coloragao), tendo como
populacao conjuntos independentes encontrados durante a execucao e o TABUCOL como

o operador de busca local.

Blochliger e Zufferey [Blochliger e Zufferey, 2008] apresentaram dois métodos de Busca
Tabu considerando como solucao uma k-coloracao parcial viavel, isto ¢, uma solucao di-
vidida em k conjuntos independentes e um conjunto de vértices ainda nao coloridos. Em-
bora baseada na vizinhanga Impasse Class Neighborhood, a estratégia utilizada apresenta-
se muito mais simples do que a proposta em |[Morgenstern, 1996], tendo como objetivo
simplesmente minimizar o nimero de vértices nao coloridos. Além disso, os autores ana-

lisaram o uso de um prazo tabu dindmico e outro reativo.

O desenvolvimento de um AE aplicando também uma Busca Tabu como método
de busca local foi realizado por Lii e Hao [Lii e Hao, 2010]. Denominado MACOL,
o algoritmo a principio utiliza a Busca Tabu para melhorar as solugoes da populacao
inicial, que sao k-coloragoes invidveis, minimizando o nimero de arestas em conflito. A
cada iteragao, aplica-se o operador de cruzamento AMPaX (uma extensao do GPX) em
duas ou mais solucoes escolhidas aleatoriamente da populacao, tendo como resultado uma
k-coloragao, que também serd melhorada pela busca local. Em seguida, para determinar
se a solucao resultante seré inserida na populagao, o algoritmo avalia a estratégia definida
para a atualizacao da mesma, estabelecendo ainda qual solugao serd substituida caso
ocorra a insercao. Um dos autores utilizou o MACOL como segunda fase do algoritmo
EXTRACOL em [Wu e Hao, 2012al. Na primeira fase, ele utiliza uma Busca Tabu
Adaptativa para identificar um conjunto independente maximo e tentar encontrar outros
conjuntos independentes disjuntos do mesmo tamanho, fazendo em seguida a extracao dos
mesmos no grafo original. Esse processo se repete até nao haver mais do que 800 vértices

no grafo residual, que seré colorido pelo MACOL na fase seguinte.

Recentemente, Moalic e Gondran |[Moalic e Gondran, 2015| propuseram o algoritmo
evolucionario HEAD, considerado uma varia¢do do algoritmo HEA |Galinier e Hao, 1999].
Ambos utilizam como busca local uma versao atualizada do TABUCOL e o operador de
cruzamento GPX, tendo como objetivo encontrar uma colora¢gdao com o niimero minimo de
arestas conflitantes. No entanto, HEAD propoe uma estratégia diferente para gerenciar a
diversificacao: reduzir o tamanho da populacao para somente duas solugoes. Para tratar
uma das principais desvantagens da utilizacao de uma populagao pequena, que é nao

proporcionar uma diversificacao suficiente para o algoritmo evoluir, ap6s um determinado
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namero de geracoes (chamado pelos autores de ciclo), a melhor solucao (solucao elite) da
populacao é armazenada e a solucao elite de ciclos anteriores é reintroduzida na populacao,
substituindo um dos seus dois membros. Como resultado, o algoritmo conseguiu reduzir

o nimero de cores necessarias para colorir trés grafos considerados dificeis na literatura.

Analisando os experimentos realizados pelos autores com as heuristicas mencionadas
anteriormente, é possivel identificar que TABUCOL, HEA, AMACOL, MMT, MACOL,
EXTRACOL e HEAD sao as que proporcionaram os melhores resultados na solucao do
PCG, sendo consideradas o estado da arte até o momento. Outros algoritmos utilizando
outras estratégias para solucionar o problema encontram-se em |[Laguna e Marti, 2001],
[Chiarandini e Stiitzle, 2002, [Avanthay et al., 2003|, [Hertz et al., 2008|, [Plumettaz
et al., 2010] e [Titiloye e Crispin, 2011]. Considera¢oes adicionais sobre o PCG podem
ser encontrados em |Galinier e Hertz, 2006], [Chiarandini et al., 2007|, [Malaguti e Toth,
2010] e |Galinier et al., 2013|.

2.1.2 Variantes do PCG com Pesos

Alguns problemas considerados variantes do PCG tém recebido atengao na literatura e
motivado o desenvolvimento de algoritmos, tanto pela aplicagao em situacoes reais quanto
pela importancia teorica, por serem igualmente NP-Dificeis. Dentre eles, encontram-se
os que consideram pesos (ou custos) nos vértices e nas classes de cores do grafo. Esses
pesos podem representar, por exemplo, as bandas de frequéncia a serem distribuidas em
antenas de transmissao, de modo a evitar interferéncias, em um Problema de Alocacao

de Canais de Radio [McDiarmid e Reed, 2000].

A modelagem para tal aplicacdo pode ser realizada pelo Problema de Multicoloracao
de Grafos (PMG), onde cada vértice i € V' tem um peso positivo p; associado, indicando
o nimero de cores a serem atribuidas ao vértice 7. Essas cores representam as bandas de
frequéncia designadas as antenas, simbolizadas pelos vértices, sendo que, para cada aresta
(i,7) € E, a intersecao das cores atribuidas aos vértices ¢ e j tem que ser vazia, reprodu-
zindo a tentativa de evitar interferéncias entre as bandas. Respeitando esta restricao, o

objetivo é colorir o grafo com o menor niimero de cores possivel.

Para solucionar o PMG, métodos exatos foram desenvolvidos, como em |[Mehrotra
e Trick, 2007|, que apresentaram um algoritmo de geragao de colunas para otimizar a
relaxacao linear de uma formulacao para o problema, a qual utiliza uma variavel para
cada conjunto independente do grafo. Essa mesma abordagem foi aplicada no trabalho de

Gualandi e Malucelli [Gualandi e Malucelli, 2012, onde os autores utilizaram programagao
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por restricoes e novas técnicas de branching a fim de melhorar a performance do algoritmo.

Com a finalidade de solucionar instancias maiores do problema, estratégias heuristicas
também foram implementadas. Em [Lim et al., 2005], um algoritmo guloso constréi uma
solugdo a partir de uma sequéncia de vértices gerada por duas metaheuristicas (Squeaky
Wheel Optimization e Busca Tabu), que também sdo utilizadas posteriormente na tenta-
tiva de melhorar a solugdo. No Algoritmo Genético proposto em [Han e Kim, 2015 sao
aplicados dois operadores de cruzamento, sendo um desenvolvido especificamente para
o problema. Além disso, o grafo de entrada nao sofre transformacao com a inclusao de

novos vértices, como normalmente é feito para a resolucao do PMG.

Outro exemplo de variante que admite pesos nos vértices é o Problema de Coloracao
de Grafos Ponderados (PCGP), no qual um peso positivo p; é atribuido a cada vértice
1 € V. Deigual modo, cada classe de cor possui um custo associado, que é dado pelo peso
méaximo dos vértices coloridos com aquela cor. Diferentemente do PCG, onde o objetivo
é colorir o grafo com o menor nimero de cores, no PCGP a intencao é encontrar uma
coloracao cuja soma dos custos das cores utilizadas seja a menor possivel. Esse problema
pode modelar aplicacoes reais, como o Problema de Escalonamento em Maquinas com
Compatibilidade de Tarefas [Boudhar e Finke, 2000] e o Problema da Decomposi¢ao de
Matrizes |Ribeiro et al., 1989, Prais e Ribeiro, 2000].

Como proposta de algoritmo para solucionar o PCGP, Malaguti et al. [Malaguti
et al., 2009| apresentaram duas formulagoes de programagao inteira com um ndimero
polinomial de variaveis e restricoes. Um desses modelos é utilizado na inicializagao de um
algoritmo de duas fases, gerando um limite inferior para o problema. Na primeira fase,
algumas heuristicas gulosas sao aplicadas em sequéncia para produzir um grande nimero
de conjuntos independentes. Na fase final, para melhorar a solu¢ao, uma formulagao do
Problema de Cobertura de Conjuntos (PCC), associada a alguns conjuntos gerados, é

solucionada por uma heuristica lagrangeana da literatura.

Uma heuristica também segmentada em fases foi apresentada em [Oliveira et al.,
2011]. Na primeira fase realiza-se um pré-processamento a fim de reduzir o tamanho
do grafo de entrada. Na segunda, uma solucao inicial é construida por uma heuristica
construtiva, aplicando na tltima fase, para melhorar a solugao inicial, uma heuristica VND
que utiliza como busca local um algoritmo backtracking. Recentemente, uma abordagem
exata fol proposta por Furini e Malaguti [Furini e Malaguti, 2012], que desenvolveram um
algoritmo branch-and-price para o problema a partir de uma extensao da formulagao do

PCC apresentada no trabalho de Malaguti et al. [Malaguti et al., 2009).
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Outro problema considerado uma variante do PCG, mas que admite custos somente
para as classes de cores, o Problema da Soma Cromatica (PSC) utiliza nimeros naturais

em sequéncia como tais custos. A sua descricao detalhada é apresentada na segao seguinte.

2.2 0O Problema da Soma Cromatica

O Problema da Soma Cromatica (PSC) foi introduzido por Kubicka [Kubicka, 1989,
que o definiu como: dado um grafo simples nao-direcionado G e niimeros naturais em
sequéncia como custos das cores, deseja-se encontrar uma coloracao propria, entre todas
as coloracoes proprias de G, onde a soma total dos custos das cores dos vértices seja
minima. Essa soma total minima é chamada de soma cromdtica de G e é denotada por
Y(G). A for¢a de G, s(G), é o nimero minimo de cores necessario para obter a sua soma

cromatica.

Esse problema nao é equivalente ao PCG, no sentido de que nao basta encontrar
o numero croméatico do grafo e, utilizando o menor nimero de cores, obter a menor
soma possivel. Para ilustrar, considere a arvore 7' da Figura 2.2. Se somente duas cores
com custos 1 e 2 forem utilizadas (Figura 2.2 (a)), a soma dos custos é igual a 12. No
entanto, a melhor solugao é encontrada inserindo mais uma cor de custo 3 (Figura 2.2
(b)), resultando em X(7") = 11, s(T') = 3. Assim, nao ¢ possivel obter a colora¢ao de soma
Otima utilizando apenas duas cores, que é o valor de x(7'). De forma geral, considerando
um grafo G qualquer, s(G) > x(G) |Kokosinski e Kwarciany, 2007]. No exemplo da
Figura 2.2, s(T') > x(T).

1 1 1
\0/
2
1 /3'\
[ ] [ ]
2 1 1 1

@) (b)

Figura 2.2: Arvore T: (a) colorida com duas cores, com soma igual a 12 e (b) colorida
com trés cores, resultando X(7T') = 11 e s(T') = 3 (Extraida de [Kubicka e Schwenk,
1989]).
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Um exemplo de sua aplicagdo é dado em [Bar-Noy et al., 1998] para o Problema
de Alocacao de Recursos Distribuidos. Para representar as restrigoes do problema, eles
utilizam um grafo de conflito, onde os vértices representam os processadores e as ares-
tas indicam uma concorréncia pelos recursos. Assim, dois vértices sao adjacentes se os
processadores correspondentes nao podem executar seus trabalhos simultaneamente. A
intencao ¢ minimizar o tempo médio de resposta do sistema ou, de forma equivalente, mi-
nimizar a soma dos tempos de execucao dos trabalhos. Esse problema pode ser modelado
como PSC assumindo um tempo de execucao fixo para os trabalhos. Outras aplicacoes
sao encontradas em escalonamento [Halldérsson et al., 2003, Bar-noy e Kortsarz, 1998| e

em projetos VLSI [Szkaliczki, 1999, Nicoloso et al., 1999|.

2.2.1 Formulacao

O PSC pode ser formulado como um problema de programacao inteira binéria. Con-
sidere um grafo ndo-direcionado G = (V, F), onde V é o conjunto de n vértices e FE o
conjunto de arestas. Seja x;;, uma variavel binéria, tal que x;, = 1 se o vértice i € V for
colorido com a cor h e x;; = 0 caso contrario. Uma formulagao para o PSC como um

Problema de Programacao Inteira 0-1 ¢ dada em [Wang et al., 2013]:

Min Xn:zn:h-xih (2.1)

i=1 h=1
sujeito a:
ag =1, VieV (2.2)
h=1
Tih + Tjn < 1, Vi,jEVC(i,j)EE, hzl,...,n (23)
vy, € {0,1}, VieV, h=1,...,n. (2.4)

A func¢ao objetivo (2.1) minimiza a soma dos custos das cores utilizadas. A restri¢ao
(2.2) requer que cada vértice seja colorido por apenas uma cor, enquanto a restri¢ao (2.3)
impoe que, para cada par de vértices adjacentes, somente um deles receba a cor h, caso

ela seja utilizada. Por fim, a restrigdo (2.4) indica a integralidade da varidvel x;.

Observa-se que essa formulagao de programacao inteira, que trata apenas de viabi-
lidade, é muito fraca e que outras mais fortes podem ser desenvolvidas, baseadas, por
exemplo, na ideia de formulacao por representantes [Bahiense et al., 2014, Frota et al.,
2010].
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Solucionar o PSC para um grafo qualquer pertence & classe de problemas NP-Dificil,
segundo Kubicka e Schwenk |Kubicka e Schwenk, 1989]. Nesse sentido, encontrar limites
superiores e inferiores para 3(G) e s(G) torna-se muito ttil, uma vez que possibilita, por
exemplo, verificar que uma determinada solugao nao apresenta resultado de boa quali-
dade quando seu valor ultrapassar algum limite superior. Na literatura sao encontrados
resultados para tais limites, que comumente sao obtidos com base em determinadas ca-
racteristicas do grafo, como seu maior grau (A(G)), namero de vértices (n), nimero de
arestas (m) e seu nimero cromatico (x(G)). Alguns resultados serdo apresentados, po-

dendo a prova matemaética ser encontrada no trabalho citado.

2.2.2 Limites para a Soma Cromética de um Grafo - 3(G)

Um primeiro limite, embora nao justo para a soma cromatica de um grafo G, pode

ser obtido analisando a estrutura do grafo [Kubicka e Schwenk, 1989):

nn+1
n<%(G) < (T> (2.5)
O limite inferior é atingido se G nao possuir arestas, resultando na necessidade de
apenas uma cor para colorir todos os n vértices. Se G for um grafo completo, cada vértice

terd que ser colorido com uma cor exclusiva, sendo o limite superior alcangado.

Um trabalho pioneiro que apresenta limites para a soma cromética de grafos em geral
encontra-se em [Thomassen et al., 1989]. O primeiro limite apresentado pelos autores
resulta da aplicacao de um algoritmo guloso considerando uma ordenacao qualquer dos

vértices do grafo:

S(G) < n+m. (2.6)

O segundo resultado mostra um limite inferior e superior para a soma cromatica, para

qualquer grafo conexo, em relacao ao nimero de arestas:

[V8m] < 2(G) < |3(m+1)/2]. (2.7)

Ainda segundo Thomassen et al. [Thomassen et al., 1989, para qualquer grafo G sem

vértices isolados:

[V8m] < 2(G) < 3m. (2.8)
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Limites para a soma croméatica também sao exibidos em [Kokosiniski e Kwarciany,

2007]:

s < MOED (2.9)
n+X“D@§D_U < ¥(G) (2.10)
nt SOEG =D (2.11)

Kokosinski [Kokosiriski, 2011| fez comparagoes de limites tedricos e experimentais para
Y(@G). Segundo ele, os melhores limites inferiores tedricos sdo os apresentados nas equagoes
(2.7) e (2.10), tendo a segunda retornado melhores resultados em praticamente todos os
experimentos. Ainda segundo o autor, as equagoes (2.6) e (2.9) exibem os melhores limites

superiores teoéricos, sendo o segundo melhor na maioria dos testes.

2.2.3 Limites para a Forca de um Grafo - s(G)

No caso de limites para s(G), um limite inferior e superior para um grafo G é

[Kokosiniski e Kwarciany, 2007]:

Y(G) < 5(G) < n. (2.12)

Uma vez que sdo necessarias no minimo x(G) cores para colorir G, o limite inferior
é alcancado. O limite superior é atingido quando for preciso atribuir uma cor diferente

para cada vértice de G.

Outros limites para s(G) sdo apresentados em [Hajiabolhassan et al., 2000]. O pri-

meiro deles envolve o maior grau de G:

s(G) < A(G) + 1. (2.13)

Além disso, eles demonstram que a igualdade s(G) = A(G) + 1 é atendida se, e

somente se, G for um grafo completo ou um ciclo impar.

O terceiro limite exibido pelos autores envolve, além de A(G), outro parametro do
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grafo chamado nidmero de colora¢ao, denotado por col(G). O namero de coloragao de um
grafo G é o menor nimero d tal que, dada alguma ordenagao dos vértices de G, o nimero
de arestas para todos os vértices listados antes de i (1 € V') é estritamente menor do que

d. Assim, para qualquer grafo G:

s(G) < [(col(G) + A(G))/2]. (2.14)

Ainda segundo os autores, considerando o nimero de coloragdo, para todo grafo G,
X(G) < col(G). No entanto, s(G) < col(G) nem sempre é verdade. A desigualdade
X(G) < col(G) < A(G) sempre se aplica, exceto para grafos regulares. O trabalho de

Kokosinski e Kwarciany [Kokosiniski e Kwarciany, 2007| também apresenta um limite para

s(G):

s(G) < [vn(x(G) +1)]. (2.15)

Alguns resultados aplicam-se especificamente para determinadas classes de grafos.
Kubicka [Kubicka, 2004| afirma que para todo inteiro positivo k, existe uma arvore T com
s(T) = k. Além disso, Jiang e West [Jiang e West, 1999| garantem que para cada inteiro
positivo k, existe uma arvore Ty com s(T}) = k e A(T},) = 2k — 2. Ainda para arvores,
o seguinte resultado foi apresentado em [Hajiabolhassan et al., 2000] considerando uma

arvore T':

s(T) < [A(T)/2] + 1. (2.16)

Os mesmos autores melhoraram esse limite considerando o didmetro (d(T)) de T*

s(T) < [min(d(T), A(T))/2] + 1. (2.17)

Para grafos bipartidos, Malafiejski et al. [Malafiejski et al., 2004] afirmam que a soma
cromética de um grafo conexo bipartido regular é igual a 3n/2, para n > 1. Ainda,
Kosowski [Kosowski, 2009] provou que o resultado (2.16) nao se aplica somente para

arvores, mas para qualquer grafo bipartido.

2.2.4 Algoritmos para o PSC

Como ja mencionado, o PSC pertence a classe NP-Dificil para um grafo qualquer

[Kubicka e Schwenk, 1989]. Esse resultado se mantém para determinadas classes de grafos,
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como grafos de intervalo [Szkaliczki, 1999, grafos split [Kubicka, 2004] e grafos bipartidos
[Salavatipour, 2003]. No entanto, para algumas classes é possivel solucioné-lo em tempo
polinomial, como &rvores [Kubicka e Schwenk, 1989|, grafos k-split [Salavatipour, 2003],

grafos uniciclicos e outerplanar [Kubicka, 2005].

Em [Douiri e Elbernoussi, 2011], os autores propuseram uma heuristica hibrida que
combina um Algoritmo Genético (AG) com um método de restrigdes derivadas. Esse
método é utilizado para construir a populacao inicial do AG, que tem como individuo
uma atribuicao de cores para todos os vértices do grafo. Como essa atribuicao pode
gerar conflitos entre vértices, uma vez que vértices adjacentes podem apresentar cores
iguais, o objetivo do AG ¢é minimizar o ntumero de conflitos. Ele utiliza o método da
roleta para selecao dos individuos que poderao passar pelo cruzamento de dois pontos e
pela mutagao, com probabilidade de ocorréncia de 0.8 e 0.2, respectivamente. Para as
instancias testadas, o algoritmo melhorou o limite superior de quatro delas e alcancou os

melhores resultados conhecidos para as demais.

O algoritmo proposto em [Helmar e Chiarandini, 2011], chamado MDS(5)-+LS, em-
prega uma heuristica construtiva na geracao da solucao inicial. Além disso, ele explora
solucoes que atribuem cores diferentes para vértices adjacentes, chamadas de solugoes pro-
prias, bem como as que nao respeitam essa atribuicao, denominadas solucoes improprias.
Essa exploracao é realizada utilizando as estruturas de vizinhanca Swap Neighborhood e
One-Move Neighborhood, considerando que esta pode aumentar o niimero de cores a fim
de garantir o retorno de uma solucao viavel. Essa solu¢ao entao é modificada de modo
que os vértices sejam realocados nas menores classes de cores possivel, sem que vértices
adjacentes tenham a mesma cor, podendo eventualmente diminuir a quantidade de cores
utilizadas. Em seguida, aplica-se um procedimento de perturbacao a solugao, que consiste
em alterar a cor de uma fragao do namero de vértices, selecionando-os aleatoriamente. A
nova cor desses vértices é escolhida também de forma aleatoria de 1 até k + 1, sendo k a
quantidade de cores da solucao. O algoritmo finaliza a sua execugao ao atingir um limite
de tempo, ou um ntmero méaximo de iteracoes, ou um nimero de iteracoes sem melhoria.
Comparando o MDS(5)+LS aos experimentos encontrados na literatura, ele melhora as
solucoes conhecidas de 27 das 38 instancias analisadas e nao apresenta resultado pior do

que os demais métodos.

Uma heuristica para o PSC que segue o método da metaheuristica Busca Local Tte-
rada foi desenvolvida por Benlic e Hao [Benlic e Hao, 2012| e denominada Breakout Local

Search (BLS). A ideia bésica é usar uma busca local para descobrir 6timos locais e empre-
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gar um certo nimero de perturbacoes, cujo tipo é determinado adaptativamente, com a
intencao de explorar melhor o espaco de solugoes. O algoritmo comeca com uma solugao
inicial randémica que, caso apresente conflitos entre vértices (coloragdo impropria), sofre
a aplicacao de um método de busca local. Esse método avalia a variacao no nimero de
conflitos e a soma dos custos das cores considerando todas as possiveis trocas de cores
para cada vértice do grafo, de maneira que torne a coloracao propria. Caso a solugao
inicial nao apresente conflitos, ou tenha passado pelo método anterior, sao realizadas tro-
cas de cores nos vértices, mantendo a coloracao propria, para identificar a troca que mais
decresce o valor da funcao objetivo. Esse processo ¢ repetido até que um 6timo local seja

alcancado.

Apos a fase de busca local, o BLS aplica perturbacoes na solucao para diversificar a
busca e explorar outros pontos do espaco de solugoes. O primeiro tipo de perturbacao
é a mais comum realizada para problemas de coloracao: a troca de cor de cada vértice,
mantendo a coloracao propria. Cada vez que um vértice tem a cor alterada, ele é inserido
em uma lista tabu que o proibe de retornar para a cor anterior durante as proximas
t iteragdes (o valor de t é determinado aleatoriamente em um dado intervalo). Essa
proibigao somente é desconsiderada se a troca conduzir a uma nova solugao melhor que
a melhor solucao ja encontrada. A segunda forma de perturbacao consiste em realizar a
troca valida de cores (que nao causou conflitos entre vértices) mais recente que trouxe a
maior reducao no valor da funcao objetivo, desde que o conjunto da cor no qual o vértice
estava nao fique vazio. A ultima perturbacao é a troca de cores aleatéria. Primeiro
seleciona-se randomicamente dois subconjuntos de cores S; e S;, tal que [S;| < |5, e
em seguida move-se um vertice de S; (também selecionado de forma aleatéria) para o
subconjunto S;. Para variar entre os trés tipos de perturbacoes, o BLS utiliza parametros
que dependem do estado da busca, ou seja, do nimero de tentativas que nao levaram a
melhora de uma solucao. Os testes realizados mostraram que o BLS melhorou o melhor
resultado conhecido para quatro instancias e atingiu o limite superior para outras 15,

tendo falhado na obtenc¢ao do limite apenas em oito grafos.

O algoritmo EXSCOL |Wu e Hao, 2012b] tem por caracteristica extrair iterativamente
conjuntos independentes do grafo. Ele identifica inicialmente um conjunto independente
de maior tamanho e em seguida procura o maior nimero possivel de conjuntos indepen-
dentes disjuntos daquele tamanho. Feito isso, retira-os do grafo e atribui a cada um a
cor de menor custo disponivel. Esse processo é repetido até que o grafo torne-se vazio.
O fundamento dessa abordagem é que, pela extracao de muitos conjuntos independentes

disjuntos, naturalmente grandes classes de cores sao construidas, o que reduz o nimero
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necessario de cores e consequentemente a soma total dos custos das cores. Uma vez que
encontrar um conjunto independente méximo de um grafo é NP-Dificil |Garey e Johnson,
1979], o EXSCOL utiliza uma heuristica baseada em busca tabu para realizar essa tarefa.
Como resultado da sua aplicagao a instancias do problema, o EXSCOL melhorou o limite
superior de 17 grafos e alcancou o melhor resultado conhecido para nove deles, tendo

falhado somente duas vezes na obtencao do limite.

No algoritmo memético MA-MSCP apresentado em [Moukrim et al., 2013], cada um
dos 20 individuos (solugoes) da populagao representa uma partigdo V; (i = 1,...,k) do
conjunto de vértices, de modo que |V;| > |V5| > ... > |Vk|. Na populagao inicial, 25% dos
individuos sao gerados por algoritmos gulosos e o restante aleatoriamente, nao permitindo
que dois individuos diferentes tenham o mesmo valor de funcao de avaliagao para manter a
diversidade dessa populagao. Para a evolugao, quatro individuos sao selecionados de forma
aleatoria na populagao, sendo o primeiro pai o melhor (menor valor de avalia¢do) dos dois
primeiros selecionados e o segundo pai o melhor dos demais. Esses pais sao submetidos
ao operador de cruzamento, que é uma adaptacao do GPX desenvolvido por Galinier e
Hao [Galinier e Hao, 1999]. Em seguida, uma busca local é empregada utilizando duas
estruturas de vizinhanca a fim de melhorar o novo individuo produzido por esse operador.
Para formar a proxima populagdo, esse novo individuo substitui aquele com o mesmo
valor de avaliacao, se existir. No entanto, caso esse valor seja menor do que o de algum
individuo, o novo é inserido na populacao e o pior individuo é excluido. Como critério
de parada, o algoritmo utiliza um determinado tempo maximo. Com essa estratégia, o

MA-MSCP encontrou o 6timo em 27 das 81 instancias testadas para o PSC.

Outro algoritmo memético para o problema, denominado MASC, foi desenvolvido por
Jin et al. [Jin et al., 2014|. Ele apresenta trés componentes importantes, sendo o primeiro
um procedimento de busca tabu com dupla vizinhanc¢a desenvolvido especialmente para o
problema, que tem a finalidade de melhorar a qualidade de uma dada solugao gerada pelo
operador de crossover. Para isso, ele utiliza duas vizinhancas diferentes que sao aplicadas
alternadamente até que a melhor solucao encontrada nao consiga ser mais atualizada
(intensificagdo). A primeira vizinhanga é alcangada com a troca de alguns vértices de
uma cor por outros vértices adjacentes de outra cor, enquanto que a segunda é obtida
trocando apenas um vértice de uma cor por outra, sendo que em ambas o resultado das
trocas tem que manter o grafo com uma coloragao propria. Essas trocas de vértices entre
classes de cores sao inseridas na lista tabu e nao podem se repetidas até um determinado
numero de iteracoes. A fim de escapar de 6timos locais, o procedimento utiliza uma fase

de diversificacao, onde, dada uma solucao 6tima local S* com k classes de cores diferentes
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e V; a classe com maior nimero de vértices, ele cria uma classe adicional V., e move
aleatoriamente um terco dos vértices de V; para Vj,,. Para prevenir que a busca retorne
para S*, V; e Vi1 sao inseridas na lista tabu e nao podem fazer parte das vizinhancas

durante um certo nimero de iteracoes.

O segundo componente é a utilizagdo de um operador de crossover com varios pais.
Esse operador gera somente um filho a partir de « pais escolhidos aleatoriamente da
populacao, onde « varia de dois até quatro de acordo com o ntmero de vértices e o
nimero croméatico do grafo. A intencao desse operador é transmitir grandes classes de
cores dos pais para o filho, que sempre é uma coloracao propria e pode ter um niimero de

cores maior do que os seus pais.

O terceiro componente importante do MASC é o mecanismo de atualizacdao da po-
pulacdo. Ele utiliza duas funcoes, uma para medir a qualidade da solucao (f) e a outra
para analisar a sua diversidade (H). Considerando duas k-colora¢oes proprias S e So,
pode-se dizer que S; é melhor do que Sy se f(S1) < f(S52), onde f(.S;) indica a soma dos
custos das cores da k-coloracao propria S;. Para estimar a diversidade de duas coloracoes
S; e Sj, o algoritmo utiliza a funcao H; ;, que é o nimero de vértices em S; e S; que tém
diferentes cores: H;; = [{v € V : S;(v) # S;(v)}|. Um pequeno valor de H,; indica uma
alta similaridade entre S; e S;. Assim, o MASC combina as funcoes f e H para decidir se
um filho substitui ou nao um individuo na nova populacao. Aplicado a instancias do pro-
blema, o algoritmo melhorou 17 limites superiores conhecidos, incluindo grafos com mais
de 500 vértices, tendo também igualado 30 melhores resultados. Além disso, apresentou

pela primeira vez limites superiores para 18 grafos.

Em |Jin e Hao, 2016|, um novo algoritmo memético ¢ aplicado ao PSC. Intitulado
HESA, ele emprega uma heuristica de obtencao de conjuntos independentes para gerar
cada individuo da populagao inicial (de tamanho 20), de modo que nao sejam inseridos
individuos em duplicata na mesma. A cada geracao, duas solucoes da populacdo, que
nao foram escolhidas em geracoes passadas, sao selecionadas aleatoriamente e utilizadas
por um duplo procedimento de crossover para gerar duas novas solucoes, que podem ser
proprias ou nao. Cada solucao gerada é submetida a uma Busca Tabu de duas fases com o
objetivo de melhora-la, bem como torné-la prépria caso ela nao seja. A solucao resultante
passa pelo procedimento de atualizacao da populagao, onde a sua insercao sera analisada,
assim como definida a solucao que serd substituida, baseado na qualidade da solucao e
na distancia entre as solucoes da populacao. Esse processo de evolugao acontece até o

limite de tempo de duas horas. Como resultado, o algoritmo melhorou, de um total de
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94 instancias testadas, o limite superior de 24 delas e o limite inferior de 27 grafos.

Ao analisar de forma geral os resultados apresentados pelos algoritmos desenvolvidos
para solucionar o PSC, Jin et al. [Jin et al., 2017| concluem que os seis tltimos apre-
sentados anteriormente sao os que possibilitam alcancar as melhores solucoes, embora
nao possam ser comparados estatisticamente por nao terem sido testados com a mesma

quantidade de instancias.

Uma possibilidade de generalizacao do PSC é admitir nimeros reais como custos das
cores, sem qualquer sequéncia para os mesmos, mantendo o objetivo de encontrar uma
coloracao propria no grafo, onde a soma total desses custos seja minima. Tal problema
denomina-se Problema da Parti¢do Cromaética de Custo Minimo (PPCCM), que é objeto

de estudo desta tese e especificado detalhadamente no capitulo seguinte.



Capitulo 3

O Problema da Particao Cromatica de
Custo Minimo

Neste capitulo seré descrito em detalhes o Problema da Partigao Cromética de Custo
Minimo, objeto de estudo desta tese. Sao apresentados sua definicao, uma formulacao
como um problema de programacao inteira binaria, sua complexidade para grafos em
geral e classes especificas, exemplos de sua aplicacao, bem como algoritmos aproximativos

existentes para determinados tipos de grafos.

3.1 Introducao

O Problema da Particdo Cromatica de Custo Minimo (PPCCM) foi formulado por
Mead e Conway [Mead e Conway, 1980], que propuseram uma hipotética méquina com
um grande ntmero de processadores distribuidos como em uma arvore, onde cada no
corresponderia a um processador, a fim de aumentar sua capacidade computacional ao
gerar paralelismo entre eles. Sendo ele um problema NP-Dificil para grafos em geral [Sen
et al., 1992|, os autores apresentaram um algoritmo paralelo para a sua resolucao na
referida maquina, o que resultaria em um tempo de execugao da ordem de O(n?), dado
um grafo nao-direcionado com n vértices e um conjunto de n cores. No entanto, embora
ocorresse uma reducao na complexidade do problema, seria necessario um nimero muito

grande de processadores (2n™ — 1) para alcangar tal tempo polinomial.

Apesar disso, para algumas classes de grafos, o PPCCM pode ser solucionado em
tempo polinomial, como arvores, grafos co-bipartidos e o complementar de grafos sem
triangulos [Kroon et al., 1997, Jansen, 1996]. O projeto de circuitos VLSI [Supowit,

1987, Sen et al., 1992] e a solugdo de um problema de escalonamento sobre grafos de
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intervalos [Kroon et al., 1997| sao exemplos de sua aplicagao.

O PPCCM se diferencia do PSC quanto aos custos das cores. Enquanto neste tais
custos obrigatoriamente sao valores naturais sequenciais, no PPCCM os mesmos admitem
valores reais, sem qualquer sequéncia. Para ilustrar essa diferenca, dado o grafo G da
Figura 3.1, uma solucao viavel do PSC em G é mostrada na Figura 3.1 (a). Considerando
cores com custos 3.9, 4.4, 2.2, 3.6, 1.4 e 3.5, uma coloragao viavel do PPCCM no mesmo

grafo ¢ apresentada na Figura 3.1 (b).

1 1.4
4 2 3.9 2.2
3 1 3.6 14
2 2.2
@) (b)
Figura 3.1: Grafo G: (a) coloragao viavel para o PSC e (b) coloracao viavel para o
PPCCM.

3.2 Formulacao e Complexidade

Seja G = (V, E') um grafo simples nao-direcionado, onde V' & o conjunto de vértices e
E o conjunto de arestas. Considere um conjunto de cores C = {cy,..., ¢} e um custo
w. > 0 associado a cada cor ¢ € C. Seja z;. uma variavel binéria, tal que z;, = 1 se o
vértice i € V for colorido com a cor ¢ € C e x;. = 0 caso contrario. Sen et al. [Sen et al.,

1992] formularam o PPCCM como o seguinte Problema de Programagao Inteira 0-1:

Min Zch-xic (3.1)

i€V ceC
sujeito a:
ae = 1, VieV (3.2)
ceC
Tie + Tje < 1, Vi,jeV:(ij)eE, VYcel (3.3)

. € {0,1}, VieV, ceC. (3.4)
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A fungao objetivo (3.1) minimiza a soma dos custos das atribui¢oes de cores. A
restricdo (3.2) impde que cada vértice tenha apenas uma cor associada a ele e a restrigdo
(3.3) exige que, dados dois vértices adjacentes, somente um deles possa receber a cor
¢ € C, caso ela seja utilizada. Por fim, a restrigdo (3.4) indica que cada variavel z;. é
binéria.

Assim como observado para o PSC na Segao 2.2.1, essa formulagao de programacao
inteira é muito simples por tratar apenas de viabilidade, sendo possivel apresentar outras

mais fortes, como uma baseada em formulagao por representantes |[Bahiense et al., 2014,

Frota et al., 2010].

Importante notar que, como no PSC, para solucionar o PPCCM nao basta encontrar
o nimero croméatico do grafo e obter a menor soma possivel utilizando o nimero minimo
de cores. Para exemplificar, considere a mesma arvore 7' da Figura 2.2 (Sec¢ao 2.2) e cores
com custos 5.9, 4.4, 2.5, 4.6, 1.2, 3.5, 5.4 e 6.7. Caso fossem utilizadas somente as duas
cores de menor custo 1.2 e 2.5 (Figura 3.2 (a)), a soma dos custos seria igual a 14.8. No
entanto, a melhor combinagao é encontrada usando também a cor de custo 3.5 (Figura 3.2

(b)), resultando em uma solugao 6timo de custo 13.2.
1.2 1.2 1.2 1.2 1.2 1.2
[ ] [ ]

2.5 2.5 2.5 1.2 12 12
(@) (b)

Figura 3.2: Arvore T (a) colorida com as duas cores de menor custo, com soma igual a
14.8 e (b) colorida com as trés cores de menor custo, resultando na solu¢ao otima de
custo 13.2.

Apesar da sua relevancia teorica, o PPCCM também possui aplicabilidade pratica,
como em [Supowit, 1987] e [Sen et al., 1992| para projetos de circuitos VLSI. Nesses
projetos, a conexao de dois ou mais terminais é chamada de net. Um conjunto predeter-
minado de nets deve ser distribuido em camadas, de modo que as nets que se interceptam
nao sejam alocadas na mesma camada. Considerando que cada camada possui um custo

associado, o objetivo é distribuir tais nets nas camadas com o menor custo possivel.
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Esse problema torna-se equivalente ao PPCCM utilizando a representacao por grafos,
onde cada vértice representa uma net, sendo dois vértices adjacentes caso as respectivas
nets se interceptem, e uma cor indicando cada camada. Desse modo, ao solucionar o

PPCCM associado, é possivel determinar a utilizacao de camadas com o custo minimo.

Para exemplificacao dessa modelagem, considere um conjunto de nets que, se forem
distribuidos em uma mesma camada, provoca a interceptacao de alguns deles, como apre-
sentado na Figura 3.3 (a). A representacao desse problema por grafo é ilustrada na
Figura 3.3 (b), onde pode ser encontrada uma coloracao viavel para o mesmo utilizando,
por exemplo, as duas cores (camadas) de menor custo. Por fim, a Figura 3.3 (c) apresenta

a visualizacao em camadas dessa solucao.

1 1 2 8 9
[ ]
Cl
9 2
[ J
2 3 9 6’
8 3
5
7 4
C
2
6 5 4

(b) (©)

Figura 3.3: (a) Exemplo de um conjunto de nets distribuidos em uma camada, (b) o
problema modelado por grafo e (¢) a solugao representada em camadas.

Outra aplicagao é dada no trabalho de Kroon et al. |Kroon et al., 1997|, onde os
autores mostraram que o PPCCM para grafos de intervalo é equivalente ao Problema de
Escalonamento de Intervalos Fixos com custo de processamento dependente da méquina.
Nesse tipo de escalonamento, cada tarefa ¢ requer processamento durante um intervalo
de tempo fixo (s, f;). Assume-se que um nimero suficiente de maquinas esta disponivel
e que cada tarefa tem que ser executada por uma das méaquinas. Como o custo de

processamento depende da maquina, se a tarefa ¢ for executada pela maquina m, entao
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o custo de processamento associado é ¢,,. O objetivo é encontrar um escalonamento nao-
preemptivo vidvel para todas as tarefas de modo que o custo total de processamento seja

minimo.

Modelando esse problema como um grafo de intervalo, cada vértice corresponde ao
tempo do intervalo (s, f;) e cada aresta conecta dois vértices se os intervalos correspon-
dentes se sobrepoem. Assim, o PPCCM pode ser considerado como o problema de colorir
os correspondentes intervalos (vértices), onde as cores representam as maquinas, de ma-
neira que intervalos sobrepostos obtenham cores diferentes (méaquinas diferentes) e que o

custo total da colorac¢do (custo total de processamento) seja minimo.

Sen et al. [Sen et al., 1992 verificaram a complexidade do PPCCM restringindo-o
ao Problema da Soma Cromatica, que foi provado ser NP-Dificil para grafos em geral
[Kubicka e Schwenk, 1989]. Para isso, consideraram nimeros naturais em sequéncia como

custos das cores. Desse modo, o PPCCM também é NP-Dificil para tais tipos de grafos.

Kroon et al. [Kroon et al., 1997 mostraram que o PPCCM pode ser resolvido em
tempo linear para arvores. Considerando grafos de intervalos, provaram também que
existe um algoritmo polinomial para o problema caso haja somente dois valores diferentes
para os custos das cores e que o mesmo é NP-Dificil se esses custos tiverem quatro ou

mais valores distintos.

Supondo ainda que os custos das cores tenham dois valores distintos, Jansen [Jansen,
1996] afirma que ainda assim o PPCCM é NP-Dificil para k-arvores com k nao limitado,

grafos split, bem como para grafos caminho nao-direcionados e seus complementares.

Ainda, o autor mostra que o problema pode ser resolvido em tempo polinomial para
algumas classes de grafos (tais como, cografos, grafos co-bipartidos e o complementar
dos grafos sem tridngulos). Porém, segundo Sen et al. [Sen et al., 1992], o PPCCM é

NP-Dificil para grafos circulares.

3.3 Algoritmos para o PPCCM

Jansen [Jansen, 2000] provou que nao existe algoritmo aproximativo polinomial com
razao O(|V|%57¢), com e > 0, para o0 PPCCM restrito a grafos bipartidos e de intervalo,
a menos que P = NP. Contudo, ele propos algoritmos com razao O(|V|*%) para ambas
as classes. Além disso, ele demonstrou que, para grafos split e cordais, nao ha algoritmos

aproximativos polinomiais com razao O(|V|'7¢), com & > 0, a menos que P = NP.
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Nos experimentos que serao relatados nas Secoes 4.2.1.1 e 4.2.1.2, foi utilizado o re-
solvedor CPLEX na tentativa de obter solu¢oes 6timas para o PPCCM. No entanto, o
mesmo nao conseguiu encontrar tais solugoes para instancias com algumas centenas de
vértices, nem se quer solucoes viaveis para algumas com mais de 900 vértices dentro do
limite de tempo de 3600 segundos. Nesse caso, é sugerida a aplicacao de métodos heu-
risticos que permitem a obtencao de solugoes de qualidade, em tempos de processamento

aceitaveis.

Assim, nesta tese inicialmente foram desenvolvidas duas heuristicas baseadas na me-
taheuristica Algoritmos Genéticos com Chaves Aleatérias Tendenciosas para solucionarem
o PPCCM, ambas descritas no capitulo seguinte. Posteriormente, uma heuristica de tra-
jetoria que faz uso de duas estratégias de busca local, seguidas por um procedimento de
path-relinking, também foi desenvolvida para tratar o problema, sendo esta detalhada no

Capitulo 5.



Capitulo 4

Algoritmos Genéticos com Chaves Alea-
torias Tendenciosas

Neste capitulo sao desenvolvidas heuristicas baseadas nos Algoritmos Genéticos com
Chaves Aleatorias Tendenciosas (BRKGA) para o PPCCM, com a descrigao de cada um
dos seus componentes, como o decodificador utilizado pelas mesmas, e os experimentos
computacionais sobre um conjunto de instancias desenvolvidas para o problema. Também

é detalhada a busca em vizinhanca utilizada por uma das heuristicas.

4.1 Introducao

Em um Algoritmo Genético (AG), as solu¢oes para o problema tratado sao representa-
das pelos individuos (ou cromossomos), compostos por genes, reunidos em uma populagao
que evolui a cada geracao utilizando os operadores genéticos de cruzamento, para recom-
binar individuos e gerar novos, e de mutacdo, a fim de diversificar a nova populacao e
evitar que o processo de evolugao fique estagnado em 6timos locais. A qualidade (ou
aptidao) de cada individuo é dada pelo seu fitness, cujo valor é resultado da aplicagao de

uma funcgao de avaliacao sobre ele.

Com a intencao de evitar a producao de filhos invidveis a partir de pais viaveis no
processo de cruzamento, uma nova forma de representar um individuo foi proposta por
Bean [Bean, 1994| ao utilizar, para cada alelo (valor de um gene), um namero real gerado
aleatoriamente no intervalo [0,1), denominado chave aleatéria. Ele empregou, entao,
um algoritmo deterministico, que chamou de decodificador, para associar um individuo
definido por chaves aleatorias a uma solucao viavel do problema, sendo o valor de fitness

o custo dessa solucao. Esse novo método foi intitulado Algoritmos Genéticos com Chaves
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Aleatorias (Random Key Genetic Algorithms - RKGA, em inglés).

Nesse algoritmo, os P individuos da populacao inicial sao gerados de maneira rando-
mica. A populacao da geracao corrente k é dividida em um pequeno grupo de P, individuos
elite, que possuem os melhores valores de fitness, e o restante em P, individuos nao-elite.
Portanto, P = P, + P,.. Com o objetivo de evoluir a populacao, todos os individuos elite
sao copiados sem qualquer modificagao para a populagao da geracao k + 1, onde também
é introduzido um pequeno numero de P,, mutantes, que sao individuos gerados do mesmo
modo que aqueles da populacao inicial e com finalidade idéntica ao operador de mutacao
presente nos AGs. Os demais individuos (P — P, — P,,) sdo gerados pelo cruzamento
de outros dois, que sao selecionados aleatoriamente de toda a populagao corrente (elite e

nao-elite). A Figura 4.1 ilustra esse processo de evolugao da populagao.

Geragio k Geragao k+1

Mais aptos Cépia dos individuos elite
Pe

Pe

Cruzamento

Selecao dos P — Pe — Pm
Pne Pais °
Individuos
gerados —» Pm

Menos aptos \/ aleatoriamente

Figura 4.1: Processo de evolugao da populacao no RKGA.

A partir dessa estrutura estabelecida pelo RKGA, Ericsson et al. [Ericsson et al.,
2002| propuseram uma alteracdo na escolha de um dos dois individuos que serdo sub-
metidos ao cruzamento, dando origem aos Algoritmos Genéticos com Chaves Aleatérias
Tendenciosas (Biased Random Key Genetic Algorithms - BRKGA, em inglés). Assim, a
unica diferenca entre eles é que, no BRKGA, um desses individuos é escolhido de forma
aleatoria do grupo elite e outro do grupo nao-elite da populacao corrente, diferentemente
do algoritmo elaborado por Bean, onde ambos sao selecionados de toda a populacao.
Com essa modificacao foi possivel obter melhores resultados do que os apresentados pelo
RKGA [Gongalves et al., 2014].

Como o algoritmo de Bean, o BRKGA utiliza o método Uniforme Parametrizado de
Spears e Jong [Spears e Jong, 1991] como operador de cruzamento. Esse método recorre
a uma probabilidade p do descendente herdar o alelo do individuo proveniente do grupo
elite e 1 — p de herdar do outro individuo. Para o seu funcionamento, um ntmero real

r; aleatorio no intervalo [0, 1) é gerado para cada alelo i (i = 1,...,n) e comparado com
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a probabilidade p. Se r; < p, o alelo é herdado do individuo elite, sendo recebido do
individuo nao-elite caso contrario. A Figura 4.2 apresenta um exemplo da execucao desse
método, adotando p = 0.7 e n = 5. Nesse exemplo, o descendente herdou o alelo do

individuo elite para ¢ = 1,3 e 5.

Individuo elite URERECRCTANIRVANVWIRN O

Individuo nao-elite 1 0.48 0.87 0.16 0.61 0.31

Ntmero aleatério| 0.38 |0.76|0.490.82|0.53

Comparacdo com p = 0.7| < > < > <

Descendente 0.87 Jokeyq 0.61

Figura 4.2: Exemplo de cruzamento uniforme parametrizado.

Um ponto importante observado na estrutura desses dois algoritmos de chaves aleato-
rias é que ambos possuem componentes que sao totalmente independentes do problema a
ser solucionado. O tinico componente dependente é o decodificador, que é responsavel por
associar o algoritmo ao problema tratado, retornando uma solugao viavel para o problema
e o seu valor de fitness dado um individuo de chaves aleatorias. A Figura 4.3 apresenta o
fluxograma de um BRKGA, destacando os componentes que dependem e aquele que nao

depende do problema.

Na literatura sao encontradas aplicacoes do BRKGA aos mais variados problemas da
area de otimizagdo combinatoria, como em telecomunicagoes |Ericsson et al., 2002, Buriol
et al., 2007, Noronha et al., 2011, Resende, 2012|, carregamento de containers [Gongalves
e Resende, 2012, Gongalves e Resende, 2013, Zheng et al., 2015, planejamento de trafego
[Buriol et al., 2010, Stefanello et al., 2017|, otimizacdo em redes |[Fontes e Gongalves,

2007, Fontes e Gongalves, 2013, Andrade et al., 2015], entre outros.

A titulo de exemplo, Gongalves et al. [Gongalves et al., 2005 empregaram o BRKGA
para solucionar o Problema de Escalonamento Job Shop, que considera um conjunto de
n jobs e um grupo de m maquinas, onde cada job ¢ composto por uma sequéncia de
x operacoes. Toda operacao precisa ser executada em uma tnica maquina durante um
periodo de tempo fixo e ininterrupto, sendo que cada méquina processa, no maximo, uma

operacao por vez. As operacoes de um job tém que ser processadas em uma dada or-
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Independente do problema Dependente do problema

Gere n vetores l Decodifique cada

de cha}\/_eS vetor de chaves
aleatérias : aleatérias

Classifique as Ordene as solugdes Critério de
solucBes como pelos seus valores parada
elite ou ndo-elite de fitness satisfeito? @
Copie as solucdes Gere mutantes Combine soluc¢des
eIitg para a prégxima naproxima elite e ndo-elite e
populagao populacio aqung descenden}e
na préxima populagdo

Figura 4.3: Fluxograma de um BRKGA, destacando os componentes que dependem e
aquele que nao depende do problema (Extraida de [Gongalves e Resende, 2011a).

dem. Perante tais restri¢oes, o problema consiste em encontrar um escalonamento das
operacoes nas referidas maquinas que minimize o tempo de término da ultima operacao
completa do escalonamento, conhecido como makespan. Os testes realizados compara-
ram o algoritmo com outros 12 sobre um conjunto de 43 instancias da literatura. Os
experimentos revelaram que a heuristica proposta alcancou o melhor resultado conhecido
em 72% das instancias testadas, com um desvio relativo médio de 0.39% para a melhor

solucao conhecida.

Outra aplicacdo pode ser encontrada em |Gongalves e Resende, 2011b], onde os au-
tores apresentam uma heuristica hibrida que combina o BRKGA com um novo método
de posicionamento para solucionar o Problema de Empacotamento Bidimensional Nao-
guilhotinado Restrito. Nesse problema, uma quantidade fixa de pequenas pecas retan-
gulares tém que ser dispostas em um grande retangulo plano, de forma a maximizar o
valor das pecas alocadas. Especialmente nesse caso, as pecas nao podem sofrer rotacao e
devem ser posicionadas sempre com suas arestas paralelas as arestas do retangulo maior.
A heuristica proposta foi testada sobre um conjunto de 703 instancias da literatura e
comparada a outros quatro algoritmos. Os testes demonstraram que a heuristica ob-
teve excelentes resultados em termos de qualidade de solucao, apresentando robustez em

relacao aos demais algoritmos.

O BRKGA também foi empregado na resolugdo do Problema de Alocagao Téatica
de Bergos no trabalho de Lalla-Ruiz et al. [Lalla-Ruiz et al., 2014|. Este problema se
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manifesta no contexto de terminais portuarios e consiste em alocar navios aos bercos do
terminal, atribuindo perfis de guindastes para atendé-los no carregamento e descarrega-
mento de cargas. Os seus objetivos sao minimizar os custos do servigo de transporte de
cargas entre os navios ancorados e maximizar o total de perfis de guidastes designados a
eles. Esses perfis sao uma representacao do nimero de guindastes que serao atribuidos
para um certo navio enquanto ele estiver ancorado, tendo cada perfil um valor especifico
que reflete aspectos técnicos. Para avaliar a eficiéncia da heuristica desenvolvida, tes-
tes computacionais foram realizados com instancias elaboradas pelos autores, além das
classicas encontradas na literatura. Os resultados foram comparados aos de outros trés
algoritmos e aos reportados por um modelo matemético para o problema, que foi sub-
metido a um resolvedor. Os experimentos indicaram que o BRKGA foi capaz de prover
solucoes de alta qualidade em um reduzido tempo de processamento, bem como de poder
se adaptar a problemas de tamanho real. Em razao da sua flexibilidade em resolver ins-
tancias de diferentes dimensoes, também foi possivel verificar que o esforco computacional

requerido nao é altamente influenciado pelo tamanho das mesmas.

Em |Lalla-Ruiz et al., 2016] outro importante problema da area de otimizacao foi tra-
tado utilizando uma heuristica hibrida baseada no BRKGA. Considerando um conjunto
de n facilidades, que requer um certo fluxo simétrico entre cada par, e outro de n locali-
zagoes, com uma, distancia simétrica entre duas, o Problema de Alocacao Quadratica tem
como objetivo minimizar o custo derivado da distancia e fluxos entre as facilidades. Na
abordagem proposta, cada gene do individuo representa uma facilidade, que seré atribuida
a uma localizacao disponivel. Esta atribuicao serda dada seguindo a ordem das facilidades

apos os genes do individuo serem ordenados de maneira nao-decrescente pelas suas chaves.

Os testes computacionais foram realizados sobre um conjunto de instancias classicas
da literatura divididas em esparsas e densas. Foram analisados os resultados da heuristica
hibrida com outros dois algoritmos e com um BRKGA sem a utilizacao da vizinhanca.
A qualidade das solugoes da heuristica indica a sua grande eficAcia quando comparada
a um dos algoritmos, independentemente da densidade das instancias. Além disso, ela
apresentou, na média, uma performance melhor do que os demais métodos, sendo capaz
de retornar novas melhores solugoes para trés instancias. Um estudo adicional também
foi realizado, a fim de verificar o desempenho da aplicagao da busca em vizinhanca na me-
lhoria dos individuos elite. Nesse estudo, os autores comparam a heuristica implementada
com o0 BRKGA sem a vizinhanca e com duas versoes de um RKGA, uma com o emprego
da busca e a outra sem o seu uso. Os resultados demonstraram que a incorporacao da

busca melhorou a qualidade das solugoes e que os dois métodos que a utilizam apresenta-
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ram comportamentos semelhantes, embora com uma performance um pouco melhor para
a heuristica hibrida proposta. Essa pequena vantagem também é vista na convergéncia

para a melhor solugao, que acontece de maneira mais rapida do que o outro método.

Recentemente, Brandao et al. |Brandao et al., 2017| empregaram o BRKGA na reso-
lucdo do Problema de Escalonamento de Cargas Divisiveis em Multiplos Periodos. Uma
carga divisivel é uma quantidade de trabalho computacional que pode ser dividida e
distribuida de forma aleatéria entre processadores distintos para serem executadas em
paralelo. Esses processadores estao dispostos de modo que o processador central, denomi-
nado master, armazena e divide a carga em porgoes de tamanhos arbitrarios para serem
transmitidos aos demais P processadores, chamados de operarios. Dentre as restricoes
para o problema, o processador master pode enviar uma carga somente para um operario
de cada vez, que s6 pode iniciar o processamento da mesma apods recebé-la completa-
mente. Assim, com o objetivo de minimizar o makespan, o problema tratado consiste em
selecionar um subconjunto A C P de n operarios que executarao as cargas, chamados
operarios ativos; definir uma ordem, intitulada ordem de ativacao, pela qual as cargas
serdo transmitidas para cada um deles; definir o nimero m de periodos de transmissao
que serao utilizados; e decidir a quantidade de carga que sera transmitida para cada ope-
rario i € A em cada periodo k € {1,...,m}. A fim de investigar a qualidade das solu¢oes
obtidas pelo BRKGA, os resultados dos experimentos realizados, sobre um conjunto de
seis instancias, foram comparados aos de outras duas heuristicas para o problema, sendo
uma a melhor da literatura até entao. Os testes demonstraram que a heuristica proposta
encontra melhores solu¢oes mais rapido que os demais métodos e que converge para o me-
lhor valor antes de um segundo para todas as instancias, além de melhorar os makespans

em 11.68%, na média.

4.2 BRKGA Aplicado ao PPCCM

Como a associacao do BRKGA ao problema tratado é feita exclusivamente pelo deco-
dificador, sendo necessario para cada problema em particular, esse componente é essencial
para o éxito do algoritmo. Na heuristica baseada no BRKGA proposta neste trabalho
para a resolucao do PPCCM, o decodificador recebe um individuo de n chaves aleatorias,
onde cada gene corresponde a um dos n vértices do grafo tratado. Para alcancar uma
solucao viavel, inicialmente ele obtém uma determinada sequéncia dos vértices ordenando
de maneira nao-decrescente as n chaves. Em seguida, inicia a coloracao dos mesmos a

partir da ordem dada por essa ordenacao, utilizando a cor de menor custo. Quando mais
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nenhum vértice puder ser colorido com essa cor e considerando que ela nao serd novamente
empregada, a cor com o segundo menor custo é selecionada a fim de colorir os vértices
que ainda nao tenham cor associada. Essa estratégia prossegue até que todos os vértices
do grafo tenham sido coloridos, sempre respeitando a ordem dos mesmos de acordo com
as chaves e colorindo os adjacentes com cores distintas. Nessa abordagem, os individuos
mais aptos sao os que apresentam o menor valor de fitness, que é a soma dos custos das

cores atribuidas a cada vértice.

O Algoritmo 1 apresenta o pseudocodigo do decodificador proposto. A solugao S
que serd gerada € inicializada nas linhas 1-4. C; denota as classes de cores da solugao
S associadas as cores ¢ = 1,...,n, sendo indexadas na ordem nao-decrescente pelos seus
custos na linha 5. Na linha 6, os vértices sdo copiados para um conjunto auxiliar V', sendo
ordenados na linha 7 de maneira nao-decrescente pelas suas chaves aleatorias correspon-
dentes. A alocagao dos vértices nas classes de cores é realizada no lago 9-19 seguindo a
ordenac¢ao dos mesmos, iniciando pela classe de menor custo C; (linha 8). Se o vértice
que esta sendo analisado ainda nao foi colorido (linha 10), o mesmo ¢ atribuido a classe
atual C; na linha 11. No laco interno 12-16, os demais vértices sao alocados a esta mesma
classe, desde que ainda nao tenham sido coloridos e que nao sejam adjacentes aos vértices
pertencentes a ela. Uma vez que a classe de cor atual nao serd mais utilizada, a classe de
menor custo seguinte é selecionada (linha 17), a fim de colorir os vértices ainda sem classe
associada. Finalizada a alocacao de todos os vértices, o valor de fitness do individuo [ é

calculado na linha 20.

Na tentativa de aprimorar a qualidade dos individuos presentes no grupo elite, uma
variacao do BRKGA proposto, fazendo uso do mesmo decodificador, também foi desenvol-
vida. A nova heuristica, denominada BRKGA+RVNS, diferencia-se da primeira apenas
pela aplicacao de uma busca em vizinhanca sobre cada individuo que fard parte daquele
grupo na geragao seguinte, realizando a substitui¢ao do individuo caso encontre outro
com valor de fitness menor. A Figura 4.4 demonstra o processo de evolucao da populacao

dessa heuristica.

A estratégia de busca utilizada foi a Busca em Vizinhanca Variavel Reduzida (Re-
duced Variable Neighborhood Search - RVNS, em inglés) [Hansen e Mladenovié, 1999],
considerada uma modificagdo da metaheuristica Busca em Vizinhanca Variavel (VNS,
do inglés Variable Neighborhood Search) [Mladenovi¢ e Hansen, 1997], onde o procedi-
mento de busca local nao é aplicado. No RVNS, dado um conjunto de vizinhancgas Ny

(h=1,..., hma), uma solugdo S’ & obtida aleatoriamente em uma vizinhanga N, (S) de
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Algoritmo 1: Decodificador
Entrada: Individuo /.
Saida: Valor de fitness do individuo I.

1.5:(Ch,...,C);

2 parai=1,...,n faca

3 | Cie0;

4 fim para

5 Ordene as classes de cores da solugao S pelos seus custos: we, < we,,,, 1 <i < n;
6 V'V,

7 Ordene os vértices de V' pelas suas chaves aleatorias: IVJ_/ < IV]gH, 1< <m
8 1+ 1

9 para j=1,...,n faga

10 se Vj’géCk,lgszientéo

11 CZ — CZ U {V}l};

12 paral=j+1,....n:V/ ¢ Cy, 1 <k <ifaga

13 se V/ nao € adjacente a u, Yu € C; entao

14 ‘ Cz — Cz U {‘/Z};

15 fim se

16 fim para

17 141+ 1;

18 fim se

19 fim para

20 fitness < f(5);

uma, solucao corrente S. Se S’ for melhor do que S, a exploracao prossegue a partir de S’
e recomega pela primeira estrutura de vizinhanga N{(S’). Caso contrario, a busca avanga
para a vizinhanca seguinte Ny, 1(S) da solu¢do corrente. Quando todas as vizinhangas de
uma solucao forem exploradas, a busca retorna & primeira, reiniciando o processo. Essas
etapas acontecem até que um critério de parada seja satisfeito. A aplicacdo do RVNS para
a melhoria dos individuos elite também foi empregada por Ma et al. [Ma et al., 2017],
porém com uma estratégia diferente para a alteracao dos alelos, ao fazer somente um tipo

de operacao (mutagdo) em genes selecionados aleatoriamente.

No procedimento RVNS proposto neste trabalho, as estruturas de vizinhanca cor-
respondem a alteracoes nos alelos dos individuos, que sao as suas chaves aleatorias. O
Algoritmo 2 descreve esse procedimento, que recebe como entrada cada individuo elite .
Inicialmente, na linha 1 uma copia de I é efetuada, para que a mesma armazene o melhor
individuo I°** (com o menor valor de fitness) encontrado durante a busca. O lago externo
das linhas 3-24 permite que o processo de melhoria seja executado duas vezes. No lago
interno das linhas 522, este processo explora a vizinhanca do individuo 7*", que é uma

copia do melhor individuo até o momento (linha 6).
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Geragio k Geragio k+1

Mais aptos Aplicagdo do RVNS
Pe

Pe

Pai

elite
Cruzamento

P — Pe — Pm
Pne . ° ’
Pai

Individuos
Menos aptos gerados —» Pm
\ aleatoriamente

Figura 4.4: Processo de evolucao da populacao no BRKGA+RVNS.

Definido o individuo a ser examinado, acontece a busca na vizinhanca h (h =1,...,4)
do mesmo, que consiste em alterar o valor de h genes do individuo. Iniciando pela pri-
meira vizinhanga (h = 1), no lago das linhas 7-15 sao selecionados h genes aleatoriamente
e diferentes entre si para receberem, como alteracao, uma nova chave aleatéria na linha
11 ou a operagao (1 — o valor da chave atual) na linha 13. A escolha de uma dessas alte-
ragoes é feita com probabilidade igual a 0.5 (linha 10). Essas duas mudangas pretendem
proporcionar, ao vértice associado a cada gene, a variacao da sua posicao no processo de
coloracao, uma vez que este processo ocorre seguindo a ordenacgao das chaves do individuo.
Na primeira, essa posicao ¢ dada aleatoriamente pela geracao da nova chave. Na segunda
alteracao, a posicao é trocada utilizando a chave atual, podendo o vértice associado passar

a ser colorido no inicio ou no fim do processo, dependendo da sua posi¢ao original.

Apo6s as modificagoes em h genes de I*™, caso o seu valor de fitness seja menor
que o do melhor individuo (linha 16), este altimo é atualizado na linha 17 e a busca
reinicia sobre ele na primeira vizinhanca (linha 18). Caso contrario, a exploragao segue
para a vizinhancga seguinte na linha 20. Esse processo de busca acontece até que todas
as vizinhangas sejam examinadas (linhas 5-22), sendo retomado novamente na primeira
delas na linha 4 para a segunda e tultima repeticdo. Ao final, caso o melhor individuo
encontrado na busca seja mais apto do que o de entrada, este é atualizado nas linhas
25-26.

4.2.1 Experimentos Computacionais

Os experimentos realizados tém como finalidade ajustar os parametros das heuristicas
BRKGA e BRKGA+RVNS propostas, bem como avaliar a qualidade das solug¢oes produ-

zidas por elas sobre um conjunto de instancias. A biblioteca brkgaAPI [Toso e Resende,
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Algoritmo 2: RVNS
Entrada: Individuo I do grupo elite.
Saida: Individuo I.

1 IPest T

2 cont < 1;

3 enquanto cont < 2 faga

4 h « 1;

5 enquanto h < 4 faga

6 Jaux o ]best;

7 para i de 1 até h faga

8 g < aleatorio[l,n], g € Z e ainda nao escolhido;
9 a < aleatorio0, 1), a € R;
10 se a < 0.5 entao

11 ‘ 15" < mnova chave aleatoria;
12 senao

13 ‘ I 1= 17"

14 fim se

15 fim para

16 se f(I*™) < f(I"*') entao
17 ]best — Iaux;

18 h « 1;

19 senao

20 ‘ h < h+1;

21 fim se

22 fim enquanto

23 cont < cont + 1;

24 fim enquanto

25 se f(I”*%) < f(I) entao

26 ‘ I « IPest,

27 fim se

2015], que & um framework na linguagem C++ para o desenvolvimento de BRKGAs, foi
utilizada para implementar os dois algoritmos, sendo compilados com g+-+ versao 5.4.0.
O computador empregado nos testes dispoe de um processador Intel Core i7-4790K de
4 GHz, com 16 GB de memoéria RAM e sistema operacional Linux Ubuntu 16.04 LTS
64 bits. Para a avaliacao dos resultados obtidos nesses dois conjuntos de experimentos,
foram empregadas medidas de qualidade aplicadas em [Ribeiro et al., 2002|, [Resende

et al., 2010], [Pessoa et al., 2013], [Brandao et al., 2015], entre outros:

e Best: valor da melhor solucao obtida para uma determinada instancia, considerando

todas as execucoes até entao realizadas.

e Sum Best: ntimero de execucgoes para as quais o valor Best foi alcancado por uma
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determinada heuristica. Quanto maior o valor de Sum Best, melhor ¢ a performance

do algoritmo.

e #PBest: nimero de instancias para as quais o valor Best foi alcancado por uma
determinada heuristica. Quanto maior o valor de #Best, melhor é a performance

do algoritmo.

e Dev: desvio relativo entre Best e o valor da solugao obtida em uma execucao de
uma instancia por uma dada heuristica. Quanto menor o valor de Dewv, melhor é a

performance do algoritmo.

e Avg Dev: valor médio de Dev sobre todas as instancias e execugoes de uma dada

heuristica. Quanto menor o valor de Avg Dev, melhor é a performance do algoritmo.

e #Score: para cada instancia, representa o ntimero de algoritmos que encontram
uma solucao melhor do que uma heuristica especifica. Caso duas ou mais heuristicas
apresentem o mesmo resultado, todas recebem valor igual de #Score, indicando o

ntmero de algoritmos estritamente melhores do que todas elas.

e Score: soma dos #Score de uma heuristica especifica, sobre todas as instancias do

experimento. Quanto menor o valor de Score, melhor é a performance do algoritmo.

4.2.1.1 Ajustes de Parametros

Para esse experimento foram selecionados aleatoriamente 20 grafos de benchmarks
amplamente utilizados para o PCG, obtidos em http://mat.gsia.cmu.edu/COLORO3 e
http://mat.gsia.cmu.edu/COLOR/instances.html. Como no PPCCM os custos das
cores podem assumir qualquer valor real, para cada instancia foram gerados custos alea-
torios com valores inteiros variando de 1 até 1000, que, embora sejam inteiros, mantém
o problema diferente do PSC, uma vez que neste tais valores sao ntimeros naturais em
sequéncia. Foi empregado o gerador Mersenne Twister |[Matsumoto e Nishimura, 1998|

para a geragao de ntimeros aleatorios.

Os grafos utilizados sao apresentados na Tabela 4.1, acompanhados do nimero de
vértices (n), de arestas (m) e o valor 6timo (em negrito) de cada um. Este altimo foi
obtido aplicando o resolvedor CPLEX 12.8.0 com o modelo das Equagoes (3.1) a (3.4)
(Segao 3.2) e ajuste automético de parametros, adotando como critério de parada o tempo
méaximo de execucao de 3600 segundos. Este experimento foi realizado em uma méquina
virtual VMware ESXi 6.5 dispondo de 8 niicleos do processador Intel Xeon E5-2690 v4 2.6



4.2 BRKGA Aplicado ao PPCCM 39

GHz, 48 GB de memoria RAM e sistema operacional Linux Ubuntu 16.04 LTS 64 bits.
Para as instancias que o valor 6timo nao foi determinado pelo CPLEX dentro do limite
de tempo, a tabela informa o melhor valor conhecido para a instancia ao longo de todos

os experimentos realizados nesta tese, por todos os algoritmos e variantes desenvolvidos.

. Otimo ou
Instancia n

melhor valor
myciel3 11 20 3097
mycield 23 71 2068
queend 5 25 160 3960
2-Insertions 3 37 72 695
mycield 47 236 2212
queen? 7 49 476 2590
2-Fulllns 3 52 201 832
3-Insertions 3 56 110 914
huck 74 301 1967
jean 80 254 2307
david 87 406 2819
myciel6 95 755 1657
mugl00_ 25 100 166 3177
games120 120 638 4351
anna 138 493 1137
DSJC125.1 125 736 1081
DSJC250.1 250 3218 1941
DSJC500.1 500 12458 5848
2-Fulllns_ 5 852 12201 1319
DSJC1000.1 1000 49629 10587

Tabela 4.1: Instancias utilizadas para o ajuste de parametros das heuristicas BRKGA e
BRKGA-+RVNS.

Uma vez definida a quantidade de alelos de cada individuo, considerada igual ao
namero de vértices do grafo tratado (Secao 4.2), de acordo com Gongalves e Resende
[Gongalves e Resende, 2011al, os parametros necessarios para a execucao de um BRKGA
sdo: o tamanho da populacao (P), a quantidade de individuos que pertencerdo ao grupo
elite (P.), o nimero de individuos mutantes que serdo gerados (P,,) e a probabilidade do

descendente herdar um alelo do individuo elite no procedimento de cruzamento (p).

No entanto, para as heuristicas propostas, também ha a necessidade de anéalise do
parametro r, uma vez que sera utilizada a técnica de restarts (reinicializagoes), por reco-
nhecidamente contribuir com a reducao do tempo necessario para alcancar boas solucoes
em algoritmos randomizados [Resende e Ribeiro, 2011]. Em ambas as heuristicas, duas
estratégias de restarts foram testadas para a reconstrugao total da populagdo: (a) apos

r geracoes sem melhoria da melhor solucao e (b) apo6s r geracoes ininterruptas. Na
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Parametro Valor BRKGA BRKGA-+RVNS
P 100, 150, 200 150 150
P, 0.20xP, 0.25xP  0.25xP 0.20x P
P, 0.10xP, 0.20xP  0.10xP 0.10x P
p 0.70, 0.80 0.70 0.70
r 50(@) 50 100, 100®) 100@ 100®)

Tabela 4.2: Valores dos parametros utilizados para ajuste e os melhores valores obtidos
para as heuristicas BRKGA e BRKGA+RVNS.

Tabela 4.2, o valor utilizado para restarts é acompanhado dessas letras para indicar a

estratégia aplicada.

Os valores analisados dos parametros, especificados na segunda coluna da Tabela 4.2,
com excecgao dos valores para r, seguiram como referéncia Gongalves e Resende [Gongalves
e Resende, 2011a/, tendo a combinacdo dos mesmos originado 96 versoes de cada heuris-
tica. A fim de aplicar um critério de parada justo para todas elas, utilizou-se o tempo
méaximo de processamento, onde cada versao faz dez execugoes independentes (utilizando
sementes distintas para o gerador de ntimeros aleatorios) para cada instancia com tal li-
mite de tempo. Para a obtencao desse limite, a heuristica BRKGA-+RVNS foi executada
uma Unica vez para cada instancia por 200 geracoes, usando como parametros P = 200,
P, =0.25xP, P, = 0.10xP, p=0.70 e r = 50,

Na avaliagao dos resultados das versoes, foram adotadas as medidas Sum Best e Avg
Dev, utilizando como critério de qualidade um alto valor para a primeira e, em caso de
empate, o menor valor para a segunda. As Figuras 4.5 e 4.6 mostram graficos com os
valores dessas medidas para BRKGA e BRKGA+RVNS, respectivamente. Nesses graficos,
cada ponto corresponde a uma ou mais versoes, onde a coordenada de cada ponto sao
as duas medidas adotadas. Os pontos mais acima e a esquerda dos graficos representam
aquelas versoes que alcancaram os melhores valores para as referidas medidas. Observa-
se que, para o BRKGA, a versao que atingiu Sum Best = 160 e Avg Dev = 0.041 foi
a que obteve a melhor combinacao de parametros, segundo os critérios definidos. Esses
parametros sao identificados na terceira coluna da Tabela 4.2. Para o BRKGA-+RVNS,
a melhor versao alcancou Sum Best = 160 e Avg Dev = 0.034, tendo os parametros

apresentados na quarta coluna da Tabela 4.2.

4.2.1.2 Analise de Qualidade das Solugoes

Com o objetivo de avaliar a qualidade das solucoes apresentadas pelas heuristicas

BRKGA e BRKGA+RVNS, empregando os melhores parametros determinados nos ex-
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Figura 4.5: Resultados das medidas Sum Best e Avg Dev para as versoes de ajuste de
parametros do BRKGA. O critério de qualidade adotado foi apresentar um alto valor
para a primeira medida e, em caso de empate, o menor valor na segunda. Neste caso, a

melhor versao obteve Sum Best = 160 e Avg Dev = 0.041.
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Figura 4.6: Resultados das medidas Sum Best e Avg Dev para as versoes de ajuste de
parametros do BRKGA+RVNS. O critério de qualidade adotado foi apresentar um alto
valor para a primeira medida e, em caso de empate, o menor valor na segunda. Neste

caso, a melhor versdo obteve Sum Best = 160 e Avg Dev = 0.034.
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perimentos de ajuste (Tabela 4.2), foram geradas 50 novas instancias do mesmo modo
como descrito na Secao 4.2.1.1. Sobre cada uma delas, cada heuristica realizou dez exe-
cucoes independentes, tendo, como critério de parada, um limite de tempo maximo para
cada execucao, que foi obtido pela aplicagago do BRKGA-+RVNS uma tnica vez por 200
geracoes, utilizando os melhores parametros identificados na etapa de ajuste para essa
heuristica. Na tentativa de obter a solucao 6tima de cada instancia, novamente foi utili-

zado o resolvedor CPLEX, sob as mesmas condigoes especificadas na Segao 4.2.1.1.

Os resultados detalhados dos experimentos sao descritos nas Tabelas A.1 e A.2 (Apén-
dice A), que apresentam, para cada instancia, o nimero de vértices (n), de arestas (m),
o valor da melhor solucao conhecida ao longo de todos os experimentos realizados, por
todos os algoritmos e variantes desenvolvidos, e o valor da melhor solu¢ao alcancada pelo
CPLEX, sublinhando os valores das solugoes 6timas e sinalizando com o simbolo '—' caso
uma solugao viavel ndo tenha sido obtida no tempo maximo de execugao (3600 segundos).
As colunas seguintes indicam, para cada heuristica, o valor da melhor solucao obtida, in-
dicando em mnegrito quando este é igual ao melhor conhecido, a média dos valores das
solucgoes alcancadas nas 10 execugoes, o nimero de vezes que o melhor valor conhecido foi
atingido, o desvio relativo médio percentual entre o valor da solucao obtida e o valor da
melhor solucao conhecida, e o valor médio do indice da geracgao em que a melhor solucao
é encontrada. A tltima coluna indica o tempo (em segundos) utilizado como critério de

parada em cada execucao das heuristicas.

A Tabela 4.4 resume os resultados obtidos pelos dois algoritmos, apresentando para
cada um deles somente o melhor valor de solugao e o desvio relativo médio percentual.
Analisando essas informacoes é possivel observar que o CPLEX alcancou o melhor valor
conhecido para 18 instancias (em negrito), a solucao 6tima para 12 e nao obteve solugao
viavel, considerando o limite de tempo, para outras 13. Para seis instancias, as duas

heuristicas nao encontraram um valor de solucao tao bom quanto o encontrado pelo
CPLEX.

Além disso, verifica-se que BRKGA atinge o melhor valor conhecido para 16 instancias
e 0 Otimo para nove delas, enquanto BRKGA+RVNS atinge o melhor valor conhecido
para 14, sendo 10 6timos. Este tltimo alcancou o melhor valor conhecido em todas as
10 execucoes para seis instancias e BRKGA para quatro. A instancia em que ambos nao
atingiram o melhor valor conhecido e que apresentaram maior dificuldade para tal, foi a
mesma para os dois algoritmos (flat1000 60 0), porém BRKGA-+RVNS alcangou desvio
médio de 26.24%, inferior aos 28.86% do BRKGA.
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BRKGA BRKGA+RVNS

Avg Dev (%) 8.70 8.72
Sum Best 92 93
#Best 16 (9 6timos) 14 (10 6timos)
Score 16 21

Tabela 4.3: Comparativo da performance das heuristicas BRKGA e BRKGA+RVNS.

Analisando a performance de cada heuristica utilizando os resultados das medidas de
qualidade, resumidos na Tabela 4.3, pode-se verificar que BRKGA encontrou o melhor
valor conhecido em 92 execucoes e BRKGA-+RVNS em 93, tendo BRKGA encontrado tal
valor para duas instancias a mais. Nota-se também que este apresentou um desvio médio

de todo o experimento ligeiramente menor, bem como um valor de Score inferior.

Além dessas medidas, com o intuito de avaliar a distribuicao do tempo de processa-
mento de ambas as heuristicas, foram utilizados os graficos Time-To-Target |Feo et al.,
1994], ou TTT-Plots, que apresentam a probabilidade de um algoritmo encontrar uma
solucao de custo, no minimo, tao bom quanto um dado valor alvo, em um determinado
tempo. Para isso, seguindo a metodologia proposta em |Aiex et al., 2002 e |Aiex et al.,
2007, cada heuristica realiza 200 execugoes independentes sobre uma instancia, cada uma,
finalizada ao alcancar uma solucao de custo menor ou igual a um valor alvo ou ao atingir
um dado limite de tempo, quando este recurso for utilizado. Em seguida, os tempos dessas
execugoes sao ordenados de maneira nao-decrescente e a probabilidade p; = (i — %) /200
é associada ao i-ésimo tempo de processamento t;, permitindo entao plotar os pontos
d; = (t;,pi), parai = 1,...,200. Para a analise dos resultados, quanto mais a esquerda a
curva de um determinado algoritmo, melhor ele é, pois indica que o mesmo atinge o valor

alvo mais rapidamente.

Em conjunto a esses graficos, a fim de se obter um resultado numérico da compara-
cao das duas heuristicas, foi empregada a ferramenta tttplots-compare desenvolvida por
Ribeiro e Rosseti [Ribeiro e Rosseti, 2015], cujo suporte tedrico encontra-se em |[Ribeiro
et al., 2012]. Considerando dois algoritmos estocasticos A; e Ao, T4, (resp. Ta,) ¢ uma
variavel aleatoria continua que representa o tempo para atingir o alvo do algoritmo A;
(resp. As). Assim, a ferramenta informa a probabilidade Pr(T4, < T4,) de o algoritmo

Aj convergir de maneira mais rapida do que o algoritmo As.

Os TTT-Plots para a instancia 3-Fulllns 4 sao encontrados na Figura 4.7, onde foi
definido como alvo o valor da melhor solu¢do conhecida (2951) e 1000 segundos como

tempo de execu¢ao maximo. BRKGA consegue 100% de probabilidade de atingir o alvo
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em menos de seis segundos de processamento, enquanto BRKGA-+RVNS necessita de
16.3 segundos para obter a mesma probabilidade. Para essa instancia, BRKGA apresenta
Pr(Terrca < TBrixcarrvns) = 0.886. As Figuras 4.8 e 4.9 mostram, respectivamente,
que a populagao do BRKGA e do BRKGA+RVNS convergem para o melhor valor durante
0s quatro segundos iniciais de execucao, sendo possivel notar que nesse periodo o processo

de restarts de nenhuma das heuristicas foi executado.

Os resultados para a instancia inithx.i.1 sdao apresentados na Figura 4.10. Nesse ex-
perimento foi empregada como alvo a média dos valores das solugoes encontradas pelo
BRKGA (3937) e 1000 segundos como tempo maximo. BRKGA-+RVNS para essa instan-
cia atinge o valor alvo com probabilidade 100% em 209 segundos, sendo de 402.5 segundos
para BRKGA. Ainda, BRKGA+RVNS obteve Pr(Tprrxcarrvns < Tpriga) = 0.529, in-
dicando que tem maior probabilidade de convergir mais rapidamente para o alvo do que
a outra heuristica. Na evolucao da populacao durante 50 segundos iniciais de execucao,
BRKGA atingiu 3935 como custo de solugao (Figura 4.11), tendo BRKGA+RVNS alcan-
cado o melhor valor conhecido 3934 (Figura 4.12). No tempo analisado, somente para

BRKGA verificou-se a execucao do processo de restarts.

4.2.1.3 Conclusoes

Definindo um tempo de processamento fixo como critério de parada para as heuris-
ticas, verificou-se que a heuristica BRKGA encontrou solugoes ligeiramente melhores do
que BRKGA+RVNS, com valores, em média, 8.70% e 8.72%, respectivamente, acima dos
melhores valores conhecidos para as instancias examinadas. Embora BRKGA tenha en-
contrado estes valores para um maior nimero de instancias, BRKGA-+RVNS atingiu 10

valores 6timos, contra nove do BRKGA.

Esse equilibrio também foi observado nos experimentos para avaliar a probabilidade de
um algoritmo convergir de maneira mais rapida para um valor alvo. Percebeu-se também
que, apesar de o procedimento RVNS tornar mais custosa as geracoes do BRKGA+RVNS
em termos de tempo de execucao, ele foi capaz de auxiliar na redugao do ntimero de gera-
coes para a obtencao das solugoes. Desse modo, considerando os experimentos realizados
e os resultados obtidos, nao é possivel determinar qual heuristica apresenta-se superior a

outra, uma vez que ambas se alternam em qualidade dependendo da instancia tratada.

Assim, com o proposito de desenvolver um outro algoritmo para solucionar o PPCCM,
foi proposta uma heuristica de trajetoria que faz uso de duas estratégias de busca local

seguidas por um procedimento de path-relinking, sendo descrita no capitulo seguinte.
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BRKGA BRKGA+RVNS  Tempo de
o Melhor | CPLEX | Melhor V8 | Melhor V& | execucao
Instancia n m valor (3600 ) valor Dev valor Dev | heuristicas
(%) (%) (s)
schooll-nsh 352 14612 7647.00 | 13193.00 8999.00 20.47 9020.00 25.13 30.95
schooll 385 19095 7158.00 | 14687.00 7723.00 12.13 7733.00 14.87 36.03
3-Fulllns_4 405 3524 2951.00 | 2951.00 | 2951.00 0.00 | 2951.00 0.00 29.85
fpsol2.i.3 425 8688 3738.00 | 3738.00 | 3738.00 0.00 | 3738.00 0.00 35.15
le450 _5c¢ 450 9803 2610.00 | 2610.00 2642.00 2.34 2645.00  3.28 45.98
le450 _5d 450 9757 2700.00 3421.00 2710.00  1.59 2711.00 1.61 47.64
le450 15c¢ 450 16680 9556.00 | 11335.00 | 11131.00 17.05| 10683.00 12.94 55.07
le450 _15d 450 16750  10799.00 | 13011.00 | 12629.00 20.42 | 12441.00 15.93 54.71
le450 _25a 450 8260 9730.00 | 9730.00 | 10258.00 6.63 | 10485.00 8.33 38.63
le450 25b 450 8263 7564.00 | 7564.00 8028.00  7.08 8241.00 9.43 42.11
le450 _25¢ 450 17343 10447.00 | 11776.00 | 11940.00 14.77 | 11643.00 12.14 54.25
le450 _25d 450 17425  11676.00 | 12791.00 | 13074.00 12.74 | 12816.00 10.44 54.21
fpsol2.i.2 451 8691 4694.00 4694.00 4694.00 0.02 4694.00 0.03 38.47
4-Tnsertions_4 475 1795 999.00 999.00 1001.00  0.75 999.00 0.67 27.18
fpsol2.i.1 496 11654 8364.00 | 8364.00 | 8364.00 0.00 | 8364.00 0.00 28.50
DSJC500.5 500 62624  18333.00 | 22845.00 | 22935.00 25.72 | 21892.00 21.41 152.42
C500.9 500 112332  63147.00 | 77015.00 | 71823.00 17.21 | 74360.00 18.83 276.35
DSJC500.9 500 112437  65373.00 | 78869.00 | 72535.00 12.72 | 74194.00 15.28 290.00
DSJR500.1 500 3555 6253.00 | 6253.00 6646.00 6.87 6724.00 8.33 46.68
DSJR500.1c 500 121275  27395.00 | 35554.00 | 27575.00 1.30 | 27462.00 1.49 149.89
DSJR500.5 500 58862  54392.00 | 64892.00 | 56453.00 5.72 | 58269.00 9.05 191.11
2-Insertions_5 597 3936 2999.00 | 2999.00 | 2999.00 0.13 | 2999.00 0.29 58.76
1-Insertions_6 607 6337 1347.00 1367.00 | 1347.00 0.24 | 1347.00 0.30 63.88
inithx.i.3 621 13969 3633.00 | 3633.00 | 3633.00 0.02 | 3633.00 0.00 96.46
inithx.i.2 645 13979 4073.00 | 4073.00 | 4073.00 0.01 | 4073.00 0.00 95.31
ash331GPIA 662 4185 1513.00 | 1513.00 1537.00  3.19 1539.00  3.45 65.85
4-Fulllns 4 690 6650 2443.00 2443.00 2443.00 0.02 2443.00 0.07 82.17
will199GPTA 701 7065 4829.00 5428.00 4919.00  3.07 4948.00  3.87 79.01
inithx.i.1 864 18707 3934.00 | 3934.00 | 3934.00 0.05| 3934.00 0.01 106.34
qg.order30 900 26100  11940.00 | 11940.00 | 12084.00 1.38 | 12027.00 0.94 270.78
latin_sqr_ 10 900 307350  48822.00 — 57949.00 20.27 | 56677.00 16.76 620.77
wap05 905 43081 12593.00 | 14181.00 | 13803.00 10.17 | 14039.00 12.31 254.86
wap06 947 43571  18453.00 | 20434.00 | 19495.00 6.39 | 19905.00 8.23 267.59
DSJC1000.5 1000 249826  46790.00 — 58453.00 25.90 | 57538.00 23.49 920.84
flat1000_50 0 1000 245000  41915.00 51719.00 25.22 | 51032.00 22.90 934.90
flat1000_60_0 1000 245830  40468.00 — 51900.00 28.86 | 50629.00 26.24 908.07
flat1000_76_0 1000 246708  41729.00 — 51205.00 23.59 | 50425.00 21.34 920.24
DSJC1000.9 1000 449449 103906.00 — 130627.00 27.59 | 129308.00 25.12 1869.64
C1000.9 1000 450079 105709.00 — 134237.00 28.22 | 131064.00 25.47 1874.78
5-Fulllns 4 1085 11395 2212.00 | 2212.00 | 2212.00 0.00 | 2212.00 0.01 192.97
ash608GPIA 1216 7844 3859.00 4215.00 3859.00 0.42 3866.00 1.32 254.75
3-Insertions_5 1406 9695 1406.00 | 1406.00 | 1406.00 0.00 | 1406.00 0.00 262.40
abb313GPIA 1557 65390 4597.00 4597.00 0.63 4655.00  3.87 562.43
qg.order40 1600 62400  15280.00 — 15486.00 1.48 | 15438.00 1.13 1053.18
wap07 1809 103368  13380.00 — 15113.00 13.40 | 15205.00 14.24 1071.05
wap08 1870 104176  14497.00 15790.00 9.30 | 15855.00 10.43 1106.13
ash958GPTA 1916 12506 2886.00 3171.00 | 2886.00 0.71 2927.00 2.19 606.65
3-Fulllns_5 2030 33751 4082.00 5845.00 | 4082.00 0.09 | 4082.00 0.31 872.03
wap01 2368 110871  18719.00 20584.00 10.48 | 20917.00 12.41 1842.69
wap02 2464 111742  17439.00 — 18853.00  8.47 | 19145.00 10.28 1920.90

Tabela 4.4: Resultados resumidos das heuristicas BRKGA ¢ BRKGA+FRVNS.
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Figura 4.7: TTT-Plots para a instancia 3-Fulllns 4, com alvo 2951 e tempo maximo de

1000 segundos.
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Figura 4.8: Evolucao da populagdo do BRKGA para a instancia 3-Fulllns 4 durante os
quatro segundos iniciais de processamento. A heuristica encontrou o melhor valor
conhecido (2951) nesse periodo
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Figura 4.11: Evolugao da populacao do BRKGA para a instancia inithx.i.1 durante os
50 segundos iniciais de processamento. A heuristica nao encontrou o melhor valor
conhecido (3934) nesse periodo, tendo atingido 3935
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Figura 4.12: Evolucao da populacao do BRKGA+RVNS para a instancia inithx.i.1
durante os 50 segundos iniciais de processamento. A heuristica encontrou o melhor valor

conhecido (3934) nesse periodo.



Capitulo 5

Heuristica de Trajetoria com Busca Local
e Path-relinking

Neste capitulo serao descritos os componentes da heuristica de trajetoria com busca
local e path-relinking desenvolvida para solucionar o PPCCM, seu pseudocédigo, bem
como resultados dos experimentos da sua aplicacao em um conjunto de instancias teste e

da sua comparacao com os algoritmos BRKGASs propostos no capitulo anterior.

5.1 Introducao

A heuristica HBLPR utiliza duas estratégias de busca local, uma a fim de tornar viavel
a solucao recebida e outra para tentar uma melhoria na solugao corrente, seguidas pela
aplicacao de um procedimento de path-relinking. Uma perturbagao na solucao corrente
é realizada como técnica de diversificagao, sendo utilizada uma lista tabu para que essa
solucao nao seja novamente visitada na préoxima iteracao. Todos os componentes da

HBLPR sao detalhados nas secoes seguintes.

5.2 Funcao de Avaliacao

A fungdo de avaliagao utilizada na HBLPR foi obtida a partir de uma modificacao
nos custos das cores da fungao proposta por Helmar e Chiarandini [Helmar e Chiarandini,
2011], uma vez que no PPCCM esses valores sao reais. Considera-se uma solu¢do, qualquer
coloragdo S (propria ou ndo) que utiliza k cores e atribui exatamente uma cor para cada

vértice. A funcao que avalia a qualidade da solucao S, a qual deve ser minimizada, é dada
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por:
F(8) = > (we-|Ce| + M- |E(C,))), (5.1)

onde w, representa o custo atribuido a cor ¢ (w. € R), C. é o conjunto de vértices com
a cor ¢ (também chamado de classe de cor ¢), E(C.) conjunto de arestas conflitantes
(conectando vértices coloridos com a mesma cor ¢) e M um valor positivo. O primeiro
termo da Fungdo (5.1) calcula o custo da classe de cor ¢ de acordo com o niimero de
vértices coloridos com essa cor e o segundo termo, para garantir viabilidade, penaliza esse

valor caso existam arestas conflitantes nessa classe.

5.3 Procedimento para Obter a Solucao Inicial

De modo a obter uma solucao inicial nao totalmente aleatoria, mas ja com algumas
classes de cores, foi empregada a heuristica RLF (Recursive Largest First) |Leighton,
1979], que implementa uma estratégia similar a de encontrar conjuntos independentes

maximais, colorindo os vértices, uma classe de cada vez, seguindo uma estratégia gulosa.

Considerando que o algoritmo RLF sempre retornard uma coloracao propria dado
um grafo G, na HBLPR foi realizada uma adaptacao: quando restarem [0.10 x |V]]
vértices ainda nao coloridos, a execucao do RLF ¢é finalizada e tais vértices sao atribuidos
aleatoriamente as classes de cores anteriormente criadas. Com isso, a solugao gerada pode
ol nao ser uma coloracao propria. Essa geracao nao é completamente gulosa para poder
randomizar o algoritmo e o fator de randomizacao poderia ser de 100%, mas foi decisao

de projeto deixa-lo em 10%.

O pseudocddigo do procedimento de geragao da solucao inicial é apresentado no Al-
goritmo 3. O namero de classes de cores e o conjunto de vértices nao coloridos sao
inicializados nas linhas 1 e 2, respectivamente. O laco externo nas linhas 3-15 é execu-
tado enquanto o critério de parada nao for atingido. A cada iteracao, a proxima classe de
cor C) a ser gerada ¢ inicializada nas linhas 4-5. O vértice ainda nao colorido vy com o
maior ntumero de vértices adjacentes em V' é selecionado na linha 6 e atribuido & classe
de cor ' na linha 7. Todos os vértices nao coloridos adjacentes a vy sao movidos para
um conjunto temporario de vértices nao coloridos U na linha 8. O laco interno nas linhas
9-13 repete os passos acima para completar a classe de cor (Y, diferenciando apenas no
conjunto a partir do qual o vértice v selecionado terda o maior ntimero de vértices adjacen-
tes, que neste caso é o conjunto U. Os vértices nao coloridos temporariamente mantidos

em U, que nao podem ser movidos para a classe C}, sao novamente atribuidos a V' na
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linha 14 e uma nova iteracao do laco externo é executada. O algoritmo é interrompido
quando ha [0.10 x |V|] vértices sem cor. Neste momento, estes vértices sao atribuidos
aleatoriamente as classes de cores ja criadas na linha 16 e as demais sao inicializadas na

linha 17. Tipicamente, a solugao inicial obtida serd uma k-coloracao impropria.

Algoritmo 3: Solucaolnicial

Entrada: Grafo G = (V, FE).
Saida: Coloragao S : (Cy,...,Cy).

1 k<« 0

2 V'« V;

3 enquanto |V’| > [0.10 x |V|] faga

4 k<« k-+1;

5 Cl @;

6 Selecione o vértice vg € V/ com o maior nimero de vértices adjacentes em V';
7 Mova vg de V' para Cl;

8 U < todos os vértices em V' adjacentes a v;

9 | enquanto V' # () faga

10 Selecione o vértice v € V'’ com o maior nimero de vértices adjacentes em U
11 Mova v de V' para Cy;

12 U < UU todos os vértices em V' adjacentes a v;

13 fim enquanto

14 V'« U,

15 fim enquanto

Atribua aleatoriamente os vértices nao coloridos em V' as classes de cores
Cl, ceey Ck,
17 Ci+0,i=k+1,...,n;

-
=]

5.4 Busca Local por uma Coloragao Proépria

Considere S uma k-coloracao impropria, ¢ a classe de cor do vértice v € V (S(v) = 1),
j uma classe de cor diferente de i e N;(v) os vértices adjacentes a v na classe de cor
j. Na estrutura de vizinhanca utilizada por essa fase da heuristica HBLPR, denominada
Critical One-Move Neighborhood, aplicada em problemas de coloragao [Hertz e de Werra,
1987, Avanthay et al., 2003, Chiarandini et al., 2007, Bouziri e Jouini, 2010|, troca-se em
S a cor do vértice v de i para j, sendo 1 < j < k+ 1,7 # j, [Nj(v)| =0 e v um vértice
conflitante (adjacente a outro(s) vértice(s) na mesma classe de cor). O vértice v escolhido
para a troca é o que promove a maior reducao no valor da funcao de avaliagao de S. Além
disso, o par (v, j) nao pode estar classificado como movimento tabu, oriundo da Fase de
Perturbacao, que serd descrita na Secao 5.8. No entanto, esse movimento é permitido

se ele conduzir a uma solucao vizinha melhor do que a melhor solugao encontrada até o
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momento.

Um vértice conflitante v ¢ movido a cada vez que esse procedimento é empregado,
sendo ele executado até que uma coloragao propria seja alcancada, o que pode eventual-
mente aumentar o ntimero de cores utilizado por S, pois v sempre serd movido para uma
classe de cor que nao contenha vértices adjacentes a ele. Um exemplo de movimento na
vizinhanca Critical One-Move Neighborhood pode ser visto na Figura 5.1, onde o vértice
v7 é trocado da classe de cor C; para C}, uma vez que ele proporciona, entre os vértices
conflitantes, maior redugao no valor de avaliagao da solugao, considerando que wg; < wc,

e (v, C;) nao é tabu.

N

'f
e

/N
\

N

>< >

Figura 5.1: Exemplo de movimento na estrutura de vizinhanca Critical One-Move

Neighborhood

O custo de uma solucao vizinha S’, considerando a troca do vértice v da classe de cor

1 para a j, é€ determinado pela seguinte funcao:
F(8) = F(8) = (wi+ M- [N;(v)]) + wj, (5.2)

onde f(S5) é o custo da solugao S, w; é o custo da classe de cor ¢, M um valor positivo,
N;(v) é o conjunto de vértices adjacentes a v na classe de cor i e w; é o custo da classe de
cor j. Esse calculo retira do valor de S o custo da classe de cor atual de v, juntamente com
a penalidade gerada por suas arestas conflitantes, e adiciona o custo da classe de cor j,
uma vez que o mesmo serd movido para uma classe que nao contenha vértices adjacentes

a ele (|N;(v)| = 0), anulando assim o fator de penalizacdo para essa classe.

O Algoritmo 4 apresenta o pseudocodigo do procedimento de busca por uma coloracao
propria, que investiga cada vértice em conflito na solugao corrente impropria S e seleciona
o melhor movimento na vizinhanca Critical One-Move Neighborhood. A solucao S* denota
a melhor solucao propria ja encontrada pelo algoritmo. Spemor € @ melhor solucao vizinha

de S e é inicializada na linha 1. O laco externo nas linhas 2-11 investiga os movimentos
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originados por cada vértice em conflito na vizinhanca Critical One-Move Neighborhood.
Para cada vértice em conflito v investigado, a solugao corrente S ¢ temporariamente
copiada para a solucao vizinha S’ na linha 3 e a classe de cor i do vértice v em S é salva
na linha 4. No laco interno 5-10, os movimentos do vértice v para cada classe de cor j,
j=1,...,k+1: j # i, na qual seus vértices nao estejam envolvidos em conflitos com
v, sao avaliadas. O vértice v é temporariamente movido para a classe de cor j em S’ na
linha 6. Se (a) o movimento do vértice v para a classe de cor j ndo é proibido e a solugao
S” & melhor do que a melhor solu¢ao vizinha j& encontrada na vizinhanga de v ou (b) a
solugao S’ é estritamente melhor do que a melhor solugao encontrada S*, entdao a melhor
vizinha Spemor € atualizada na linha 8. O lago externo prossegue até que todos os vértices
em conflito sejam examinados uma vez. O procedimento retorna a melhor solucao vizinha

Smelhor cOM no minimo um conflito a menos do que a solucao inicial S.

Algoritmo 4: BuscaColoracaoPropria

Entrada: k-coloracao S e a melhor solucao S*.
Saida: Coloracao Smelhor-

Smelhor <~ S7
para cada vértice conflitante v € V faga

S+ S;
i+ S(v);
paraj=1,...,k+1:|N;(v)]=0,j #i faga
S'(v) < Js

se ((v,7) nao é um movimento tabu e f(S") < f(Smemor)) 0u f(S') < f(5%)
entao

| Smethor ¢ 55
fim se
10 fim para
11 fim para cada

N O O bk NN =

©

5.5 Busca Local para Melhoria da Solucao

Apods uma coloracao propria S ser encontrada pela aplicagao do movimento de vizi-
nhanca Critical One-Move Neighborhood, ocorre a Fase de Melhoria em S, que realoca
os vértices & menor classe de cor possivel na tentativa de reduzir o custo de .S, de modo
que a coloragdo permanega propria. Essa fase segue a seguinte estratégia [Helmar e Chi-
arandini, 2011]: as cores atribuidas aos conjuntos de vértices criados sdo rearranjadas,
de maneira que a cor de menor custo ¢ atribuida ao conjunto de vértices de maior car-

dinalidade e, seguindo a ordem nao-crescente de cardinalidade dos conjuntos, os demais
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vértices sao reposicionados nessa classe ou em uma nova, de modo que nao sejam criadas

arestas conflitantes.

A fim de exemplificacao, considere uma coloracao propria S; resultante da aplicacao
da vizinhanca Critical One-Move Neighborhood (Figura 5.2 (a)), onde w; = 1.2, wy = 2.4,
w3 = 3.8 e wy = 6.3, representam, respectivamente, os custos das classes de cores Cj,
i = 1,...,4, resultando em f(S;) = 22.5, de acordo com a Fungao (5.1). Seguindo a
estratégia de melhoria, a cor de menor custo (i = 1) é atribuida ao conjunto de vértices
de maior cardinalidade (vy4, v € v7). Em seguida, para cada vértice do segundo conjunto de
maior cardinalidade (v; e v3), ocorre a tentativa de reposicioné-lo na classe anteriormente
criada, porém ambos geram arestas conflitantes (v; é adjacente a vy e vg, e v3 é adjacente
a vy), fazendo com que os mesmos recebam a cor com segundo menor custo (i = 2).
Os demais conjuntos de vértices tém a mesma cardinalidade, o que torna indiferente por
qual vértice iniciar a tentativa de realocagdo (vs ou vy). Desse modo, procura-se realocar
o vértice vy nas classes ora criadas C; e (5. No entanto, em ambas ele origina arestas
conflitantes, ficando o mesmo na classe de cor (3, que tem custo wz = 3.8. Na tentativa
de realocar o vértice vy nas classes ja estabelecidas, percebe-se que arestas conflitantes
sao geradas nas classes C; e (5, mas nao na classe C3, uma vez que ele nao é adjacente
ao vértice vs. Assim, ele é inserido nesta ultima classe. Com isso, essa nova solucao s,
apresentada na Figura 5.2 (b), tem valor f(S;) = 16. Essa Fase de Melhoria retornara a
melhor solugdo (menor valor de funcdo de avaliagdo) entre a solugao gerada por ela e a

que é recebida como entrada.

@ (b)

Figura 5.2: (a) Solugao S; recebida como entrada com f(S;) = 22.5; (b) Solugao Ss
gerada pela fase de melhoria com f(S5;) = 16.

O Algoritmo 5 descreve em detalhes o procedimento de melhoria da solucao, que inicia
a partir de uma k-coloragao propria S. C; e C! denotam as classes de cores das coloragoes
S e S" associadas as cores i = 1,...,n, respectivamente. As classes de cores Cy,...,C) da

solucao S sao indexadas na ordem nao-crescente pelas suas cardinalidades na linha 1. O
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laco nas linhas 2-4 cria classes de cores inicialmente vazias C1, ..., C,, da nova solu¢ao S’
indexadas na ordem nao-decrescente pelos custos das cores. Os indices 7 e 7 sao utilizados
para visitar todas as classes de cores da solucao inicial e da nova solucao, respectivamente,
S e S’. A classe de cor de maior cardinalidade da solucao S é copiada para a classe de
cor de menor custo da solugdo S’ nas linhas 5 e 6. O lago nas linhas 7-24 realoca os
vértices de cada classe de cor restante C;, i = 2,...,C%, da solugao S. O laco nas linhas
8-23 é executado para cada vértice v € C;. O lago interno 10-16 determina a classe de
cor de menor custo C} € S’ sem qualquer conflito com o vértice v. Se nenhuma classe for
encontrada, uma nova CJ’»Jrl formada inicialmente pelo vértice v é criada nas linhas 18-19.
Caso contrario, v é movido para a classe de cor C} na linha 21. Finalizada a anéalise de
todas as classes de cor da solucao S, se a nova solugao S’ for melhor do que S, entdao S é

atualizada nas linhas 25 e 26.

5.6 Procedimento de Path-relinking

A técnica de path-relinking foi originalmente proposta por Glover [Glover, 1997| como
uma estratégia de intensificacao que explora trajetorias que ligam solugoes de boa qua-
lidade no espaco de busca, introduzindo caracteristicas de uma ou mais solucoes guia a
solugdo inicial [Glover et al., 2003]. O emprego bem sucedido dessa técnica pode ser ve-
rificado em [Bastos e Ribeiro, 2002|, [Ho e Gendreau, 2006], [Lai e Hao, 2015] e [Resende

e Ribeiro, 2016], entre outros.

Galinier e Hao |Galinier e Hao, 1999] introduziram uma nova medida para determinar
a distancia entre duas coloracoes, que interpreta as solucoes como particoes de vértices.
A distancia entre elas corresponde ao niimero de transformacgoes elementares necessarias
para transformar uma solucao em outra. Como cada transformacao elementar significa
mover um vértice de uma classe de cor para outra, Hamiez e Hao [Hamiez e Hao, 2002]
chamaram essa medida de Move Distance (MD). Na heuristica HBLPR, o valor MD entre
duas solucoes é utilizado para determinar se o path-relinking serd executado. Seguindo
Ribeiro e Resende [Ribeiro e Resende, 2012], essa execugao ocorrera somente se a distancia
MD entre a solugdo inicial (S™94l) e a solu¢do guia (S84?) for maior ou igual a quatro, o

que garante uma busca por solu¢oes melhores do que ambas.

O algoritmo para calcular a distancia Move Distance entre duas coloracoes proprias
é descrito na Secao 5.6.1. Este algoritmo serd utilizado na Secao 5.6.2 como parte do

procedimento empregado para executar o path-relinking entre duas coloragoes proprias.
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Algoritmo 5: MelhoriaSolucao
Entrada: k-coloragao S : (Ch,...,C).
Saida: Coloragao S.

1 Ordene as classes de cores da solugao S pelas suas cardinalidades: |C;| > |Cj41],
1<i<k;

2 parai=1,...,n faca

s | O«

4 fim para

5 ]+ 1;1¢ 1;

6 CJ/ — Ci;

7 parai=2,...,k faga

8 para cada v € C; faga

9 ¢ < 1; encontrado + falso;

10 enquanto ¢ < j e encontrado = falso faga
11 se v € adjacente a qualquer vértice em C) entao
12 ‘ 0+ 1;

13 senao

14 ‘ encontrado < verdadeiro;
15 fim se

16 fim enquanto

17 se encontrado = falso entao

18 Jj—7+1

19 C v

20 senao

21 | Gy« Cyu{v};

22 fim se

23 fim para cada

24 fim para

25 se f(S') < f(S) entdo
26 ‘ S« S

27 fim se

ot

5.6.1 Move Distance

Considerando duas coloracdes proprias Sicial ¢ S8uia a distancia Move Distance (MD)
entre elas corresponde ao nimero de vértices que devem ser movidos de uma classe de cor
de Smicial hara outra até que seja obtida uma solucido com os vértices organizados como
em S84 |Galinier e Hao, 1999, Hamiez e Hao, 2002).

O exemplo da Figura 5.3 ilustra o calculo da distancia Move Distance entre S™¢@l na
Figura 5.3 (a) e S na Figura 5.3 (b). A solucdo inicial é estabelecida como S’ = Sinicial
na Figura 5.3 (c), com Cy = {v1,v3,v5}, Co = {vg,v7} e C3 = {vq9,v6}. As classes de
cores de S8 sio examinadas em ordem nio-crescente de suas cardinalidades: C&"* =

{vs, vs,v7} é a primeira a ser examinada. Uma vez que os vértices vz e vs ji estao na classe
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C1 de S’, mas o vértice v7; ndo, vy devera ser movido para C7, gerando a primeira solucao
modificada S” na Figura 5.3 (d) (0 movimento do vértice vy é a primeira transformagao
elementar). Uma vez que as duas classes restantes de S8“® tém a mesma cardinalidade,
pode-se prosseguir a partir de qualquer uma delas. Seja C¥"* = {vy,v,} a proxima classe
a ser examinada. Vértices vy e vy estdo em classes distintas da solugao S’ na Figura 5.3
(d). O vértice vy ndo pode ser movido para a mesma classe de vy, porque os vértices vs, vs
e v7 ja estao definitivamente posicionados nesta classe. No entanto, uma vez que nao hé
outro vértice na segunda classe Cy de S’ exceto vy, 0 vértice v; pode ser movido para Cs,
resultando em uma nova segunda solugao modificada S’, mostrada na Figura 5.3 (e) (o
movimento do vértice v; ¢ a segunda transformacdo elementar). A tltima classe de S8ui
a ser examinada é C§Uia = {vg, v6}. Uma vez que todos os seus vértices estdo na classe Cs
da solucao ', eles nao tem que ser movidos. A Figura 5.3 (f) ilustra a solucao final S,

onde os vértices estao organizados como em S8"?.

O Algoritmo 6 apresenta o pseudocodigo do procedimento que calcula a distancia
Move Distance entre S™¢2! ¢ Sevia Denota-se por Citicial o OB 45 clagses de cores das
solucoes Smicial ¢ Gewia i — 1 . A solucdo inicial S’ = Sl & estabelecida na linha
1 e serd progressivamente modificada pelas transformacoes elementares, até que todos os
vértices estejam organizados como em S8, O conjunto A é inicializado na linha 2 e
contém os vértices que estdo definitivamente organizados como em S8%2. O conjunto A é
inicializado na linha 3 e contém os vértices que serao movidos de uma classe para outra.
As classes de cores em S8Y? s30 indexadas em ordem nao-crescente de suas cardinalidades
na linha 4. Cada uma delas sera tratada em uma iteracao do lago externo nas linhas 5-27.
A cada iteracdio, a maior classe de cor ainda nio tratada C#"* guiara os movimentos dos
vértices que ainda estao em suas posigdes incorretas em S’. Uma particao P; dos vértices
em C®™ ¢ criada na linha 6, com cada conjunto P; contendo os vértices C; N OB
C; € S'. Os conjuntos P; sdo indexados em ordem n&o-crescente de suas cardinalidades
na linha 7. Um indicador de movimento é fixado como falso na linha 8. Cada conjunto
P;, 3 =1,...,n, é analisado no lago interno nas linhas 9-18. Na linha 10, é verificado
se os vértices em C®"™\ P; podem ser movidos para a classe de cor C; € §'. Isto sera
possivel se (a) os vértices em P; e C; coincidem ou (b) os vértices em C; \ P; ainda
ndo estdo definitivamente organizados como em S8%?. Sendo possivel a movimentacio,
o indicador de movimento ¢ atualizado na linha 11 e todos os vértices em CE**\ P; sdo
movidos para a classe C; na solucdo S’ nas linhas 12-14 e inseridos no conjunto A de
vértices movimentados na linha 15. Todos os vértices em C#™* sdo inseridos no conjunto

A na linha 16, uma vez que todos eles agora estao organizados em S’ como em S8, Se
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nenhum movimento possivel é encontrado, os vértices em C£"™* sdo movidos para uma
classe vazia nas linhas 19-26. Apos todas as classes de cores de S8"* serem examinadas,

a distancia MD é determinada na linha 28.

Observou-se que a distancia Move Distance (MD = |Al) calculada pelo Algoritmo 6
apresenta, na verdade, uma aproximacgao no ntamero de transformacoes elementares que
sdo necessarias para transformar S™al em S8 Jsto acontece porque o procedimento
calcula o nimero de vértices que tém que ser movidos entre as classes de cores de Smicial
até os vértices do grafo serem organizados como em S8 mas ndo necessariamente nas

mesmas classes de cores.

Slnmal Sgula

Slnlmal

) Inicio dos calculos S" = ) 12 solu¢ao modificada S”:

C’§ula examinada e v; movido
para 01 em S’

) 22 solu¢ao modificada S”: f) Solugao final S” com as mesmas classes de
Clgm examinada e v; movido Sevia; CBY2 ovaminada, sem necessidade
para Cy em S’ de movimentos

Figura 5.3: Solugdes S™Mical ¢ S84a com MD = 2 (vértices v; e v; sa0 movidos).
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Algoritmo 6: MoveDistance

Entrada: Coloraciao Sl e coloracio 58U,
Saida: Coloragao S’, conjunto A de vértices movidos e Move Distance (MD).

1 5 :(CY,...,C,) « Sinical,

2 A<+ 0

3 A<« (;

4 Ordene as classes de cores da solucao S&'1# pelas suas cardinalidades:

OB > ORI, 1 < i < s
parai=1,...,n: C"* #£ () faca

5
6 Crie uma particio P; = C; N C®™ j =1,...,n, dos vértices em V="
7 Ordene os conjuntos P; pelas suas cardinalidades: |P;| > |Pj41|,1 < j <mn;
8 move < falso;

9 paraj=1,...,n: P; # 0 e move = falso faga

10 se P, =C; ou (C;\ P;)NA=( entao

11 move < verdadeiro;

12 para cada v € C¥"*\ P, faca

13 | S'(v) 7

14 fim para cada

15 A+ AUCE™\ Py

16 A AU CE™,

17 fim se

18 fim para

19 se move = falso entao

20 l < argmin{w;,j=1,...,n:C; =0}

21 para cada v € C®" faga

22 | S'(v) ¢

23 fim para cada

24 A+ AUCH™,

25 A AUCE™,

26 fim se

27 fim para
28 MD «+ |Af;

5.6.2 Path-relinking

O procedimento de path-relinking entre duas solucoes na HBLPR ser& sempre prece-
dido pelo célculo da distancia Move Distance entre elas pelo Algoritmo 6, que também
retorna uma solucdo S’ com os vértices organizados como em S8 ¢ o conjunto A dos
vértices para serem movidos entre as classes de cores até que S’ seja obtida. Importante
observar que o path-relinking proposto apresenta alteracao na sua concepcao a fim de

eliminar as simetrias naturalmente geradas nos problemas de coloracao.

O Algoritmo 7 descreve o pseudocddigo do procedimento de path-relinking. A solu¢ao
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corrente SP*" e a melhor solucio S visitada pelo path-relinking sdo inicializadas com
Sinicial nag Jinhas 1 e 2, respectivamente. O laco externo nas linhas 3-18 é executado
enquanto a solucao final S’ nao é alcancada, ou seja, enquanto o conjunto de movimentos
A nao esta vazio. O melhor vértice para ser movido é determinado nas linhas 4-12. O
laco interno nas linhas 5-12 investiga todos os possiveis movimentos. Na linha 7, cada
vértice disponivel v é provisoriamente movido para a mesma classe de cor que ele ocupa
na solucao final S’. O melhor movimento é atualizado nas linhas 8-11. Uma vez que o
melhor vértice v* para ser movido nesta iteracdo foi determinado, a solucdo corrente SPh
é atualizado na linha 13 e o conjunto de movimentos ¢ atualizado na linha 14. Se a nova

solucdo corrente melhora a melhor solucdo S encontrada pelo path-relinking, entdo S é

atualizado nas linhas 15 e 16.

Algoritmo 7: PathRelinking

Entrada: Coloraciao S™¢al coloracio 58", coloracdo S’ e o conjunto A de
movimentos.

Saida: Coloracdo S.

Spath — SlnlClal;

-

2 g — Sinicial;

3 enquanto A # () faca

4 fmm < 0,

5 para cada v € A faga

6 Gtemp Spath;

7 Stemp () «— S'(v);

8 se f(S*™P) < f.:, entao
9 fmm < f(Stemp);
10 v* — v;

11 fim se

12 fim para cada

13 SPath(p*) <— S'(v*);

14 A+ A\ {v*};

15 | se f(SP*) < £(S) entdo
16 ‘ S <« Gpath

17 fim se

18 fim enquanto

5.7 Procedimento de Atualizacao da Populacao Elite

A heuristica HBLPR faz uso de uma populagao com um ntmero fixo de solugoes de
boa qualidade, chamada populacao elite. Essa populacao é preenchida com as solucoes

proprias encontradas enquanto seu nimero maximo de solugoes possivel nao for atingido,



5.8 Procedimento de Perturbacao 61

passando a ser atualizada a partir do momento que este valor é alcancado. Para isso, a
solugdo corrente (S) substitui a pior solu¢ao (de maior custo) da populagao se S nao for
similar a qualquer solucao da populacao e caso tenha custo menor do que a pior solucao,
sendo duas solucoes consideradas estruturalmente similares se a Move Distance entre elas

for menor do que [0.10 x |V||, seguindo Lai et al. [Lai et al., 2014].

O pseudocodigo para o procedimento de atualizacao da populagao elite é apresentado
no Algoritmo 8. A solucao elite de maior custo Spaor ¢ determinada na linha 1. Um
indicador de similaridade é inicializado com falso na linha 2. O la¢o nas linhas 3-8
determina se a solucao S é similar a, no minimo, uma solucao elite Sgje, Caso em que
¢ atribuido verdadeiro ao indicador na linha 6. Se S nao ¢ similar a qualquer solucao

Selite € € € € melhor do que Shaior, 8 populacao elite é atualizada na linha 10.

Algoritmo 8: AtualizacdoPopulacaoElite
Entrada: Coloracao S e a populacao elite £.
Saida: Populacao elite &£.
Seja Smaior a solucao de maior custo em &;
similar <— falso;
para cada S € € e similar = falso faga

MoveDistance(S, Seiite, S', A, MD);

se MD < |0.10 x |V|] entao

‘ similar <— verdadeiro;

fim se
fim para cada
se similar = falso e f(S) < f(Smaior) €NtAO

‘ &<+ (g\Smaior) U S;

fim se

©C 00 N O Ok e -

-
- O

5.8 Procedimento de Perturbacao

A estratégia de diversificacao utilizada pela heuristica HBLPR, com a intencao de
explorar novas regides do espaco de solucgoes, foi realizar uma técnica de perturbacgao na
solucao corrente S. Essa técnica consiste em selecionar aleatoriamente, a partir de uma
k-coloracao propria, um determinado nimero de vértices do grafo e realocé-los, também
de maneira aleatoria, em k + 1 classes de cor, se k < |V|, ou em k classes, caso contrario,
sendo a nova classe de cada vértice distinta da atual e k£ o niimero de classes utilizadas

por S. Com isso, a solucao resultante pode ser uma coloracao prépria ou impropria.

Além disso, para auxiliar a exploragao desse espaco evitando a repeticao de S na

proxima iteracao, foi utilizada uma lista tabu de tamanho fixo, onde os vértices realocados,
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juntamente com as suas cores anteriores a perturbacao, sao inseridos. Dessa forma, na fase
de busca local para obten¢do da uma coloragao propria (Se¢ao 5.4) da iteragdo seguinte,
tais vértices nao podem retornar as suas cores se estiverem presentes na lista, exceto se
esses movimentos produzirem uma solugao melhor do que a melhor encontrada até entao.
Os vértices sao inseridos na lista somente neste procedimento de perturbacao, sendo ela

apenas consultada na fase de busca por uma coloracao propria e esvaziada ao fim desta.

O Algoritmo 9 descreve em detalhes o procedimento de perturbacao. O laco nas linhas
1-13 aplica perturbacoes a exatamente numPerturbacoes vértices da k-coloracao propria
inicial. Na linha 2 um vértice v ainda nao perturbado é selecionado. O indice da classe
de cor atual ¢ do vértice v é armazenado na linha 3. O laco interno nas linhas 4-10 é
repetido até que uma nova classe de cor 7, distinta de 7, seja determinada e atribuida ao
vértice v na linha 11. O movimento associado a atribuir novamente a classe de cor i ao

vértice v é inserido na lista tabu na linha 12.

Algoritmo 9: Perturbagao

Entrada: k-coloragao S e o numero de perturbacoes numPerturbacoes.
Saida: Coloragao S.
para z = 1,..., numPerturbacoes faga
v < aleatorio[1, |V|], v ainda ndo selecionado;
i< S(v);
repita
se k < |V| entao
| j « aleatorio[l, k + 1J;
senao
| j < aleatorio[1, kl;
fim se
10 até i £ j;
11 S(v) 73
12 Insira na lista tabu (v, 7);
13 fim para

C G N O bk W N =

5.9 Pseudocoddigo da Heuristica HBLPR

O Algoritmo 10 descreve em detalhes a heuristica HBLPR. Na linha 1, o algoritmo
ordena as cores de maneira nao-decrescente pelos seus custos. Uma solucao inicial S é
gerada na linha 2 pelo Algoritmo 3 — Solu¢aolnicial(G,S) — descrito na Segao 5.3. A
melhor solu¢do S* e seu custo f(S*) sao inicializados na linha 3. O contador de solu¢oes
elite e a populacao elite sao inicializados na linha 4, sendo ambos atualizados na linha

6 caso a solugao inicial S seja uma coloracao propria. O laco externo nas linhas 8-34
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é executado enquanto um critério de parada nao é satisfeito. Se a solucao corrente S é
uma coloracao propria, o lago nas linhas 9-12 ¢é ignorado. Caso contrario, o Algoritmo 4
— BuscaColora¢aoPripria(S, S*, Smemor) — apresentado na Se¢ao 5.4 é aplicado na linha
10 para reduzir a inviabilidade da solugao corrente S, que é substituida pela sua solucao
vizinha Spemer Na linha 11 até se tornar viavel. A lista tabu com os movimentos proibidos
é esvaziada na linha 13. O Algoritmo 5 — MelhoriaSolu¢ao(S) — apresentado na Se¢ao 5.5

é aplicado a coloragao propria corrente S na linha 14 na tentativa de melhora-la.

Na linha 15 é verificado se a populacao elite £ estd completa. Caso nao esteja, o
contador de solucoes elite é atualizado e a solucao corrente S é simplesmente inserida
na populacao na linha 16. Caso contrario, a solucao S é utilizada na linha 18 para
atualizar a populacdo € empregando o Algoritmo 8 — AtualizagaoPopulagdoFElite(S, E)
— apresentado na Secao 5.7. O procedimento de path-relinking é aplicado somente se a
populacao elite apresentar um minimo de cinco solucoes. Neste caso, uma solucao elite
S, é aleatoriamente selecionada da populacdo na linha 21. A solucao S™¢al & determi-
nada como a melhor entre S e S, na linha 22 e S8%® como a outra. O Algoritmo 6
— MoveDistance(S™¢al gevia 67 A MD) — descrito na Se¢ao 5.6.1 é aplicado na linha
23 para calcular a distancia MD entre SMicial ¢ Sguia  as5im como a soluciio S’ com o
conjunto de vértices organizados como em S8 e o conjunto A de vértices que serdo
efetivamente movidos de uma classe para outra. Resende e Ribeiro [Resende e Ribeiro,
2016] mostraram que o path-relinking deve ser aplicado entre duas solugdes somente se
o nimero de transformagcoes elementares entre elas é maior ou igual a quatro. Por-
tanto, na linha 24 é descartada a aplicacao do path-relinking se a distancia MD entre
as solucoes Simicial o Geuia for menor do que quatro. Caso contrario, o Algoritmo 7 —
PathRelinking (S™icial Gevia ' G7 A ) — apresentado na Se¢do 5.6.2 é aplicado na linha
25 e a solucdo corrente S é atualizada na linha 26 com a solucdo S obtida pelo path-
relinking e, novamente, submetida ao Algoritmo 5 — MelhoriaSolugdo(S) — na linha 27.
A melhor solucao S* é atualizada nas linhas 30-31 e na linha 33 o Algoritmo 9 — Per-

turbacao (S, numPerturbacoes) — descrito na Segao 5.8 é aplicado para gerar uma solucdo

perturbada para a iteracao seguinte.

5.10 Experimentos Computacionais

Para a heuristica HBLPR proposta, foram realizados experimentos computacionais
para o ajuste de parametros, bem como para avaliar a qualidade das solucoes produzidas

por ela sobre um conjunto de instancias. A mesma foi implementada utilizando a lingua-
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Algoritmo 10: Heuristica de Trajetoria com Busca Local e Path-relinking
(HBLPR)

Entrada: Grafo G = (V| E) e os custos w das cores.

Saida: Coloragao propria S*.

1 Ordene as cores pelos seus custos: w; < w41, 1 <7< n;
2 Solugaolnicial (G, S);

3 5% < 85 f(S7) < f(9);

4 contElite + 0; £ < 0;

5 se S € uma coloracao propria entao

6 | contElite < contElite + 1; € « {S};

7 fim se

8 enquanto critério de parada nao for satisfeito faga
9 enquanto S nao € uma coloracio propria faga
10 BuscaColoragaoPropria(S, S*, Smelnor);

11 S <+ Smelhor;

12 fim enquanto

13 Esvazie a Lista Tabu;

14 MelhoriaSolugao(S);

15 se contFElite < maxElite entao

16 | contElite < contElite + 1; € + £ U {S};

17 senao

18 ‘ AtualizacaoPopulagaoElite(S, £);

19 fim se

20 se contElite > 5 entao

21 Selecione uma solucao S, € £ aleatoriamente;
22 Simicial «melhor{S, S.}; S84 < pior{S, S.};
23 MoveDistance(S™icial Gewia G/ A MD);

24 se MD > 4 entao

25 PathRelinking (S™icial | Gevia G/ A G

26 S« S;

27 MelhoriaSolucao(S);

28 fim se

29 fim se

30 se f(S) < f(S*) entao

s || S e S (8 « f(S);

32 fim se

33 Perturbacao(S, numPerturbacoes);

fim enquanto

«w
=

gem C e compilada com gcc versao 5.4.0. Em todos os testes, o valor de M, utilizado nas
Funcgoes 5.1 e 5.2, seguiu a estratégia de Helmar e Chiarandini |[Helmar e Chiarandini,
2011] para o PSC, ao empregar os custos das cores para determinar esse valor, que deve
ser grande o suficiente para descartar a presenca de arestas conflitantes em qualquer so-

lugao de minimizacao. Uma vez que o PPCCM admite valores reais para tais custos, esse
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valor foi definido como M = (|Wmaz| + |Wmin| + 10), onde w0 = max{w. : c=1,...,n}
e Wpin = min{w, : ¢ = 1,...,n}, sendo w, o custo da classe de cor c. O ambiente

computacional empregado nesses experimentos foi o mesmo descrito na Secao 4.2.1.

5.10.1 Ajustes de Parametros

Uma vez que todos os vértices realocados na Fase de Perturbacio (Se¢ao 5.8) serdo
inseridos na Lista Tabu, um parametro a ser determinado é o tamanho dessa lista, que
ao mesmo tempo indica o nimero de vértices a serem perturbados. Outro parametro que
necessita ser ajustado é o tamanho da Populagao Elite (Segdo 5.7), que corresponde &

quantidade de individuos que farao parte desse conjunto.

A Tabela 5.1 apresenta, na segunda coluna, os valores determinados para o ajuste
desses dois parametros, cuja combinagao deu origem a 18 versoes de teste do algoritmo.
As instancias utilizadas nesses testes e o tempo maximo de processamento, aplicado como
critério de parada para cada uma das dez execucgoes independentes de cada versao, foram
os mesmos empregados nesta etapa de ajuste das heuristicas BRKGA e BRKGA+RVNS,
todos detalhados na Secao 4.2.1.1.

Como para os BRKGASs, na avaliacao dos resultados dessas versoes, foram adotadas as
mesmas medidas Sum Best e Avg Dev, utilizando como critério de qualidade um alto valor
para a primeira medida e, em caso de empate, o menor valor para a segunda. O grafico
da Figura 5.4 apresenta os valores dessas medidas obtidos por cada uma das versoes.
Os pontos mais acima e a esquerda do grafico representam aquelas que alcancaram os
melhores valores para as referidas medidas. Pode-se observar que a versao que atingiu
Sum Best = 120 e Avg Dev = 0.013 foi a que obteve a melhor combinacao de parametros,

apresentados na ultima coluna da Tabela 5.1.

Parametro Valores avaliados HBLPR

n|, |log,n|, |10 + log,,n|,
Lista Tabu L], llogion), | 8107 |10 + logyo 7
[0.03 x n], [0.05 x n], [0.10 x n]

Populacgao Elite 10, 20, 30 30

Tabela 5.1: Valores dos parametros utilizados para ajuste e os melhores valores obtidos
para o algoritmo HBLPR.
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Figura 5.4: Resultados das medidas Sum Best e Avg Dev para as versoes de ajuste de
parametros do HBLPR. O critério de qualidade adotado foi apresentar um alto valor
para a primeira medida e, em caso de empate, o0 menor valor na segunda. Neste caso, a
melhor versao obteve Sum Best = 120 e Avg Dev = 0.013.

5.10.2 Analise de Qualidade das Solucoes

A fim de avaliar a qualidade das solucoes produzidas pela heuristica HBLPR, empre-
gando os melhores valores de parametros identificados na etapa de ajuste, foram utili-
zadas as 50 instancias desenvolvidas para os experimentos com as heuristicas BRKGA e
BRKGA+RVNS, bem como os resultados obtidos pelo CPLEX para as mesmas. Sobre
cada instancia, a HBLPR realizou dez execugoes independentes, utilizando igualmente,
como critério de parada, o limite de tempo méaximo aplicado por aquelas duas heuristicas
para cada execugao. O processo de desenvolvimento dessas instancias e da obtenc¢ao desses

limites de tempo, assim como dos resultados do CPLEX, sao descritos na Secao 4.2.1.2.

Os resultados detalhados dos experimentos sao apresentados na Tabela 5.2, que for-
nece, para cada instancia, o nimero de vértices (n), de arestas (m), o valor da melhor
solucao conhecida ao longo de todos os experimentos realizados, por todos os algoritmos e
variantes desenvolvidos, e o valor da melhor solucao obtida pelo CPLEX, sublinhando-se
os valores das solucoes 6timas e sinalizando-se com o simbolo '—' caso uma solucao viavel
nao tenha sido encontrada no tempo maximo de execugao (3600 segundos). As colunas se-

guintes descrevem o valor da melhor solu¢ao obtida pela heuristica, indicando em negrito
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quando este é igual ao melhor conhecido, a média dos valores das solucoes alcancadas nas
dez execucoes, o nimero de vezes que o melhor valor conhecido foi alcancado, o desvio
relativo médio percentual entre o valor da solucao obtida e o valor da melhor solucao
conhecida, e o indice médio da iteracao na qual a melhor solucao foi encontrada. A 1l-
tima coluna indica o tempo (em segundos) aplicado como critério de parada para cada

execuc¢ao da heuristica.

Analisando-se os resultados, pode-se observar que HBLPR alcancou o melhor valor
conhecido para 38 das 50 instancias tratadas, tendo encontrado a solucao 6tima para sete
delas. Em trés instancias, tal valor foi atingido em todas as dez execucoes, sendo que
para duas delas (le450 5¢ e 3-Insertions _5), o algoritmo convergiu na primeira iteragao.
A instancia em que o mesmo nao encontrou o melhor valor conhecido e apresentou maior
dificuldade para isso foi abb313GPIA, onde obteve um desvio médio de 6.13%. Esses
experimentos mostraram ainda que os valores das solucoes encontradas pela heuristica sao,
em média, apenas 1.08% acima dos melhores valores conhecidos para todas as instancias

examinadas.

Assim como os BRKGAS, a heuristica foi submetida a testes para analisar a distribui-
¢ao do seu tempo de execucao na busca por uma solu¢ao com um valor tao bom quanto um
determinado alvo. As instancias utilizadas para mostrar esse desempenho foram inithx.i.1,
qg.order30 e gg.orderd0, todas com alvos 0.10% e 0.15% acima dos melhores valores co-
nhecidos para as mesmas (3934, 11940 e 15280, respectivamente). Os TTT-Plots para
essas instancias sao apresentados nas Figuras 5.5 a 5.7, onde pode ser observado que
a distribuicao empirica se apresenta abaixo da distribuicao teérica para probabilidades
superiores a 80%, sendo um indicativo de estagnacao no aprimoramento das solugdes,
segundo Stiitzle e Hoos [Stiitzle e Hoos, 1999]. E possivel que esse comportamento ocorra
devido a convergéncia da populacao elite empregada pelo procedimento de path-relinking
(Segao 5.6). Como a mesma tende a se apresentar mais diversificada no inicio da busca e
mais homogénea ao longo da execucgao, essa caracteristica pode comprometer a melhoria

das solucoes ao final do processo.
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flat1000_50_0 1000 245000  41915.00 - 41915.00  42441.50 1.26  32380.6 934.90
flat1000_60_0 1000 245830  40468.00 - 40468.00 41110.60 1.59 29948.8 908.07
flat1000_76_0 1000 246708  41729.00 — 41729.00  42040.00 0.75 30091.8 920.24
DSJC1000.9 1000 449449 103906.00 103906.00 104748.70 0.81 257424 1869.64
C1000.9 1000 450079  105709.00 - 105709.00 106807.80 1.04 23889.3 1874.78

5-Fulllns 4 1085 11395 2212.00 | 2212.00 2212.00 2214.10
ash608GPTA 1216 7844 3859.00 4215.00 3922.00 3931.60
3-Insertions_5 1406 9695 1406.00 | 1406.00 1406.00 1406.00

0.09 578.5 192.97
1.88 36678.9 254.75
0.00 1.0 262.40

[

abb313GPIA 1557 65390 4597.00 4847.00 4878.80 6.13  24751.0 562.43
qg.order40 1600 62400  15280.00 - 15285.00  15289.00 0.06 24849.8 1053.18
wap07 1809 103368  13380.00 - 13380.00 13463.50 0.62 40110.5 1071.05
wap08 1870 104176  14497.00 - 14497.00  14564.90 0.47 34883.6 1106.13

ash958GPTA 1916 12506 2886.00 3171.00 2897.00 2909.10
3-Fulllns_5 2030 33751 4082.00 5845.00 4082.00 4082.00
wap01 2368 110871  18719.00 - 18719.00 18798.70
wap02 2464 111742 17439.00 — 17439.00 17487.60

0.80 40967.1 606.65
0.00  2569.4 872.03
0.43 43886.8 1842.69
0.28 36614.2 1920.90

—_

HBLPR Tempo de
. Melhor CPLEX Melhor Valor 7 Avg  Média execugao
Instancia n m L Melhor Dev  melhor | heuristica
valor (3600 s) valor médio 8 . ~
valor (%) iteracao (s)

schooll-nsh 352 14612 7647.00 | 13193.00 7647.00 7658.90 6 0.16 17514.3 30.95
schooll 385 19095 7158.00 | 14687.00 7158.00 7159.20 5 0.02 12003.1 36.03
3-Fulllns 4 405 3524 2951.00 2951.00 2951.00 2951.60 9 0.02 2282.7 29.85
fpsol2.i.3 425 8688 3738.00 3738.00 3738.00 3738.30 7 0.01 2318.5 35.15
le450 5c¢ 450 9803 2610.00 | 2610.00 2610.00 2610.00 10 0.00 1.0 45.98
le450 5d 450 9757 2700.00 3421.00 2700.00 2711.40 4 042 25029 47.64
le450 15c¢ 450 16680 9556.00 | 11335.00 9556.00 9729.90 1 1.82 31159.0 55.07
le450 15d 450 16750  10799.00 | 13011.00 | 10799.00 10965.20 1 1.54 30700.0 54.71
le450 25a 450 8260 9730.00 9730.00 9875.00 9962.60 0 2.39 263054 38.63
le450 25b 450 8263 7564.00 | 7564.00 7765.00 7816.80 0 3.34 23571.0 42.11
le450_ 25¢ 450 17343 10447.00 | 11776.00 | 10447.00 10586.10 1 1.33 30043.7 54.25
le450_25d 450 17425  11676.00 12791.00 11676.00 11755.80 1 0.68 32653.7 54.21
fpsol2.i.2 451 8691 4694.00 4694.00 4694.00 4695.40 4 0.03 5424.0 38.47
4-Insertions 4 475 1795 999.00 999.00 1035.00 1035.00 0 3.60 665.5 27.18
fpsol2.i.1 496 11654 8364.00 | 8364.00 8365.00 8365.00 0 0.01 1832.7 28.50
DSJC500.5 500 62624  18333.00 | 22845.00 | 18333.00 18678.20 1 1.88 32214.5 152.42
C500.9 500 112332  63147.00 | 77015.00 | 63147.00 63806.90 1 1.05 194924 276.35
DSJC500.9 500 112437  65373.00 | 78869.00 | 65373.00 65904.60 1 0.81 22769.1 290.00
DSJR500.1 500 3555 6253.00 6253.00 6484.00 6518.00 0 4.24 294928 46.68
DSJR500.1¢ 500 121275  27395.00 | 35554.00 | 27395.00 27569.40 1 0.64 18217.3 149.89
DSJR500.5 500 58862  54392.00 | 64892.00 | 54392.00 54660.20 1 0.49 15783.7 191.11
2-Insertions_ 5 597 3936 2999.00 | 2999.00 3080.00 3087.70 0 2.96 204428 58.76
1-Insertions 6 607 6337 1347.00 1367.00 1347.00 1360.00 8 097 11714.6 63.88
inithx.i.3 621 13969 3633.00 3633.00 3633.00 3636.90 3 0.11 2820.9 96.46
inithx.i.2 645 13979 4073.00 | 4073.00 4073.00 4077.00 8 0.10  4387.5 95.31
ash331GPIA 662 4185 1513.00 | 1513.00 1554.00 1574.90 0 4.09 33298.0 65.85
4-Fulllns_ 4 690 6650 2443.00 | 2443.00 2447.00 2450.00 0 0.29 7678.9 82.17
will199GPIA 701 7065 4829.00 5428.00 4829.00 4923.70 2 1.96 30939.5 79.01
inithx.i.1 864 18707 3934.00 3934.00 3934.00 3935.20 4 0.03 1257.0 106.34
qg.order30 900 26100  11940.00 | 11940.00 | 11940.00 11945.50 1 0.05 18618.6 270.78
latin_sqr_ 10 900 307350  48822.00 — 48822.00 49108.00 1 0.59 16879.1 620.77
wap05 905 43081  12593.00 14181.00 12593.00 12652.90 1 048 261494 254.86
wap(06 947 43571  18453.00 | 20434.00 | 18453.00 18565.90 1 0.61 23501.2 267.59
DSJC1000.5 1000 249826  46790.00 — 46790.00 47272.40 1 1.03 33067.0 920.84

1

1

1

1

1

7

0

0

0

0

1

1

0

0

1

1

Tabela 5.2: Resultados detalhados da heuristica HBLPR.
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Figura 5.5: TTT-Plots para a instancia inithx.i.1 com alvos (a) 0.10% e (b) 0.15% acima,
do melhor valor conhecido (3934).
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Figura 5.6: TTT-Plots para a instancia qg.order30 com alvos (a) 0.10% e (b) 0.15%
acima do melhor valor conhecido (11940).
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Figura 5.7: TTT-Plots para a instancia qg.order40 com alvos (a) 0.10% e (b) 0.15%
acima do melhor valor conhecido (15280).

5.11 Comparacao das Heuristicas HBLPR, BRKGA e
BRKGA+RVNS

Com o intuito de comparar diretamente as trés heuristicas propostas neste trabalho,
foram utilizados os resultados obtidos sobre as 50 instancias tratadas nos experimentos
anteriores, descritos nas Se¢oes 4.2.1.2 (BRKGA e BRKGA+RVNS) e 5.10.2 (HBLPR).

Na Tabela 5.4 encontram-se os resultados de cada heuristica apresentados de maneira
resumida, com apenas o valor da melhor solucao alcangada, o desvio relativo médio per-
centual e o tempo limite para cada execucao. Outras informacoes do experimento sao
fornecidas nas Tabelas B.1 e B.2 (Apéndice B). Os resultados mostram que a heuristica
HBLPR encontrou o melhor valor conhecido para 38 instancias e a solucao 6tima para sete
delas. BRKGA atingiu esse valor para 16 instancias e o valor 6timo para nove, enquanto
BRKGA-+RVNS para 14, sendo dez solugoes 6timas.

Para 28 instancias, HBLPR encontrou uma solucao que nao foi alcancada por nenhuma
das outras duas heuristicas, ao passo que em sete instancias pelo menos um dos BRKGAs
atingiu um valor nao obtido pela HBLPR e em cinco instancias nenhuma das trés heuris-
ticas conseguiu atingir o melhor valor conhecido. A heuristica HBLPR alcancou este valor
em todas as execucoes para trés instancias, BRKGA para quatro e BRKGA-+RVNS para

seis. No entanto, para apenas uma instancia as trés heuristicas alcancaram esse valor em
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todas as dez execugoes (3-Insertions_5). O desvio médio maximo obtido pelo BRKGA
foi de 28.86%, BRKGA-+RVNS alcancou 26.24% e HBLPR atingiu apenas 6.13%.

Também foram produzidos TTT-Plots para avaliar o comportamento das trés heu-
risticas na busca por um valor alvo. Na Figura 5.8 sao encontrados esses graficos para a
instancia 3-Fulllns_ 4 com alvo 2951, custo da melhor solugao conhecida, e 1000 segundos
como tempo limite. Nota-se que a heuristica HBLPR consome o maior tempo de pro-
cessamento para atingir 100% desse alvo, 793.5 segundos. BRKGA e BRKGA+RVNS
gastam 5.5 e 16.3 segundos, respectivamente. No entanto, HBLPR apresentou maior pro-
babilidade de convergir mais rapidamente para o alvo do que as outras duas heuristicas,
uma vez que Pr(Typrpr < Tprrca) = 0.547 € Pr(Tuprrr < Terxca+rvns) = 0.611.
Esse comportamento pode ser observado na Figura 5.9, onde, dada a evolucao da melhor
solucao no decorrer de quatro segundos iniciais de processamento, todas as trés heuristi-
cas atingiram o melhor valor conhecido nesse periodo, sendo que HBLPR de forma mais

rapida.

Os TTT-Plots para a instancia inithx.i.1 sao apresentados na Figura 5.10. Nesse
experimento, o valor médio das solugoes obtidas por BRKGA (3937) foi definido como
alvo, sendo o tempo maximo de execucao limitado a 1000 segundos. Para essa instancia,
HBLPR atinge o valor alvo, com 100% de probabilidade, em 134.8 segundos, ao passo
que BRKGA+RVNS e BRKGA necessitam, respectivamente, de 209.0 e 402.5 segun-
dos. Novamente a heuristica HBLPR atinge o valor alvo antecipadamente, apresentando
Pr(Typrpr < TBrrcarrvns) = 0.995 ¢ Pr(Typrpr < Terrxca) = 0.989. A evolucdo
da melhor solucao, durante os 50 segundos iniciais de processamento, é mostrada na Fi-
gura 5.11, onde verifica-se que somente HBLPR, em menor tempo, e BRKGA-+RVNS
convergiram para o melhor valor conhecido (3934), uma vez que BRKGA obteve 3935

durante essa execugao.

5.11.1 Conclusoes

Um resumo dos resultados desses experimentos pode ser observado na Tabela 5.3,
que apresenta um comparativo da performance dos algoritmos conforme as medidas de
qualidade descritas na Secao 4.2.1. Analisando esses resultados, é possivel concluir que a
heuristica HBLPR mostrou-se mais eficaz nos experimentos sobre as 50 instancias trata-
das, encontrando o melhor valor conhecido para um numero maior de instancias. Além
disso, os valores de suas solugoes sao, em média, 1.08% acima dos melhores valores co-
nhecidos, ao passo que essa média para BRKGA ¢ BRKGA+RVNS é de 8.70% e 8.72%,
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respectivamente. Por fim, a medida Score ratifica o dominio da HBLPR sobre as demais,

uma vez que apresenta o menor valor entre os trés algoritmos.

Finalizadas as comparacoes das heuristicas propostas, no proximo capitulo sao reali-
zadas as consideragoes finais sobre este trabalho e apresentadas possibilidades de investi-

gacoes futuras.

BRKGA BRKGA+RVNS HBLPR

Avg Dev (%) 8.70 8.72 1.08
Sum Best 92 93 120
#Best 16 14 38
Score 48 54 15

Tabela 5.3: Comparativo da performance dos algoritmos BRKGA, BRKGA+RVNS e
HBLPR sobre as 50 instancias.
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Figura 5.8: TTT-Plots para a instancia 3-Fulllns 4, com alvo 2951 e tempo maximo de
1000 segundos. Utilizando a ferramenta ttiplots-compare:

Pr(Typrrr < Tprirca) = 0.547 ¢ Pr(Tuprpr < Terxca+rvns) = 0.611.
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BRKGA BRKGA+RVNS HBLPR Tempo de
. Melhor | CPLEX | Melhor -8 | Melhor Y8 | Melhor ~ AVE | eXeCuGdo
Instancia n valor (3600 s) valor Dev valor Dev valor Dev | heuristicas
(%) (%) (%) (s)
schooll-nsh 352 14612 7647.00 | 13193.00 | 8999.00 20.47 | 9020.00 25.13| 7647.00 0.16 30.95
schooll 385 19095  7158.00 | 14687.00 | 7723.00 1213 | 7733.00 14.87 | 7158.00 0.02 36.03
3-Fulllns_4 405 3524 2951.00 | 2951.00 | 2951.00 0.00 | 2951.00 0.00 | 2951.00 0.02 29.85
fpsol2.i.3 425 8688  3738.00 | 3738.00 | 3738.00 0.00 | 3738.00 0.00| 3738.00 0.01 35.15
le450_5c¢ 450 9803  2610.00 | 2610.00 | 2642.00 2.34 | 2645.00 3.28 | 2610.00 0.00 45.98
le450_5d 450 9757  2700.00 | 3421.00 | 2710.00 1.59 | 2711.00 1.61| 2700.00 0.42 47.64
le450 _15¢ 450 16680  9556.00 | 11335.00 | 11131.00 17.05 | 10683.00 12.94 | 9556.00 1.82 55.07
le450_15d 450 16750  10799.00 | 13011.00 | 12629.00 20.42 | 12441.00 15.93 | 10799.00 1.54 54.71
le450 25a 450 8260 9730.00 | 9730.00 | 10258.00 6.63 | 10485.00 8.33 9875.00 2.39 38.63
le450_25h 450 8263  7564.00 | 7564.00 | 8028.00 7.08 | 8241.00 9.43 7765.00  3.34 42.11
le450_25¢ 450 17343 10447.00 | 11776.00 | 11940.00 14.77 | 11643.00 12.14 | 10447.00 1.33 54.25
le450_25d 450 17425  11676.00 | 12791.00 | 13074.00 12.74 | 12816.00 10.44 | 11676.00 0.68 54.21
fpsol2.i.2 451 8691  4694.00 | 4694.00 | 4694.00 0.02 | 4694.00 0.03 | 4694.00 0.03 38.47
ATnsertions_4 475 1795  999.00 | 999.00 | 1001.00 0.75 | 999.00 0.67 1035.00 3.60 27.18
fpsol2.i.1 496 11654  8364.00 | 8364.00 | 8364.00 0.00 | 8364.00 0.00 8365.00 0.01 28.50
DSJC500.5 500 62624  18333.00 | 22845.00 | 22935.00 25.72 | 21892.00 21.41 | 18333.00 1.88 152.42
C500.9 500 112332  63147.00 | 77015.00 | 71823.00 17.21 | 74360.00 18.83 | 63147.00 1.05 276.35
DSJC500.9 500 112437  65373.00 | 78869.00 | 72535.00 12.72 | 74194.00 15.28 | 65373.00 0.81 290.00
DSJR500.1 500 3555  6253.00 | 6253.00 | 6646.00 6.87 | 6724.00 8.33 6484.00 4.24 46.68
DSJR500.1c 500 121275 27395.00 | 35554.00 | 27575.00 1.30 | 27462.00 1.49 | 27395.00 0.64 149.89
DSJR500.5 500 58862  54392.00 | 64892.00 | 56453.00 5.72 | 58269.00 9.05 | 54392.00 0.49 191.11
2Insertions 5 597 3936 2999.00 | 2999.00 | 2999.00 0.13 | 2999.00 0.29 3080.00 2.96 58.76
I-Insertions_6 607 6337  1347.00 | 1367.00 | 1347.00 0.24 | 1347.00 030 | 1347.00 0.97 63.88
inithx.i.3 621 13969  3633.00 | 3633.00 | 3633.00 0.02 | 3633.00 0.00 | 3633.00 0.11 96.46
inithx.i.2 645 13979  4073.00 | 4073.00 | 4073.00 0.01 | 4073.00 0.00 | 4073.00 0.10 95.31
ash331GPTA 662 4185  1513.00 | 1513.00 | 1537.00 3.19 | 1539.00 3.45 1554.00  4.09 65.85
4-Fulllns_4 690 6650  2443.00 | 2443.00 | 2443.00 0.02 | 2443.00 0.07 2447.00  0.29 82.17
willl99GPTA 701 7065  4829.00 | 5428.00 | 4919.00 3.07 | 4948.00 3.87 | 4829.00 1.96 79.01
inithx.i.1 864 18707  3934.00 | 3934.00 | 3934.00 0.05 | 3934.00 0.01| 3934.00 0.03 106.34
qg.order30 900 26100 11940.00 | 11940.00 | 12084.00 1.38 | 12027.00 0.94 | 11940.00 0.05 270.78
latin_sqr_10 900 307350  48822.00 - 57949.00 20.27 | 56677.00 16.76 | 48822.00 0.59 620.77
wap03 905 43081  12593.00 | 14181.00 | 13803.00 10.17 | 14039.00 12.31 | 12593.00 0.48 254.86
wap06 947 43571  18453.00 | 20434.00 | 19495.00 6.39 | 19905.00 8.23 | 18453.00 0.61 267.59
DSJC1000.5 1000 249826  46790.00 - 58453.00 25.90 | 57538.00 23.49 | 46790.00 1.03 920.84
flat1000_50_0 1000 245000  41915.00 - 51719.00 25.22 | 51032.00 22.90 | 41915.00 1.26 934.90
flat1000_60_0 1000 245830  40468.00 - 51900.00 28.86 | 50629.00 26.24 | 40468.00 1.59 908.07
flat1000_76_0 1000 246708  41729.00 - 51205.00 23.59 | 50425.00 21.34 | 41729.00 0.75 920.24
DSJC1000.9 1000 449449 103906.00 - 130627.00 27.59 | 129308.00 25.12 | 103906.00 0.81 |  1869.64
C1000.9 1000 450079 105709.00 - 134237.00 28.22 | 131064.00 25.47 | 105709.00 1.04 |  1874.78
5-Fulllns_4 1085 11395  2212.00 | 2212.00 | 2212.00 0.00 | 2212.00 0.01 | 2212.00 0.09 192.97
ash60BGPTA 1216 7844  3839.00 | 4215.00 | 3859.00 0.42 | 3866.00 1.32 3922.00 1.8 254.75
3-Insertions_5 1406 9695  1406.00 | 1406.00 | 1406.00 0.00 | 1406.00 0.00 | 1406.00 0.00 262.40
abb313GPTA 1557 65390  4597.00 - 4597.00 0.63 | 4655.00 3.87 4847.00 6.13 562.43
qg.order40 1600 62400  15280.00 - 15486.00 1.48 | 15438.00 1.13| 15285.00 0.06 | 1053.18
wap07 1809 103368  13380.00 - 15113.00 13.40 | 15205.00 14.24 | 13380.00 0.62 1071.05
wap08 1870 104176  14497.00 - 15790.00  9.30 | 15855.00 10.43 | 14497.00 0.47 1106.13
ash958GPIA 1916 12506  2886.00 | 3171.00 | 2886.00 0.71 | 2927.00 2.19 2897.00  0.80 606.65
3-Fulllns_5 2030 33751  4082.00 | 5845.00 | 4082.00 0.09 | 4082.00 0.31 | 4082.00 0.00 872.03
wap01 2368 110871  18719.00 - 20584.00 10.48 | 20917.00 12.41 | 18719.00 0.43 |  1842.69
wap02 2464 111742 17439.00 - 18853.00  8.47 | 19145.00 10.28 | 17439.00 0.28 |  1920.90

Tabela 5.4: Resultados resumidos das heuristicas BRKGA, BRKGA+RVNS e HBLPR
para as 50 instancias.
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Figura 5.9: Evolucao da melhor solucao para a instancia 3-Fulllns 4. Todas as
heuristicas alcancaram o melhor valor conhecido (2951) ao longo dos quatro segundos
iniciais de processamento.
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Figura 5.10: TTT-Plots para a instancia inithx.i.1, com alvo 3937 e tempo méximo de
1000 segundos. Utilizando a ferramenta tttplots-compare:

Pr(Tuyprrr < Tprrcatrvns) = 0.995 ¢ Pr(Tuprrr < Terica) = 0.989.
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Figura 5.11: Evolucao da melhor solu¢do para a instancia inithx.i.1. Somente as
heuristicas HBLPR e BRKGA+RVNS alcangaram o melhor valor conhecido (3934) ao
longo dos 50 segundos iniciais de processamento, tendo o BRKGA obtido 3935 nesse
mesmo periodo.



Capitulo 6

Conclusao e Trabalhos Futuros

Nesta tese foi abordado o Problema da Partigado Cromatica de Custo Minimo (PPCCM),
considerado uma generalizagdo do Problema da Soma Cromatica (PSC). Diferentemente
deste, que utiliza nimeros naturais em sequéncia como custos das cores, o PPCCM consi-
dera custos reais, tendo como objetivo colorir os vértices de um grafo de modo que vértices
adjacentes tenham cores diferentes e a soma dos custos das cores utilizadas seja minima.
Sendo NP-Dificil para grafos em geral, a utilizagao de algoritmos exatos para obter a me-
lhor solugao possivel torna-se impraticavel para instancias de grande porte, por necessitar
de elevado tempo computacional, sendo sugerido o emprego de métodos heuristicos para

a sua resolucao.

Foram propostos algoritmos aproximados para solucionar o PPCCM considerando
um grafo simples nao-direcionado. Inicialmente foram desenvolvidas duas heuristicas
baseadas na metaheuristica Algoritmos Genéticos com Chaves Aleatorias Tendenciosas,
denominadas BRKGA e BRKGA-+RVNS. Ambas fazem uso do mesmo codificador, porém
a segunda aplica a estratégia de busca em vizinhanga RVNS, considerada uma modificagao
da metaheuristica VNS, nos individuos que farao parte do grupo elite na geracao seguinte,

com a intencao de aprimorar sua qualidade.

Posteriormente, foi desenvolvida a heuristica HBLPR, que faz uso de duas estratégias
de busca local. Tais buscas sao seguidas por um procedimento de path-relinking, que
explora a trajetoria de conexao entre duas solucoes. Por iltimo, ocorre uma perturbacao
nos vértices da solugao corrente, ocasionando a inclusao dos mesmos em uma lista tabu,

a fim de evitar que essa solugao se repita na iteragao seguinte.

Para avaliar o desempenho das heuristicas implementadas, foram criadas instancias

para o problema a partir de grafos selecionados aleatoriamente de benchmarks amplamente
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utilizados do Problema de Coloragao de Grafos (PCG).

Os experimentos mostraram que as heuristicas BRKGA e BRKGA+RVNS apresen-
taram praticamente a mesma performance sobre o conjunto de instancias testado, nao
sendo possivel definir a predominancia de uma sobre a outra. Na anéalise dos resultados
também verificou-se que a heuristica HBLPR foi a que se mostrou mais eficaz, encon-
trando o melhor valor conhecido para 76% das instancias tratadas, além de obter solucoes

com custo médio 1.08% acima dos melhores valores conhecidos.

Assim, as principais contribuicoes deste trabalho foram a retomada do estudo de um
problema da literatura para o qual inexistia algoritmo eficiente (exato ou aproximado)
para o caso geral, bem como o desenvolvimento das primeiras heuristicas para tratar o

problema.

Como trabalho futuro, pretende-se investigar a aplicacao de uma estratégia de restarts
apos certo limite para tentar evitar a estagnagao do algoritmo, como sugerido em [Stiitzle e
Hoos, 1999] para esses casos. Também como pesquisa futura, deseja-se avaliar a utilizagao
de outras técnicas de diversificacao na HBLPR que inclua uma lista tabu adaptativa, que

possa variar seu tamanho de acordo com a evolucao da melhor solucao.

Outra oportunidade de investigacao é o desenvolvimento de algoritmos exatos para o
PPCCM com base em técnicas de programacao inteira, com a inten¢ao de hibridizé-los
com metaheuristicas para tratar instancias de tamanhos maiores em tempos computaci-
onais viaveis. Além disso, também podem ser gerados modelos de programacao inteira

mais fortes baseados em formulacoes por representantes de classes de cores.
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Apéndice B - Resultados detalhados das heuristicas BRKGA, BRKGA+RVNS ¢ HBLPR
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