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The origin of this book arose when the authors saw the need to write 

theoretical and experimental material for the Chemometrics discipline of the 
undergraduate and postgraduate Chemistry course at UFRN/Brazil. The R 
programming language was chosen in this book because it presents a free, easily 
accessible work environment, rich in a variety of packages and various statistical 
tools capable of exploring different functionalities through different means and 
formats. Furthermore, with the versatility of being able to work through a command 
line or through menus pre-defined by the software itself, it is very accessible and 
practical to explore the main concepts of Chemometrics.

 The main topics of Chemometrics that are explored in undergraduate 
and postgraduate courses at UFRN are, among them, Descriptive Statistics and 
their properties (Chapter 1), Design and Optimization of Experiments (Chapter 
2), Pattern Recognition (Chapter 3), Higher-order Multivariate Classification 
(Chapter 4), Higher-order Multivariate Regression (Chapter 5) and Digital Images 
(Chapter 6). All chapters contain the fundamentals descriptions and examples 
on simulated or real data through scripts in the R language. In addition, the book 
presents an appendix which brings together the main scripts in the R language 
for importing, pre-processing and organizing matrices that are necessary for the 
development of multivariate models. Finally, to encourage learning, proposed 
exercises were created so that students can try to answer them based on theory 
and solved examples in each chapter.

The authors
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1Descriptive statistics and its properties 

CHAPTER 1

DESCRiPTivE STATiSTiCS AND iTS PROPERTiES 
"It is not knowledge, but the act of learning, not possession but the 
act of getting there, which grants the greatest enjoyment." Friedrich 
Gauss (1777-1855)

CHAPTER IDEA
We need statistical calculations to make decisions about the quality of our experimental 

measurements. In this chapter, some important concepts for this decision making will be 
presented, including: normal distribution, parametric and non-parametric statistical tests.

Upon completing the chapter, you should be able to:
a) Explain what a normal distribution is and when its application is appropriate.

b) Use descriptive statistical parameters on a set of observations.

c) Define parametric and non-parametric tests.

d) Discuss the assumptions for parametric tests to be used.

e) Determine the best statistical strategy for a real experiment.

f) Propose new analytical methodologies based on statistical tests.

g) Build new scripts in R language for decision making.

1. Some important concepts in descriptive statistics
In general, chemistry researchers use authentic replicas of a sample to carry out an 

analytical method. In this sense, some types of variables appear (qualitative, quantitative, 
discrete and continuous). Variable, in statistics, is the assignment of a number to each 
characteristic of the observation unit, that is, it is a defined mathematical function of the 
population.

The statistical technique to be used must be appropriate to the type of variable. 
In quantitative variables, we have a list of position measures (mean, median, quartiles, 
mode) and dispersion measures (variance, coefficient of variation, range). The equations 
and definitions of the main descriptive statistical parameters will be presented in Table 1 .
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Table 1: Descriptive statistical parameters.

Population average

 
Sample mean

Median It is the central value in a dataset that has been arranged in order of 
magnitude

Population standard 
deviation

Sample standard 
deviation

Combined standard 
deviation

Population variance σ2

Sample variance s2

Mean standard error

Coefficient of 
Variation

Relative Standard 
Deviation (RSD)

Spread or range ( f ) It is the difference between the highest value and the lowest value in the set

Mode ( m0 ) It is the value (or values) of maximum frequency
Absolute frequency 

( fi )
It is the number of times a given value ( xi ) is observed.

Relative frequency or 
proportion ( p'i )

It is the quotient between its absolute frequency and the total number of 

observations. 
Maximum Largest value from a set of n observations
Minimum Smallest value from a set of n observations
Quartiles These are values that divide a data sample into four equal parts. 1st. 

Quartile: the value that leaves 25% of the data below it and 75% above it. 
2nd. Quartile: the value that leaves 50% of the data below it and 50% above 
it (median). 3rd. Quartile: the value that leaves 75% of the data below it and 

25% above it.
Pearson's coefficient 

of Skewness (Ap)
If | A p | < 0.15, symmetric distribution
If 0.15 ≤| A p | ≤1, moderately asymmetric distribution
If | A p | >1, strongly asymmetric distribution

Amplitude (R) Difference between the largest and smallest value in a set of n observations
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Where: 

• x i = individual values of the variable X;

• N = number of measurements for the entire population/sample;

• Nt = total number of data sets being combined.

Each of these statistical parameters will be calculated and discussed below, through 
Example 1.

Example 1: The following example was carried out by students of the Quantitative 
Analytical Chemistry course at the Federal University of Rio Grande do Norte, 2023.1, in 
which we have the experimental results of the calibration of a 10 mL graduated pipette. 
Using the data in the table below, calculate and discuss all parameters or graphs generated 
by this experiment.

Replicas Volume, mL
1 9.988
2 9.993
3 9.986
4 9.980
5 9.975
6 9.982
7 9.986
8 9.982
9 9.981
10 9.990
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R Script

#################### Loading packages ###################

# Installation/loading of packages if not installed

install.packages ("dplyr")
library ( dplyr )
install.packages ("psych")
library ( psych )

############### Loading the database ###############

# Select the working directory ( working directory )
# Session > Set Working Directory > Choose Directory

# Load the database

pipette = c( 9.988, 9.993, 9.986, 9.980, 9.975, 9.982, 9.986, 9.982, 9.981, 9.990)
data <- data.frame (pipette) # create dataset
View (data)
glimpse (data)

############## Measures for quantitative variables ##############

# Amplitude
range( pipette )
hist( pipette )
summary( pipette )
boxplot (pipette)

###### Frequency tables of categorical variables ######

# Absolute frequencies:

table (pipette)

# Relative frequencies:

prop.table ( table (pipette))

# Functions describe and describe.by (package 'psych')
describe (pipette)
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1.2 Normal distribution
Experimental measurements present random or undetermined errors. These errors 

cannot be eliminated, but can be estimated from a certain number of repetitions. When we 
perform a very large number of experiments, we result in a bell-shaped curve known as a 
Gaussian curve or normal error curve, as shown in Figure 1 .

Figure 1 : Probability density function graph.

The two important parameters of the Gaussian distribution are the mean (µ), describing 
where the experimental values are centered, and the variance ( σ2 ) which describes their 
degree of dispersion. Depending on the parameters (µ and σ), we will have different normal 
distributions. Furthermore, the variable X is a continuous variable comprised between 
-∞ <x <+ ∞ and the area under the curve is equal to 1. This area we call probability. The 
probability density function, Equation 1, is described as:

                      Eq. 1

A common way of writing whether X describes a normal distribution is to write  
X ~ N (µ, σ2). Below, we have a practical exercise using the R language to build the probability 
function, histograms and check some sample statistics.
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Example 2: Using the R script proposed below, we will explore the dataset by 
calculating some statistical parameters. We will build graphs (histograms and boxplots ) 
and discuss statistical concepts presented here (probability density, for example).

R Script

# Normal distribution in R

#################### Loading packages ###################

install.packages ("dplyr")
library ( dplyr )
install.packages ("psych")
library ( psych )

# Normal probability density function
# Sequence for the horizontal axis

x = seq (from = 95, to = 105, length =500)

# Evaluating x in the pdf

y = dnorm (x, mean = 100, sd = 1)

# Plotting the pdf

plot (x, y, type = "l", ylab = "density")

# Random sample taken from the normal distribution
#x ~ N(100.1)

set.seed (7) # seed for randomization

# Collecting the sample

sample = rnorm ( 1000,mean = 100, sd = 1 )

# Sample histogram

hist ( sample, main = "sample, n = 1000", ylab = "frequency", col = "cadetblue")

# Sample statistics

mean (sample) # average
sd (sample) # standard deviation
summary (sample) # sample distribution measures (min; 1st Quart.; Median; Mean; 3rd 
Qu.; Max)
boxplot ( sample, ylab = "sample", col = "gold")
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Example 3: We will show, through this R script, how it is possible to calculate the 
probability of finding a continuous variable (x). In this case, less than 3.3, assuming that 
the probability function can be described as X ~ N (3.4, 0.12). Thus, we will show how it 
is possible to calculate the probability of a continuous variable (x) between 3.1 and 3.7, 
assuming the same probability function. Additionally, we will construct a graph that presents 
a region of interest within a given probability function.

R Script
# probability calculations

#################### Loading packages ###################
install.packages ("dplyr")
library( dplyr )
install.packages ("psych")
library(psych)

#X ~ N( 3.4, 0.1^2)
# P( X < 3.3) = ?

pnorm ( 3.3, mean = 3.4, sd = 0.1)

# P( 3.1 < X < 3.7) = P(X < 3.7) - P (X < 3.1)?

pnorm ( 3.7, mean = 3.4, sd = 0.1) - pnorm (3.1, mean = 3.4, sd = 0.1)

# Illustrating P (X < 3.3)
# x axis sequence

x1 = seq ( from = 3, to = 3.8, length = 500)

# evaluating x1 in the pdf

y1 = dnorm ( x1, mean = 3.4, sd = 0.1)

# plotting the pdf

plot ( x1, y1, type = "l", ylab = "density")

# sequence of x to color

a = seq (3, 3.3, length = 100)

# evaluating the pdf

b = dnorm ( a, mean = 3.4, sd = 0.1)

# coloring probability of interest

polygon (c( 3,a ,3.3), c(0,b,0), col = "coral")
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1.3 Normality test – Shapiro-Wilk
In 1965, Samuel Sanford Shapiro and Martin Bradbury Wilk [1] proposed a statistical 

test to evaluate whether a given data distribution is similar to the Gaussian normal 
distribution. As a result, the test will return the W statistic, which will have an associated 
significance value, the p-value.

Here, it is important to define some fundamental concepts based on hypothesis tests 
that will serve to understand decision making.

1. the null hypothesis indicated by H0 states that there is no effect or variation 
in the population; the alternative hypothesis is indicated by H1 and both must 
be mutually exclusive and exhaustive. After the test, we make one of two 
decisions: reject H0 and accept H1; or not reject H0.

2. there are two types of errors possible to occur in hypothesis testing: i) type I 
error (rejecting H0 and H0 being true); or, ii) type II error (not rejecting H0 and  
H0 being false.

3. the probability of a type I error occurring is indicated by the significance level 
(a). It is usually a = 5%

4. the probability of a type II error occurring is indicated by b.

5. the probability of occurring a value as extreme (much greater or much smaller 
than the value of H0) as that obtained in the sample is indicated by P. Here, we 
can have two situations: i) if P ≤ a, we reject H0 (in this case, the sample value 
is as or more extreme than the critical value). ii) if P > a, we do not reject H0 (in 
this case, the sample value is less extreme than the critical value).
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Example 4: Using the R script below, we will show how to determine whether a given 
variable presents normality using the Shapiro-Wilk test.

R Script

# Installing packages and importing a dataset (30 obs vs 7 variables)

install.packages ("dplyr")
library( dplyr )     
install.packages ("RVAideMemoire")
library( RVAideMemoire )

# Read csv file

data <- read.csv( 'Database 2.csv', sep = ';', dec = ',',
                  stringsAsFactors = T, fileEncoding = "latin1")

# View data in a separate window

View (data)

# View a summary of the data

glimpse (data)

# Checking data normality

shapiro.test(data$Height)

# Checking data normality
## Shapiro by group ( RVAideMemoire package )

#( dependent variable ~ independent variable, data)

byf.shapiro(Salary ~ Education , data)

1.4 Levene's test
We can consider that Levene's test [2] evaluates the equality of variances 

(homogeneity of variances or homoscedasticity) of a variable calculated for two or more 
groups. After testing, there are two possibilities:

H o : group variances are homogeneous → p > 0.05
H 1 : group variances are not homogeneous → p < 0.05
Example 5: Using the R Script below, we will show whether there is homogeneity of 

variances through Levene's test for a given dataset.
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R Script

# Checking the homogeneity of variances

## Loading Packages

install.packages ("car")
library ( car )

## Loading data

data <- read.csv( 'Database 3.csv', sep = ';', dec = ',',
                  stringsAsFactors = T, fileEncoding = "latin1")

# Levene's test

# H0: group variances are homogeneous -> p > 0.05
# H1: group variances are not homogeneous -> p < 0.05

leveneTest ( Grade_Biology ~ Room_Position , data, center = mean ) 

1.5 Standardized normal distribution
Now, we can perform the calculations of the standardized normal distribution, in 

which the relative frequency is represented in a graphical form as a function of the quantity 
z. This value is basically the deviation from the mean divided by the standard deviation of the 
population. Here, the numbers contained in the shaded areas represent the percentage of 
the area over the curve, which is included among the z values. Let's look at some examples: 
i) 50% of the area of the Gaussian curve is present between -0.67 σ and +0.67 σ; ii ) 80% 
of the area of the Gaussian curve is contained between -1.28 σ and +1.28 σ; iii ) 90% are 
located between -1.64 σ and 1.64 σ. These previously mentioned values (50%, 80% and 
90%) are also called confidence level, as they consist of the probability that the true mean 
is located within a certain interval, as long as we have a reasonable estimate of σ. The 
probability of a result being outside the confidence interval can be called the significance 
level.

In statistics, we can state that the confidence interval (CI) for a true value of the mean 
m is the range of values between which the population mean µ is expected to be contained 
with a certain probability. Its limits are known as confidence limits. This concept was 
introduced into statistics by Jerzy Neyman in 1937 [3]. When we write a set of experimental 
measurements in the form of 5.25 ± 0.15, according to this concept, the true value of the 
mean must be contained in the range between 5.40 to 5.10, with a certain probability (95%, 
for example).

Example 6: Using the R script, we will show some probability calculations for 
standardized distributions.
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R Script
# Standardized normal distribution

## Loading Packages

install.packages ("rstatix")
library ( rstatix )

# Z ~ N(0.1)
# phi (-1.64) = P(Z < 1.64) = to be determined

pnorm (-1.64)

# P (z < z_alpha ) = 0.05, z_alpha = to be determined

qnorm (0.05)

# P(- z_alpha < z < z_alpha ) = 0.95, | z_alpha | = to be determined

qnorm (0.025)
abs (qnorm ( 0.025))

# P(z > z_alpha ) = 0.10, z_alpha = to be determined

qnorm (0.10, lower.tail = F)
qnorm (0.90)

We cannot estimate the true mean from a single observation. Typically, it is 
recommended to use the experimental mean of N experimental measurements as an 
estimate of µ. Thus, we have:

                                                                       Eq. 2

Equation 2 is only applied in experiments with no systematic errors and in which the 
values of s are a good approximation of the values of σ.

1.6 t-test
Often in Chemometrics, we have a limitation in time or in the number of samples to 

consider that s is a good estimate of σ. The determination of the confidence interval when 
σ is unknown was originally proposed by the English statistician Mr. WS Gosset, in 1908, 
in a classic article published in the journal Biometrika [4]. The curious fact was: to avoid 
the discovery of any commercial secret from his employer (hired by the Guinnes brewery 
to statistically analyze the results of alcohol content determinations), Gosset published the 
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article under the name Student. This pseudonym "Student" and his work on the Student 
t-distribution became famous in the world of statistics.

Commonly, we can find three types of Student's t-test. Here they are:

a. Single-sample t-test: We use this test when we want to compare the mean of 
a single sample with a known population mean (reference value). After testing, 
there are two possibilities:

H o: sample mean = reference value → p >0.05

H 1: sample mean ≠ reference value → p <0.05

Example 7: We will use the following R script to demonstrate how we should employ 
the single-sample t-test. We will discuss their results and present some graphs that confirm 
our observations.

R Script

# Performing the t-test for one sample

## Loading Packages

install.packages ("rstatix")
library( rstatix )

## Loading the data

data <- read.csv('Database 2.csv', sep = ';', dec = ',',
                  stringsAsFactors = T, fileEncoding = "latin1")

## t-test

t.test ( data$Height , mu = 167)

# Observation:
# The two-tailed test is the default; If you want one-tailed , you need to include:
# alternative = "greater" or alternative = "less"
# Example: t. test ( data$Height , mu = 167, alternative = "greater")
# In this case, the test checks whether the sample mean is greater than the tested 
mean
# Visualization of data distribution

boxplot ( data$Height , ylab = "Height (cm)")

b. t for independent samples: We use this test when we want to compare the 
means of two independent samples.
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After testing, there are two possibilities:

H o: mean of group A = mean of group B → p >0.05

H 1: mean of group A ≠ mean of group B → p <0.05

Example 8: Use the following R script to calculate the independent samples t-test. 
We will discuss the results and evaluate your assumptions.

R Script

## Installing packages, if not done previously

install.packages("dplyr")
library(dplyr)
install.packages("RVAideMemoire")
library(RVAideMemoire)
install.packages("car")
library(car)

## Loading the data

data <- read.csv('Database 3.csv', sep = ';', dec = ',',
                  stringsAsFactors = T, fileEncoding = "latin1")
View(data)
glimpse (data)

# Performing the t test for independent samples

t.test ( Grade_Biology ~ Room_Position , data, var.equal =TRUE)

t.test ( Grade_Physics ~ Room_Position , data, var.equal =FALSE)

t.test ( Grade_History ~ Room_Position , data, var.equal =FALSE)

# Observation
# var.equal =FALSE does not consider the two variances as equal, between the two 
groups
# The two-tailed test is the default; If you want one-tailed , you need to include:
# alternative = "greater" or alternative = "less"
# Example: t.test ( Grade_Biology ~ Room_Position , data, var.equal =TRUE, 
alternative ="greater")
# In this case, the test checks whether the average of the first group is greater 
than the average of the second
# OR is considering "Front" as the first group
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# Visualization of data distribution

par(mfrow = c( 1,3)) # Graphs come out on the same line
boxplot (Grade_Biology ~ Room_Position , data = data, ylab = "Biology Grades", xlab 
= "Position in the Room")
boxplot (Grade_Physics ~ Room_Position , data = data, ylab = "Physics Grades", xlab 
= "Position in the Room")
boxplot (Grade_History ~ Room_Position , data = data, ylab = "History Grades", xlab 
= "Position in the Room")

c. T-test for dependent (paired) samples: The t test for dependent samples is 
used when you want to compare the means of two samples that are dependent, 
that is, when one sample is obtained from the same population as the other.

Example 9: Using the following R script, we will show how the paired t-test and its 
results are determined.

R Script

## Load the packages that will be used

install.packages ("dplyr")
library(dplyr)
install.packages ("psych")
library(psych)    

## Load the database

data <- read.csv('Database 4.csv', sep = ';', dec = ',', fileEncoding = "latin1")
View (data)
glimpse (data)

# Performing the paired t test

t.test (data$Seizures_PT, data$Seizures_S1, paired = TRUE)

# Visualization of data distribution

par(mfrow = c( 1,2)) # Graphs on the same line
boxplot (data$Seizures_PT , ylab = "Number of Seizures", xlab = "Pre-Treatment")
boxplot (data$Seizures_S1, ylab = "Number of Seizures", xlab = "1st week of 
Treatment")
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# Descriptive data analysis (part 1)

summary (data$Seizures_PT)
summary (data$Seizures_S1)

# Descriptive data analysis (part 2):

describe (data$Seizures_PT)
describe (data$Seizures_S1)

1.7 Analysis of variance: ANOVA
Basically, ANOVA consists of a statistical method for testing the equality of three 

or more population means, based on the analysis of sample variances. Its purpose is to 
understand whether there is a significant difference between the groups being compared. 
Experimental data must be separated into groups according to a characteristic or factor. In 
this case, each factor can have two or more groups.

a. One-way ANOVA or treatment with repeated measures

Here some requirements need to be met:

I. populations must present normal distributions and with the same variance;

II. samples must be random and mutually independent;

III. the different samples are obtained from populations classified in just one 
category.

Once these requirements are met, we need to declare the null (H0) and alternative 
(H1) hypotheses for the one-way ANOVA. Ho assumes that the mean of all populations are 
equal (µ 1 = µ 2 = µ 3 = ... = µk ) and the variance between groups (variation due to interaction 
between groups) is significantly smaller than the variance within groups (variation due to 
chance). On the other hand, H1 assumes that at least one population mean is different, that 
is, there is an effect of factor or treatment.

Therefore,
Ho: there are no differences between the group means → p >0.05
H1: there are differences between the group means → p <0.05
The basic idea of ANOVA also consists of the partition of variability, in which one part 

represents the variability of groups (between groups) and the other represents the variability 
due to other factors (within groups). A common practice for testing H0 and H1 is to summarize 
the results of the one-way ANOVA test in the form of a table, as shown below:
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Table 2: One-way ANOVA.

Source of variation Sum of 
Squares (SS)

Degrees of 
Freedom (DF) Mean Square (MS) F

Factor Effect (between 
groups) FSS I – 1

Error (within groups) ESS N – 1

Total TSS N – 1

Example 10: Let's look at an R script of a 1-way ANOVA with repeated measures. 
We will take it step by step and discuss its main results.

R Script

## Loading Packages

install.packages ("psych")
library(psych)
install.packages ("ggplot2")
library(ggplot2)

# Read data from a file ( import Dataset )

data <- read.table ( "data.txt" ,header=TRUE)

# Shows boxplots of the classifiers, side by side, in relation to the PCC performance 
response

data$Classifiers <- as.factor ( data$Classifiers )
bp <- ggplot ( data, aes (x=Classifiers, y= PCC,fill =Classifiers)) +
  geom_boxplot ( ) +
  labs(title="PCC Boxplot by Classifiers",x="Classifiers", y = "PCC")
bp + theme_classic()

# Create the ANOVA table

data.anova <- aov ( data$PCC ~ data$Classifiers )

# Show the ANOVA table

summary ( data.anova )

# another way to perform ANOVA (using the esyanova package )

install.packages ("easyanova")
library(easyanova)

ea1(data, design = 1, alpha = 0.05) 
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b. multiple ANOVA

When an experiment involves two or more factors, then we have a multiple ANOVA. 
We test two-way ANOVA when we have a numerical dependent variable of two or more 
categorical independent variables. This test allows you to verify the effect of each of the 
independent variables as well as the interaction between them.

Table 2: Two-way ANOVA.

Source of 
variation

Sum of Squares 
(SS)

Degrees of 
Freedom (DF) Mean Square (MS) F

Factor A SSA r – 1

B Factor SSB c – 1

AB (interaction) SSAB (r-1 ).(c-1)

Error EES rc(n' – 1)

Total TSS n – 1

Example 11: Below we have an R script to apply a two-factor ANOVA.

R Script

# Load the packages that will be used

install.packages ("dplyr") 
library( dplyr )
install.packages ("car")
library(car)
install.packages ("rstatix")
library( rstatix )
install.packages ("emmeans")
library( emmeans )
install.packages ("ggplot2")
library(ggplot2)

# csv file (database 6)

data <- read.csv( 'Database 6.csv', sep = ';', dec = ',', fileEncoding = "latin1")
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View (data) # View data in a separate window
glimpse (data) # View a summary of the data

data$Alcohol <- factor ( data$Alcohol ,
                         levels = c( "None",
                                     "2 Mugs",
                                     "4 Mugs"))
summary ( data$Alcohol )

# Check the 3 assumptions (normality, outliers, homogeneity) in the raw data

## 1 - Normality of groups - Shapiro test

data %>% group_by( Gender , Alcohol ) %>%
  shapiro_test ( Memory )

# Here, all the observations follow a normal distribution and the assumption has 
been met for ANOVA

## 2 - Presence of outliers per group in two ways

# form 1 - uses the quartiles calculated without the median

boxplot ( data$Memory ~ data$Gender:data$Alcohol )

# form 2 - uses the quartiles calculated with the median

data %>% group_by ( Gender, Alcohol ) %>%
  identify_outliers ( Memory )

## 3 Verification of homogeneity of variances - Levene's test ( car package )

leveneTest ( Memory ~ Gender * Alcohol , data, center = mean )

# By default, the test performed by the car package is based on the median ( median )
# Mean-based testing is more robust
# Changed to be average based

## Construction of the ANOVA model

model <- aov ( Memory ~ Gender * Alcohol , data)
model$coefficients
summary.aov(model)

# Anova in another way

install.packages ("easyanova")
library(easyanova)
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ea2(data, design = 1)

## Normality test for residuals:

shapiro.test ( model$residuals )

# Ho = Null hypothesis follows normal distribution and p > 0.05
# HA = Alternative hypothesis does not follow normal distribution and p < 0.05

## Checking the presence of outliers among the residues:

boxplot ( model$residuals )
data$residuals <- model$residuals
data %>% group_by( Gender, Alcohol )%>%
  identify_outliers( residuals )
data %>% identify_outliers ( residuals )
## Verification of homogeneity of variances - Levene's test ( car package )

leveneTest ( residuals ~ Gender * Alcohol , data, center = mean )

# Carrying out ANOVA

## Change in contrast to match SPSS:

options (contrasts = c("contr.sum", "contr.poly"))

## Model creation:

model <- aov( Memory ~ Gender * Alcohol , data)
summary(model)
Anova(model, type = 'III')

# type III = sum of squares of residuals and does not take into account the order 
of factors
# type I = depends on the order of factors at insertion time
# H0 p > 0.05
# Ha p < 0.05
# Interaction plot (ggplot2 package)
## With genders with different colors

ggplot(data, aes(x = Alcohol, y = Memory, group = Gender, color = Gender)) +
  geom_line(stat = "summary", fun.data = "mean_se", size = 0.6) +
  geom_point(stat = "summary", fun = "mean") +
  geom_errorbar(stat = "summary", fun.data = "mean_se", width = 0.2)

# there is dependence on the effect of alcohol depending on gender

## With Genders with different lines
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ggplot(data, aes(x = Alcohol, y = Memory, group = Gender)) +
  geom_line(stat = "summary", fun.data="mean_se", size = 0.6, aes(linetype = 
Gender)) +
  geom_point(stat = "summary", fun = "mean", size = 2, aes(shape = Gender)) +
  geom_errorbar(stat = "summary", fun.data = "mean_se", width = 0.2)

# Estimated Marginal Means ( emmeans package )
# here we will analyze whether there are # statistics between genders as a function 
of memory

data %>% group_by(Gender) %>% 
  emmeans_test(Memory ~ Alcohol, p.adjust.method = "bonferroni")

data %>% group_by(Alcohol) %>% 
  emmeans_test(Memory ~ Gender, p.adjust.method = "bonferroni")

In the example above, the two-way ANOVA showed that there is an effect of alcohol 
F(2.42) = 20.06; p < 0.001 and interaction between alcohol and gender F(2,42) = 11.91; 
p < 0.001 on memory. Subsequent analyzes (estimated marginal means, with Bonferroni 
correction) showed that alcohol consumption did not affect the memory of female individuals, 
but the consumption of 4 mugs decreased the memory score of male individuals, when 
compared to individuals of the same gender who did not consume alcohol, or only consumed 
2 mugs.

1.8 Post-Hoc Tests in ANOVA
In Latin, post hoc means "after this", that is, analyzing the experimental data later. 

The goal of a post-hoc analysis is to find patterns after the study is completed, and to find 
results that were not the main objective. In the particular case of ANOVA, after determining 
what differences exist between the means, post hoc range tests and multiple pairwise 
comparisons can determine which means differ. Range tests identify homogeneous subsets 
of means that are not different from each other. There are several post-hoc methods 
available, among them we have the "hsd", "bonferroni", "lsd", "scheffe", "newmankeuls" and 
"duncan" methods.

The Tukey test [5], named after John Tukey, consists of comparing all possible pairs 
of means and is based on the least significant difference (LSD), considering the group's 
percentiles. When calculating the LSD, the distribution of the studentized amplitude, the 
mean square of the ANOVA residuals and the sample size of the groups are also used.
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Example 12: Below, there is an R script for applying Tukey's parametric test. What 
main results are obtained in this test?

R Script

## Creating the dataset

analyst1 = c(10.3, 9.8, 11.4)
analyst2 = c(9.5, 8.6, 8.9)
analyst3 = c(12.1, 13.0, 12.4)
analyst4 = c(9.6, 8.3, 8.2)
analyst5 = c(11.6, 12.5, 11.4)

data <- data.frame (analyst1, analyst2, analyst3, analyst4, analyst5)
dat <- stack (data) # creates vector in stack format

# Performing the ANOVA

anova = aov ( dat$values~dat$ind )
summary( anova )

qf ( 0.95, df1 = 4, df2 = 10) # f critical

# Tukey test
### Who differs from whom? To do this, we need to compare the averages
### We will perform the Tukey Test.

tk_test <- TukeyHSD (anova)
tk_test

### For p values < α we can say that the means differ
### at a significance level of 5% (α = 0.05).
### When p > α it is not possible to say that the means differ.
### The same result can be expressed by the test graph

plot ( tk_test )

# Finally, we can make a boxplot to better represent the data:

boxplot (data)

Here we can also find a statistical package in R called DescTools to perform post-hoc 
analysis.
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R Script

# Post-hoc analysis (DescTools Package)
# Post hocs allowed : "hsd", "bonferroni", "lsd", "scheffe", "newmankeuls", "duncan"

install.packages ("DescTools")
library(DescTools)

#PostHocTest
# Using Duncan

PostHocTest(anova, method = "duncan")

# Using TukeyHSD

PostHocTest(anova, method = "hsd")

# Using Bonferroni

PostHocTest(anova, method = "bonferroni")

1.9 Non-parametric tests
Non-parametric techniques or tests encompass a series of statistical tests that 

have in common the absence of assumptions about distribution followed by the population 
from which the sample was drawn. Basically, when the assumptions of normality and 
homoscedasticity are not met, non-parametric tests are necessary for decision making.

Here some non-parametric tests for decision making will be presented.

a) Friedman
 The Friedman test is a non-parametric statistical test developed by Milton 

Friedman [6-8] similar to ANOVA. It is used to detect differences in treatments in various 
test experiments. The procedure involves sorting each row (or block), then considering the 
column rank values.

https://pt.wikipedia.org/wiki/Testes_de_hip%C3%B3teses
https://pt.wikipedia.org/wiki/Milton_Friedman
https://pt.wikipedia.org/wiki/Milton_Friedman
https://pt.wikipedia.org/wiki/Ranking
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Example 13: Below there is an R script to perform the Friedman test.

R Script

## Loading Packages

install.packages("dplyr")
library(dplyr)
install.packages("rstatix")
library(rstatix)
install.packages("reshape")
library(reshape)
install.packages("PMCMRplus")
library(PMCMRplus)
install.packages("ggplot2")
library(ggplot2)

# Load the database

# Important: select the working directory ( working directory )
# This can be done manually: Session > Set Working Directory > Choose Directory

data <- read.csv2('Database 7.csv', stringsAsFactors = T) # Loading csv file

View (data)
glimpse (data)

# Change database format from "wide" to "long" (package: reshape)
# Restructuring the database

datal <- melt ( data,
                id = "ID",
                measured = c( "Professor1", "Professor2", "Professor3", "Professor4"))

View ( datal )

# Renaming the columns of the new database

colnames( datal ) = c( "ID", "Teacher", "Grade")

# Ordering the columns by experimental subject

datal <- sort_df( datal , vars = "ID")

glimpse( datal )

# Transforming the ID variable into a factor
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datal$ID <- factor( datal$ID )

# Carrying out the Friedman test

friedman.test( Grade ~ Teacher | ID, data = datal )

## Another option:
## friedman.test( datal$Grade , datal$Professor , datal$ID )

# Post-hoc testing

## Option 1: Wilcoxon with Bonferroni correction

datal %>% wilcox_test(Grade ~ Teacher, paired = TRUE, p.adjust.method = "bonferroni")

## Option 2 - post- hocs from the PMCMRplus package :
### Dunn- Bonferroni - equivalent to SPSS:
frdAllPairsSiegelTest(datal$Grade, datal$Teacher,
                      datal$ID, p.adjust.method = "bonferroni")

### Others:

frdAllPairsNemenyiTest(datal$Grade, datal$Teacher,
                       datal$ID, p.adjust.method = "bonferroni")

frdAllPairsConoverTest(datal$Grade, datal$Teacher,
                       datal$ID, p.adjust.method = "bonferroni")

# Descriptive data analysis

datal %>% group_by(Teacher) %>%
  get_summary_stats( Grade, type="median_iqr")

# Data visualization

boxplot( Grade ~ Teacher, data = datal )

# Distribution analysis

par(mfrow=c(2,2))
hist( datal$Grade [ datal$Teacher == "Professor1"],
       ylab = "Attendance", xlab = "Grades", main = "Teacher 1")
hist( datal$Grade [ datal$Teacher == "Professor2"],
       ylab = "Attendance", xlab = "Grades", main = "Teacher 2")
hist( datal$Grade [ datal$Teacher == "Professor3"],
       ylab = "Attendance", xlab = "Grades", main = "Teacher 3")
hist( datal$Grade [ datal$Teacher == "Professor4"],
       ylab = "Attendance", xlab = "Grades", main = "Teacher 4")
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# Histogram with all groups, separated by color

ggplot( datal , aes (x = Grade)) +
  geom_histogram( aes ( color = Teacher, fill = Teacher),
                    alpha = 0.3, position = "stack", binwidth = 1)

b) Wilkoxon
This non-parametric test developed by F. Wilcoxon in 1945 [9] is used as an alternative 

to the paired t-student test when samples do not follow a normal distribution. Thus, the 
Wilcoxon test is used to test whether the sample medians are equal in cases where the 
normality hypothesis is not accepted or when it is not possible to check this assumption. 
There are two important assumptions in this non-parametric test: i) the dependent variable 
must be originally numeric or categorical; ii) the independent variable must be composed of 
two dependent (paired) groups.

Example 14: Below there is an R script to check the Wilcoxon test on a given dataset.

R Script

# Load the packages that will be used

install.packages ("dplyr")
library (dplyr)
install.packages ("rstatix")
library (rstatix)

# Load the database

# Important: select the working directory ( working directory )
# This can be done manually: Session > Set Working Directory > Choose Directory

data <- read.csv('Database 4.csv', sep=";", dec=",", stringsAsFactors = T,
                  fileEncoding = "latin1")

View (data)
glimpse (data)

# Wilcoxon test

wilcox.test( data$Seizures_PT , data$Seizures_S1, paired = TRUE)

# Observation:
# The two-tailed test is the default; If you want one-tailed, you need to include:
# alternative = "greater" or alternative = "less"
# Example: wilcox.test( data$Convulsoes_PT , data$Convulsoes_S1,
# paired = TRUE, alternative ="greater")
# In this case, the test will check whether the median of Seizures_PT is greater 
than the median of Seizures_S1
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c) Mann-Whitney test
In 1947, HB Mann and DR Whitney [10] generalized the technique developed by 

Wilcoxon (1945) to compare central tendencies of two independent samples of equal size. 
The Mann-Whitney test (Wilcoxon rank-sum test) is indicated for comparing two unpaired 
groups to verify whether or not they belong to the same population whose requirements for 
applying the Student's t test have not been met. Unlike the t-test, which tests the equality of 
means, the Mann-Whitney (U) test tests the equality of medians.

Example 15: Below there is an R script to perform the non-parametric Mann-Whitney 
test. Was this test helpful?

R Script

# Load the packages that will be used

install.packages("dplyr")
library(dplyr)
install.packages("rstatix")
library (rstatix)

# Load the database
# Important: select the working directory ( working directory )
# This can be done manually: Session > Set Working Directory > Choose Directory

data <- read.csv('Database 3.csv', sep = ';', dec = ',',
                  stringsAsFactors = T, fileEncoding = "latin1") # Loading csv file

View(data) # View data in a separate window
glimpse(data) # View a summary of the data

# Performing the Mann-Whitney test

wilcox.test(Grade_Biology ~ Room_Position , data = data)
wilcox.test(Grade_Physics ~ Room_Position , data = data)
wilcox.test(Grade_History ~ Room_Position , data = data)

# Observation:
# The two-tailed test is the default; If you want one-tailed, you need to include:
# alternative = "greater" or alternative = "less"
# Example: wilcox.test( Grade_History ~ Room_Position , data = data, alternative = 
"greater")
# In this case, the test checks whether the median of the first group is greater than 
the median of the second
# OR is considering "Front" as the first group
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# Step 4: Descriptive data analysis

data %>% group_by(Room_Position) %>% 
  get_summary_stats(Grade_Biology, Grade_History, Grade_Physics, type = "median_
iqr")

# Parametric data

data %>% group_by(Room_Position) %>% 
  get_summary_stats(Grade_Biology, Grade_History, Grade_Physics, type = "mean_sd")

# Distribution preview

par(mfrow=c(1,2))
hist(data$Grade_Biology[data$Room_Position == "Front"],
       ylab ="Frequency", xlab ="Grade", main ="Front Group")
hist(data$Grade_Biology[data$Room_Position == "Back"],
       ylab ="Frequency", xlab ="Grade", main ="Back Group")

d) Kruskal-Wallis test
 The non-parametric Kruskal-Wallis test, named after William Kruskal and W. Allen 

Wallis [11] in 1952, is a method used to test whether samples originate from the same 
distribution. We typically use it to compare two or more independent samples of equal or 
different sizes. The parametric equivalent of this test is the F test used in one-way ANOVA.

Example 16: Below there is an R script to perform the Kruskal-Wallis non-parametric 
test. Comment on the results of this test.

R Script

# Load the packages that will be used

install.packages("dplyr")
library(dplyr)
install.packages ("rstatix")
library(rstatix)
install.packages("ggplot2")
library(ggplot2)

# Load the database

# Important: select the working directory ( working directory )
# This can be done manually: Session > Set Working Directory > Choose Directory
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data <- read.csv( 'Database 5.csv', sep = ';', dec = ',',
                  stringsAsFactors = T, fileEncoding = "latin1") # Loading csv file

View (data)
glimpse (data)

# Kruskal-Wallis test

kruskal.test( BC ~ Group, data = data)
kruskal.test( Pressure ~ Group, data = data)

# Post-hoc testing
# Dunn's test with p-value adjustment

dunn_test( BC ~ Group, data = data, p.adjust.method = "bonferroni")
dunn_test( Pressure ~ Group, data = data, p.adjust.method = "bonferroni")

# Descriptive data analysis

data %>% group_by(Group) %>%
  get_summary_stats( BC, Pressure , type="median_iqr")

# Data visualization

par(mfrow=c(1,2))
boxplot(BC ~ Group, data = data)
boxplot(Pressure ~ Group, data = data)

# Distribution analysis

par(mfrow=c(1,3))
hist(data$BC[data$Group=="Placebo"],
     ylab="Frequency",xlab="bps",main="Placebo")
hist(data$BC[data$Group == "AH New"],
     ylab = "Frequency", xlab = "bps", main="AH New")
hist(data$BC[data$Group == "AH Default"],
     ylab = "Frequency", xlab = "bps", main="AH Default")

par(mfrow=c(1,3))
hist(data$Pressure[ data$Group == "Placebo"],
       ylab ="Frequency", xlab ="bps", main ="Placebo")
hist(data$Pressure[ data$Group == "AH New"],
      ylab ="Frequency", xlab ="bps", main ="AH New")
hist(data$Pressure[ data$Group == "AH Default"],
       ylab ="Frequency", xlab ="bps", main ="AH Default")
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# Histogram with all groups, separated by color

ggplot(data, aes(x = BC)) +
  geom_histogram(aes(color = Group, fill = Group),
                 alpha = 0.3, position = "identity", binwidth = 10)

ggplot(data, aes(x = Pressure)) +
  geom_histogram(aes(color = Group, fill = Group),
                 alpha = 0.3, position = "dodge", binwidth = 10)

Below there is a table that summarizes the main statistical concepts discussed 
throughout Chapter 1 for comparison purposes.

Table 3: Summary of statistical concepts from Chapter 1

Independent Groups Parametric Confidence interval and limits 
(1 or 2 groups) Student's t (1 or 2 groups)

Non-parametric Mann-Whitney's U
Paired groups Parametric paired Student's t

Non-parametric Wilkoxon's test
≥ 3 independent groups Parametric 1 or 2 factor ANOVA

Non-parametric Kruskall-Walls
≥ 3 paired groups Parametric Anova for repeated measures

Non-parametric Friedman's test

PROPOSED EXERCISES
01 – Propose a chemical experiment that contains replicas and, based on the 

observations, present the statistical parameters described using an R script.
02 – There is a repository of univariate and multivariate data on the internet based on 

the R language ( https://archive.ics.uci.edu/ ) in which you must choose one or more sets of 
data to carry out a descriptive statistical study in detail. Present your results.

03 – Propose an experiment or use a dataset from a public database (preferably) to 
apply the t-test for a single sample. Build an R script to demonstrate your hypotheses and 
main conclusions.

04 – Propose an experiment or use a dataset from a public database (preferably) to 
apply the t-test for independent samples. Build an R script to demonstrate your hypotheses 
and main conclusions.

05 – Propose an experiment or use a dataset from a public database (preferably) 
to apply the paired t-test. Build an R script to demonstrate your hypotheses and main 
conclusions.

https://archive.ics.uci.edu/
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06 – Propose an experiment or use a dataset from a public database (preferably) 
aiming to use 1-way ANOVA. In this exercise, use an R script so that you can test your 
hypotheses, make assumptions, post hoc evaluation, construct graphs and interpret results.

07 – Like the previous exercise, use an ANOVA of two or more factors for a given 
experiment or a dataset extracted from a public database (preferably). Show step-by-step 
in a R script for testing hypotheses, assumptions, post hoc, graphs and interpretation of 
results.

08 – During Chapter 1 of this book, some non-parametric tests were presented 
(Friedman, Wilkoxon, Mann-Whitney, Kruskal-Wallis). Each non-parametric test is a 
hypothesis test that does not require the population distribution to be characterized by 
certain parameters (μ and σ). Therefore, based on experiments or datasets found in a 
database (preferably public), present results of the four non-parametric tests mentioned and 
discuss their results. 

REFERENCES
[1] Shapiro, SS; Wilk, M.B. (1965). An analysis of variance test for normality (complete samples). 
Biometrika . 52 (3–4): 591–611.

[2] Levene, Howard (1960). Robust tests for equality of variances. In: Ingram Olkin ; Harold Hotelling . 
Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling. [ Sl ]: Stanford University 
Press. pp. 278–292.

[3] Neyman, J. (1937). Outline of a Theory of Statistical Estimation Based on the Classical Theory of 
Probability . Philosophical Transactions of the Royal Society . 236 : 333 – 380.

[4] Pearson, ES (1939). Willian Sealy Gosset, "Student" as statistician. Biometrika , 30 (3-4): 210-250.

[5] Tukey, John (1949). Comparing Individual Means in the Analysis of Variance. Biometrics . 5 (2):99–114.

[6] Friedman, Milton (1937). The use of ranks to avoid the assumption of normality implicit in the analysis 
of variance. Journal of the American Statistical Association. 32 (200): 675–701.

[7] Friedman, Milton (1939). A correction: The use of ranks to avoid the assumption of normality implicit in 
the analysis of variance». Journal of the American Statistical Association. 34 (205): 109.

[8] Friedman, Milton (1940). A comparison of alternative tests of significance for the problem of m rankings. 
The Annals of Mathematical Statistics. 11 (1): 86-92.

[9] Wilcoxon, Frank (1945). Individual comparisons by ranking methods . Biometrics Bulletin . 1 (6): 80-83

[10] Mann, HB and Whitney, DR (1947) On a Test of Whether One of Two Random Variables Is 
Stochastically Larger than the Other. Annals of Mathematical Statistics, 18, 50-60.  

[11] Kruskal, William H.; Wallis, W. Allen (1952). Use of Ranks in One-Criterion Variance Analysis . Journal 
of the American Statistical Association . 47 (260): 583–621.

https://pt.wikipedia.org/w/index.php?title=Martin_Wilk&action=edit&redlink=1
https://pt.wikipedia.org/w/index.php?title=Biometrika&action=edit&redlink=1
https://pt.wikipedia.org/wiki/Ingram_Olkin
https://pt.wikipedia.org/wiki/Harold_Hotelling
https://en.wikipedia.org/wiki/Biometrics_(journal)
http://sci2s.ugr.es/keel/pdf/algorithm/articulo/wilcoxon1945.pdf
http://www.tandfonline.com/doi/abs/10.1080/01621459.1952.10483441


31Design of experiments 

CHAPTER 2

DESiGN OF ExPERiMENTS 
"To consult the statistician after an experiment is finished is often merely to 
ask him to conduct a postmortem examination. He can perhaps say what the 
experiment died of."  Ronald Fisher (1890-1962)

CHAPTER IDEA
Design of Experiments (DOE) or experimental design is an ideal technique for 

studying the effect of a set of several factors on a response variable of interest. The main 
objectives of experimental planning are to reduce process time, reduce the number of tests 
without compromising the quality of information, reduce operational costs and increase the 
quality and yield of processes.

In this chapter, after analyzing the data presented in the examples, some practical 
conclusions from the experiment will be detailed through graphs to present the results and 
some confirmation tests. Upon completing the chapter, you should be able to:

a) Understand the main terms (response variable, levels, factors or treatments, 
randomization and blocks) used in planning;

b) Define the stages of experimental design (recognition and identification of the 
problem, goals, choice of response variable, choice of experimental design types, 
and others);

c) Carry out graphic analysis for a more assertive interpretation of experiments;

d ) Represent the studied process through mathematical expressions;

e) Carry out a selection of variables that influence the process with a reduced number 
of tests;

f) Build new scripts in R language for decision making using experiment design;

g) Understand the importance of knowing in depth the problem (system or process) 
you want to study.

2.1 Fundamental steps for planning experiments
Experiments can be considered a series of tests in which intentional changes are 

made to the input variable of a process or system so that we can analyze and identify the 
reasons for changes that can be observed in the response variable. When designing and 
carrying out experiments, one of the main goals is to ensure that the process is minimally 
affected by external sources of variability.

The fundamental steps of experimental design are:

https://www.azquotes.com/quote/97013
https://www.azquotes.com/quote/97013
https://www.azquotes.com/quote/97013
https://www.azquotes.com/quote/97013
https://www.azquotes.com/quote/97013
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a) Recognition of the problem;

b) Determining the goals;

c) Choosing the response variable, factors and levels;

d) Choosing the type of experimental design;

e) Formulation of a hypothesis;

f) Analysis of results;

g) Preparation of conclusions and recommendations.

Basically, there are three techniques used to define tests in experimental planning: i) 
use of replicates; ii) randomization; and, iii ) blocking.

The replication consists of repeating a test under pre-established conditions, 
obtaining an estimate of how the experimental error may affect the results of the experiments 
and whether these results are statistically different. Randomization is a purely statistical 
experimental design technique in which the sequence of tests is random, and the choice 
of materials that will be used in these tests is also random. Experimental blocking is a 
statistical technique that consists of organizing experimental units into groups (blocks) that 
are similar to each other. The purpose of blocking is to contain and evaluate the variability 
produced by the disturbing factors of the experiment. Blocking allows you to create a more 
homogeneous experiment and increase the precision of the responses that are analyzed. 
The central idea of blocking is to make the experimental units (EUs) homogeneous within 
the blocks.

Now, some experimental designs will be presented (full factorial, fractional factorial, 
Box-Behnken, mixtures, multi-levels) through examples written in the R language.

2.2 Full Factorial Design
Factorial design makes it possible to simultaneously evaluate the effect of a set of 

factors (each variable of the system under study) from a reduced number of experiments 
(trials), when compared to univariate processes. This design is very interesting when you 
want to study the effects (change in the response when moving from a low level (-) to a high 
level (+)) of two or more influencing variables, and in each attempt or replication, all the 
possible combinations of levels of each variable are studied.

We can present some advantages of using factorial designs: i) fewer tests without 
loss of information quality; ii) simultaneous determination of several factors, separating their 
effects; iii) selection of factors that influence a process with a reduced number of tests; and, 
iv) description of the experimental procedure through a mathematical model.

Factorial design is represented by bk , in which k represents the number of factors 
and b the number of levels chosen. In general, if there are n1 levels of factor 1, n2 of factor 
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2, ..., and nk of factor k, the planning will be a factorial n1 x n2 x ... x nk. Here we can state 
that it does not necessarily mean that only n1 x n2 x ... x nk experiments will be carried 
out. This is the minimum number to have a complete factorial design. Factorial planning 
is indicated for starting the experimental procedure when there is a need to identify the 
influencing variables and study their effects on the chosen response variable.

2.3 Factorial Design 22

Factorial design with k factors and 2 levels is a particular case, called 2k factorial 
design. The factors and levels are pre-determined, establishing this design as a fixed 
effects model. To ensure objectiveness in the analysis, the hypotheses of normality and 
homoscedasticity must be satisfied. This type of design is normally used in the initial stages 
of research, allowing the study of several factors with a reduced number of experiments.

Example 1: In this example, we will describe a step-by-step guide for creating a 
complete factorial design (2 factors and 2 levels), t-test, ANOVA and regression.

R Script

# levels
levels = c(-1,1)

# planning
plan = expand.grid(levels, levels)

#replicating the planning
plan = rbind(plan, plan)
plan

# column names
colnames(plan) = c("x1", "x2")

# Response
y = c(5.1, 8.6, 7.7, 13.5, 5.0, 8.5, 8.2, 13.9)

# adding response to planning
plan$y = y
plan

################################################ #############
# Step by step analysis
# Planning matrix
x = model.matrix(~x1*x2, data = plan [,-3])
x
# Effects
effects = crossprod(x,y )/(2*2^2/2)
effects
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# Coefficients
coef = effects/2
coef 

# adjusted values
fitted = x%*% coef
fitted

# waste
resi = y - fitted
resi

# number of trials (N) and terms in the model (r)
N = dim(x)[1]
r = dim(x)[2]

## Sum of squares
# Waste SS
SSE = sum(resi^2)
# Total SS
SST = sum(y^2)-sum(y)^2/N

## Degrees of freedom
# of errors
DFE = N-r

# total
DFT = N-1

## Mean of squares
# of errors
MSE = SSE/DFE
# total
MST = SST/DFT

#t calculated
t0 = coef / sqrt (MSE/N)
t0

#t critical
t_critical = qt( 0.025, df = DFE, lower.tail = F )
t_critical

#p-value
pvalue = 2*pt(abs(t0), df = DFE, lower.tail = F)
pvalue

# data frame t-test summary
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ttest = data.frame ( coef , rep(sqrt(MSE/N),4),t0,pvalue)
colnames ( ttest ) = c( "coef", "SE_coef", "p- value")

# coefficient of multiple determination
R2 = 1 - SSE/SST
R2_aj = 1 - MSE/MST

## The new
# Sum of squares of effects

SS_x = crossprod(x [,-1],y)^2/N

# mean of squares of effects
MS_x = SS_x /1

# F calculated
F0 = MS_x /MSE
F0

# pvalue
p = pf(F0, 1, DFE, lower.tail = F)
p

# ANOVA summary table

source = c("x1", "x2", "x1x2", "Error", "Total")
SS = c(SS_x , SSE, SST)
DF = c(rep( 1,3), DFE, DFT)
MS = c(MS_x , MSE, MST)
F0 = c(F0, NA, NA)
pvalue = c(p, NA, NA)

ANOVA = data.frame (SS, DF, MS, F0, pvalue )
rownames (ANOVA) = source
ANOVA

################################################ #############
# Matrix least squares

# Multiplying X transposed by
t(x)%*%x

#inverse of previous result
solve(t(x)%*%x)

#multiplying X transposed by y
t(x)%*%y
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#getting the coefficients
beta_mat = solve(t(x)%*%x)%*%t(x)%*%y
beta_mat

# prediction for all experimental results
y_hat = x %*% beta_mat
y_hat

#prediction for specific values of x1 and x2
#x1 = 0, x2 = 0.5
x_esp = matrix(c( 1,0,0.5,0), nrow = 4, ncol = 1)
y_esp_hat = t(x_esp)%*%beta_mat                
y_esp_hat

2.4 Factorial Design 23

A factorial design with three factors (A, B and C), each with two levels (high and low), 
is called a complete factorial design 23 , that is, we will have 8 trials that combine all the 
factors and their levels, whose matrix is presented in Table 1.

Table 1: Complete Factorial Design Matrix 23

Test Factor 1 Factor 2 Factor 3
1 - - -
2 + - -
3 - + -
4 + + -
5 - - +
6 + - +
7 - + +
8 + + +

Example 2: In this example we will describe a step-by-step guide for creating a 
complete factorial design (3 factors and 2 levels), ANOVA test, assumption test, construction 
of the Pareto chart and regression analysis. The goal of this experiment is to define the 
optimal conditions for determining the copper content in water samples using the ICP-OES 
technique [1]. In this design, we will use the FrF2 package of R software.
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R Script
### Factors
# x1 = pH
# x2 = flow rate, vz ( mL /min)
# x3 = eluent concentration, cE (mol/L)

### Response
# y = normalized instrumental peak height

###### Planning

install.packages("FrF2")
library(FrF2)

# planning
plan = FrF2( nruns = 16,
             nfactors = 3 ,
             factor.names = list(pH = c(4,8) , # -
                                 vz = c( 2.8), # mL /min
                                 CE = c( 0.7,2)), # mol/L
             randomize = F)
# experiment carried out we use F, otherwise T
summary( plan )

# response - relative analytical signal
y = c(13.66, 23.60, 39.13, 95.65, 17.39, 22.36, 35.40, 100.00,
       13.04, 23.60, 35.40, 91.93, 13.66, 25.47, 33.54, 95.03)

# adding response
# add.response command from FrF2 package
plan = add.response(plan, y)
summary( plan )

############################ Analysis #####################
lm1 = lm( plan ) # model with 2nd order interactions
summary(lm1)

anova1 = aov(lm1 ) # anova with 2nd order interactions
summary(anova1)

lm2 = lm( y ~ pH * vz * CE, data = plan ) #complete model
summary(lm2)

anova2 = aov(lm2)
summary(lm2)

# model comparison
anova(lm1, lm2) #best complete lm2
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# confidence interval for coefficients
confint(lm2)

#### Assumptions
#normality
shapiro.test(lm2$residuals)

par(mfrow = c(2,2))
plot(lm2)
par(mfrow = c( 1,1))

# homoscedasticity

install.packages("olsrr")
library(olsrr) # another package option for Breuch-Pagan test
ols_test_breusch_pagan(lm2, rhs = T, multiple = T)

###### Graphics
# via FrF2

MEPlot(lm2)

IAPlot(lm2)

cubePlot(lm2,eff1 = "pH", eff2 = "vz", eff3 = "CE", main = "")

install.packages("ggpubr")
library(ggpubr)

# effects graph
p1 = ggline( data = plan ,
             x = "pH", y = "y",
             add = c("mean_se","jitter"),
             color = "blue") + theme_bw ( )
p1

p2 = ggline( data = plan,
             x = "vz", y = "y",
             add = c("mean_se","jitter"),
             color = "green") + theme_bw ( )
p2

p3 = ggline( data = plan,
             x = "CE", y = "y",
             add = c("mean_se","jitter"),
             color = "red") + theme_bw ( )
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p3

p12 = ggline( data = plan,
              x = "pH", y = "y",
              add = c("mean_se","jitter"),
              color = "black") + theme_bw ( )
p12

ggarrange(p1,p2,p12)

## Pareto chart of standardized effects
t_critical = qt(0.025, df.residual (lm2), lower.tail = F) # t-critical

MSE = deviance(lm2)/ df.residual (lm2)
SE_coef = sqrt(MSE/16) # standard error of coefficients
t0 = lm2$coefficients/ SE_coef # t0

#data frame for t0
t_0 = data.frame(names(coef(lm2)), abs (t0))
colnames(t_0) = c("term","t0")

# Pareto Chart - standardized effect
pPar = ggbarplot(data = t_0[-1,],
                  x = "term", y = "t0",
                  col = "green4",
                  fill = "lightgreen",
                  rotate = T,
                  sort.val = "asc") + theme_bw( ) +
  geom_hline(yintercept = t_critical, col = "red")
pPar

ggarrange(p1,p2,p12,pPar)

# Contour plots

library(ggplot2)

# planning via expand.grid
plan2 = expand.grid(c(4,8),
                    c(2,8),
                    c(0.7,2))
plan2 

plan2 = rbind(plan2,plan2)
colnames(plan2) = c("pH", "vz", "CE")
plan2$y = y
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# model decoded via expand.grid
lm3 = lm(y ~ pH * vz * CE, plan2)
lm3 # never test significance of decoded coefficients

# mesh
grid = expand.grid(pH = seq(4,8, length = 40),
                   vz = seq( 2,8, length = 40),
                   CE = seq( 0.7,2, length = 40))

# prediction on the mesh
y_hat = predict(lm3, newdata = grid)
grid$y = y_hat

# contour plots

cp1 = ggplot(data = grid,
             mapping = aes(x = pH, y = vz, z = y)) + 
  geom_line() +
  scale_fill_distiller(palette = "Spectral",
                       direction = -1) +
  geom_contour(color = "gray50") + theme_bw()
cp1

cp2 = ggplot(data = grid,
             mapping = aes(x = pH, y = CE, z = y)) + 
  geom_line() +
  scale_fill_distiller(palette = "Spectral",
                       direction = -1) +
  geom_contour(color = "gray50") + theme_bw()
cp2

cp3 = ggplot(data = grid,
             mapping = aes(x = CE, y = vz, z = y)) + 
  geom_line() +
  scale_fill_distiller(palette = "Spectral",
                       direction = -1) +
  geom_contour(color = "gray50") + theme_bw()
cp3

ggarrange(cp1,cp2,cp3)

###### Prediction

# Using model made via expand.grid - lm3
predict(lm3, newdata = data.frame (pH = 6,
                                   vz = 5,
                                   CE = 2))

lm3$fitted.values
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2.5 Unreplicated Factorial Design
Example 3: This example was taken from the study [2] in which the influence of 

four factors on flexural strength (response) was investigated using an unreplicated factorial 
design. In this design, we will use the unrepx package of R software.

R Script
## Factors
# dc = density of the compound
# vf = fiber fraction volume
# tp = pyrolysis temperature
# ta = softening temperature of the synthesized methyl-polycarboxylane

## response
# FS = flexural strength
# https://doi.org/10.1007/s12034-017-1535-5

######
# planning

library(FrF2)

design = FrF2(nruns = 16,
              nfactors = 4,
              factor.names = c("dc", "vf", "tp", "ta"),
              randomize = F) # generate the planning in the default order
summary(design)

# answer - flexural strength (MPa)
FS = c(425,495,450,571,374,441,409,468,
       399,525,461,592,401,489,393,487)

# adding response to planning
design$y = FS
summary(design)

#####
# Calculating the effects

X = model.matrix(~dc*vf*tp*ta, data = design[,-5])
X

N = dim(X)[1]

effects = crossprod(X,FS)/(N/2)
effects
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#######################
### Working with the unrepx package for unreplicated factorial
# Package authored by Professor Russell V. Lenth

install.packages("unrepx")
library(unrepx)

# Effects
effects2 = yates(FS) # responses must be in standard order
effects2

attr(effects2,"mean")

# Half normal plot
hnplot(effects2, half = TRUE, method = "Lenth", ID = ME(effects2))

# Pareto PSE plot
parplot(effects2, method = "Lenth")

# Significance analysis of effects
# t-test via Lenth 's pseudo standard error
eff.test(effects2, method = "Lenth")

2.6 Fractional Factorial Design
Assuming the exponential character existing in factorial design (2k ), we must 

consider the possibility of having full designs that are unfeasible, especially in cases of 
a great number of factors (k > 4). If we had a complete factorial design of 8 factors, we 
would have a composition of 256 trials (28 = 256). A more interesting alternative would be to 
employ a selection of the most significant factors or to carry out a fractional factorial design 
that uses a much smaller number of tests.

We can assume that the fractional factorial designs are determined in the form 2k-p, 
in which k represents the number of factors and p represents the fraction of the complete 
scheme 2k. For example, if we sought to halve the number of trials in a 24 design with 16 
trials (4 factors and 2 levels), we would have  trials. Table 
2 presents a matrix of a fractional design 24-1 (4 factors with two levels), in which the product 
of the column levels of factors 1, 2 and 3 corresponds to the column level of factor 4. Note 
that there is interaction between factors 1, 2 and 3 confused with factor 4, assuming the 
impossibility of distinguishing the interaction between the three factors and the fourth factor.
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Table 2: Fractional Planning Matrix 24-1

Test Factor 1 Factor 2 Factor 3 Factor 4
1 - - - -
2 + - - +
3 - + - +
4 + + - -
5 - - + +
6 + - + -
7 - + + -
8 + + + +

Example 4: This example was taken from the study [3] in which the adsorption 
efficiency of thiomethoxam was investigated using oxidized multi-walled carbon nanotubes 
(MwCNTs) as adsorbents through a fractional factorial design (  ). In this design, we will 
use the FrF2 and unrepx packages of R software.

R Script
## via FrF2

library(FrF2)

# design - 2^(5-1)

frac = FrF2(nruns = 16,
            nfactors = 5,
            factor.names = list(x1 = c(50,150), # initial concentration (mg/L)
                                x2 = c(25,45), # temperature (oC)
                                x3 = c(5,9), # pH
                                x4 = c(50,150), # adsorbent mass (mg)
                                x5 = c(1,3)), # time (h)
            randomize = F,
            alias.info = 3) 
summary(frac)

# answer - quantity adsorbed
qty = c(24.15, 31.5, 33.62, 63.48, 19.64, 94.08, 20.34, 57.38,
        28.12, 46.99, 24.62, 44.18, 19.29, 50.83, 19.02, 61.22)
frac$y = qty

# Coded design - 2^( 5-1) main fraction
frac_p = FrF2(nruns = 16,
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              nfactors = 5,
              factor.names = c("x1", "x2", "x3", "x4", "x5"),
              randomize = F,
              alias.info = 3) #3rd order information
summary(frac_p)

# Coded design - 2^( 5-1) alternative fraction
frac_alt = FrF2(nruns = 16,
                nfactors = 5,
                factor.names = c ("x1", "x2", "x3", "x4", "x5"),
                generators = "-ABCD", ### planning generator
                randomize = F,
                alias.info = 3) #3rd order information
summary(frac_alt )

# complete model
lm1 = lm(y ~ .^5, data = frac)
summary(lm1)

# model 1 confounding structure
aliases(lm1)

# 2nd order model to avoid confusion (interactions from 3rd to 5th order removed)
lm2 = lm(y ~ .^2, data = frac)
summary(lm2)

# graphics
MEPlot(lm2)
IAPlot(lm2)

# confusion lm2
aliases(lm2)

# model without interaction x2*x4
lm3 = lm(y ~ x1+x2+x3+x4+x5 + x1*x2 + x1*x3 + x1*x4 + x1*x5
         + x2*x3 + x2*x5 + x3*x4 + x3*x5 + x4*x5, data = frac)
summary(lm3)

# Pareto chart of standardized effects
library(ggpubr)

#t critical
t_critical = qt(0.025, df.residual(lm3), lower.tail = F) # t critical

# t calculated
MSE = deviance(lm3)/df.residual(lm3) # MSE, obs = deviance = sum(lm3$residuals^2)
SE_coef = sqrt(MSE/16) #standard error of coefficients
t0 = lm3$coefficients/SE_coef # t0
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# data frame for t0
t_0 = data.frame(names(coef(lm3)),abs(t0))
colnames(t_0) = c("term","t0")

# Pareto chart - standardized effects
pPar = ggbarplot(data=t_0[-1,],
                 x = "term", y = "t0",
                 col = "green4",
                 fill = "lightgreen",
                 rotate = T,
                 sort.val = "asc") + theme_bw()+
  geom_hline(yintercept = t_critical , col = "red")
pPar

#####
## Via Lenth's pseudo standard error

library(unrepx)

#design matrix
X = model.matrix(~x1*x2*x3*x4*x5, data = frac[,-6])
X

# effects
effects = crossprod(X,qty)/(16/2) # here there are confusing effects
effects = effects[2:16] # only main effects and 2nd order interactions
names(effects) = c("x1", "x2", "x3", "x4", "x5", "x1x2", "x1x3", "x1x4", "x1x5",
                   "x2x3", "x2x4", "x2x5", "x3x4", "x3x5", "x4x5")
effects

#graphics
hnplot(effects, method = "Lenth", ID = ME(effects))
parplot(effects, method = "Lenth")
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Example 5: The following example, also using fractional factorial design ( ), 
is taken from study [4] in the development of HSLA (high-strength low-alloy) steel wire 
electrodeposition. In this design, we will use the FrF2 and unrepx packages of R software.

R Script
### via FrF2

library(FrF2)

# design - 2^(5-1)

frac2 = FrF2(nruns = 16,
             nfactors = 5,
             factor.names = list(x1 = c(32,96), # pulsed time (us)
                                 x2 = c(6,9), # pulse ratio (t_off/t_on)
                                 x3 = c(3,5), # power (mu)
                                 x4 = c(30,60), # wire frequency (HZ)
                                 x5 = c(50,150)), # pulse (mu)
             randomize = F,
             alias.info = 3) # 3rd order information
summary(frac2)

# answer - average roughness
Ra = c(4.086, 6.847, 4.314, 6.185, 4.684, 5.469, 4.467, 6.52,
       4.804, 6.908, 5.073, 7.335, 5.907, 7.66, 5.688, 7.764)
frac2$y = Ra

# complete model
lm1 = lm(y ~ .^5, data = frac2)
summary(lm1)

# model 1 confounding structure
aliases(lm1)

# 2nd order model to avoid confusion (interactions from 3rd to 5th order removed)
lm2 = lm(y ~ .^2, data = frac2)
summary(lm2)

# Eliminating x2 and projecting the planning in a 2^4 full factorial
lm3 = lm(y ~ (x1+x3+x4+x5)^4, data = frac2)
summary(lm3)

# reducing previous model
lm4 = lm(y ~ (x1+x3+x4+x5)^3, data = frac2)
summary(lm4)
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lm5 = step(lm4, direction = "backward")
summary(lm5)

#############################################
## Via Lenth 's pseudo standard error (Hypothesis test)

library(unrepx)

# design matrix
X = model.matrix(~x1*x2*x3*x4*x5, data = frac2[,-6])
X

# effects
effects = crossprod(X,Ra)/(16/2) # here there are confusing effects
effects = effects[2:16] # only main effects and 2nd order interactions
names(effects) = c("x1", "x2", "x3", "x4", "x5", "x1x2", "x1x3", "x1x4", "x1x5",
                   "x2x3", "x2x4", "x2x5", "x3x4", "x3x5", "x4x5")
effects

#graphics
hnplot(effects, method = "Lenth", ID = ME(effects))
parplot(effects, method = "Lenth")

2.7  2k Factorial Design with center-point
Central composite design is a type of experimental design that allows obtaining more 

detailed information about a system, with the adjustment of a useful second-order model 
to find the ideal conditions of the relevant factors, commonly for optimization purposes. 
Such design consists of three sequential parts, the first refers to the complete or fractional 
factorial design with factors (k) coded at two levels (+ and -) and with 2k tests, another axial 
part consisting of points in all null coordinates and in coordinate α (+α or -α) with 2k tests, 
and the last part is composed of nc tests carried out at the central point with values equal 
to zero (minimum of 3 tests). Table 3 presents the matrix of this type of design for the case 
of three factors.
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Table 3: Central composite design matrix for 3 factors

Test Factor 1 Factor 2 Factor 3
1 - - -
2 + - -
3 - + -
4 + + -
5 - - +
6 + - +
7 - + +
8 + + +
9 -a 0 0
10 a 0 0
11 0 -a 0
12 0 a 0
13 0 0 -a
14 0 0 a

15 0 0 0
16 0 0 0
17 0 0 0

The value of α is a new parameter that must be declared and has a value located 
between 1 and √k, where k represents the number of factors investigated. The value of α 
is based on the distance of the axial points in relation to the central points and is related to 
the shape and size of the central composite design domain, being spherical, when α=√k, or 
cubic, when α=1, with impact in the design rotation. 

As in other experimental designs, in this design the values of coefficients used in 
a model are extracted using regression, calculation of coefficients significance (ANOVA), 
hypothesis tests or other statistical operations to extract information from the design. Finally, 
a mathematical model generates a response surface with the aim of optimizing the system 
and obtaining a graphical visualization of the optimum point.
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Example 6: The following example consists of the optimization of a factorial design 
with a central point for determining the copper content in different water samples by ICP-
OES, extracted from the study [1]. In this design, we will use the FrF2 and rsm packages 
of R software.

R Script
# Factors
# x1: pH
# x2: flow rate - vz(mL/min)

# Response
# y: relative analytical signal (resulting from normalized instrumental peak 
measurements).

##
# via FrF2

library(FrF2)
plan.ctpt = FrF2(nruns = 4,
                 nfactors = 2,
                 ncenter = 3,
                 factor.names = c("x1", "x2"),
                 randomize = F)

summary(plan.ctpt)

# response - relative analytical signal
y = c(68.64, 69.82, 81.66, 85.80, 100, 99.41, 100)

plan.ctpt$y = y
summary(plan.ctpt)

# the term to evaluate liscube curvature(plan.ctpt)
lm1 = lm(y ~ x1*x2 + !iscube(plan.ctpt), data = plan.ctpt)
summary(lm1)

# ANOVA
summary(aov(lm1))

################################################
## Performing design with a central point using the rsm package

install.packages("rsm")
library(rsm)
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plan.ctpt2 = cube(basis = ~x1+x2,
                  n0 = 3,
                  randomize = F)

plan.ctpt2$y = y
plan.ctpt2

lm2 = lm(y ~ SO(x1,x2), data = plan.ctpt2)
summary(lm2)

#####################
# Graphics for main effects and interaction

library(ggpubr)

p1 <- ggline(plan.ctpt ,
             x = "x1",
             y = "y",
             add = c("mean"),
             color = "blue") + theme_bw()

p2 <- ggline(plan.ctpt,
             x = "x2",
             y = "y",
             add = c("mean"),
             color = "green") + theme_bw()

plan.plot = plan.ctpt
plan.plot$x1 = as.factor(plan.ctpt$x1)
plan.plot$x2 = as.factor(plan.ctpt$x2)

p12 <- ggline(plan.plot,
              x = "x1",
              y = "y",
              add = c("mean", "point"),
              color = "x2") + theme_bw()

ggarrange(p1,p2,p12)

2.8 Box-Behnken Design
This type of design was proposed by Box and Behnken in 1960 and is characterized 

by second order designing to generate a response surface. Like the central composite 
design, this design has the disadvantages of using only three factor levels and always 
results in a greater number of tests than some other designs. The Box-Behnken design 
combines a 2k factorial structure with an incomplete block design, as shown in Table 4. The 
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result is very economical and efficient as it generates a small number of tests; in addition, 
it has rotational properties and constitutes an alternative to the central composite design.

Table 4: Box-Behnken construction scheme 

Blocks Factor 1 Factor 2 Factor 3
1 b b x

2 b x b

3 x b b

The construction of the design matrix can be exemplified by the scheme in Table 
4, which considers of three blocks in the composition of the tests for three factors studied. 
Each β symbol, in each of the blocks, is replaced by the two-level encoded column of the 
corresponding factor, extracted from the matrix of a 22 design; and, the x is filled with a 
column of zeros. The procedure is repeated for each block, considering the factors that 
participate in the block and, at the end, at least three tests are added at the central point, 
resulting in 15 tests, as shown in Table 5.

Table 5: Box-Behnken Design's Example

Test Factor 1 Factor 2 Factor 3
1 - - 0
2 - + 0
3 + - 0
4 + + 0
5 - 0 -
6 - 0 +
7 + 0 -
8 + 0 +
9 0 - -
10 0 - +
11 0 + -
12 0 + +
13 0 0 0
14 0 0 0
15 0 0 0

Example 7: The following example consists of optimizing a Box-Behnken design with 
four factors (F1 – layer thickness, F2 – heater energy, F3 – heater advance speed and F4 
– printer advance speed) used in selective inhibition sintering of high-density polyethylene 
parts, extracted from the study [5]. In this design, we will use the rsm package of R software 
and a restricted designing optimization.
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R Script
#####
install.packages("rsm")
library(rsm)

design = bbd(k = ~x1+x2+x3+x4,
             block = F,
             n0 = 5,
             randomize = F,
             coding = list(x1 ~ (Ac - 0.2)/0.1,
                           x2 ~ (Ea - 25.32)/3.16,
                           x3 ~ (vf_a - 3.5)/0.5,
                           x4 ~ (vf_p - 100)/20))
design

# width deviation

width = c(5.3533, 5.2615, 5.0008, 4.2712, 4.5840, 2.7470, 3.8086, 3.9839, 4.3630, 
3.5519, 4.0534,
          4.0031, 5.1495, 4.5581, 4.1959, 3.5946, 5.1642, 4.0103, 3.6354, 4.2529, 
3.5171, 4.4485,
          5.3879, 3.4132, 3.8905, 4.3263, 4.2263, 3.9451, 3.9024)

design$y = width

###############################################
# Analysis
rsm.bbd = rsm(y ~ SO(x1,x2,x3,x4), data = design)
summary(rsm.bbd)

###############################################
# Normality
shapiro.test(rsm.bbd$residuals)

###############################################
# Graphics

# Contour plots
par(mfrow = c(2,3))
contour(rsm.bbd , ~x1 + x2, image = TRUE)
contour(rsm.bbd , ~x1 + x3, image = TRUE)
contour(rsm.bbd , ~x1 + x4, image = TRUE)
contour(rsm.bbd , ~x2 + x3, image = TRUE)
contour(rsm.bbd , ~x2 + x4, image = TRUE)
contour(rsm.bbd , ~x3 + x4, image = TRUE)

# Perspective plots
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persp(rsm.bbd , ~x1 + x2, zlab = "y [%]", col = rainbow(50), contours = "colors")
persp(rsm.bbd , ~x1 + x3, zlab = "y [%]", col = rainbow(50), contours = "colors")
persp(rsm.bbd , ~x1 + x4, zlab = "y [%]", col = rainbow(50), contours = "colors")
persp(rsm.bbd , ~x2 + x3, zlab = "y [%]", col = rainbow(50), contours = "colors")
persp(rsm.bbd , ~x2 + x4, zlab = "y [%]", col = rainbow(50), contours = "colors")
persp(rsm.bbd , ~x3 + x4, zlab = "y [%]", col = rainbow(50), contours = "colors")

################################################ ###############
# Optimization restricted
optimal = steepest(rsm.bbd , dist = seq(0, sqrt(2), by = .1), descent = T)

x_ = c(optimal$x1[nrow (optimal)], optimal$x2[ nrow (optimal)], optimal$x3[ nrow 
(optimal)], optimal$x4[nrow(optimal)])
names(x_) = c("x1", "x2", "x3", "x4")

par(mfrow = c(2,3))
contour(rsm.bbd , ~x1+x2, col = "black", decode = F, at = x_)
points(x2 ~ x1, data = optimal , col = "blue", pch = "*")

contour(rsm.bbd , ~x1+x3, col = "black", decode = F, at = x_)
points(x3 ~ x1, data = optimal , col = "blue", pch = "*")

contour(rsm.bbd , ~x1+x4, col = "black", decode = F, at = x_)
points(x4 ~ x1, data = optimal , col = "blue", pch = "*")

contour(rsm.bbd , ~x2+x3, col = "black", decode = F, at = x_)
points(x3 ~ x2, data = optimal , col = "blue", pch = "*")

contour(rsm.bbd , ~x2+x4, col = "black", decode = F, at = x_)
points(x4 ~ x2, data = optimal , col = "blue", pch = "*")

contour(rsm.bbd , ~x3+x4, col = "black", decode = F, at = x_)
points(x4 ~ x3, data = optimal , col = "blue", pch = "*")

2.9 Multi-level Factorial Design
Multi-level factorial design, also known as generalized factorial design, is a method 

used when the control factors are qualitative. In this method, each factor can have several 
distinct levels. For example, Factor A can have two levels, Factor B can have three levels, 
and Factor C can have five levels. Experimental trials include all combinations of these 
factor levels.

The number of experiments in this design is the number of replicates times the 
number of levels of each factor. For example, if one factor has four levels, another has three 
and another has two, the number of combinations is 4 x 3 x 2 = 24. The simplest case of 
factorial design is one in which each factor is present in only two levels. In this case, for an 
experiment with k factors and two levels, 2 x 2 x ... x 2 (k times) = 2k observations of the 
response variable are carried out.
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Example 8: The following example consists of the use of a multi-level factorial design 
applied to turning ABNT 1045 steel, extracted from study [6]. In this design, we will use the 
DoE.base package and phia of R software and a restricted designing optimization.

R Script
library(DoE.base)

# Planning decoded via DoE .base package
design = fac.design(factor.names = list(CB = c("PF", "PM", "QM", "KR"),
                                        f = c(0.16, 0.24, 0.32),
                                        vc = c( 310,380)),
                    replications = 3,
                    randomize = FALSE)
design

# Planning encoded

design2 =fac.design(factor.names = list(CB = c(-1, -0.33, 0.33, 1),
                                        f = c(-1,0,1),
                                        vc = c(-1,1)),
                    replications = 3,
                    randomize = FALSE)
design2

# Cutting force - Fc

Fc <- c(902.30, 877.31, 845.72, 991.03, 1287.40, 1198.23, 1166.36,
        1399.52, 1724.08, 1544.10, 1510.12, 1712.83, 870.88, 888.42,
        857.49, 955.14, 1280.49, 1200.65, 1161.42, 1342.05, 1674.23,
        1522.24, 1508.66, 1687.77, 912.67, 882.97, 835.37, 974.67,
        1309.27, 1205.55, 1194.54, 1370.80, 1721.67, 1528.56, 1545.90,
        1727.58, 894.77, 880.27, 846.80, 959.81, 1280.55, 1227.36,
        1169.19, 1330.01, 1676.26, 1501.24, 1509.74, 1650.20, 916.21,
        880.05, 850.29, 1008.54, 1311.10, 1209.18, 1200.13, 1356.21,
        1697.23, 1566.89, 1525.19, 1683.15, 885.12, 875.53, 838.02,
        979.96, 1286.59, 1193.36, 1164.99, 1350.14, 1686.84, 1503.87,
        1536.91, 1690.23)

design$Fc = Fc
design2$Fc = Fc

################################################ #
## Analysis####

# ANOVA for Fc
res.Fc = aov(Fc ~ CB*f* vc , data = design)
summary(res.Fc )
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lm.Fc = lm(Fc ~ CB*f* vc , data = design2)
summary(lm.Fc )

####### Assumptions

# Normality
shapiro.test(res.Fc $residuals )

par(mfrow = c(2,2))
plot(res.Fc )

# Homoscedasticity

library(car)
leveneTest(Fc ~ CB*f* vc , data = design)

# multiple comparisons test

library(emmeans)
Tukey.Fc = emmeans(res.Fc,    # Tukey)
                   ~ CB|f)
plot(Tukey.Fc)

install.packages("ScottKnott")
library(ScottKnott)

sk1 <- with(design,
            SK(x = res.Fc,  # Scott-Knott
               y = Fc,
               model = 'Fc ~ CB*f',
               which = 'f:CB',
               fl1 = 1))

sk2 = with(design,
           SK(x = res.Fc,  # Scott-Knott
              y = Fc,
              model = 'Fc ~ CB*f',
              which = 'f:CB',
              fl1 = 2))

sk3 = with(design,
           SK(x = res.Fc,  # Scott-Knott
              y = Fc,
              model = 'Fc ~ CB*f',
              which = 'f:CB',
              fl1 = 3))
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summary(sk1) # equal characters, equal statistical averages
summary(sk2)
summary(sk3)

par(mfrow=c(1,3))
plot(sk1)
plot(sk2)
plot(sk3)

########### Effects graph

install.packages("phia")
library(phia)
IM = interactionMeans(res.Fc)
IM
plot(IM)

library(ggpubr)

p1 <- ggline(design,
             x = "CB",
             y = "Fc",
             add = c("mean", "jitter"),
             color = "blue") + theme_bw()

p2 <- ggline(design,
             x = "f",
             y = "Fc",
             add = c("mean", "jitter"),
             color = "red") + theme_bw()

p3 <- ggline(design,
             x = "vc",
             y = "Fc",
             add = c("mean", "jitter"),
             color = "green") + theme_bw()

ggarrange(p1,p2,p3)

p12 <- ggline(design,
              x = "f",
              y = "Fc",
              add = c("mean", "jitter"),
              color = "CB") + theme_bw()

p13 <- ggline(design,
              x = "vc",
              y = "Fc",
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              add = c("mean", "jitter"),
              color = "CB") + theme_bw()

p23 <- ggline(design,
              x = "f",
              y = "Fc",
              add = c("mean", "jitter"),
              color = "vc") + theme_bw()

ggarrange(p12,p13,p23)

2.10 Nonlinear optimization for response surface
Response surface methodology (RSM) is a collection of statistical and mathematical 

techniques that can be used to optimize processes. RSM is useful for modeling and analyzing 
problems where the response variable is influenced by multiple factors. RSM can be used to 
optimize extractive processes for one or more bioactive compounds, among others.

In the optimization process, the first part consists of finding a suitable approximation 
for the relationship between the response and the factors, generally using low-degree 
polynomials. RSM can also be used to combine multiple responses into a single response 
using a mathematical function. The response surface obtained can be used to calculate the 
optimal values for each variable, to simultaneously satisfy all responses considered.

When we are at a point on the surface far from the optimum, there will be small 
curvature and a first-order model is adequate. The aim is to get as close as possible to this 
optimum and once it has been found, we can use a more elaborate analysis (second order 
model, for example). 

Normally in the optimization process, the steepest ascending method is used to find 
the maximum increase direction of the response. The steepest upward path consists of 
a line that passes through the center of the region of interest and is perpendicular to the 
contours of the fitted surface.

Example 9: The following example consists of the non-linear optimization for the 
response surface of the components of a catalyst, taken from study [7]. In this design, we 
will use the rsm and phia package of R software and a rigid analysis of the design.
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R Script
#######

library(rsm)

# designing with central points via RSM

plan = ccd(basis = ~x1+x2+x3,
           n0 = c(0,3),
           randomize = F,
           alpha = "rotatable",
           coding = list(x1 ~ (Co - 10)/2, # Co mass
                         x2 ~ (W - 1.5)/0.5, # W mass
                         x3 ~(Ce - 4)/1))    # Ce mass
plan           

y = c(88.36, 93.40, 89.22, 92.02, 91.28, 92.02, 89.62, 88.92,   # factorials points
      85.98, 89.72, 91.43, 88.53, 95.66, 94.63,                 # axial points
      94.38, 94.53, 94.08)                                      # central points

plan$y = y

################################################ ########################
## Analysis via RSM

res.rsm = rsm( y ~ SO(x1,x2,x3), data = plan )
summary(res.rsm )

####### Assumptions

# Normality
shapiro.test(res.rsm$residuals )

#### Graphics
# Contour and Surface
par(mfrow = c(2,3))
contour(res.rsm , ~x1 + x2, image = TRUE)
contour(res.rsm , ~x1 + x3, image = TRUE)
contour(res.rsm , ~x2 + x3, image = TRUE)
persp (res.rsm , ~x1 + x2, zlab = "y", col = rainbow(50), contours = ("colors"))
persp (res.rsm , ~x1 + x3, zlab = "y", col = rainbow(50), contours = ("colors"))
persp (res.rsm , ~x2 + x3, zlab = "y", col = rainbow(50), contours = ("colors"))

##### Optimization

radius = (2^ 3)^ 0.25 # radius of the CCD (alpha) or root 4 of 2k
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# Rigid Analysis
optimum = steepest(res.rsm , dist = seq (0, radius, by =.1), descent = F)
# maximize response
optimum 

par(mfrow = c(1,3))
contour(res.rsm , ~x1 + x2, col = "black", decode = F)
points(c(-1, 1,- 1,1,-radius,radius,0,0,0), c(-1,-1,1,1,0,0,-radius,radius,0), col 
= "blue", pch = 19)
points(x2 ~ x1, data = optimum , col = "magenta", pch = "*")

contour(res.rsm , ~x1 + x3, col = "black", decode = F)
points(c(-1, 1,- 1,1,-radius,radius,0,0,0), c(-1,-1,1,1,0,0,-radius,radius,0), col 
= "blue", pch = 19)
points(x3 ~ x1, data = optimal , col = "magenta", pch = "*")

contour(res.rsm , ~x2 + x3, col = "black", decode = F)
points(c(-1, 1,- 1,1,-radius,radius,0,0,0), c(-1,-1,1,1,0,0,-radius,radius,0), col 
= "blue", pch = 19)
points(x3 ~ x2, data = optimal , col = "magenta", pch = "*")

2.11 Simplex-lattice Design
A simplex-lattice planning {q,m} is a set of uniformly spaced points in a simplex 

consisting of a q-component design that supports up to a polynomial of degree m. The 
m+1 points are equally spaced, observing that the proportion of the ith component and all 
possible combinations (mixtures) of the equation below are used:

     Eq. 1

For a three-component mixture fitting a polynomial of degree 2 (q = 3, m = 2), the 
simplex-lattice consists of the six points:

(x1, x2, x3)= (1,0,0), (0,1,0), (0,0,1), (½, ½, 0), (½, 0, ½) and (0, ½, ½) eq. (2.1)
For this simplex-lattice {3,2}, the three vertices (1,0,0), (0,1,0) and (0,0,1) are pure 

mixtures, and the points (½, ½, 0) , (½, 0, ½) and (0, ½, ½) are binary mixtures, located at 
the midpoints of the three edges of the triangle in Fig. 2.1.
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Fig. 2.1: Simplex-lattice design for three components.

The simplex-lattice design is an experimental design where the points are located 
on the edges or boundaries of the simplex. It is represented by six points, with the pure 
components being the vertices of the triangle and the binary mixtures. Simplex-lattice design 
was presented by Scheffé (1958) at the beginning of studies on experiments with mixtures.

Example 10: The following example consists of using simplex-lattice mixture design 
to optimize the natural fiber composition of a fiber-reinforced composite in 3 factors (F1 – 
sisal fiber, F2 – jute fiber, F3 – coconut fiber), extracted from the study [8]. In this design, we 
will use the mixexp and NlcOptim package of R software.

R Script
install.packages("mixexp")
library(mixexp)

# Simplex-lattice design with 3 components and grade 2
plan.simplex = SLD(3,2)
plan.simplex

# Planning was replicated 3 times

plan.simplex = rbind(plan.simplex, plan.simplex, plan.simplex)
plan.simplex

# Design planning
DesignPoints((plan.simplex))
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# answer - specific breaking stress (SBS)
y = c(28.56, 21.73, 26.38, 33.71, 24.22, 22.93,
      29.58, 20.98, 25.9, 32.98, 23.98, 21.79,
      29.26, 21.23, 26.65, 34, 23.15, 22.17)

plan.simplex$SBS = y

############ Analysis

# complete model

res.composite = MixModel(frame = plan.simplex,
                         response = "SBS",
                         mixcomps = c("x1", "x2", "x3"),
                         model = 2)
summary(res.composite)

# reduced model - lm command
res.composite.reduced = lm(SBS ~ -1 + x1 + x2 + x3 + x1*x2 + x1*x3,
                           data = plan.simplex )
summary(res.composite.reduced )

###### Graphics

# Contour full model plot

ModelPlot(model = res.composite,
          dimensions = list( x1="x1", x2="x2", x3="x3"),
          contour = T,
          fill = T,
          axislabs = c("sisal", "juta", "coconut"),
          color.palette = cm.colors ,
          colorkey = T)

# Effects chart

ModelEff(nfac = 3,
         mod = 2,
         dir = 2,
         nproc = 0,
         ufunc = res.composite )

### Assumptions
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#normality
shapiro.test(res.composite$residuals )
par(mfrow = c(2,2))
plot(res.composite)

### Non-linear optimization - rigid analysis

install.packages("NlcOptim")
library(NlcOptim)

# Objective function to be optimized
obj = function(x){
  y_hat = predict(res.composite , newdata = data.frame (x1 = x[1],
                                                        x2 = x[2],
                                                        x3 = x[3]))
  return(-y_hat)
}

# equality constraint
cons_eq = function(x){
  g = x[1] + x[2] + x[3] -1
  return(list( ceq = g,c = NULL))
}

# initial x

x0 = c(1/3, 1/3, 1/3)

# test objective function and constraint

obj(x0)
cons_eq(x0)

# optimization

opt = solnl(X = x0, objfun = obj, confun = cons_eq, lb = rep (0,3), ub = rep(1,3))

# Optimal proportions
x_optim = opt$par
x_optim

# Great answer
y_ = opt$fn
y_
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2.12 Simplex-centroid Design
Simplex-centroid is a design where the points are located on the edges or borders 

of the simplex, with the exception of the central point (centroid). Simplex-centroid allows 
you to reduce the number of coefficients in a model. It is an alternative to the simplex-
lattice design. The difference between the two designs is that the simplex-centroid creates 
additional points always aligned to the centroid, while in the simplex-lattice, the points cover 
the entire internal space.

Example 11: The following example consists of using simplex-centroid mixture 
design to optimize the composition of biodiesel based on vegetable oil and animal fat 
(factors: soybean oil, beef tallow, poultry fat; response: induction period), extracted from 
study [9]. In this design, we will use the mixexp and NlcOptim package of R software.

R Script
install.packages("mixexp")
library(mixexp)

# Simplex-centroide q = 3
plan.centroide = SCD(3)

# replicating the central points
plan.centroide = rbind(plan.centroide , plan.centroide [7,], plan.centroide [7,], 
plan.centroide [7,])
plan.centroide

# Drawing planning
DesignPoints((plan.centroide))

# Answer - Induction period
IP = c(3.76, 9.57, 9.77, 8.19, 7.92, 12.92,
       10.04, 9.27, 10.07, 9.35)

# adding response to planning
plan.centroide$y = IP
plan.centroide

################# Analysis

# complete model

res.centroide = MixModel(frame = plan.centroide,
                         response = "IP",
                         mixcomps = c( "x1", "x2", "x3"),
                         model = 4) #special cube = 4
summary(res.centroide)
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###### Graphics

# Contour full model plot

ModelPlot(model = res.centroide ,
          dimensions = list( x1="x1", x2="x2", x3="x3"),
          contour = T,
          fill = T,
          axislabs = c( "oleo_soy", "tallow_beef", "fat_birds"),
          color.palette = terrain.colors ,
          colorkey = T)

# Effects chart
ModelEff(nfac = 3,
         mod = 4,
         dir = 2,
         nproc = 0,
         ufunc = res.centroide )

### Assumptions

# Normality
shapiro.test(res.centroide$residuals)

### Non-linear optimization - rigid analysis

library(NlcOptim)

# Objective function to be optimized
obj = function(x){
  y_hat = predict(res.centroide , newdata = data.frame (x1 = x[1],
                                                       x2 = x[2],
                                                       x3 = x[3]))
  return(-y_hat)
}

# equality constraint
cons_eq = function(x){
  g = x[1] + x[2] + x[3] -1
  return( list( ceq = g,c = NULL))
}

# initial x

x0 = c(1/3, 1/3, 1/3)
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# test objective function and constraint

obj(x0)
cons_eq(x0)

# optimization

opt = solnl(X = x0, objfun = obj, confun = cons_eq, lb = rep (0,3), ub = rep(1,3))

# Optimal proportions
x_optim = opt$par
x_optim

# Great answer
y_ = opt$fn
y_

PROPOSED EXERCISES
01 – Propose a complete factorial design (2 levels) using a script in R language and 

present your main conclusions.
02 – There are multivariate data repositories on the internet (web of science, Science 

Direct, and others) in which you must choose a full 3-level factorial design to perform a 
statistical study in detail. Present the main results and conclusions.

03 – Present a fractional factorial design through a real example containing an R 
script to demonstrate your hypotheses and main conclusions.

04 – Propose a Box-Behnken experiment and perform a statistical interpretation 
presenting its main conclusions.

05 – Present a simplex-lattice design of mixtures and your main conclusions. Also, 
perform non-linear optimization or rigid analysis of the experiment.

06 – In the same way as the previous exercise, present a simplex-centroid design of 
mixtures and your main conclusions. Also, perform non-linear optimization or rigid analysis 
of the experiment.

07 – Present a multi-level factorial design and its main conclusions using the R 
language.
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PATTERN RECOGNiTiON 

CHAPTER 3

" There is no short cut to truth, no way to gain a knowledge of the 
universe except through the gateway of scientific method "  Karl 
Pearson (1857-1936)

CHAPTER IDEA
The term pattern can be defined as the opposite of chaos or a loosely defined entity 

that can be given a name. Formally, pattern recognition is the area of science that aims to 
classify objects (patterns) into a number of categories or classes. Thus, for a given set of c 
classes, ω1 , ω2 , ..., ωc , and unknown pattern x, a pattern recognizer will be a system that, 
aided by pre-processing, feature extraction and selection, associates x to label i of a class 
ωi .

We can find pattern recognition techniques in several applications, such as: i) 
analysis of genome sequences, in microarray applications and technology (bioinformatics); 
ii) data mining; iii) medical diagnosis; iv) biometric recognition; v) remote sensing using 
multispectral images; and, vi) speech recognition.

Basically, pattern recognition techniques are based on three main steps: i) 
data acquisition for extraction and selection of the most informative features; ii) data 
representation; and, iii) construction of a classifier or descriptor for decision making.

Generally, the classifier used in pattern recognition techniques learns how to map 
the feature data space Thus, we can group pattern classification techniques, according 
to the type of learning, into two forms: i) unsupervised analysis (they use patterns that do 
not have defined class labels); and, (ii) supervised analysis (the patterns belong to a pre-
defined class).

Upon completing the chapter, you should be able to:
a) Apply the main unsupervised analysis algorithms (HCA, K-means and PCA) to a 
set of real or simulated data, seeking to identify patterns in the analyzed data;
b) Apply the main supervised analysis algorithms (LDA, QDA, KNN, SVM and 
decision trees) to real or simulated data sets in the construction of classification 
models;
c) Understand the stages of building multivariate classification models and evaluating 
the models (confusion matrix and ROC curve);
e) Build new scripts in R language for decision making using the pattern recognition 
technique;
f) Propose new applications in chemistry or related areas of pattern recognition 
techniques.

https://www.azquotes.com/quote/97013
https://www.azquotes.com/quote/97013
https://www.azquotes.com/quote/97013
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UNSUPERVISED ANALYSIS

3.1 Cluster Analysis
The term Cluster Analysis was first used by Tyron in 1939 [1] in an attempt to organize 

observed data into structures that make sense or in the construction of taxonomies capable 
of classifying samples into different classes. In Biology, Zoologists use taxonomy in an 
attempt to classify observed specimens (samples) into groups. In Chemistry, for example, 
there are many situations in which Cluster Analysis appears, and throughout the text, they 
will be presented and discussed in detail.

The purpose of grouping (clustering) is to define intrinsic groups in a set of data 
that does not have labels, so that the objects in each group are similar according to some 
pre-established criteria. In other words, we have a statistical tool with which it is possible to 
form groups with homogeneity within the grouping, and heterogeneity between them. The 
presence of personal computers has made routine evaluation of complex data sets (with 
thousands of variables and samples) possible. Currently, there are several tools available to 
extract useful information from complex data using the detection and evaluation of patterns 
in your dataset.

Generally speaking, cluster analysis does not require any initial assumptions about 
the structure of the data. The search for a natural grouping structure in the data itself is an 
important exploratory technique. The aim, therefore, is to find natural groupings and classify 
samples characterized by the values of a set of variables into groups. This technique aims 
to partition the elements of a data set into two or more groupings based on their similarity 
founded on a set of variables. We must remember that the cluster solution is not generalizable 
because it is totally dependent on the variables used as a basis for the similarity measure. 
Finally, we can identify three common applications in cluster analysis: i) classification of 
elements (taxonomy); ii) data simplification; and, iii) identification of relationships between 
elements.

3.2 Hierarchical Cluster Analysis (HCA)
A hierarchical cluster is a sequence of partitions in which each partition is allocated 

to its neighboring partition in the sequence. The aim of this technique is to classify samples 
using similarity measures. We can understand the similarity between elements as an 
empirical measure of correspondence (distance) or similarity between the elements to be 
grouped. The smaller the distance between samples in n-dimensional space, the greater the 
similarity. In summary, distance measures are actually dissimilarity measures, that is, higher 
values indicate greater dissimilarity between the variables. From the results, and using the 
inverse relationship, it is possible to identify the similarity measure.
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In HCA, metric distances are calculated between the samples (objects) that form 
the data set, and these are grouped according to the degree of similarity presented. HCA 
comprises agglomerative and divisive ways of forming clusters. In agglomerative procedures 
(most common), we start with the instances forming disjoint unitary groups (singletons), 
that is, each of the n instances in the data set will be assigned to a group (cluster). In 
divisive hierarchical analysis, the process occurs in the opposite order to the agglomerative 
one. The results provided by HCA are called dendrograms (Figure 3.1), which graphically 
express the distance (similarity) between the samples.

Figure 3.1 : Representation of a dendrogram or binary tree.

Several criteria can be adopted to choose the number of clusters. The desired 
number of clusters can be known in advance or apredetermined distance value is used as 
a criterion to separate the number of clusters. The number of clusters is chosen based on 
observation of the dendrogram, based on knowledge of the data.

For Cluster Criteria, the distance from an object to cluster k can be calculated as the 
average distance of objects A and B to object i, in several ways:

I. Single Link (KNN) – The shortest distance between clusters is calculated. 
This procedure is also known as KNN (Kth Nearest Neighbor);

II. Complete connection – Based on the greatest distance between objects in 
opposite groupings. In general, small, compact, spherical and well-separated 
clusters tend to form;

III. Centroid link (k-means) – A centroid is calculated as the average of the 
objects in a cluster. Spatial distortion of the grouping is avoided and tends to 
preserve groups of small importance in relation to larger ones;

IV. Ward's method – The clusters are aggregated in such a way as to minimize 
the sum of squares of the deviations of each centroid in relation to the group 
itself.
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Example 1: In this example, an HCA is performed for a simulated dataset using the 
dist function in the R language.

R Script
# Simulated data

A=c(9.60, 8.40, 2.40, 18.20, 3.90, 6.40)
B=c(28, 31, 42, 38, 25, 41)

data= cbind(A,B)

# Distance calculation

? dist

DE= dist(data, method = "euclidean", diag = TRUE, upper = TRUE, p =2)
dendo = hclust ( DE,method = "average")

# Dendogram

plot(dendo)

Example 2: In this example, an HCA is performed for an ICP-OES dataset using the 
R packages factoextra and NbClust .

R Script
# Loading the dataset

D1= read.table("ICPOES.txt")
D2= D1[,-1]

# Detection of atypical variables
# Calculating Mahalanobis distance
p.cov <- var(scale(D2)) # standardize first
p.cov <- var(D2)
p.mean <- apply(D2,2,mean)
p.mah <- mahalanobis(D2, p.mean, p.cov)
View(p.mah)

# Analyzing variance
# Variables with different scales and different variances can distort the analysis
apply(D2, 2, var)

#Standardizing variables
DP <- scale(D2)
apply(DP, 2, mean)
apply(DP, 2, var)
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#---------------------------------------------------------------- --------------
# 2. Selection of grouping criteria
# Database rows must represent observations (samples)
# that you want to group.
# Columns must be formed by variables.
#---------------------------------------------------------------- --------------
# Select the similarity (or dissimilarity) criterion that will determine
# which observations are similar, and should be grouped into a given group, and 
which are not
# similar, and must be in different groups.
# For a similarity measure, the lower its value, the more similar two observations 
are.
# Calculating Euclidean distance
d.eucl <- dist(DP, method = "euclidean")

#Viewing the Euclidean distance rounding 1 decimal place:
round(as.matrix( d.eucl)[1:4, 1:4], 1)

#---------------------------------------------------------------- ---------------
# 3. Selection of clustering algorithm
# Hierarchical x Non-hierarchical
#---------------------------------------------------------------- ----------------

#Hierarchical method of Ward's minimum variance or mean distance

res.hc <- hclust(d = d.eucl, method = "ward.D2")

# Calculating the cophenetic matrix
## Compares the distances actually observed between objects and
## the distances predicted from the grouping process.
res.coph <- cophenetic(res.hc)

# Correlation between the cophenetic distance and the original distance
cor(d.eucl, res.coph)

#Comparing with the average link method
hc.m <- hclust(d.eucl, method = "average")

# Correlation between the cophenetic distance and the original distance
cor(d.eucl, cophenetic(hc.m))

#---------------------------------------------------------------- ----------------
# 4. Defining the number of clusters
#---------------------------------------------------------------- ----------------
#Loading the factoextra package

install.packages("factoextra")
library(factoextra)
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# Obtaining the dendrogram
fviz_dend(hc.m, cex = 0.5)

# Some indicators can be used to help choose the number of groupings.
#To calculate these indices we must install the NbClust package
install.packages("NbClust")
library(NbClust)

# Note: We can install more than one package at a time using
pkgs <- c("factoextra", "NbClust")
install.packages(pkgs)

nb <- NbClust(DP, distance = "euclidean", min.nc = 2,
                max.nc = 10, method = "average", index = "all")

 #method = NULL must be replaced by the grouping algorithm used ("ward.D",
# "ward.D2", "single", "complete", "average", "kmeans", etc.)

#Getting the indicators
nb[["All.index"]]

#------------------------
#For just one indicator, use the help
?NbClust

#For only the ccc index 

nb.c <- NbClust(DP, distance = "euclidean", min.nc = 2,
                  max.nc = 10, method = "ward.D2", index = "ccc")

fviz_nbclust(nb.c)

#-----------------------
#For pseudo-f('ch')
nb.i <- NbClust(DP, distance = "euclidean", min.nc = 2,
                 max.nc = 10, method = "ward.D2", index = "ch")

fviz_nbclust(nb.i)

#---------------------------------------------------------------- ----------------
------
#5. Interpretation and validation of groupings
#---------------------------------------------------------------- ----------------
------
#Getting the groupings
g <- cutree(hc.m,k =3)
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#Number of members in each group
table(g)

#We can visualize the clustering result in the dendrogram
fviz_dend(hc.m, k = 3, # Cut in four groups
          cex = 0.5, # label size
          k_colors = c("#2E9FDF", "#00BB0C", "#E7B800", "#FC4E07"),
          color_labels_by_k = TRUE, # color labels by groups
          rect = TRUE # Add rectangle around groups
)

Example 3: In this example, an HCA is performed for a dataset containing 8 
physicochemical properties of 89 chemical elements using the R packages factoextra and 
NbClust .

R Script
# load the TP dataset (89 x 9)
D1 = read.table("TP.txt")
D2 = D1[,-1]

# Detection of atypical variables
# Calculating Mahalonobis distance 
p.cov <- var(scale(D2)) # standardize first
p.cov <- var(D2)
p.mean <- apply(D2,2,mean)
p.mah <- mahalanobis(D2, p.mean, p.cov)
View(p.mah)

#Variables with different scales and different variances can distort
## the analysis
apply(D2, 2, var)

#Standardizing variables
DP <- scale(D2)
apply(DP,2,mean)
apply(DP,2,var)

#---------------------------------------------------------------- --------------
# 2. Selection of similarity or dissimilarity criterion
# For a similarity measure, the lower its value, the more similar two observations 
are.
# Calculating Euclidean distance
d.eucl <- dist(DP, method = "euclidean")

#Viewing the Euclidean distance rounding 1 decimal place:
round(as.matrix(d.eucl)[89:8, 89:8], 1)
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#---------------------------------------------------------------- ---------------
# 3. Selection of clustering algorithm
# Hierarchical x Non-hierarchical
#---------------------------------------------------------------- ----------------

#Hierarchical method of Ward's minimum variance or mean distance
res.hc <- hclust(d = d.eucl, method = "ward.D2")

# Calculating the cophenetic matrix
## Compares the distances actually observed between objects and
## the distances predicted from the grouping process.
res.coph <- cophenetic(res.hc)

# Correlation between the cophenetic distance and the original distance
cor(d.eucl, res.coph)

#Comparing with the average link method
hc.m <- hclust(d.eucl, method = "average")

#cophenetic distance and the original distance
cor(d.eucl, cophenetic(hc.m))

#---------------------------------------------------------------- ----------------
# 4. Defining the number of clusters
#---------------------------------------------------------------- ----------------
#Loading the factoextra package
install.packages("factoextra")
library(factoextra)

# Obtaining the dendrogram
fviz_dend(hc.m, cex = 0.5)

# Some indicators can be used to help choose the number of groupings.
# To calculate these indices we must install the NbClust package
install.packages("NbClust")
library(NbClust)

# Note: We can install more than one package at a time using
pkgs <- c("factoextra", "NbClust")
install.packages(pkgs)

nb <- NbClust(DP, distance = "euclidean", min.nc = 2,
                max.nc = 10, method = "average", index = "all")

# method = NULL must be replaced by the grouping algorithm used ("ward.D",
# "ward.D 2", "single", "complete", "average", "kmeans", etc.)

#Getting the indicators
nb[["All.index"]]



Pattern recognition 75

#------------------------
#For just one indicator, use the help
?NbClust

#For only the ccc index 

nb.c <- NbClust(DP, distance = "euclidean", min.nc = 2,
                  max.nc = 10, method = "ward.D2", index = "ccc")

fviz_nbclust(nb.c)

#-----------------------
#For pseudo-f('ch')
nb.i <- NbClust(DP, distance = "euclidean", min.nc = 2,
                 max.nc = 10, method = "ward.D2", index = "ch")

fviz_nbclust(nb.i)

#---------------------------------------------------------------- ----------------
------
#5. Interpretation and validation of groupings.
#---------------------------------------------------------------- ----------------
------
#Getting the groupings
g <- cutree(hc.m,k=4)
#Number of members in each group
table(g)

#We can visualize the clustering result in the dendrogram
fviz_dend(hc.m, k = 4, # Cut in four groups
             cex = 0.5, # label size
             k_colors = c("#2E9FDF", "#00BB0C", "#E7B800", "#FC4E07"),
             color_labels_by_k = TRUE, # color labels by groups
             rect = TRUE # Add rectangle around groups
)

3.3 K-means
K-means is partitional (non-hierarchical) center-based technique, that is, the groups 

formed by this technique are represented by a centroid (a central point in the group). 
K-means was proposed in a pioneering work by S. Lloyd in 1957, however, it was only 
published in 1982 [2]. For Lloyd, the centroid was chosen as the point that minimizes the 
sum of the square of the Euclidean distance, dE , between itself and each point in the set, 
according to the equation:

     Eq. 1
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The aim of the K-means algorithm is to minimize the sum of squared error over all k 
groups:

      Eq. 2

Basically, K-means performs five main steps: i) selects k instances (randomly) to 
be the initial centroids of the groups; ii) assigns all instances to the closest centroid; iii) 
recalculates the centroid for each group; iv) calculates the averages of all instances of the 
group; v) repeat steps (ii and iii) until the centroids do not change.

 A critical point in the use of K-means that determines its performance is the choice 
of initial centroids. The choices, despite being random, in general, can lead to a local 
minimum. However, we can find the use of K-means in various applications, such as: data 
mining, statistics, engineering, machine learning, medicine, marketing, administration and 
biology.

Example 4: In this example the K-means algorithm is applied to an ICP-OES dataset 
using the R stats and cluster packages. 

R Script
# loading data
D1= read.table ("ICPOES.txt")
D2=D1[,-1]

# kmeans(x, centers, iter.max = 10, nstart = 1)
## Defining a seed. This allows the result to be
## reproducible, since the seed interferes with the final result
set.seed(123)

DP <- scale(D2)
km.res <- kmeans(DP, 3, nstart = 25)
print(km.res)

#Interpretation and validation of clusters
#---------------------------------------------------------------- ---------------
#Adding the k-means cluster column to the original data
DPK <- cbind(D2, Groups=km.res$cluster)
DPK

#Calculating the group average for the original data
aggregate(D2, by=list(cluster= km.res$cluster), mean)

round(aggregate(D2, by=list(cluster= km.res$cluster), mean),1)
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# vizualizing the clusters

fviz_cluster (km.res, data = D2,
                palette = c( "#2E9FDF", "#00BB0C", "#E7B800", "#FC4E07"),
                ellipse.type = "euclid", # Concentration ellipse
                star.plot = TRUE, # Add segments from centroids to items
                repel = TRUE, # Avoid label overplotting (slow)
                ggtheme = theme_minimal())

## vizualizing the clusters in 2D

install.packages("cluster")
library(cluster)
clusplot (DP, km.res$cluster , main='Two-dimensional cluster representation',
           color=TRUE, shade=TRUE,
           labels=2, lines=0)

Example 5: In this example the K-means algorithm is applied to an ICP-OES dataset 
using the FactoMineR , factoextra , cluster, ggplot2 and xlsx packages.

R Script 
install.packages("FactorMineR")
install.packages("factoextra")
install.packages("cluster")
install.packages("ggplot2")

library(FactoMineR)
library(factoextra)
library(cluster)
library(ggplot2)

# importing data

D1= read.table("Matrix 54x7.txt", head=T)
D2=D1[,-1]
DP=apply(D2, 2, function(x)(x-mean(x))/sd (x))

#Bloxplot
boxplot(D2$Ca)

#Scaling
Data = scale(D2)

#Defining optimal number of cluster
fviz_nbclust(DP, kmeans, method = "gap_stat")

#Generate kmeans
data_kmeans = kmeans(DP,5)
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#vizualizing the clusters
fviz_cluster(data_kmeans, data = DP, ellipse.type = "t")

#Creating a list of clusters

list = data_kmeans$cluster
#Grouping data into a table
general_data = cbind(D2, list)
general_data

3.4 Principal Component Analysis (PCA)
Principal component analysis technique (PCA), originally proposed in 1901 by 

Karl Pearson [3], is a mathematical procedure that uses an orthogonal transformation or 
orthogonalization of vectors to convert a set of observations of possibly correlated variables 
into a set of values of linearly uncorrelated variables called principal components. PCA is a 
tool used to reduce the dimensionality of a set of variables by creating a new base, whose 
components are linearly independent and fewer in number. These components are ordered 
in order to maintain the largest portion of the original variance in the first components.

One of the ways to calculate the PCA is through the covariance method. This method 
presents some main steps: i) organize the data set in the form of an nxm matrix (n is 
the number of observations or samples and m is the number of measured variables); ii) 
if necessary, carry out some pre-treatment (normalization, correlation or autoscaling ); iii) 
calculate the covariance matrix; iv) calculate the eigenvalues and eigenvectors associated 
with the covariance matrix; v) order the eigenvectors according to the associated eigenvalues 
- the first eigenvector is the first principal component and so on; vi) calculate the percentage 
of the original variance from the associated eigenvalues. Another way to perform PCA is 
through singular value decomposition (SVD). The SVD method of matrix X is X = WΣV 
T, where the m × m matrix W is the eigenvector matrix of the covariance matrix XXT , the 
matrix Σ is m × n and is a rectangular diagonal matrix with non-negative real numbers on the 
diagonal, and the n × n matrix V is the eigenvector matrix of XTX .

In a principal components analysis, the grouping of samples defines the structure of 
the data through graphs of scores and loadings whose axes are principal components onto 
which the data is projected. The scores provide the composition of the PCs in relation to the 
samples, while the loadings provide this same composition in relation to the variables. As 
the principal components are orthogonal, it is possible to examine the relationships between 
samples and variables through scores and loadings graphs. 

Example 6: In this example, the PCA algorithm is applied to an ICP-OES dataset 
using the FactoMineR and factoextra packages.  

https://pt.wikipedia.org/wiki/Autovetor
https://pt.wikipedia.org/wiki/Matriz_de_covari%C3%A2ncia
https://pt.wikipedia.org/wiki/Matriz_diagonal
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R Script
#loading the ICP-OES dataset (54 x 7)

D1 = read.table("ICPOES.txt")
D2 = D1[,- 1]

#Calculating the covaraince matrix var-cov(X)
cov.c <- cov(D2)

#Checking the type of the cov.c object
class(cov.c)

##Viewing only some elements of the var-cov(X) matrix
cov.c[1:5,1:4]

##Calculating the total variance:
sum(diag(cov.c))

##Calculating the generalized variance:
det(cov.c)

#---------------------------------------------------------------- --
#Calculating the correlation matrix (X)
cor.c <- cor(D2)

#Viewing the cor.c matrix
cor.c

##Calculating the total variance
var.total <- sum(diag(cor.c))
var.total

#---------------------------------------------------------------- ---
#Calculating eigenvalues and eigenvectors for cor.c
ev <- eigen(cor.c)

#Viewing the data stored in the ev objective
ev

# Extracting the eigenvalues
c.values <- ev$values

#Extracting the eigenvectors
c.vectors <- ev$vectors

##Calculating the percentage explained by each component (Yi=ei1x1+ei2x2+...+ eipxp)
per.var <- c((c.values/var.total)* 100)
per.var
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################################################ #######
#Principal component analysis.
install.packages(c("FactoMineR", #for analysis
                    "factoextra" #to plot the principal components
))

library(FactoMineR)
library(factoextra)

res.pca <- PCA(D2, graph = T)

print(res.pca)

#See the components included in the res.pca object
eig.val <- get_eigenvalue(res.pca)
eig.val

#Determining the number of components to maintain
fviz_eig(res.pca)
fviz_eig(res.pca , addlabels = TRUE, xlab = "PCs", ylab = "Percent of explained 
variance", ylim = c(0, 80))

#Correlation circle
fviz_pca_var ( res.pca , #name of the object that saved the results
               col.var = "black" ,
               repel = TRUE, # Prevent text from overlapping
               title = "Correlation circle, variables x PC" #title
)

# Quality of representation is measured by "cos2":

install.packages("corrplot")
library(corrplot)

corrplot(res.pca$var$cos2, is.corr =TRUE)

#bar chart for "cos2"

fviz_cos2(res.pca, choice = "var", axes = 2:3,
          title =("Bar chart for cos2"))

#We can represent variables in a colorful and gradient way

fviz_pca_var(res.pca, col.var = "cos2",
             gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07"),
             repel = TRUE) # Avoid text overlapping
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#Biplot graph (scores and loadings)

fviz_pca_biplot(res.pca , title = "PCA Plot")

#---------------------------------------------------------------- ----------
#Variables that are correlated with PC1 (Dim1) and PC2 (Dim2)
head(res.pca$var$contrib, 4)

corrplot(res.pca$var$contrib, is.corr=FALSE)

# Contribution of variables to PC1

fviz_contrib(res.pca, choice = "var", axes = 1, top = 10,
             title ="Variables contribution to PC 1")

# Contribution of variables to PC2

fviz_contrib(res.pca, choice = "var", axes = 2, top = 10,
             title ="Variables contribution to PC 2")

#Contribution of variables to PC1 and PC2
fviz_contrib(res.pca, choice = "var", axes = 1:2, top = 10)

# We can use the function dimdesc() [in FactoMineR], to identify
## the variables associated with the greater signifcance with the component

res.desc <- dimdesc(res.pca, axes = c(1,2,3), proba = 0.05)
print(res.desc)

#---------------------------------------------------------------- ---------
#To export the results, we use

write.infile(res.pca, "pca.csv", sep = ";")

#Saving the value of components
cp <- res.pca$ind$coord

#Exporting to a .csv file named cp

library( FactoMineR )
write.infile(cp, "cp.csv", sep = ";")
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Example 7: In this example, the PCA algorithm is applied to the Iris dataset (150 x 5) 
using the FactoMineR and factoextra. Note that PCA will be performed both for the original 
dataset and for the same one after pre-processing (done using the "scale" function). 

R Script
# loading dataset

D = iris
D1 = data.frame(D[,c(1:4)]) # original dataset
D2 = scale(D1) # pre-processed dataset

#-------------------------------------------
#calculating the var-cov matrix (X)
cov.c = cov(D1)
cov.c2 = cov(D2)

#calculating the total variance
sum(diag(cov.c))
sum(diag(cov.c2))

#calculating the generalized variance
det(cov.c)
det(cov.c2)

#------------------------------------------------
#calculating the correlation matrix
cor.c  = cor(D1)
cor.c2 = cor(D2)

#calculating the total variance
var.total = sum(diag(cor.c))
var.total2 = sum(diag(cor.c2))
#---------------------------------------------------------------- ---

#Calculating eigenvalues and eigenvectors for cor.c
ev =eigen(cor.c)
ev2=eigen(cor.c2)

#visualizing the data stored in the eigenvalues
ev
ev2

#extracting the eigenvalues
c.values = ev$values
c.values2 = ev2$values

#extracting the eigenvectors
c.vectors = ev$vectors
c.vectors2 = ev2$vectors
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#calculating the percentage explained by each component (Yi=ei1x1+ei2x2+.... eipxp)
per.var = c((c.values/var.total)*100)
per.var
per.var2 = c((c.values2/var.total2)*100)
per.var2

################################################ ########################
#Principal component analysis

#Installing the packages
install.packages("FactoMineR") 
install.packages("factoextra") 
install.packages("ggplot2")

library(FactoMineR)
library(factoextra)
library(ggplot2)

res.pca = PCA(D1, graph = T)
res.pca2 = PCA(D2, graph=T)

#Biplot graph (scores and loadings)

fviz_pca_biplot(res.pca, title = "PCA Iris Plot")

fviz_pca_biplot(res.pca2, title = "PCA Iris Plot")

#The values for each of the components are stored in
# indi$coord

eig.val = get_eigenvalue(res.pca)
eig.val2 = get_eigenvalue(res.pca2)

##Determining the number of components maintained
eig.val
eig.val2

#Determining the number of  components to maintain

fviz_eig(res.pca, addlabels = TRUE, xlab = "PCs", ylab = "Percent of exaplined 
variance", ylim =c(0,100))

fviz_eig(res.pca2, addlabels = TRUE, xlab = "PCs", ylab = "Percent of exaplined 
variance", ylim =c(0,100))
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#---------------------------------------------------------------- ---
#Correlation circle
fviz_pca_var ( res.pca ,
               col.var = "black",
               repel = TRUE,
               title = "Correlation circle, variables X PC") #title

fviz_pca_var ( res.pca2 ,
               col.var = "black",
               repel = TRUE,
               title = "Correlation circle, variables X PC") #title

#Quality of representation is measured by cos2

install.packages("corrplot")
library(corrplot)

corrplot(res.pca$var$cos2, is.corr = FALSE)
corrplot(res.pca2$var$cos2, is.corr = FALSE)

#We can represent variables in a colorful and gradient way

fviz_pca_var(res.pca, col.var = "cos2",
             gradient.cols= c("#00AFBB", "#E7B800", "#FC4E07"),
             repel = TRUE)

fviz_pca_var(res.pca2, col.var = "cos2",
             gradient.cols= c("#00AFBB", "#E7B800", "#FC4E07"),
             repel = TRUE)

#---------------------------------------------------------------- ----------------
------
#Variables that are correlated with PC1 (Dim1) and PC2 (Dim2)

head(res.pca$var$contrib,4)
corrplot(res.pca$var$contrib , is.corr = FALSE)

head(res.pca2$var$contrib,4)
corrplot(res.pca2$var$contrib, is.corr = FALSE)

#contribution of variables to PC1

fviz_contrib (res.pca , choice = "var", axes =1, top = 10,
                title ="contribution of variables to Dim1")
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fviz_contrib (res.pca2, choice = "var", axes = 1, top = 10,
                title ="contribution of variables to Dim1")

#contribution of variables to PC2

fviz_contrib (res.pca , choice = "var", axes = 2, top = 10,
                title ="contribution of variables to Dim2")

fviz_contrib (res.pca2, choice = "var", axes = 2, top = 10,
                title ="contribution of variables to Dim2")

#contribution of variables to PC1 and PC2

fviz_contrib (res.pca , choice = "var", axes = 1:2, top = 10)

fviz_contrib (res.pca2, choice = "var", axes = 1:2, top = 10)

# We can use the function dimdesc () [in FactoMiner ], to identify
# the variables associated with greater significance with the component

res.desc = dimdesc(res.pca, axes = c(1,2,3), proba = 0.05)
print(res.desc)

res.desc = dimdesc(res.pca2, axes = c(1,2,3), proba = 0.05)
print(res.desc)

#to export the results, we use

write.infile(res.pca, "pca.csv", sep = ";")

write.infile(res.pca2, "pca2.csv", sep = ";")

#saving the value of components

cp = res.pca$ind$coord

cp2 = res.pca2$ind$coord

#Exporting to a .csv file named cp

library(FactoMineR)

write.infile(cp, "cp.csv", sep =";")
write.infile(cp, "cp2.csv", sep =";")
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3.5 Multivariate Curve Resolution with Alternating Least Squares (MCR-ALS)
In 1971, Lawton and Sylvestre [4] presented to the scientific community the 

emergence of methodologies called Curve Resolution with the study entitled "Self Modeling 
Curve Resolution ". Basically, these researchers present a method for determining the 
forms of two overlapping functions f1(x) and f2(x) from an observed set of additive mixtures, 
{αif1(x)+βif2 (x); i = 1, ..., n}, of the two functions.

 From this initial study, there was an evolution of Multivariate Curve Resolution 
(MCR) methods for analytical signal processing whose goal is to resolve mixtures of non-
selective signals originating from an instrument (D) into real contributions from the pure 
components in the system (represented by the concentration profiles in C and spectral 
profiles in ST), as exemplified in the equation below:

D = CST        Eq. 3

where D is the instrumental response matrix, C is the relative concentration matrix, 
and S is a matrix of pure spectra.

It is important to point out that the MCR method does not require a priori information 
about the contribution of different factors to the overall response. However, for the MCR 
method to be successful in the analysis, two requirements are fundamental: i) the analytical 
signal must obey a relationship similar to the Beer-Lambert law (linear relationship with 
concentration); ii) the rank of the matrix must be equal to the number of species that produce 
analytical signal present in the mixtures (i.e., the number of vectors that cannot be written as 
a linear combination of the others).

The calculation performed by MCR-ALS uses alternating least squares (ALS) to seek 
the result that presents the best fit through a process called "optimization". This process 
allows the recovery of individual concentration profiles and species signals that best explain 
the variance of the observed data based on knowledge of the signals or concentrations of 
pure components present in the data matrix.

 Iterative optimization, with constraints, via ALS can be described in two main steps:

C = DS(STS)-1       Eq. 4

ST = (CTC)-1CTD        Eq. 5

In this process, a matrix D, reconstructed from the product of the CST matrices, in 
which C or ST comes from the initial estimate, is calculated and compared with the original 
matrix D. Iterative optimization continues until the convergence criterion is met. Figure 3.2 
shows a graphical representation of the MCR-ALS method.
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Figure 3.2: Graphical representation of the MCR-ALS method.

Example 8: In this example, the MCR-ALS algorithm is applied to a dataset of 
chromatographic data (elution time x mass spectrum) using the ALS package, in which the 
components recovered by the MCR-ALS model in the mixture are similar to the values of a 
known standard.

R Script
## Loading Packages

install.packages("ALS")
library(ALS)

## Chromatography elution profiles - 2 components (2 replicates)

data(multiex)

matplot(x, Cstart1, type="l", xlab = "Elution time", ylab = "Intensity", main = 
"Chromatographic components")

matplot(x, Cstart2, type="l", add =TRUE)
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## MCR-ALS

dimS = dim(S) # dimensions of mass spectra array

mcr <- als(CList=list(Cstart1,Cstart2), S=matrix(1, nrow=dimS[1], ncol=2), 
PsiList=list(d1,d2), x=x, x2=x2, uniC=TRUE, normS =0)

# MCR-ALS with unimodality constraint (uniC = TRUE) and normalization (normS = 0)

## Plot of recovered mass components

plotS(mcr$S,x2)

## comparing the mass spectrum of the known standard S with the recovered profiles 
mcr$S (fit rate)

matchFactor(S[,1], mcr$S[,1])
matchFactor(S[,2], mcr$S[,2])

# Copt values (estimated elution values)

matplot(x, mcr$CList[[1]], type="l")

matplot(x, mcr$CList[[2]], type="l", add = TRUE)

SUPERVISED ANALYSIS
Supervised pattern recognition is a machine learning method that uses techniques to 

identify similarities and differences between different types of samples. Pattern recognition 
techniques are based on the following assumptions: i) Samples of the same type are similar; 
and, ii) The classes are defined by the system designer.

In general, supervised algorithms present a classifier, also called a model, that will be 
able to predict the class of a new set of data. The classifier produced can also be described 
as a function f, which takes a given x and provides a prediction y.

3.6 KNN (K-Nearest Neighbors)
In 1951, Evelyn Fix and Joseph Hodges [5] described the fundamentals of classifying 

unknown data points based on classes of nearest points. In 1967, Thomas Cover and Peter 
Hart [6] explored and addressed the concept of the K-Nearest Neighbors (KNN) technique 
through the parameter K (selection of the number of neighbors) and the choice of distance 
metrics to measure the proximity between data points.

The KNN algorithm basically uses a training set made up of n-dimensional vectors 
and each element of this set represents a point in an n-dimensional space. The KNN 
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methodology is based on three fundamental steps: i) determining the distance between a 
new sample and the other samples in the training set; ii) identify the K closest samples or 
with the most similar characteristics; iii) with the k known elements of k-nearest neighbors, 
the closest class will be assigned to the class of the unknown element.

Example 9: Analysis of a data set to perform KNN extracted from the DAAG and 
Caret packages.

R Script
# reading data

install.packages("DAAG")
library(DAAG)

data("leafshape")
?leafshape
data = leafshape
data = na.omit(data)
data = data[,-c(1:3,9)]

set.seed(2)

#### K-fold cross validation via caret ##################

install.packages("caret")
library(caret)

# defining the number of partitions ( folds )
trControl = trainControl(method = "CV",
                           number = 10)
# KNN CV
knn.cv = train(as.factor(arch) ~ .,
               method = "knn",
               tuneGrid = expand.grid(k=seq(5,95, by = 10)), ## k = 1:100),
               trControl = trControl,
               metric = "Accuracy",
               data = data)
knn.cv
plot(knn.cv)

# plotting
pairs(data, col = rainbow(2)[as.factor(data$arch)])

################################################ #########################
# separating training and testing data
set.seed(13)
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tr = round(0.5* nrow (data))
training = sample(nrow(data), tr, replace = F)

data.training = data[training,]
data.test = data[-training,]

x.training = data.training[,-5]
x.test = data.test[,-5]
y.training = data.training[,5]
y.test = data.test[,5]

################################################ 
########################## knn for k = 5 neighbors

library(class)

knn5 = knn(x.training, x.test, y.training , k = 5)

# confusion matrix
table(knn5, y.test)

mean(knn5 == y.test)

### Preview

grid = expand.grid(logwid = seq(min(data$logwid),
                                   max(data$logwid), length = 200),
                     logpet = seq(min(data$logpet),
                                  max(data$logpet), length = 200))
grid$class = knn (x.training [,2:3], grid, y.training , k = 5)

### Training

ggplot ( ) +
  geom_raster ( aes (x= grid$logwid , y = grid$logpet , fill = grid$class ),
                 alpha = 0.3, interpolate = T) +
  geom_point ( aes (x = data.training$logwid , y = data.training$logpet ,
                     color = as.factor ( data.training$arch ),
                     shape = as.factor ( data.training$arch )), size = 2) +
  labs( x = "logwid", y = "logpet",
        col = "arch", shape = "arch", fill = "arch") + theme_bw ( )

#### Test
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ggplot ( ) +
  geom_raster ( aes (x= grid$logwid , y = grid$logpet , fill = grid$class ),
                 alpha = 0.3, interpolate = T) +
  geom_point ( aes (x = data.test$logwid , y = data.test$logpet ,
                     color = as.factor ( data.test$arch ),
                     shape = as.factor ( data.test$arch )), size = 2) +
  labs( x = "logwid", y = "logpet",
        col = "arch", shape = "arch", fill = "arch") + theme_bw ( )

3.6 Linear Discriminant Analysis (LDA)
Linear discriminant analysis (LDA) was introduced in its initial form by Ronald Fisher 

in 1936 [6] for two classes, as a method employed for solving classification problems, 
dimensionality reduction and data visualization. In 1948, CR Rao [7] proposed a generalization 
to multiple classes. Basically, the LDA algorithm tries to find a linear transformation by 
maximizing the inter-class distance and minimizing the intra-class distance. The method 
seeks to find the best direction, so that when data are projected onto a plane, classes can 
be separated.

For a univariate case, we have two classes: class 1: x ~ N(µ1 , σ2) and class  
2: x ~ N(µ2 , σ2 ). The probability ratio l(x) that indicates the density ratio to classify a given 
sample (x) into one of the classes can be written as:

        Eq. 6

Assuming that f1 and f2 are normal distribution densities, we can rewrite the probability 
ratio as:

     Eq. 7

 The quality of discrimination will depend on the degree of intersection of the two 
densities. Therefore, the functions l(x) and -2logl(x) are called discriminant functions and 
have the following properties, as exemplified in Table 1 below: 

Table 3.1: Properties of LDA discriminant functions.

l(x) -2 log l(x) Situation
>1 <0 x closest to µ1

<1 >0 x closest to µ2

=1 =0 x equally close to µ1 and µ2
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For a multivariate case, in which we have p variables, we call X ~ N (µ1, S1) for class 
1 and X ~ N (µ1 , S2) for class 2, we can rewrite the discriminant function as being:

    Eq. 8

where S represents the covariance matrix.
Equation 3.8 can be rewritten as:

   Eq. 9

Thus, we can classify x in class 1 if -2 log l(x) <0 and in class 2 if -2logl(x)>0. The 
classification rule for the Fisher discriminant function is met when S

1
 = S

2
 = S. For this reason 

we have:

    Eq. 10

A sample element with observation vector x would be classified in class 1 if  fd(x) > 0  
and would be classified in class 2 if fd(x) < 0.

Example 10: Analysis of a data set to perform linear discriminant analysis (LDA) 
using R packages called datasetsICR, dplyr, GGally, DFA.CANCOR, heplots, MVM and 
MASS.

R Script 
# Loading packages and data

install.packages("datasetsICR")
library(datasetsICR)

data("seeds")
?seeds

data = seeds

head(data)
levels(data$variety)
library(dplyr)
glimpse(data)
################################################ ########################
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# plotting
pairs(data, col = rainbow(3)[data$variety])

library(ggplot2)
install.packages("GGally")
library(GGally)

ggpairs(data, aes(color = variety, alpha = 0.5)) + theme_bw ()

################################################ #########################

### Separating training and validation data

set.seed(1)

tr = round(0.7* nrow(data))
training = sample(nrow(data), tr, replace = F)
training

data.training = data[training,]
data.test = data[-training,]

################################################ ########################
#Assumptions

# Homogeneity of variance/covariance matrices

install.packages("DFA.CANCOR")
library(DFA.CANCOR)

HOMOGENEITY(data.training,group='variety',
            variables = c('area','perimeter'))
HOMOGENEITY(data.test,group='variety',
            variables = c('area', 'perimeter', 'compactness','length of kernel', 
'width of kernel',
                          'asymmetry coefficient', 'length of kernel groove'))  
# H0  p>0.05
# H1  p<0.05

# Another homogeneity test
library(heplots)
boxM(data.training [,1:7], data.training$variety )

# Multivariate normality

library(MVN)
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mvn(data.training, subset = "variety")

################################################ ########################

#Linear discriminant analysis (LDA)

library(MASS)

#Model 1
fit.lda1 = lda(variety ~ compactness+perimeter, data.training)
fit.lda1

#prediction for training data
lda.pred1= predict(fit.lda1)

#Graphics
plot(fit.lda1)
pairs(fit.lda1)

ldahist(lda.pred1$x[,1], g = lda.pred1$class)

# Confusion matrix
cm1 = table(data.training$variety, lda.pred1$class)
cm1

#Prediction ability
mean(data.training$variety == lda.pred1$class)

#plotting classes in new directions
d.plot = data.frame(Class = data.training$variety, lda = lda.pred1$x)

library(ggplot2)

grid = expand.grid (compactness = seq(min(data$compactness),
                                      max(data$compactness), length = 200),
                    perimeter = seq(min(data$perimeter),
                                    max(data$perimeter), length = 200))

grid$class = predict(fit.lda1,grid)$class

ggplot() + 
  geom_raster(aes(x=grid$compactness, y = grid$perimeter, fill = grid$class),
              alpha = 0.3, interpolate = T) + 
  geom_point(aes(x = data.training$compactness, y = data.training$perimeter,
                 color = as.factor(data.training$variety),
                 shape = as.factor(data.training$variety)), size = 2) +
  labs(x = "compactness", y = "perimeter",
       col = "variety", shape = "variety", fill = "variety") + theme_bw()

d.plot = data.frame(Class = data.training$variety, lda = lda.pred1$x)
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ggplot(d.plot, aes(lda.LD1, lda.LD2, group = Class)) +
  geom_point(aes(col = Class), size = 2.5) +
  stat_ellipse(aes(fill = Class), geom = "polygon", alpha = .3) +
  theme_bw()

### Model Test 1

# prediction for test data
lda.pred1.t = predict(fit.lda1, data.test)

# confusion matrix
cm1.t = table(data.test$variety, lda.pred1.t$class)
cm1.t

# prediction ability
mean(data.test$variety == lda.pred1.t$class)

# plotting classes in new directions

d.plot.t = data.frame(Class = data.test$variety, lda = lda.pred1.t$x)

ggplot(d.plot.t, aes(lda.LD1, lda.LD2, group = Class)) +
  geom_point(aes(col = Class), size = 2.5) +
  stat_ellipse(aes(fill = Class), geom = "polygon", alpha = .3) +
  theme_bw()

ggplot() + 
  geom_raster(aes(x=grid$compactness, y = grid$perimeter, fill = grid$class),
              alpha = 0.3, interpolate = T) + 
  geom_point(aes(x = data.test$compactness, y = data.test$perimeter,
                 color = as.factor(data.test$variety),
                 shape = as.factor(data.test$variety)), size = 2) +
  labs(x = "compactness", y = "perimeter",
       col = "variety", shape = "variety", fill = "variety") + theme_bw()

################################################ ##########################
# Training model 2

# Model 2
fit.lda2 = lda( variety ~., data.training )
fit.lda2

# prediction for training data
lda.pred2 = predict(fit.lda2)

plot(fit.lda2)
pairs(fit.lda2)
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# Confusion matrix
cm2 = table(data.training$variety, lda.pred2$class)
cm2

#Prediction ability
mean(data.training$variety == lda.pred2$class)

# plotting classes in new directions

library(ggplot2)
d.plot2 = data.frame(Class = data.training$variety, lda = lda.pred2$x)
ggplot(d.plot2, aes(lda.LD1, lda.LD2, group = Class)) +
  geom_point(aes(col = Class), size = 2.5) +
  stat_ellipse(aes(fill = Class), geom = "polygon", alpha = .3) +
  theme_bw()

################################################ ##################

install.packages ("klaR")
library (klaR)

data.training2 = data.training
colnames(data.training2) = c("x1", "x2", "x3", "x4", "x5", "x6", "x7", "variety")
dev.new ( )
partimat(variety ~., data = data.training2, method = "lda")

################################################ #########################
# Test model 2

# prediction for test data
lda.pred2.t = predict(fit.lda2, data.test)

# confusion matrix
cm2.t = table(data.test$variety, lda.pred2.t$class)
cm2.t

# prediction ability
mean(data.test$variety == lda.pred2.t$class)

# prediction
head(lda.pred2.t$class,10)

# predicted probabilities for classes
head(lda.pred2.t$posterior,10)

# linear discriminants
head(lda.pred2.t$x,10)

################################################ #######################
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3.7 Quadratic Discriminant Analysis (QDA)
In quadratic discriminant analysis (QDA), there is no assumption that classes have 

equal covariance matrices. As in linear discriminant analysis, an observation is classified 
into the group with the smallest squared distance. However, the squared distance does not 
result in a linear function, hence the name quadratic discriminant analysis.

In QDA, for each of the classes y, the covariance arrangement is given by:

     
Eq. 11

Taking the log for both sides of the above equation, the quadratic discriminant 
function will be given by:

   Eq. 12

A sample element with observation vector x would be classified in class 1 if fd(x) > 0 

and would be classified in class 2 if fd(x) < 0.

Example 11: Analysis of a data set to perform quadratic discriminant analysis (QDA) 
using R packages called datasetsICR, dplyr, GGally, DFA.CANCOR, heplots, MVM and 
MASS. 

R Script

## Loading packages and data

install.packages("datasetsICR")
library(datasetsICR)
install.packages("klaR")
library(klaR)

# Dataset - seeds
data("seeds")
?seeds

data = seeds
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head(data)
levels(data$variety)
library(dplyr)
glimpse (data)
################################################ ########################

# plotting
pairs(data, col = rainbow(3)[data$variety])

library(ggplot2)
install.packages ("GGally")
library(GGally)

ggpairs(data, aes(color = variety, alpha = 0.5)) + theme_bw ()

################################################ ########################

### Separating training and validation data

set.seed (1)

tr = round(0.7* nrow (data))
training = sample(nrow (data), tr , replace = F)
training

data.training = data[training,]
data.test = data[-training,]

################################################ ########################
#Assumptions

# Homogeneity of variance/covariance matrices

install.packages("DFA.CANCOR")
library(DFA.CANCOR)

HOMOGENEITY(data.training,group='variety',
            variables = c('area','perimeter'))
HOMOGENEITY(data.training,group='variety',
            variables = c('area', 'perimeter', 'compactness','length of kernel', 
'width of kernel',
                          'asymmetry coefficient', 'length of kernel groove'))  
# H0  p>0.05
# H1  p<0.05

# Another homogeneity test
library(heplots)
boxM(data.training[,1:7], data.training$variety)



Pattern recognition 99

# Multivariate normality

library(MVN)

mvn(data.training, subset = "variety")

################################################ ########################

#Quadratic linear discriminant analysis (QDA)

library(MASS)

#training model 1
fit.qda1 = qda(variety~compactness+perimeter, data.training )
fit.qda1

#prediction for training data
qda.pred1=predict(fit.qda1)

# Confusion matrix
cm1 = table(data.training$variety, qda.pred1$class)
cm1

# prediction ability
mean(data.training$variety == qda.pred1$class)

# plotting classes in new directions

library(ggplot2)

grid = expand.grid(compactness = seq(min(data$compactness),
                                     max(data$compactness), length = 200),
                   perimeter = seq(min(data$perimeter), 
                                   max(data$perimeter), length = 200))

grid$class = predict(fit.qda1,grid)$class

ggplot() + 
  geom_raster(aes(x=grid$compactness, y = grid$perimeter, fill = grid$class),
              alpha = 0.3, interpolate = T) + 
  geom_point(aes(x = data.training$compactness, y = data.training$perimeter,
                 color = as.factor(data.training$variety),
                 shape = as.factor(data.training$variety)), size = 2) +
  labs(x = "compactness", y = "perimeter",
       col = "variety", shape = "variety", fill = "variety") + theme_bw()

################################
# Test model 1
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# prediction for test data
qda.pred1.t = predict(fit.qda1, data.test)

# confusion matrix
cm1.t = table(data.test$variety, qda.pred1.t$class)
cm1.t

# prediction ability
mean(data.test$variety == qda.pred1.t$class)

grid$class = predict(fit.qda1, grid)$class

ggplot() + 
  geom_raster(aes(x=grid$compactness, y = grid$perimeter, fill = grid$class),
              alpha = 0.3, interpolate = T) + 
  geom_point(aes(x = data.training$compactness, y = data.training$perimeter,
                 color = as.factor(data.training$variety),
                 shape = as.factor(data.training$variety)), size = 2) +
  labs(x = "compactness", y = "perimeter",
       col = "variety", shape = "variety", fill = "variety") + theme_bw()

################################################ #######################

3.8 Support Vector Machines (SVM)
Support Vector Machines (SVM) originated in the studies of Vapnik and Chervonenkis 

[8] in 1971. Essentially, the SVM is responsible for finding the best possible separation 
boundary between classes for a given data set that are linearly separable. For SVM, the 
various possible separation boundaries that are capable of completely separating classes 
are called hyperplanes. In this way, SVM seeks to find the best hyperplane for a given data 
set whose classes are linearly separable.

Immediately, we can observe that the dimensionality of the hyperplane is directly 
proportional to the dimension of the data set (n):

        Eq. 13

Therefore, in a two-dimensional dataset, the hyperplane is a straight line. In a 
three-dimensional dataset, the hyperplane is in fact a plane. And so on. The hyperplane 
is located at the midpoint between the two groups of classes, providing a characteristic 
of symmetry in the classification, in which the closest point of each class is at a distance 
d from the hyperplane, in order to minimize classification errors and problems of model 
bias (overfitting). The points closest to the hyperplane are called support vectors, giving 
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the algorithm its name, as it is from them that the model will be mathematically developed, 
trained and optimized. The distance between the support vectors and the hyperplane is 
called the margin.

The equation of a hyperplane is presented in equation 3.14, in which w.x is the dot 
product between the vectors w and x, w ∈ X is the normal vector to the described hyperplane 
and  corresponds to the distance of the hyperplane in relation to the origin, with b ∈ ℜ.

       Eq. 14

A signal function  is finally written in obtaining 
classifications by the SVM algorithm.

Example 12: Analysis of a data set to perform SVM using R packages called mvtnorm 
and e1071. 

R Script
#### Simulating data
### Parameters to simulate data
library(mvtnorm)
set.seed(14)
m= c(0,0) # vector of means
S= matrix(c(1, 0.2, 0.2,1),2) # covariance matrix

# Simulating data
data = rmvnorm(1000, mean = m, sigma = S)

# Calculating distance to separate classes
S2 = matrix(c( 1,-0.5,-0.5,1),2)
dist = mahalanobis(data, c(0,0), S2)
dist

# transforming into data.frame
data = data.frame(data)
colnames(data) = c("x1","x2")

#defining column with classes
data$y = ifelse(dist + rnorm(nrow(data), sd = 0.3) < 1.7, 1, -1)
data$y = as.factor((data$y))

#plotting data
library(ggplot2)
ggplot(data, aes( x = x1, y = x2, group = y ))+
  geom_point( aes (color=y) ) + theme_bw ( )



Pattern recognition 102

summary( data$y )

################################################ ################
#Separating training and testing data

set.seed(1)

tr = round( 0.7* nrow (data))
training = sample(nrow (data), tr , replace = F)

data.training = data[training,]
data.test = data[-training,]

################################################ #############
#Library for SVM and other ML methods
library(e1071)

# support vector classifier 1 (linear)

svc1= svm(y~., data = data.training, kernel = "linear", cost = 10, scale = FALSE)

plot(svc1,data.training)
svc1$index # support vectors
summary(svc1) # analysis summary

# cross validation to define parameter c (cost - limit for slack variables)
set.seed(1)
tune.out = tune(svm , y~., data = data.training, kernel = "linear",
                 ranges = list (cost = c( 0.001, 0.01, 0.1, 1, 10, 100, 1000)))
summary( tune.out )

# support vector classifier 1 (linear)

svc1 = svm( y~ ., data = data.training, kernel = "linear", cost = 100, scale = FALSE)

# confusion matrix - test data
cm = table(true = data.test[,"y"], pred = predict( tune.out$best.model , newdata = 
data.test ))
cm

# test classification ratio
(cm[ 1,1] + cm[2,2])/sum(cm)

##################################

### Preview
grid = expand.grid (x1 = seq(min(c(data.training$x1, data.test$x1)),
                              max(c(data.training$x1, data.test$x1)), length = 200),
                    x2 = seq(min(c(data.training$x2, data.test$x2)),
                               max(c(data.training$x2, data.test$x2)), length = 200))
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grid$class = predict(svc1, grid)

##Training
ggplot() +
  geom_raster(aes(x=grid$x1, y=grid$x2, fill=grid$class),
              alpha = 0.3, interpolate = T) +
  scale_fill_brewer(palette = "Dark2", drop = FALSE)+
  geom_point(aes(x = data.training$x1, y = data.training$x2,
                 color = data.training$y,
                 shape = data.training$y), size = 2) + 
  scale_color_brewer(palette = "Dark2") +
  labs(x = "x1", y = "x2", col = "class",
       shape = "class", fill = "class") + theme_bw()

## Test
ggplot() +
  geom_raster(aes(x=grid$x1, y=grid$x2, fill=grid$class),
              alpha = 0.3, interpolate = T) +
  scale_fill_brewer(palette = "Dark2", drop = FALSE)+
  geom_point(aes(x = data.test$x1, y = data.test$x2,
                 color = data.test$y,
                 shape = data.test$y), size = 2) + 
  scale_color_brewer(palette = "Dark2") +
  labs(x = "x1", y = "x2", col = "class",
       shape = "class", fill = "class") + theme_bw()

################################################ #################

# SVM with Radial Kernel
svm1 = svm(y~ .,data = data.training, kernel = "radial", cost = 10, gamma = 0.1, 
scale = FALSE)

plot(svm1, data.training)
svm1$index
summary(svm1)

# cross validation to define ce gamma
set.seed (1)
tune.out = tune(svm , y~., data = data.training, kernel = "radial",
                 ranges = list (cost = c( 0.001, 0.01, 0.1, 1, 10, 100),
                                gamma = c( 0.5, 1,2,3,4)))
summary(tune.out)

# Model with greater gamma
svm1 = svm( y~ ., data = data.training, kernel = "radial", cost = 10, gamma = 0.5, 
scale = FALSE)
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# Confusion matrix - test

cm = table(true = data.test[,"y"], pred = predict(tune.out$best.model, newdata = 
data.test))
cm

# test classification ratio

(cm[ 1,1] + cm[2,2])/sum(cm)

##################################

### Preview
grid = expand.grid (x1 = seq (min(c(data.training$x1, data.test$x1)),
                              max ( c(data.training$x1, data.test$x1)), length = 200),
                    x2 = seq ( min(c(data.training$x2, data.test$x2)),
                               max ( c(data.training$x2, data.test$x2)), length = 200))

grid$class = predict(svm1, grid)

##Training
ggplot() +
  geom_raster(aes(x=grid$x1, y=grid$x2, fill=grid$class),
              alpha = 0.3, interpolate = T) +
  scale_fill_brewer(palette = "Set1", drop = FALSE)+
  geom_point(aes(x = data.training$x1, y = data.training$x2,
                 color = data.training$y,
                 shape = data.training$y), size = 2) + 
  scale_color_brewer(palette = "Set1") +
  labs(x = "x1", y = "x2", col = "class",
       shape = "class", fill = "class") + theme_bw()

## Test
ggplot() +
  geom_raster(aes(x=grid$x1, y=grid$x2, fill=grid$class),
              alpha = 0.3, interpolate = T) +
  scale_fill_brewer(palette = "Set1", drop = FALSE)+
  geom_point(aes(x = data.test$x1, y = data.test$x2,
                 color = data.test$y,
                 shape = data.test$y), size = 2) + 
  scale_color_brewer(palette = "Set1") +
  labs(x = "x1", y = "x2", col = "class",
       shape = "class", fill = "class") + theme_bw()

################################################ ############
# ROC curve
install.packages("ROCR")
library(ROCR)
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###### ROC model SVC
fitted1 = attributes(predict(svc1, data.test, decision.values = T))$decision.values
pred1 = prediction(fitted1, data.test$y )
perf1 = performance(pred1, "tpr", "fpr")

plot( perf1,
      avg = 'vertical',
      lwd = 3, main = "ROC curve model scv1 - test data",
      col = 'blue')

####### ROC model SVM
fitted2 = attributes(predict(svm1, data.test, decision.values = T))$decision.values
pred2 = prediction(fitted2, data.test$y)
perf2 = performance(pred2, "tpr", "fpr")

plot ( perf2,
       avg = 'vertical',
       lwd = 3, main = "ROC curve model svm1 - test data" ,
       col = 'green3')

################################################ #################

# SVM with polynomial kernel of degree 2

svm2 = svm (y~.,data = data.training, kernel = "polynomial", cost = 10, degree = 
2, scale = FALSE)

plot( svm2, data.training )
svm2$index
summary(svm2)

# cross validation to define c
set.seed(1)
tune.out = tune( svm, y~., data = data.training, kernel = "polynomial", degree = 2,
                 ranges = list(cost = c( 0.001, 0.01, 0.1, 1, 10, 100)))
summary( tune.out )

# Model with great c
svm2 = svm( y~ ., data = data.training, kernel = "polynomial", cost = 100, degree 
= 2, scale = FALSE)

# Confusion matrix - test

cm = table(true = data.test[,"y"], pred = predict(tune.out$best.model, newdata = 
data.test))
cm
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# test classification ratio

(cm[ 1,1] + cm[2,2])/sum(cm)

##################################

### Preview
grid = expand.grid (x1 = seq (min(c(data.training$x1, data.test$x1)),
                              max(c(data.training$x1, data.test$x1)), length = 200),
                    x2 = seq (min(c(data.training$x2, data.test$x2)),
                              max(c(data.training$x2, data.test$x2)), length = 200))

grid$class = predict(svm2, grid)

##Training
ggplot() +
  geom_raster(aes(x=grid$x1, y=grid$x2, fill=grid$class),
              alpha = 0.3, interpolate = T) +
  scale_fill_brewer(palette = "Set1", drop = FALSE)+
  geom_point(aes(x = data.training$x1, y = data.training$x2,
                 color = data.training$y,
                 shape = data.training$y), size = 2) + 
  scale_color_brewer(palette = "Set1") +
  labs(x = "x1", y = "x2", col = "class",
       shape = "class", fill = "class") + theme_bw()

## Test
ggplot() +
  geom_raster(aes(x=grid$x1, y=grid$x2, fill=grid$class),
              alpha = 0.3, interpolate = T) +
  scale_fill_brewer(palette = "Set1", drop = FALSE)+
  geom_point(aes(x = data.test$x1, y = data.test$x2,
                 color = data.test$y,
                 shape = data.test$y), size = 2) + 
  scale_color_brewer(palette = "Set1") +
  labs(x = "x1", y = "x2", col = "class",
       shape = "class", fill = "class") + theme_bw()

################################################ ############

####### ROC model SVM2
fitted3 = attributes(predict(svm2, data.test, decision.values = T))$decision.values
pred3 = prediction(fitted3, data.test$y )
perf3 = performance(pred3, "tpr", "fpr")

plot ( perf3,
       avg = 'vertical',
       lwd = 3, main = "ROC curve model svm2 - test data" ,
       col = 'green3')

################################################ #################
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3.10 Decision Trees
The decision tree concept was developed by J. Ross Quinlan in 1975 [9]. Decision 

trees learning is one of the predictive modeling approaches that can be found in statistics, 
data mining, or machine learning. Basically, a decision tree is used (as a predictive model) 
to verify observations about an item (represented in the branches) and obtain conclusions 
about the target value of the item (represented in the leaves). In other words, a decision tree 
is a tree in which each internal (non-leaf) node is labeled with an input feature. Arcs coming 
from a node labeled with an input feature are labeled with each of the possible values of the 
target feature, or the arc leads to a subordinate decision node on a different input feature. 
Each leaf of the tree is labeled with a class or probability distribution over classes, which 
means that the data set has been classified by the tree into a specific class or a specific 
probability distribution (which, if the decision tree is well constructed, is biased towards 
certain subsets of classes).

The way the algorithm will know how to build the tree is based on conditions that 
minimize entropy and increase information gain. Entropy is the measure that tells us how 
disorganized and mixed the original data is. The higher the entropy, the lower the information 
gain and vice versa. The entropy value of a data can be calculated using the following 
equation:

      Eq. 15

Entropy usually varies between 0 and our number of classes -1, assuming its 
maximum value when the probabilities of each class occur. The goal with a decision tree is 
to achieve the lowest entropy possible.

Example 13: Analysis of a data set to create the decision tree using R packages 
called rpart.plot , caret , Amelia, pROC.

R Script
# Loading and Separating training and testing data
train <- read.csv("trainTitanic.csv", header = T)
test <- read.csv("testTitanic.csv", header = T)

# Tidying up the dataset
train$X <- NULL
test$X <- NULL

# Check the encoding of variables
str( train )
str( test )
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# Transforming the variables that need to be categorical
train$Survived <- as.factor( train$Survived )
test$Survived <- as.factor( test$Survived )

train$Pclass <- as.factor( train$Pclass )
test$Pclass <- as.factor( test$Pclass )

train$Sex <- as.factor( train$Sex )
test$Sex <- as.factor( test$Sex )

train$Embarked <- as.factor( train$Embarked )
test$Embarked <- as.factor( test$Embarked )

# Variables
# Survived : 0 = No, 1 = Yes
# SibSp : Number of siblings/spouses on board
# Parch : Number of parents/children on board
# Fare: Fare
# Embarked : Port of embarkation C = Cherbourg , Q = Queenstown , S = Southampton
# Pclass : Ship class

### Parameter Adjustment ###

# Loading packages
install.packages("caret")
install.packages("Amelia")
install.packages("pROC")
library(caret)
library(Amelia)
library(pROC)

# Defining the seed
set.seed(123)

# Let's use a 10-fold cross-validation
ctrl <- trainControl ( method = "cv",
                       number = 10,
                       summaryFunction = twoClassSummary ,
                       classProbs = TRUE)

# We have to change the variable - when we use twoClassSummary
levels( train$Survived ) <- c("M", "S")
levels( test$Survived ) <- c("M", "S")

dtFit <- train( Survived ~ .,
                method = "rpart2", # uses depth maximum
                tuneLength = 20,
                trControl = ctrl,
                metric = "ROC",
                data = train)
dtFit
plot(dtFit)
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# Tree drawing
install.packages("rpart.plot")
library(rpart.plot)
rpart.plot ( dtFit$finalModel,
             cex = 0.7,
             extra = 4,
             type = 1,
             box.palette = "RdYlGn")

### Predictions ###

preddt <- predict(dtFit, test, type = "prob")
resultdt <- as.factor(ifelse(preddt [,2] > 0.5,"S","M"))

### Model performance ###

# Confusion matrix and measurements
library(caret)
confusionMatrix(resultdt, test$Survived , positive = "S")

# ROC curve and AUC
library(pROC)
aucdt <- roc(test$Survived, preddt[,2])
plot.roc(aucdt, print.thres = T) # find the cutoff point that provides the best sum 
of S and E

# Using the new cutoff point
resultdt2 <- as.factor(ifelse(preddt[,2] > 0.393, "S", "M"))
confusionMatrix(resultdt2, test$Survived, positive = "S")

PROPOSED EXERCISES
01 – Propose the application of the HCA algorithm through a script in the R language 

on an experimental data set, presenting your hypotheses and conclusions.
02 – There are multivariate data repositories on the internet (web of science, science 

direct and others) in which you must choose a dataset to use the K-means algorithm in the R 
language and carry out a statistical study in detail. Present the main results and conclusions.

03 – Present a script in the R language for the PCA algorithm for a dataset and 
demonstrate your hypotheses and main conclusions.

04 – Propose a script in the R language for the KNN algorithm using a given dataset 
and perform a statistical interpretation presenting its main conclusions.

05 – Present a script for the LDA and QDA algorithms in the R language for a given 
dataset and present your main results.

06 – Like the previous exercise, present a script in the R language to build a decision 
tree algorithm for a dataset. Present your conclusions.
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HiGHER ORDER MULTivARiATE CLASSiFiCATiON 

CHAPTER 4

"Model building is the art of selecting those aspects of a process that 
are relevant to the question being asked. As with any art, this selection 
is guided by taste, elegance, and metaphor; it is a matter of induction, 
rather than deduction. High science depends on this art. " John Henry 
Holland (1929-2015)

CHAPTER IDEA 
According to the amount of information generated per sample, analytical data can be 

categorized into 0th order, 1st order, 2nd order, 3rd order and 4th order. We obtain for each 
sample analyzed in 0th order (a scalar), in 1st order (a vector), in 2nd order (a matrix), in 
3rd order (3 ways) and 4th order (4 ways). In this chapter, we will explore some multivariate 
classification algorithms that are typically employed on 1st and 2nd order data in real 
datasets. In addition, some methods for selecting samples and variables in multivariate 
classification will be presented.

Upon completing the chapter, you should be able to:
a) Apply the main 1st order multivariate classification algorithms coupled with variable 
selection methods (PCA-LDA, SPA-LDA, GA-LDA) to a set of real data seeking to 
build models and analyze them.

b) Incorporate QDA models into PCA, SPA and GA algorithms.

c) Understand the sample and variable selection algorithms used in multivariate 
classification models.

d ) Apply the main 2nd order multivariate classification algorithms (Turkey-3 and 
PARAFAC) using the sample selection algorithms (KS and MLM) and the two 
classifiers (LDA and QDA) on real or simulated data sets seeking to build models 
and analyze them.

e) Investigate the stages of building multivariate classification models when applied 
to variable selection algorithms and model performance assessment (figures of 
merit).

f) Build new scripts in R language for decision making using 1st and 2nd order 
multivariate classification.

g) Propose new applications in chemistry or related areas of multivariate classification 
techniques.

https://www.azquotes.com/quote/97013
https://www.azquotes.com/quote/97013
https://www.azquotes.com/quote/97013
https://www.azquotes.com/quote/97013
https://www.azquotes.com/quote/97013
https://www.azquotes.com/quote/97013
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4.1 Types of analytical data
According to the amount of information generated per sample [1], the analytical data 

can be divided as shown in Figure 4.1 below:

Figure 4.1: Types of analytical data

The 1st order or 2-way data results in a vector of information per sample resulting in a 
two-dimensional matrix X. In this type of data arrangement, we have the 1st order advantage 
which consists of the ability to build multivariate models in the presence of interferers as 
long as they are present in the training samples. The algorithms used in 1st order data are 
based on bilinear models that consist of interpreting an instrumental response function X(r1, 
r2) as a product of two independent functions X1(r1) and X2(r2). Bilinear models are obeyed 
when the mathematical rank is equal to the chemical rank.

In 2nd order or 3-way data, we have as a response a matrix (second order tensor) 
of data for each sample and when the data matrices are placed side by side they generate 
a parallelepiped. Here we have the 2nd order advantage which consists of the possibility of 
quantifying the analyte in the presence of interferers even if these interferers are not present 
in the training set. Furthermore, 2nd order algorithms use a reduced number of samples 
in the training set since potential interferents do not need to be modeled. The algorithms 
used in 2nd order models use the concept of trilinearity, which consists of a generalization 
of bilinearity for a three-way arrangement (IxJxK). Rank deficiency due to the presence of 
highly correlated spectral profiles can be a source of trilinearity breakdown .
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4.2 Methods for selecting samples in multivariate classification
One of the limitations in building multivariate classification models (1st or 2nd order) 

is the appropriate choice of samples that represent the greatest variance in the analyzed 
data, improving their predictive capacity.

In 1969, Kennard -Stone (KS) [2] proposed a sample selection algorithm dividing the 
original data set into two sub-sets (training and validation) so that each sub-set of samples 
maintains maximum data variability. This algorithm uses Euclidean distances for each pair 
(p, q) of samples to select the samples that will compose the training subset, according to 
equation 4.1:

    
Eq. 1

Where j represents the number of covariates and N corresponds to the sample size.
To ensure the uniformity of distribution of each subset throughout the instrumental 

response space, KS follows a stepwise procedure, in which a new selection is made in 
regions of space far from the already selected samples. With each subsequent iteration, the 
algorithm selects the sample that exhibits the greatest minimum distance from an already 
selected sample. This procedure is repeated until the number of samples specified by the 
analyst is reached.

The Morais-Lima-Martim (MLM) algorithm for sample selection was proposed in 
2018 [3] and consists of a modification of the Kennard-Stone (KS) algorithm, in which a 
random mutation factor is inserted into the latter. That is, after executing the KS algorithm, 
some training samples are randomly selected and transferred to the validation set and vice 
versa. Usually, this number of transferred samples is 20%, that is, 80% of the validation 
set remains with the samples selected by KS, and the rest are samples randomly chosen 
from the training set. MLM proved to be superior to the KS algorithm, showing that there is 
a synergistic effect when combining the KS deterministic process with a small randomness 
when selecting training and validation samples.

4.3 Methods for selecting variables in multivariate classification
Variable selection is an important step for data analysis. This step identifies the most 

informative subsets of variables for building more accurate models. Basically, three main 
approaches for variable selection methods can be found in the literature: i) filter; ii) wrapper 
; iii) embedded.

In filter-based methods, variables are evaluated considering the characteristics 
of their nature and normally use statistical tests of significance previously applied to a 
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classification algorithm. Correlation-based feature selection (CFS), Minimum Redundancy 
Maximum Relevance (MRMR), Information Gain and Joint Mutual Information (JMI) are 
some examples of filter-based variable selection methods. For wrapper-based methods, 
subsets of variables are evaluated using learning algorithms to find the subset that performs 
best. Genetic algorithm (GA), successive projection algorithm (SPA), Particle Swarm 
Optimization (PSO), and Simulated Annealing are some examples of variable selection 
methods in the wrapper approach. Finally, embedded-based methods are those that select 
the subset of variables during the classification model construction process itself. Least 
Absolute Selection (LAS), Shrinkage Operator (LASSO) and deep learning are some 
examples of the embedded method.

4.4 Performance metrics
Normally the performance of multivariate classification techniques is evaluated 

through error. The efficiency of a classification model is the ability to correctly classify 
samples into their respective classes. Generally, the results of the error rate made by the 
classifier are organized in the form of a table or confusion matrix. If a sample classified as 
positive by the reference or gold standard method is correctly classified by the classification 
model, it is considered true positive (TP). However, if it is classified as negative, we have 
a false negative (FN) or Type II error. In the case of a sample classified as negative by 
the reference method and the classification model calculates as negative, we have a true 
negative (TN). However, if a sample is classified as positive, it is counted as a false positive 
(FP), or Type I error. Table 4.1 exemplifies a confusion matrix based on the concepts of TP, 
FN, FP and TN for two classes.

Table 4.1 : Confusion matrix for multivariate classification models

true class
A B

predicted class
A TP FP
B FN TN

On the other hand, there are other performance metrics that indicate the efficiency of 
classification models, as shown in Table 4.2 .
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Metric Calculation

Correct classification

Sensitivity (sens)

Specificity (spec)

Positive predictive value (PPV)

Negative predictive value (NPV)

Negative likelihood ratio

Accuracy

F–score (FS)

 
In addition to these metrics already described, there is a statistical tool that allows 

evaluating the performance of a classification system: the ROC curve (Receiver Operating 
Characteristic). A ROC curve is a two-dimensional line graph that represents the relationship 
between the sensitivity and specificity of a classification model. The index that evaluates the 
accuracy of these graphs is the area under the curve (AUC), and the larger the area, the 
greater the performance of the system in question. An ideal test is one whose area under 
the ROC curve is equal to 1.

4.5 – PCA-LDA
Mathematically, the multivariate classification algorithm PCA-LDA (Principal 

Component Analysis with Linear Discriminant Analysi ) is built in six main steps:

Step 1: The maximum number of k principal components (PC) is initially determined 
according to the Xtrain training matrix (mxn).  k is (m – 1) for (m ≥ n) or (n–1) for (n ≥ m).

Step 2: Xtrain is decomposed into k PCs, which are defined by the product between 
the training scores vector (ttrain) and the loadings vector transposed (lT

train):

Xtrain = [ttrainlT
train]1 + [ttrainlT

train]2 + ... + [ttrainlT
train ]k + Etrain   Eq. 2
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Step 3: The score matrix of the test set (Ttest) is calculated from the loadings matrix 
Itrain obtained in step 2.

Ttest = XtestIT
Train        Eq. 3

Step 4: The discrimination (Di) of the score vector ti related to each principal 
component is determined and ranked in descending order of discrimination:

        
Eq. 4

Where Sbi and Swi correspond to the inter and intra class dispersions for the score 
vector ti, respectively. Intra-class dispersion Swi is defined as:

       
Eq. 5

Where C is the number of classes in the data set and Sij is the dispersion of ti in class 
j and expressed as:

      
Eq. 6

Where  corresponds to the score value ti in the nth k object, and mij corresponds 
to the average value of ti in class j calculated as:

       
Eq. 7

The dispersion between classes (SBi) is defined as:

     
 Eq. 8

Where mi is the average of all training objects for the score vector ti.

Step 5: The training set scores are used as input variables for building the LDA 
model. The optimal number of scores is chosen based on the smallest error obtained 
through cross-validation.
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Step 6: The LDA model built is used to predict the classes of test samples based on 
their scores.

Example 1: In this example we will describe a script in the R language for building 
and validating multivariate classification models using the PCA-LDA and Kennard-stone 
algorithm for two classes (healthy and dengue, ATR-FTIR data) through the prospectr, mass 
and ggplot2 packages.

R Script
# installing packages

install.packages ("prospectr")
install.packages ("MASS")

# reading packages

library(prospectr)
library(MASS)
library(ggplot2)

# reading the samples

class1 = read.table("DATASET/healthy.csv", header=FALSE) # samples of healthy 
patients
class2 = read.table("DATASET/dengue.csv", header=FALSE) # samples from dengue 
patients
cm = read.table("DATASET/cm.csv", header=FALSE) # wavelength

# class1 = healthy - control samples
# class2 = dengue - case samples

dim_class1 = dim (class1) # dimension of class1 array
dim_class2 = dim (class2) # dimension of class2 array

# transposing the data

class1t = t(class1)
class2t = t(class2)
cmt = t(cm)

# viewing data - all spectra

dev.new()
matplot(cmt, class1t, type ="l", col ="blue", xlab ="Wavenumber (cm-1)", ylab 
="Absorbance", main ="Raw spectra")
matplot(cmt,class2t, type ="l", col ="red", xlab ="Wavenumber (cm-1)", ylab 
="Absorbance", main ="Raw spectra", add =TRUE)
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# viewing data - just the averages

dev.new()
matplot(cmt, colMeans (class1), type ="l", col ="blue", xlab ="Wavenumber (cm-1)", 
ylab ="Absorbance", main ="Average spectra")
matplot(cmt,colMeans (class2), type ="l", col ="red", xlab ="Wavenumber (cm-1)", 
ylab ="Absorbance", main ="Mean spectra", add =TRUE )

# scaling the data

data = rbind(class1, class2) # combining matrices one under the other
data_scal = scale(data) # scaling the data
dim_data = dim(data) # dimension of the data array

# PCA Model

data.svd = svd(data_scal) # SVD
data.scores = data.svd$u %*% diag(data.svd$d) # scores
data.loadings = data.svd$v # loadings

# PCA Variances

data.vars = data.svd$d^2 / (nrow (data)-1) # variance per PC
data.totalvar = sum(data.vars) # total variance
data.relvars = data.vars/data.totalvar # cumulative variance
variances = 100*round(data.relvars, digits = 3) # cumulative variance in %
variances[1:10] # variance in % in the first 10 PCs

# Choosing the number of PCs

par(mfrow = c( 2,2))
barplot(data.vars[1:10], main="Variance", names.arg = paste("PC", 1:10))
barplot(log( data.vars[1:10]), main="Log(variance)", names.arg = paste("PC", 1:10))
barplot(data.relvars[1:10], main="Relative Variances", names.arg = paste("PC", 
1:10))
barplot(cumsum (100*data.relvars[1:10]), main="Cumulative Variance(%)", names.arg 
= paste("PC", 1:10), ylim = c(0,100))

npc = 2 # number of PCs chosen to run the PCA

scores = data.scores[1:dim_data[1],1:npc] # PCA scores up to the chosen PC number
loadings = data.loadings[1:dim_data[2],1:npc] # PCA loadings up to the chosen PC 
number

# Creation of the category vector: classes (1 = healthy, 2 = dengue)

group1 = rep(1,dim_class1[1]) # class 1
group2 = rep(2,dim_class2[1]) # class 2



Higher order multivariate classification 119

# Selection of training and testing samples based on KS

perc = 0.7 # 70% for training

ntrain1 = ceiling(perc * dim_class1[1]) # number of training samples class 1
ntrain2 = ceiling(perc * dim_class2[1]) # number of training samples class 2

scores1 = scores[1:dim_class1[1],1:npc] # scores class 1
scores2 = scores[(dim_class1[1]+ 1):dim_data[1],1:npc] # scores class 2

sel1 = kenStone(scores1, k = ntrain1) # KS class 1
sel2 = kenStone(scores2, k = ntrain2) # KS class 2

train1 = scores1[sel1$model,1:npc] # training class 1
train2 = scores2[sel2$model,1:npc] # training class 2
train = rbind(train1,train2) # joining training matrices

group1train = matrix(group1[sel1$model]) # class 1 training labels
group2train = matrix(group2[sel2$model]) # class 2 training labels
group_train = rbind(group1train,group2train) # training labels

test1 = scores1[sel1$test, 1:npc] # test class 1
test2 = scores2[sel2$test, 1:npc] # test class 2
test = rbind(test1,test2) # joining test matrices

group1test = matrix(group1[sel1$test]) # class 1 test labels
group2test = matrix(group2[sel2$test]) # class 2 test labels
group_test = rbind(group1test,group2test) # test labels

# LDA model

model_lda = lda(train,group_train ) # model without cross-validation
model_lda_cv = lda(train,group_train,CV=TRUE) # model with leave-one-out cross-
validation

# prediction of training and testing samples

pred_train = predict(model_lda, train) # training
pred_test = predict(model_lda, test) # test

# figures of merit

# training

dim_train1 = dim(train1)
dim_train2 = dim(train2)
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ac_train = mean(pred_train$class == group_train) # accuracy
spec_train = mean(pred_train$class[1:dim_train1[1]]==group1train) # specificity
sens_train = mean(pred_train$class[(dim_train1[1] + 1):(dim_train1[1]+dim_
train2[1])]==group2train) # sensitivity

# cross-validation

ac_cv = mean(model_lda_cv$class == group_train) # accuracy
spec_cv = mean(model_lda_cv$class[1:dim_train1[1]]==group1train) # specificity
sens_cv = mean(model_lda_cv$class[(dim_train1[1] + 1):(dim_train1[1]+dim_
train2[1])]==group2train) # sensitivity

# test

dim_test1 = dim(test1)
dim_test2 = dim(test2)

ac_test = mean(pred_test$class == group_test) # accuracy
spec_test = mean(pred_test$class[1:dim_test1[1]]==group1test) # specificity
sens_test = mean(pred_test$class[(dim_test1[1]+ 1):(dim_test1[1]+dim_
test2[1])]==group2test) # sensitivity

print("=========== Training =============")
cat("Accuracy:")
ac_train
cat("Sensitivity:")
sens_train
cat("Specificity:")
spec_train

print("=========== Cross-validation =============")
cat("Accuracy:")
ac_cv
cat("Sensitivity:")
sens_cv
cat("Specificity:")
spec_cv

print("=========== Test =============")
cat("Accuracy:")
ac_test
cat("Sensitivity:")
sens_test
cat("Specificity:")
spec_test

# plotting PCA scores PC1 x PC2
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dev.new()
group12 = rbind(matrix(group1), matrix(group2))
matplot(data.scores[group12==1,1],data.
scores[group12==1,2],pch=19,col='blue',xlab='PC1',ylab='PC2',main= 'PCA scores')
points(data.scores[group12==2,1],data.
scores[group12==2,2],pch=19,col='red',xlab='PC1',ylab='PC2',main= 'PCA scores')

# plotting PCA loadings PC1 & PC2

dev.new()
matplot(cmt,data.loadings[,1], type ="l", col = "blue", xlab ="Wavenumber (cm-1)", 
ylab ='Loadings', main ='PCA loadings')
par(new=TRUE)
matplot(cmt,data.loadings[,2], type ="l", col = "red", xlab = "Wavenumber (cm-1)", 
ylab ='Loadings',main ='PCA loadings')

# viewing posterior probabilities - training

dev.new()
matplot(pred_train$posterior[1:dim_train1[1],1 ],pch =19,col="blue",xlab="Samples",
ylab ="LD1", main ="Posterior Probability - Training") # training class 1
points(pred_train$posterior[(dim_train1[ 1]+ 1):(dim_train1[1]+dim_train2[1]),1],
pch=19,col="red",xlab="Samples", ylab ="LD1 ", main ="Posterior Probability - 
Training") # training class 2

# visualizing posterior probabilities - cross validation

dev.new()
matplot(model_lda_cv$posterior[1:dim_train1[1],1 ],pch 
=19,col="blue",xlab="Samples", ylab ="LD1", main ="Posterior Probability - Cross-
Validation") # class 1 cross-validation
points(pred_train$posterior[(dim_train1[ 1]+ 1):(dim_train1[1]+dim_
train2[1]),1],pch=19,col="red",xlab="Samples", ylab ="LD1 ", main ="Posterior 
Probability - Cross-validation") # cross-validation class 2

# viewing posterior probabilities - test

dev.new()
matplot(pred_test$posterior[1:dim_test1[1],1],pch=19,col="blue",xlab="Samples", 
ylab ="LD1", main=" Posterior Probability - Test") # test class 1
points(pred_train$posterior[(dim_test1[ 1]+ 1):(dim_test1[1]+dim_
test2[1]),1],pch=19,col="red",xlab="Samples", ylab ="LD1", main="Posterior 
Probability - Test") # test class 2
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Example 2 : The example we will describe here is basically what was described in 
the previous example, only changing the training and prediction sample selection method. 
In this case we present the MLM algorithm in the construction of PCA-LDA classification 
models for two classes (healthy and dengue, ATR-FTIR data) through the prospectr, mass 
and ggplot2 packages.

R Script
# installing packages

install.packages ("prospectr")
install.packages ("MASS")

# reading packages

library(prospectr)
library(MASS)
library(ggplot2)

# reading the samples

class1 = read.table("DATASET/healthy.csv", header=FALSE) # samples of healthy 
patients
class2 = read.table("DATASET/dengue.csv", header=FALSE) # samples from dengue 
patients
cm = read.table("DATASET/cm.csv", header=FALSE) # wavelength

# class1 = healthy - control samples
# class2 = dengue - case samples

dim_class1 = dim (class1) # dimension of class1 array
dim_class2 = dim (class2) # dimension of class2 array

# transposing the data

class1t = t(class1)
class2t = t(class2)
cmt = t(cm)

# viewing data - all spectra

dev.new()
matplot(cmt, class1t, type ="l", col ="blue", xlab ="Wavenumber (cm-1)", ylab 
="Absorbance", main ="Raw spectra")
matplot(cmt,class2t, type ="l", col ="red", xlab ="Wavenumber (cm-1)", ylab 
="Absorbance", main ="Raw spectra", add =TRUE)

# viewing data - just the averages
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dev.new()
matplot(cmt, colMeans (class1), type ="l", col ="blue", xlab ="Wavenumber (cm-1)", 
ylab ="Absorbance", main ="Average spectra")
matplot(cmt,colMeans (class2), type ="l", col ="red", xlab ="Wavenumber (cm-1)", 
ylab ="Absorbance", main ="Mean spectra", add =TRUE )

# scaling the data

data = rbind(class1, class2) # combining matrices one under the other
data_scal = scale(data) # scaling the data
dim_data = dim(data) # dimension of the data array

# PCA Model

data.svd = svd(data_scal) # SVD
data.scores = data.svd$u %*% diag(data.svd$d) # scores
data.loadings = data.svd$v # loadings

# PCA Variances

data.vars = data.svd$d^2 / (nrow (data)-1) # variance per PC
data.totalvar = sum(data.vars) # total variance
data.relvars = data.vars/data.totalvar # cumulative variance
variances = 100*round(data.relvars, digits = 3) # cumulative variance in %
variances[1:10] # variance in % in the first 10 PCs

# Choosing the number of PCs

par(mfrow = c( 2,2))
barplot(data.vars[1:10], main="Variance", names.arg = paste("PC", 1:10))
barplot(log( data.vars[1:10]), main="Log(variance)", names.arg = paste("PC", 1:10))
barplot(data.relvars[1:10], main="Relative Variances", names.arg = paste("PC", 
1:10))
barplot(cumsum (100*data.relvars[1:10]), main="Cumulative Variance(%)", names.arg 
= paste("PC", 1:10), ylim = c(0,100))

npc = 2 # number of PCs chosen to run the PCA

scores = data.scores[1:dim_data[1],1:npc] # PCA scores up to the chosen PC number
loadings = data.loadings[1:dim_data[2],1:npc] # PCA loadings up to the chosen PC 
number

# Creation of the category vector: classes (1 = healthy, 2 = dengue)

group1 = rep(1,dim_class1[1]) # class 1
group2 = rep(2,dim_class2[1]) # class 2
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# Selection of training and testing samples based on MLM

perc = 0.7 # 70% for training

ntrain1 = ceiling(perc * dim_class1[1]) # number of training samples class 1
ntrain2 = ceiling(perc * dim_class2[1]) # number of training samples class 2

scores1 = scores[1:dim_class1[1],1:npc] # scores class 1
scores2 = scores[(dim_class1[ 1]+ 1):dim_data[1],1:npc] # scores class 2

sel1 = kenStone(scores1, k = ntrain1) # KS class 1
sel2 = kenStone(scores2, k = ntrain2) # KS class 2

train1 = scores1[sel1$model,1:npc] # training class 1
train2 = scores2[sel2$model,1:npc] # training class 2
train = rbind(train1, train2) # joining training matrices

group1train = matrix(group1[sel1$model]) # class 1 training labels
group2train = matrix(group2[sel2$model]) # class 2 training labels
group_train = rbind(group1train, group2train) # training labels

test1 = scores1[sel1$test, 1:npc] # test class 1
test2 = scores2[sel2$test, 1:npc] # test class 2
test = rbind(test1, test2) # joining test matrices

group1test = matrix(group1[sel1$test]) # class 1 test labels
group2test = matrix(group2[sel2$test]) # class 2 test labels
group_test = rbind(group1test, group2test) # test labels

dim_train1 = dim(train1) # class 1 training dimension
dim_train2 = dim(train2) # class 2 training dimension
dim_test1 = dim(test1) # test dimension of class 1
dim_test2 = dim(test2) # class 2 test dimension

prob = 0.2 # MLM mutation probability = 20%

p1 = ceiling(prob * dim_test1[1])
p2 = ceiling(prob * dim_test2[1])

t1 = 1:dim_train1[1]
t2 = 1:dim_train2[1]

v1 = 1:dim_test1[1]
v2 = 1:dim_test2[1]

train1_sub = sample(x=t1, size=p1)
train2_sub = sample(x=t2, size=p2)
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test1_sub = sample(x=v1, size=p1)
test2_sub = sample(x=v2, size=p2)

train1_new = rbind(train1[-train1_sub,],test1[test1_sub,])
train2_new = rbind(train2[-train2_sub,],test2[test2_sub,])

test1_new = rbind(test1[-test1_sub,],train1[train1_sub,])
test2_new = rbind(test2[-test2_sub,],train2[train2_sub,])

train = rbind(train1_new, train2_new)
test = rbind(test1_new, test2_new )

# LDA model

model_lda = lda(train,group_train ) # model without cross-validation
model_lda_cv = lda(train,group_train,CV=TRUE) # model with leave-one-out cross-
validation

# prediction of training and testing samples

pred_train = predict(model_lda, train) # training
pred_test = predict(model_lda, test) # test

# figures of merit

# training

dim_train1 = dim(train1)
dim_train2 = dim(train2)

ac_train = mean(pred_train$class == group_train) # accuracy
spec_train = mean(pred_train$class[1:dim_train1[1]]==group1train) # specificity
sens_train = mean(pred_train$class[(dim_train1[1] + 1):(dim_train1[1]+dim_
train2[1])]==group2train) # sensitivity

# cross-validation

ac_cv = mean(model_lda_cv$class == group_train) # accuracy
spec_cv = mean(model_lda_cv$class[1:dim_train1[1]]==group1train) # specificity
sens_cv = mean(model_lda_cv$class[(dim_train1[1] + 1):(dim_train1[1]+dim_
train2[1])]==group2train) # sensitivity

# test

dim_test1 = dim(test1)
dim_test2 = dim(test2)
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ac_test = mean(pred_test$class == group_test) # accuracy
spec_test = mean(pred_test$class[1:dim_test1[1]]==group1test) # specificity
sens_test = mean(pred_test$class[(dim_test1[1]+ 1):(dim_test1[1]+dim_
test2[1])]==group2test) # sensitivity

print("=========== Training =============")
cat("Accuracy:")
ac_train
cat("Sensitivity:")
sens_train
cat("Specificity:")
spec_train

print("=========== Cross-validation =============")
cat("Accuracy:")
ac_cv
cat("Sensitivity:")
sens_cv
cat("Specificity:")
spec_cv

print("=========== Test =============")
cat("Accuracy:")
ac_test
cat("Sensitivity:")
sens_test
cat("Specificity:")
spec_test

# plotting PCA scores PC1 x PC2

dev.new()
group12 = rbind(matrix(group1), matrix(group2))
matplot(data.scores[group12==1,1],data.
scores[group12==1,2],pch=19,col='blue',xlab='PC1',ylab='PC2',main= 'PCA scores')
points(data.scores[group12==2,1],data.
scores[group12==2,2],pch=19,col='red',xlab='PC1',ylab='PC2',main= 'PCA scores')

# plotting PCA loadings PC1 & PC2

dev.new()
matplot(cmt,data.loadings[,1], type ="l", col = "blue", xlab ="Wavenumber (cm-1)", 
ylab ='Loadings', main ='PCA loadings ')
par(new=TRUE)
matplot(cmt,data.loadings[,2], type ="l", col = "red", xlab = "Wavenumber (cm-1)", 
ylab ='Loadings',main ='PCA loadings')

# viewing posterior probabilities - training
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dev.new()
matplot(pred_train$posterior[1:dim_train1[1],1 ],pch 
=19,col="blue",xlab="Samples", ylab ="LD1", main ="Posterior Probability - 
Training") # training class 1
points(pred_train$posterior[(dim_train1[ 1]+ 1):(dim_train1[1]+dim_
train2[1]),1],pch=19,col="red",xlab="Samples", ylab ="LD1 ", main ="Posterior 
Probability - Training") # training class 2

# visualizing posterior probabilities - cross validation

dev.new()
matplot(model_lda_cv$posterior[1:dim_train1[1],1 ],pch 
=19,col="blue",xlab="Samples", ylab ="LD1", main ="Posterior Probability - Cross-
Validation") # class 1 cross-validation
points(pred_train$posterior[(dim_train1[ 1]+ 1):(dim_train1[1]+dim_
train2[1]),1],pch=19,col="red",xlab="Samples", ylab ="LD1 ", main ="Posterior 
Probability - Cross-validation") # cross-validation class 2

# viewing posterior probabilities - test

dev.new()
matplot(pred_test$posterior[1:dim_test1[1],1],pch=19,col="blue",xlab="Samples", 
ylab ="LD1", main=" Posterior Probability - Test") # test class 1
points(pred_train$posterior[(dim_test1[ 1]+ 1):(dim_test1[1]+dim_
test2[1]),1],pch=19,col="red",xlab="Samples", ylab ="LD1", main="Posterior 
Probability - Test") # test class 2

4.6 SPA-LDA
In 2001, Araújo et al. [4] proposed a variable selection technique called the 

Successive Projections Algorithm (SPA). This technique basically uses simple operations 
in a vector space to minimize collinearity problems and has good efficiency in the context 
of multivariate calibration, specifically when applied to Multiple Linear Regression (MLR).

In 2005, Pontes et al. [5] adapted SPA, originally proposed for selecting spectral 
variables in MLR models, to be used in classification problems using the LDA classifier, 
resulting in SPA-LDA. SPA-LDA uses a cost function that calculates the average risk G of 
an incorrect classification by LDA based on the validation set as per the equation below:

       Eq. 9

Where gk (risk of misclassifying the object xk of kth validation sample) is defined 
according to the equation:
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Eq. 10

Where the numerator r2(xk, μIk) consists of the square of the Mahalanobis distance 
between the object xk (with class index Ik) and the mean of its class (μIk). The denominator 
of the same equation corresponds to the square of the Mahalanobis distance between the 
object xk and the center of the nearest wrong class. This distance is calculated according to 
the equation below:

r2(xk , µIk) = (xk - µIk)S
-1(xk - µIk)

T      Eq. 11

where the sample mean (µIk) and covariance R are calculated on the training set. As 
desired, the value of gk should be as small as possible, that is, the object xk should be close 
to the center of its true class and far from the centers of other classes.

Example 3: In this example, we present the SPA-LDA algorithm together with the 
sample selection algorithm (KS) in building multivariate classification models into two 
classes (healthy and dengue, ATR-FTIR) through the prospectr, mass, ggplot2 and lintools 
packages.

R Script
# installing packages

install.packages("prospectr")
install.packages("MASS")
install.packages("lintools")

# reading packages

library(prospectr)
library(MASS)
library(ggplot2)
library (lintools)

# reading the samples

class1 = read.table("DATASET/healthy.csv", header=FALSE) # samples of healthy 
patients
class2 = read.table("DATASET/dengue.csv", header=FALSE) # samples from dengue 
patients
cm = read.table("DATASET/cm.csv", header=FALSE) # wavelength
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# class1 = healthy - control samples
# class2 = dengue - case samples

dim_class1 = dim (class1) # dimension of class1 array
dim_class2 = dim (class2) # dimension of class2 array

# transposing the data

class1t = t(class1)
class2t = t(class2)
cmt = t(cm)

# viewing data - all spectra

dev.new()
matplot(cmt, class1t, type ="l", col ="blue", xlab ="Wavenumber (cm-1)", ylab 
="Absorbance", main ="Raw spectra")
matplot(cmt,class2t, type ="l", col ="red", xlab ="Wavenumber (cm-1)", ylab 
="Absorbance", main ="Raw spectra", add =TRUE)

# viewing data - just the averages

dev.new()
matplot(cmt, colMeans (class1), type ="l", col ="blue", xlab ="Wavenumber (cm-1)", 
ylab ="Absorbance", main ="Average spectra")
matplot(cmt,colMeans (class2), type ="l", col ="red", xlab ="Wavenumber (cm-1)", 
ylab ="Absorbance", main ="Mean spectra", add =TRUE )

# scaling the data

data = rbind(class1, class2) # combining matrices one under the other
data_scal = scale(data) # scaling the data
dim_data = dim(data) # dimension of the data array

# PCA Model

data.svd = svd(data_scal) # SVD
data.scores = data.svd$u %*% diag(data.svd$d) # scores
data.loadings = data.svd$v # loadings

# Creation of the category vector: classes (1 = healthy, 2 = dengue)

group1 = rep(1,dim_class1[1]) # class 1
group2 = rep(2,dim_class2[1]) # class 2
group12 = rbind(matrix(group1), matrix(group2)) # group 1 and 2

# SPA model
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nvar = 22 # number of variables to select

datam = data.matrix(data, rownames.force=NA) # converting data to matrix

m = colMeans(data) # average of the spectra

model_spa = project(x= data.loadings[,1], A=datam, b=group12, neq =0) # spa model

x = abs(model_spa$x) # leaving positive values for the SPA response vector

temp = sort.int(x, decreasing=TRUE, index.return =TRUE)
variables = temp$ix[1:nvar] # identifying selected variables

# plot of selected variables

dev.new()
matplot(cmt,m,xlab="Wavenumber (cm-1)", type="l", ylab="Absorbance", main ="Average 
spectrum with selected variables")
points(cm[variables],m[variables], pch =19)

datam_spa = datam[,variables] # absorbances for the selected variables

# selection of training and testing samples based on KS

perc = 0.7 # 70% for training

ntrain1 = ceiling(perc * dim_class1[1]) # number of training samples class 1
ntrain2 = ceiling(perc * dim_class2[1]) # number of training samples class 2

datam_spa1 = datam_spa[1:dim_class1[1],] # scores class 1
datam_spa2 = datam_spa[(dim_class1[1]+ 1): dim_data[1],] # scores class 2

sel1 = kenStone(datam_spa1, k = ntrain1) # KS class 1
sel2 = kenStone(datam_spa2, k = ntrain2) # KS class 2

train1 = datam_spa1[sel1$model,] # training class 1
train2 = datam_spa2[sel2$model,] # training class 2
train = rbind(train1,train2) # joining training matrices

group1train = matrix(group1[sel1$model]) # class 1 training labels
group2train = matrix(group2[sel2$model]) # class 2 training labels
group_train = rbind(group1train,group2train) # training labels

test1 = datam_spa1[sel1$test,] # test class 1
test2 = datam_spa2[sel2$test,] # test class 2
test = rbind(test1,test2) # joining test matrices

group1test = matrix(group1[sel1$test]) # class 1 test labels
group2test = matrix(group2[sel2$test]) # class 2 test labels
group_test = rbind(group1test,group2test) # test labels
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# LDA model

model_lda = lda(train,group_train ) # model without cross-validation
model_lda_cv = lda(train,group_train,CV=TRUE) # model with leave-one-out cross-
validation

# prediction of training and testing samples

pred_train = predict(model_lda, train) # training
pred_test = predict(model_lda, test) # test

# figures of merit

# training

dim_train1 = dim(train1)
dim_train2 = dim(train2)

ac_train = mean(pred_train$class == group_train) # accuracy
spec_train = mean(pred_train$class[1:dim_train1[1]]==group1train) # specificity
sens_train = mean(pred_train$class[(dim_train1[1] + 1):(dim_train1[1]+dim_
train2[1])]==group2train) # sensitivity

# cross-validation

ac_cv = mean(model_lda_cv$class == group_train) # accuracy
spec_cv = mean(model_lda_cv$class[1:dim_train1[1]]==group1train) # specificity
sens_cv = mean(model_lda_cv$class[(dim_train1[1] + 1):(dim_train1[1]+dim_
train2[1])]==group2train) # sensitivity

# test

dim_test1 = dim(test1)
dim_test2 = dim(test2)

ac_test = mean(pred_test$class == group_test) # accuracy
spec_test = mean(pred_test$class[1:dim_test1[1]]==group1test) # specificity
sens_test = mean(pred_test$class[(dim_test1[1]+ 1):(dim_test1[1]+dim_
test2[1])]==group2test) # sensitivity

print("=========== Training =============")
cat("Accuracy:")
ac_train
cat("Sensitivity:")
sens_train
cat("Specificity:")
spec_train
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print("=========== Cross-validation =============")
cat("Accuracy:")
ac_cv
cat("Sensitivity:")
sens_cv
cat("Specificity:")
spec_cv

print("=========== Test =============")
cat("Accuracy:")
ac_test
cat("Sensitivity:")
sens_test
cat("Specificity:")
spec_test

# viewing posterior probabilities - training

dev.new()
matplot(pred_train$posterior[1:dim_train1[1],1 ],pch 
=19,col="blue",xlab="Samples", ylab ="LD1", main ="Posterior Probability - 
Training") # training class 1
points(pred_train$posterior[(dim_train1[ 1]+ 1):(dim_train1[1]+dim_
train2[1]),1],pch=19,col="red",xlab="Samples", ylab ="LD1 ", main ="Posterior 
Probability - Training") # training class 2

# visualizing posterior probabilities - cross validation

dev.new()
matplot(model_lda_cv$posterior[1:dim_train1[1],1 ],pch 
=19,col="blue",xlab="Samples", ylab ="LD1", main ="Posterior Probability - Cross-
Validation") # class 1 cross-validation
points(pred_train$posterior[(dim_train1[ 1]+ 1):(dim_train1[1]+dim_
train2[1]),1],pch=19,col="red",xlab="Samples", ylab ="LD1 ", main ="Posterior 
Probability - Cross-validation") # cross-validation class 2

# viewing posterior probabilities - test

dev.new()
matplot(pred_test$posterior[1:dim_test1[1],1],pch=19,col="blue",xlab="Samples", 
ylab ="LD1", main=" Posterior Probability - Test") # test class 1
points(pred_train$posterior[(dim_test1[ 1]+ 1):(dim_test1[1]+dim_
test2[1]),1],pch=19,col="red",xlab="Samples", ylab ="LD1", main="Posterior 
Probability - Test") # test class 2
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Example 4: In this example, we present the SPA-LDA algorithm together with the 
sample selection algorithm (MLM) in building multivariate classification models into two 
classes (healthy and dengue, ATR-FTIR) through the prospect, mass, ggplot2 and lintools 
packages.

R Script
# installing packages

install.packages("prospectr")
install.packages("MASS")
install.packages("lintools")

# reading packages

library(prospectr)
library(MASS)
library(ggplot2)
library (lintools)

# reading the samples

class1 = read.table("DATASET/healthy.csv", header=FALSE) # samples of healthy 
patients
class2 = read.table("DATASET/dengue.csv", header=FALSE) # samples from dengue 
patients
cm = read.table("DATASET/cm.csv", header=FALSE) # wavelength

# class1 = healthy - control samples
# class2 = dengue - case samples

dim_class1 = dim (class1) # dimension of class1 array
dim_class2 = dim (class2) # dimension of class2 array

# transposing the data

class1t = t(class1)
class2t = t(class2)
cmt = t(cm)

# viewing data - all spectra

dev.new()
matplot(cmt, class1t, type ="l", col ="blue", xlab ="Wavenumber (cm-1)", ylab 
="Absorbance", main ="Raw spectra")
matplot(cmt,class2t, type ="l", col ="red", xlab ="Wavenumber (cm-1)", ylab 
="Absorbance", main ="Raw spectra", add =TRUE)
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# viewing data - just the averages

dev.new()
matplot(cmt, colMeans (class1), type ="l", col ="blue", xlab ="Wavenumber (cm-1)", 
ylab ="Absorbance", main ="Average spectra")
matplot(cmt,colMeans (class2), type ="l", col ="red", xlab ="Wavenumber (cm-1)", 
ylab ="Absorbance", main ="Mean spectra", add =TRUE )

# scaling the data

data = rbind(class1, class2) # combining matrices one under the other
data_scal = scale(data) # scaling the data
dim_data = dim(data) # dimension of the data array

# PCA Model

data.svd = svd(data_scal) # SVD
data.scores = data.svd$u %*% diag(data.svd$d) # scores
data.loadings = data.svd$v # loadings

# Creation of the category vector: classes (1 = healthy, 2 = dengue)

group1 = rep(1,dim_class1[1]) # class 1
group2 = rep(2,dim_class2[1]) # class 2
group12 = rbind(matrix(group1), matrix(group2)) # group 1 and 2

# SPA model

nvar = 22 # number of variables to select

datam = data.matrix(data, rownames.force=NA) # converting data to matrix

m = colMeans(data) # average of the spectra

model_spa = project(x= data.loadings[,1], A=datam, b=group12, neq =0) # spa model

x = abs(model_spa$x) # leaving positive values for the SPA response vector

temp = sort.int(x, decreasing=TRUE, index.return =TRUE)
variables = temp$ix[1:nvar] # identifying selected variables

# plot of selected variables

dev.new()
matplot(cmt,m,xlab="Wavenumber (cm-1)", type="l", ylab="Absorbance", main ="Average 
spectrum with selected variables")
points(cm[variables],m[variables], pch =19)
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datam_spa = datam[,variables] # absorbances for the selected variables

# selection of training and testing samples based on MLM

perc = 0.7 # 70% for training

ntrain1 = ceiling(perc * dim_class1[1]) # number of training samples class 1
ntrain2 = ceiling(perc * dim_class2[1]) # number of training samples class 2

datam_spa1 = datam_spa[1:dim_class1[1],] # scores class 1
datam_spa2 = datam_spa[(dim_class1[ 1]+ 1): dim_data[1],] # scores class 2

sel1 = kenStone(datam_spa1, k = ntrain1) # KS class 1
sel2 = kenStone(datam_spa2, k = ntrain2) # KS class 2

train1 = datam_spa1[sel1$model,] # training class 1
train2 = datam_spa2[sel2$model,] # training class 2
train = rbind(train1,train2) # joining training matrices

group1train = matrix(group1[sel1$model]) # class 1 training labels
group2train = matrix(group2[sel2$model]) # class 2 training labels
group_train = rbind(group1train,group2train) # training labels

test1 = datam_spa1[sel1$test,] # test class 1
test2 = datam_spa2[sel2$test,] # test class 2
test = rbind(test1,test2) # joining test matrices

group1test = matrix(group1[sel1$test]) # class 1 test labels
group2test = matrix(group2[sel2$test]) # class 2 test labels
group_test = rbind(group1test,group2test) # test labels

dim_train1 = dim(train1) # class 1 training dimension
dim_train2 = dim(train2) # class 2 training dimension
dim_test1 = dim(test1) # test dimension of class 1
dim_test2 = dim(test2) # class 2 test dimension

prob = 0.2 # MLM mutation probability = 20%

p1 = ceiling(prob * dim_test1[1])
p2 = ceiling(prob * dim_test2[1])

t1 = 1:dim_train1[1]
t2 = 1:dim_train2[1]

v1 = 1:dim_test1[1]
v2 = 1:dim_test2[1]
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rain1_sub = sample(x=t1, size=p1)
train2_sub = sample(x=t2, size=p2)

test1_sub = sample(x=v1, size=p1)
test2_sub = sample(x=v2, size=p2)

train1_new = rbind(train1[-train1_sub,],test1[test1_sub,])
train2_new = rbind(train2[-train2_sub,],test2[test2_sub,])

test1_new = rbind(test1[-test1_sub,],train1[train1_sub,])
test2_new = rbind(test2[-test2_sub,],train2[train2_sub,])

train = rbind(train1_new,train2_new)
test = rbind(test1_new,test2_new )

# LDA model

model_lda = lda(train,group_train ) # model without cross-validation
model_lda_cv = lda(train,group_train,CV=TRUE) # model with leave-one-out cross-
validation

# prediction of training and testing samples

pred_train = predict(model_lda, train) # training
pred_test = predict(model_lda, test) # test

# figures of merit

# training

dim_train1 = dim(train1)
dim_train2 = dim(train2)

ac_train = mean(pred_train$class == group_train) # accuracy
spec_train = mean(pred_train$class[1:dim_train1[1]]==group1train) # specificity
sens_train = mean(pred_train$class[(dim_train1[1] + 1):(dim_train1[1]+dim_
train2[1])]==group2train) # sensitivity

# cross-validation

ac_cv = mean(model_lda_cv$class == group_train) # accuracy
spec_cv = mean(model_lda_cv$class[1:dim_train1[1]]==group1train) # specificity
sens_cv = mean(model_lda_cv$class[(dim_train1[1] + 1):(dim_train1[1]+dim_
train2[1])]==group2train) # sensitivity

# test
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t
dim_test1 = dim(test1)
dim_test2 = dim(test2)

ac_test = mean(pred_test$class == group_test) # accuracy
spec_test = mean(pred_test$class[1:dim_test1[1]]==group1test) # specificity
sens_test = mean(pred_test$class[(dim_test1[1]+ 1):(dim_test1[1]+dim_
test2[1])]==group2test) # sensitivity

print("=========== Training =============")
cat("Accuracy:")
ac_train
cat("Sensitivity:")
sens_train
cat("Specificity:")
spec_train

print("=========== Cross-validation =============")
cat("Accuracy:")
ac_cv
cat("Sensitivity:")
sens_cv
cat("Specificity:")
spec_cv

print("=========== Test =============")
cat("Accuracy:")
ac_test
cat("Sensitivity:")
sens_test
cat("Specificity:")
spec_test

# viewing posterior probabilities - training

dev.new()
matplot(pred_train$posterior[1:dim_train1[1],1 ],pch 
=19,col="blue",xlab="Samples", ylab ="LD1", main ="Posterior Probability - 
Training") # training class 1
points(pred_train$posterior[(dim_train1[ 1]+ 1):(dim_train1[1]+dim_
train2[1]),1],pch=19,col="red",xlab="Samples", ylab ="LD1 ", main ="Posterior 
Probability - Training") # training class 2

# visualizing posterior probabilities - cross validation

dev.new()
matplot(model_lda_cv$posterior[1:dim_train1[1],1 ],pch 
=19,col="blue",xlab="Samples", ylab ="LD1", main ="Posterior Probability - Cross-
Validation") # class 1 cross-validation
points(pred_train$posterior[(dim_train1[ 1]+ 1):(dim_train1[1]+dim_
train2[1]),1],pch=19,col="red",xlab="Samples", ylab ="LD1 ", main ="Posterior 
Probability - Cross-validation") # cross-validation class 2
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# viewing posterior probabilities - test

dev.new()
matplot(pred_test$posterior[1:dim_test1[1],1],pch=19,col="blue",xlab="Samples", 
ylab ="LD1", main=" Posterior Probability - Test") # test class 1
points(pred_train$posterior[(dim_test1[ 1]+ 1):(dim_test1[1]+dim_
test2[1]),1],pch=19,col="red",xlab="Samples", ylab ="LD1", main="Posterior 
Probability - Test") # test class 2

4.7 GA-LDA
The genetic algorithm (GA) is a bioinspired optimization method developed to solve 

optimization and machine learning problems, created by John Henry Holland in 1975 [6]. It 
is also considered a method of selecting variables of stochastic nature. GA simulates natural 
processes of survival and reproduction of populations, especially based on the theory of 
species evolution proposed by Darwin. Chromosomes encoded by real numbers is a context 
applied to the genetic algorithm, as it is possible to construct artificial chromosomes and 
simulate a natural evolutionary process.

Basically, GA encodes subsets of variables in the form of a series of binary values 
(chromosomes) and the position on the chromosome (gene) is associated with one of the 
variables for selection. In this way, a population is generated from a random set of individuals 
and during the evolution process, the population receives an index that reflects the ability to 
adapt to a given fitness. Finally, the fittest individuals are selected for the selection process 
and the least fit are eliminated. The process is repeated until a certain satisfactory solution 
is reached or the maximum number of generations is reached. 

In spectroscopic studies, for example, standard binary chromosomes are used 
with a size equal to the number of wavelengths in a spectrum. The GA-LDA algorithm 
in multivariate classification uses a cost function calculated as the inverse of the risk G 
described in equation 4.9 using the wavelengths encoded in the chromosome. Normally, 
crossover and mutation operators are used at a level of probability as well as the size of the 
population at each generation.

Example 5: In this example, we present the GA-LDA algorithm along with the sample 
selection algorithm (KS) to build multivariate classification models for two classes (healthy 
and dengue, ATR-FTIR) through the prospectr, mass, ggplot2, lintools, caret, dplyr, lattice 
and GA packages.
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R Script
# installing packages

install.packages("prospectr")
install.packages("MASS")
install.packages("caret")
install.packages("GA")

# reading packages

library(prospectr)
library(MASS)
library(ggplot2)
library(lintools)
library(caret)
library(dplyr)
library(lattice)
library(GA)

# reading the samples

class1 = read.table("DATASET/healthy.csv", header=FALSE) # samples of healthy 
patients
class2 = read.table("DATASET/dengue.csv", header=FALSE) # samples from dengue 
patients
cm = read.table("DATASET/cm.csv", header=FALSE) # wavelength

# class1 = healthy - control samples
# class2 = dengue - case samples

dim_class1 = dim (class1) # dimension of class1 array
dim_class2 = dim (class2) # dimension of class2 array

# transposing the data

class1t = t(class1)
class2t = t(class2)
cmt = t(cm)

# viewing data - all spectra

dev.new()
matplot(cmt, class1t, type ="l", col ="blue", xlab ="Wavenumber (cm-1)", ylab 
="Absorbance", main ="Raw spectra")
matplot(cmt,class2t, type ="l", col =" red ", xlab ="Wavenumber (cm-1)", ylab 
="Absorbance", main ="Raw spectra", add =TRUE)

# viewing data - just the averages
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dev.new()
matplot(cmt, colMeans (class1), type ="l", col ="blue", xlab ="Wavenumber (cm-1)", 
ylab ="Absorbance", main ="Average spectra")
matplot(cmt,colMeans (class2), type ="l", col =" red ", xlab ="Wavenumber (cm-1)", 
ylab ="Absorbance", main ="Mean spectra", add =TRUE )

# scaling the data

data = rbind(class1, class2) # combining matrices one under the other
data_scal = scale(data) # scaling the data
dim_data = dim(data) # dimension of the data array

# Creation of the category vector: classes (1 = healthy, 2 = dengue)

group1 = rep(1,dim_class1[1]) # class 1
group2 = rep(2,dim_class2[1]) # class 2
group12 = rbind(matrix(group1), matrix(group2)) # group 1 and 2

# GA algorithm

datam = data.matrix(data, rownames.force=NA) # converting data to matrix

# Function to Establish Population

myInit <- function(k){
  
  function(GA){
    m <- matrix(0, ncol = GA@nBits, nrow = GA@popSize)
    
    for(i in seq_len(GA@popSize))
      m[i, sample(GA@nBits, k)] <- 1 
    
    m
  }
}

# Crossover Function

myCrossover <- function(GA, parents){
  
  parents <- GA@population[parents,] %>%
    apply(1, function(x) which(x == 1)) %>%
    t()
  
  parents_diff <- list("vector", 2)
  parents_diff[[1]] <- setdiff(parents[2,], parents[1,])
  parents_diff[[2]] <- setdiff(parents[1,], parents[2,])
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  children_ind <- list("vector", 2)
  for(i in 1:2){
    k <- length(parents_diff[[i]])
    change_k <- sample(k, sample(ceiling(k/2), 1))
    children_ind[[i]] <- if(length(change_k) > 0){
      c(parents[i, -change_k], parents_diff[[i]][change_k])
    } else {
      parents[i,]
    }
  }
  
  children <- matrix(0, nrow = 2, ncol = GA@nBits)
  for(i in 1:2)
    children[i, children_ind[[i]]] <- 1
  
  list(children = children, fitness = c(NA, NA))
}

# Mutation Function

myMutation <- function(GA, parent){
  
  ind <- which(GA@population[parent,] == 1) 
  n_change <- sample(3, 1)
  ind[sample(length(ind), n_change)] <- sample(setdiff(seq_len(GA@nBits), ind), 
n_change)
  parent <- integer(GA@nBits)
  parent[ind] <- 1
  
  parent
}

# Adjustment Function

f <- function(x, values){
  
  ind <- which(x == 1)
  y <- values[ind]
  y <- ifelse(y %% 2 != 0, y, 0) 
  y <- y[1:10]
  return(sum(y))
}

# GA Model

model_GA = ga(type="binary", fitness=f, values=datam , nBits=ncol(datam), 
population=myInit(nrow(datam)), crossover = myCrossover, mutation=myMutation, 
run=200, pmutation=0.1, maxiter=1000, popSize = nrow(datam))
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# selected variables

ind = which(model_GA@solution[1,] == 1)
if (length(ind) > 22){
  indmax = 22 # maximum number of variables selected
  ind = ind[1:indmax]
}

# array with selected variables

datam_ga = datam[,ind]
m = colMeans(datam)
variables = ind

# plot of selected variables
dev.new()
matplot(cmt,m,xlab="Wavenumber (cm-1)", type ="l", ylab ="Absorbance", main 
="Average spectrum with selected variables")
points(cm[variables],m[variables], pch=19)

# selection of training and testing samples based on KS

perc = 0.7 # 70% for training

ntrain1 = ceiling(perc * dim_class1[1]) # number of training samples class 1
ntrain2 = ceiling(perc * dim_class2[1]) # number of training samples class 2

datam_ga1 = datam_ga[1:dim_class1[1],] # scores class 1
datam_ga2 = datam_ga[(dim_class1[1]+ 1): dim_data[1],] # scores class 2

sel1 = kenStone(datam_ga1, k = ntrain1) # KS class 1
sel2 = kenStone(datam_ga2, k = ntrain2) # KS class 2

train1 = datam_ga1[sel1$model,] # training class 1
train2 = datam_ga2[sel2$model,] # training class 2
train = rbind(train1,train2) # joining training matrices

group1train = matrix(group1[sel1$model]) # class 1 training labels
group2train = matrix(group2[sel2$model]) # class 2 training labels
group_train = rbind(group1train,group2train) # training labels

test1 = datam_ga1[sel1$test,] # test class 1
test2 = datam_ga2[sel2$test,] # test class 2
test = rbind(test1,test2) # joining test matrices

group1test = matrix(group1[sel1$test]) # class 1 test labels
group2test = matrix(group2[sel2$test]) # class 2 test labels
group_test = rbind(group1test,group2test) # test labels
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# LDA model

model_lda = lda(train,group_train ) # model without cross-validation
model_lda_cv = lda(train,group_train,CV=TRUE) # model with leave-one-out cross-
validation

# prediction of training and testing samples

pred_train = predict(model_lda, train) # training
pred_test = predict(model_lda, test) # test

# figures of merit

# training

dim_train1 = dim(train1)
dim_train2 = dim(train2)

ac_train = mean(pred_train$class == group_train) # accuracy
spec_train = mean(pred_train$class[1:dim_train1[1]]==group1train) # specificity
sens_train = mean(pred_train$class[(dim_train1[1] + 1):(dim_train1[1]+dim_
train2[1])]==group2train) # sensitivity

# cross-validation

ac_cv = mean(model_lda_cv$class == group_train) # accuracy
spec_cv = mean(model_lda_cv$class[1:dim_train1[1]]==group1train) # specificity
sens_cv = mean(model_lda_cv$class[(dim_train1[1] + 1):(dim_train1[1]+dim_
train2[1])]==group2train) # sensitivity

# test

dim_test1 = dim(test1)
dim_test2 = dim(test2)

ac_test = mean(pred_test$class == group_test) # accuracy
spec_test = mean(pred_test$class[1:dim_test1[1]]==group1test) # specificity
sens_test = mean(pred_test$class[(dim_test1[1]+ 1):(dim_test1[1]+dim_
test2[1])]==group2test) # sensitivity

print("=========== Training =============")
cat("Accuracy:")
ac_train
cat("Sensitivity:")
sens_train
cat("Specificity:")
spec_train
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print("=========== Cross-validation =============")
cat("Accuracy:")
ac_cv
cat("Sensitivity:")
sens_cv
cat("Specificity:")
spec_cv

print("=========== Test =============")
cat("Accuracy:")
ac_test
cat("Sensitivity:")
sens_test
cat("Specificity:")
spec_test

# viewing posterior probabilities - training

dev.new()
matplot(pred_train$posterior[1:dim_train1[1],1 ],pch 
=19,col="blue",xlab="Samples", ylab ="LD1", main ="Posterior Probability - 
Training") # training class 1
points(pred_train$posterior[(dim_train1[ 1]+ 1):(dim_train1[1]+dim_
train2[1]),1],pch=19,col="red",xlab="Samples", ylab ="LD1", main ="Posterior 
Probability - Training") # training class 2

# visualizing posterior probabilities - cross validation

dev.new()
matplot(model_lda_cv$posterior[1:dim_train1[1],1 ],pch 
=19,col="blue",xlab="Samples", ylab ="LD1", main ="Posterior Probability - Cross-
Validation") # class 1 cross-validation
points(pred_train$posterior[(dim_train1[ 1]+ 1):(dim_train1[1]+dim_
train2[1]),1],pch=19,col="red",xlab="Samples", ylab ="LD1", main ="Posterior 
Probability - Cross-validation") # cross-validation class 2

# viewing posterior probabilities - test

dev.new()
matplot(pred_test$posterior[1:dim_test1[1],1],pch=19,col="blue",xlab="Samples", 
ylab ="LD1", main=" Posterior Probability - Test") # test class 1
points(pred_train$posterior[(dim_test1[ 1]+ 1):(dim_test1[1]+dim_
test2[1]),1],pch=19,col="red",xlab="Samples", ylab ="LD1", main="Posterior 
Probability - Test") # test class 2
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Example 6: In this example, we present the GA-LDA algorithm together with the 
sample selection algorithm (MLM) to build multivariate classification models for two classes 
(healthy and dengue, ATR-FTIR) through the prospectr, mass, ggplot2, lintools, caret, dplyr, 
lattice and GA packages.

R Script
# installing packages

install.packages("prospectr")
install.packages("MASS")
install.packages("caret")
install.packages("GA")

# reading packages

library(prospectr)
library(MASS)
library(ggplot2)
library(lintools)
library(caret)
library(dplyr)
library(lattice)
library(GA)

# reading the samples

class1 = read.table("DATASET/healthy.csv", header=FALSE) # samples of healthy 
patients
class2 = read.table("DATASET/dengue.csv", header=FALSE) # samples from dengue 
patients
cm = read.table("DATASET/cm.csv", header=FALSE) # wavelength

# class1 = healthy - control samples
# class2 = dengue - case samples

dim_class1 = dim (class1) # dimension of class1 array
dim_class2 = dim (class2) # dimension of class2 array

# transposing the data

class1t = t(class1)
class2t = t(class2)
cmt = t(cm)

# viewing data - all spectra

dev.new()
matplot(cmt, class1t, type ="l", col ="blue", xlab ="Wavenumber (cm-1)", ylab 
="Absorbance", main ="Raw spectra")
matplot(cmt,class2t, type ="l", col ="red", xlab ="Wavenumber (cm-1)", ylab 
="Absorbance", main ="Raw spectra", add =TRUE)
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# viewing data - just the averages

dev.new()
matplot(cmt, colMeans (class1), type ="l", col ="blue", xlab ="Wavenumber (cm-1)", 
ylab ="Absorbance", main ="Average spectra")
matplot(cmt,colMeans (class2), type ="l", col ="red", xlab ="Wavenumber (cm-1)", 
ylab ="Absorbance", main ="Mean spectra", add =TRUE )

# scaling the data

data = rbind(class1, class2) # combining matrices one under the other
data_scal = scale(data) # scaling the data
dim_data = dim(data) # dimension of the data array

# Creation of the category vector: classes (1 = healthy, 2 = dengue)

group1 = rep(1,dim_class1[1]) # class 1
group2 = rep(2,dim_class2[1]) # class 2
group12 = rbind(matrix(group1), matrix(group2)) # group 1 and 2

# GA algorithm

datam = data.matrix(data, rownames.force=NA) # converting data to matrix

# Function to Establish Population

myInit <- function(k){
  
  function(GA){
    m <- matrix(0, ncol = GA@nBits, nrow = GA@popSize)
    
    for(i in seq_len(GA@popSize))
      m[i, sample(GA@nBits, k)] <- 1 
    
    m
  }
}

# Crossover Function

myCrossover <- function(GA, parents){
  
  parents <- GA@population[parents,] %>%
    apply(1, function(x) which(x == 1)) %>%
    t()
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  parents_diff <- list("vector", 2)
  parents_diff[[1]] <- setdiff(parents[2,], parents[1,])
  parents_diff[[2]] <- setdiff(parents[1,], parents[2,])
  
  children_ind <- list("vector", 2)
  for(i in 1:2){
    k <- length(parents_diff[[i]])
    change_k <- sample(k, sample(ceiling(k/2), 1))
    children_ind[[i]] <- if(length(change_k) > 0){
      c(parents[i, -change_k], parents_diff[[i]][change_k])
    } else {
      parents[i,]
    }
  }
  
  children <- matrix(0, nrow = 2, ncol = GA@nBits)
  for(i in 1:2)
    children[i, children_ind[[i]]] <- 1
  
  list(children = children, fitness = c(NA, NA))
}

# Mutation Function

myMutation <- function(GA, parent){
  
  ind <- which(GA@population[parent,] == 1) 
  n_change <- sample(3, 1)
  ind[sample(length(ind), n_change)] <- sample(setdiff(seq_len(GA@nBits), ind), 
n_change)
  parent <- integer(GA@nBits)
  parent[ind] <- 1
  
  parent
}

# Adjustment Function

f <- function(x, values){
  
  ind <- which(x == 1)
  y <- values[ind]
  y <- ifelse(y %% 2 != 0, y, 0) 
  y <- y[1:10]
  return(sum(y))
}

# GA Model
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model_GA = ga(type="binary", fitness=f, values=datam, nBits=ncol(datam), 
population=myInit(nrow(datam)), crossover = myCrossover, mutation=myMutation, 
run=200, pmutation=0.1, maxiter=1000, popSize = nrow(datam))

# selected variables

ind = which(model_GA@solution[1,] == 1)
if (length(ind) > 22){
  indmax = 22 # maximum number of variables selected
  ind = ind[1:indmax]
}

# array with selected variables

datam_ga = datam[,ind]
m = colMeans(datam)
variables = ind

# plot of selected variables
dev.new()
matplot(cmt,m,xlab="Wavenumber (cm-1)", type ="l", ylab ="Absorbance", main 
="Average spectrum with selected variables")
points(cm[variables],m[variables], pch=19)

# selection of training and testing samples based on MLM

perc = 0.7 # 70% for training

ntrain1 = ceiling(perc * dim_class1[1]) # number of training samples class 1
ntrain2 = ceiling(perc * dim_class2[1]) # number of training samples class 2

datam_ga1 = datam_ga[1:dim_class1[1],] # scores class 1
datam_ga2 = datam_ga[(dim_class1[ 1]+ 1): dim_data[1],] # scores class 2

sel1 = kenStone(datam_ga1, k = ntrain1) # KS class 1
sel2 = kenStone(datam_ga2, k = ntrain2) # KS class 2

train1 = datam_ga1[sel1$model,] # training class 1
train2 = datam_ga2[sel2$model,] # training class 2
train = rbind(train1,train2) # joining training matrices

group1train = matrix(group1[sel1$model]) # class 1 training labels
group2train = matrix(group2[sel2$model]) # class 2 training labels
group_train = rbind(group1train,group2train) # training labels

test1 = datam_ga1[sel1$test,] # test class 1
test2 = datam_ga2[sel2$test,] # test class 2
test = rbind(test1,test2) # joining test matrices
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group1test = matrix(group1[sel1$test]) # class 1 test labels
group2test = matrix(group2[sel2$test]) # class 2 test labels
group_test = rbind(group1test,group2test) # test labels

dim_train1 = dim(train1) # class 1 training dimension
dim_train2 = dim(train2) # class 2 training dimension
dim_test1 = dim(test1) # test dimension of class 1
dim_test2 = dim(test2) # class 2 test dimension

prob = 0.2 # MLM mutation probability = 20%

p1 = ceiling(prob * dim_test1[1])
p2 = ceiling(prob * dim_test2[1])

t1 = 1:dim_train1[1]
t2 = 1:dim_train2[1]

v1 = 1:dim_test1[1]
v2 = 1:dim_test2[1]

train1_sub = sample(x=t1, size=p1)
train2_sub = sample(x=t2, size=p2)

test1_sub = sample(x=v1, size=p1)
test2_sub = sample(x=v2, size=p2)

train1_new = rbind(train1[-train1_sub,],test1[test1_sub,])
train2_new = rbind(train2[-train2_sub,],test2[test2_sub,])

test1_new = rbind(test1[-test1_sub,],train1[train1_sub,])
test2_new = rbind(test2[-test2_sub,],train2[train2_sub,])

train = rbind(train1_new,train2_new)
test = rbind(test1_new,test2_new)

# LDA model

model_lda = lda(train,group_train ) # model without cross-validation
model_lda_cv = lda(train,group_train,CV=TRUE) # model with leave-one-out cross-
validation

# prediction of training and testing samples

pred_train = predict(model_lda, train) # training
pred_test = predict(model_lda, test) # test

# figures of merit
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# training

dim_train1 = dim(train1)
dim_train2 = dim(train2)

ac_train = mean(pred_train$class == group_train) # accuracy
spec_train = mean(pred_train$class[1:dim_train1[1]]==group1train) # specificity
sens_train = mean(pred_train$class[(dim_train1[1] + 1):(dim_train1[1]+dim_
train2[1])]==group2train) # sensitivity

# cross-validation

ac_cv = mean(model_lda_cv$class == group_train) # accuracy
spec_cv = mean(model_lda_cv$class[1:dim_train1[1]]==group1train) # specificity
sens_cv = mean(model_lda_cv$class[(dim_train1[1] + 1):(dim_train1[1]+dim_
train2[1])]==group2train) # sensitivity

# test

dim_test1 = dim(test1)
dim_test2 = dim(test2)

ac_test = mean(pred_test$class == group_test) # accuracy
spec_test = mean(pred_test$class[1:dim_test1[1]]==group1test) # specificity
sens_test = mean(pred_test$class[(dim_test1[1]+ 1):(dim_test1[1]+dim_
test2[1])]==group2test) # sensitivity

print("=========== Training =============")
cat("Accuracy:")
ac_train
cat("Sensitivity:")
sens_train
cat("Specificity:")
spec_train

print("=========== Cross-validation =============")
cat("Accuracy:")
ac_cv
cat("Sensitivity:")
sens_cv
cat("Specificity:")
spec_cv

print("=========== Test =============")
cat("Accuracy:")
ac_test
cat("Sensitivity:")
sens_test
cat("Specificity:")
spec_test
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# viewing posterior probabilities - training

dev.new()
matplot(pred_train$posterior[1:dim_train1[1],1 ],pch 
=19,col="blue",xlab="Samples", ylab ="LD1", main ="Posterior Probability - 
Training") # training class 1
points(pred_train$posterior[(dim_train1[ 1]+ 1):(dim_train1[1]+dim_
train2[1]),1],pch=19,col="red",xlab="Samples", ylab ="LD1", main ="Posterior 
Probability - Training") # training class 2

# visualizing posterior probabilities - cross validation

dev.new()
matplot(model_lda_cv$posterior[1:dim_train1[1],1 ],pch 
=19,col="blue",xlab="Samples", ylab ="LD1", main ="Posterior Probability - Cross-
Validation") # class 1 cross-validation
points(pred_train$posterior[(dim_train1[ 1]+ 1):(dim_train1[1]+dim_
train2[1]),1],pch=19,col="red",xlab="Samples", ylab ="LD1", main ="Posterior 
Probability - Cross-validation") # cross-validation class 2

# viewing posterior probabilities - test

dev.new()
matplot(pred_test$posterior[1:dim_test1[1],1],pch=19,col="blue",xlab="Samples", 
ylab ="LD1", main=" Posterior Probability - Test") # test class 1
points(pred_train$posterior[(dim_test1[ 1]+ 1):(dim_test1[1]+dim_
test2[1]),1],pch=19,col="red",xlab="Samples", ylab ="LD1", main="Posterior 
Probability - Test") # test class 2

4.8 TUCKER3–LDA
In 1966, the psychometrician Ledyard R. Tucker developed a multidimensional 

data processing method currently known as Tucker 1, Tucker 2 and Tucker 3 [7]. Tucker 1 
consists of unfolding the data array of dimensions I x J x K into a matrix of dimensions I x 
JK, or in other words, the individual application of a PCA in the three forms of unfolding, as 
shown in Figure 4.2 . However, this splitting can be carried out in the other two directions 
(J x KI or KxIJ). As can be seen, Tucker's proposal is to ignore a trilinear structure (the 
instrumental response can be represented by the product of three independent vectors) of 
the data by decomposing them in a Bilinear method .
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Figure 4.2: Unfolding a three-dimensional data array into a matrix.

The Tucker 3 model, for example, can be represented by the following matrix 
equation:

       Eq. 12

Where the matrices A (I x D) , B (J x E) and C (K x F) have dimensions containing the 
weights ("loadings") of the model relative to the three dimensions of the data, respectively; 
the matrix G (D x EF) corresponds to the central matrix ("core matrix") and the elements of 
the tensor G indicate the importance of each interaction between the factor responses; the 
tensor E (I x J x K) contains the model errors and the symbol "⊗" represents the Kronecker 
product [8]. D, E and F indicate the number of factors in the three dimensions of the data, 
respectively. It is important to highlight that the Tucker 3 model accepts that the number 
of decomposed factors is different in each dimension. Figure 4.3 represents the data 
decomposition carried out by the Tucker 3 method:

Figure 4.3: Graphical representation of the Tucker3 model.
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In equation 4.13 we present the Tucker-3 equation for a single element of the data 
cube:

    Eq. 13

Where: xijk is equivalent to an element of the data cube X; aip, bjq, ckr and gprq are the 
values corresponding to xij in matrices A, B and C obtained for modes I, J, K; ejik is related 
to the approximated error for the value of xijk.

Therefore, when we encounter 2nd order chemical data and we want to apply the 
LDA algorithm, there is a need for a prior data decomposition step. A viable alternative is to 
use the scores from the Turkey method as an input variable in the LDA algorithm, creating 
a new classifier, called Turkey3-LDA.

Example 8: In this example, we present the Turkey3-LDA algorithm using KS to build 
2nd order multivariate classification models on normal vs. patients with colorectal cancer 
(CRC), obtained by molecular fluorescence spectrometry in blood plasma. The data can 
be obtained here: https://ucphchemometrics.com/datasets/ . The Turkey3-LDA algorithm in 
this example needs the following R packages: multiway, ThreeWay, R.matlab, plot3D, plotly, 
prospectr, MASS and caret .

R Script
## Loading Packages

install.packages("multiway")
library(multiway)

install.packages("ThreeWay")
library(ThreeWay)

install.packages("R.matlab")
library(R.matlab)

install.packages("plot3D")
library(plot3D)

install.packages("plotly")
library(plotly)

install.packages("prospectr")
install.packages("MASS")
install.packages("caret")

library(prospectr)
library(MASS)
library(caret)

https://ucphchemometrics.com/datasets/
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## Loading Data – Establish the working directory containing the CRC.mat data
## In RStudio, go to Session > Set Working Directory > Choose Directory

data <- readMat("CRC.mat")

X <- data$Xcomb
Y <- data$Y
nmEX <- data$nmEX
nmEM <- data$nmEM

## Visualizing the data

# matrix dimensions

mydim = dim(X) # samples x emission x excitation
mydim

# average matrix of each class (1 = normal, 2 = cancer)

X1 = data$Xnormal
X2 = data$Xcancer

X1m = colMeans (X1)
X2m = colMeans (X2)

dev.new()
filled.contour(X1m,color.palette = terrain.colors,main = "Class 1 - Normal")

dev.new()
filled.contour(X2m,color.palette = terrain.colors,main = "Class 2 - Cancer")

dev.new()
matplot(t(nmEM), X1m, type="l", xlab = "Emission wavelength (nm)", ylab = 
"Intensity", main = "Class 1 - Normal")

dev.new()
matplot(t(nmEX), t(X1m), type ="l", xlab ="Excitation Wavelength (nm)", ylab 
="Intensity", main = "Class 1 - Normal")

dev.new()
matplot(t(nmEM), X2m, type="l", xlab ="Emission wavelength (nm)", ylab 
="Intensity", main ="Class 2 - Cancer")

dev.new()
matplot(t(nmEX), t(X2m), type ="l", xlab ="Excitation Wavelength (nm)", ylab 
="Intensity", main ="Class 2 - Cancer")

######## TUCKER3 model #########
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nf = 3 # define number of factors

Xr = matrix(X, nrow = mydim[1])

model = T3func(Xr, mydim[1], mydim[2], mydim[3], nf, nf, nf, 0, 1e-6)

# R2 Adjustment 

model$fp # Increase the number of factors to better adjust R2

## plot tucker3 scores 1 x 2

dev.new ()
matplot(model$A[Y==1,1], model$A[Y==1,2], pch="o", col="blue", xlab="Factor 1", 
ylab="Factor 2", main="Scores (o: normal, x: cancer)")
points(model$A[Y==2,1], model$A[Y==2,2], pch="x", col="red", xlab="Factor 1", 
ylab="Factor 2", main="Scores (o: normal, x: cancer)")

## plot tucker3 loadings - emission

dev.new ()
matplot(t(nmEM), model$B, type ="l", xlab = "Emission Wavelength (nm)", ylab = 
"Intensity")

## plot tucker3 loadings – excitation

dev.new()
matplot(t(nmEX), model$C, type ="l", xlab = "Excitation Wavelength (nm)", ylab = 
"Intensity")

######### selection of training and testing samples based on KS

perc = 0.7 # 70% for training

dim_class1 = dim(X1)
dim_class2 = dim(X2)
dim_data = dim(X)

ntrain1 = ceiling(perc * dim_class1[1]) # number of training samples class 1
ntrain2 = ceiling(perc * dim_class2[1]) # number of training samples class 2

scores_X1 = model$A[1:dim_class1[1],] # scores class 1
scores_X2 = model$A[(dim_class1[1]+ 1): dim_data[1],] # scores class 2

sel1 = kenStone(scores_X1, k = ntrain1) # KS class 1
sel2 = kenStone(scores_X2, k = ntrain2) # KS class 2

train1 = scores_X1[sel1$model,] # training class 1
train2 = scores_X2[sel2$model,] # training class 2
train = rbind(train1,train2) # joining training matrices
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group1 = rep(1,dim_class1[1]) # class 1
group2 = rep(2,dim_class2[1]) # class 2

group1train = matrix(group1[sel1$model]) # class 1 training labels
group2train = matrix(group2[sel2$model]) # class 2 training labels
group_train = rbind(group1train,group2train) # training labels

test1 = scores_X1[sel1$test,] # test class 1
test2 = scores_X1[sel2$test,] # test class 2
test = rbind (test1,test2) # joining test matrices

group1test = matrix(group1[sel1$test]) # class 1 test labels
group2test = matrix(group2[sel2$test]) # class 2 test labels
group_test = rbind(group1test,group2test) # test labels

# LDA model

model_lda = lda(train,group_train ) # model without cross-validation
model_lda_cv = lda(train,group_train,CV=TRUE) # model with leave-one-out cross-
validation

# prediction of training and testing samples

pred_train = predict(model_lda, train) # training
pred_test = predict(model_lda, test) # test

# figures of merit

# training

dim_train1 = dim(train1)
dim_train2 = dim(train2)

ac_train = mean(pred_train$class == group_train) # accuracy
spec_train = mean(pred_train$class[1:dim_train1[1]]==group1train) # specificity
sens_train = mean(pred_train$class[(dim_train1[1] + 1):(dim_train1[1]+dim_
train2[1])]==group2train) # sensitivity

# cross-validation

ac_cv = mean(model_lda_cv$class == group_train) # accuracy
spec_cv = mean(model_lda_cv$class[1:dim_train1[1]]==group1train) # specificity
sens_cv = mean(model_lda_cv$class[(dim_train1[1] + 1):(dim_train1[1]+dim_
train2[1])]==group2train) # sensitivity

# test

dim_test1 = dim(test1)
dim_test2 = dim(test2)
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ac_test = mean(pred_test$class == group_test) # accuracy
spec_test = mean(pred_test$class[1:dim_test1[1]]==group1test) # specificity
sens_test = mean(pred_test$class[(dim_test1[1]+ 1):(dim_test1[1]+dim_
test2[1])]==group2test) # sensitivity

print("=========== Training =============")
cat("Accuracy:")
ac_train
cat("Sensitivity:")
sens_train
cat("Specificity:")
spec_train

print("=========== Cross-validation =============")
cat("Accuracy:")
ac_cv
cat("Sensitivity:")
sens_cv
cat("Specificity:")
spec_cv

print("=========== Test =============")
cat("Accuracy:")
ac_test
cat("Sensitivity:")
sens_test
cat("Specificity:")
spec_test

# viewing posterior probabilities - training

dev.new()
matplot(pred_train$posterior[1:dim_train1[1],1 ],pch =19,col="blue",xlab="Samples", 
ylab ="LD1", main ="Posterior Probability - Training") # training class 1
points(pred_train$posterior[(dim_train1[ 1]+ 1):(dim_train1[1]+dim_
train2[1]),1],pch=19,col="red",xlab="Samples", ylab ="LD1", main ="Posterior 
Probability - Training") # training class 2

# visualizing posterior probabilities - cross validation

dev.new()
matplot(model_lda_cv$posterior[1:dim_train1[1],1 ],pch 
=19,col="blue",xlab="Samples", ylab ="LD1", main ="Posterior Probability - Cross-
Validation") # class 1 cross-validation
points(pred_train$posterior[(dim_train1[ 1]+ 1):(dim_train1[1]+dim_
train2[1]),1],pch=19,col="red",xlab="Samples", ylab ="LD1", main ="Posterior 
Probability - Cross-validation") # cross-validation class 2

# viewing posterior probabilities - test
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dev.new()
matplot(pred_test$posterior[1:dim_test1[1],1],pch=19,col="blue",xlab="Samples", 
ylab ="LD1", main=" Posterior Probability - Test") # test class 1
points(pred_train$posterior[(dim_test1[ 1]+ 1):(dim_test1[1]+dim_
test2[1]),1],pch=19,col="red",xlab="Samples", ylab ="LD1", main="Posterior 
Probability - Test") # test class 2

Example 9: Here, the Turkey3-LDA algorithm is described using the MLM algorithm 
for sample selection in 2nd order multivariate classification models on normal vs. patients with 
colorectal cancer (CRC), obtained by molecular fluorescence spectrometry in blood plasma. 
Data can be obtained here: https://ucphchemometrics.com/datasets/ . The Turkey3-LDA 
algorithm in this example needs the following R packages: multiway, ThreeWay, R.matlab, 
plot3D, plotly, prospectr, MASS and caret .

R Script
## Loading Packages

install.packages("multiway")
library(multiway)

install.packages("ThreeWay")
library(ThreeWay)

install.packages("R.matlab")
library(R.matlab)

install.packages("plot3D")
library(plot3D)

install.packages("plotly")
library(plotly)

install.packages("prospectr")
install.packages("MASS")
install.packages("caret")

library(prospectr)
library(MASS)
library(caret)

## Loading Data – Establish the working directory containing the CRC.mat data
## In RStudio, go to Session > Set Working Directory > Choose Directory

data <- readMat("CRC.mat")

https://ucphchemometrics.com/datasets/
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X <- data$Xcomb
Y <- data$Y
nmEX <- data$nmEX
nmEM <- data$nmEM

## Visualizing the data

# matrix dimensions

mydim = dim(X) # samples x emission x excitation
mydim

# average matrix of each class (1 = normal, 2 = cancer)

X1 = data$Xnormal
X2 = data$Xcancer

X1m = colMeans (X1)
X2m = colMeans (X2)

dev.new()
filled.contour(X1m,color.palette = terrain.colors,main = "Class 1 - Normal")

dev.new()
filled.contour(X2m,color.palette = terrain.colors,main = "Class 2 - Cancer")

dev.new()
matplot(t(nmEM), X1m, type="l", xlab = "Emission wavelength (nm)", ylab = "Intensity", 
main = "Class 1 - Normal")

dev.new()
matplot(t(nmEX), t(X1m), type ="l", xlab ="Excitation Wavelength (nm)", ylab 
="Intensity", main = "Class 1 - Normal")

dev.new()
matplot(t(nmEM), X2m, type="l", xlab ="Emission wavelength (nm)", ylab ="Intensity", 
main ="Class 2 - Cancer")

dev.new()
matplot(t(nmEX), t(X2m), type ="l", xlab ="Excitation Wavelength (nm)", ylab 
="Intensity", main ="Class 2 - Cancer")

######## TUCKER3 model #########

nf = 3 # define number of factors

Xr = matrix(X, nrow = mydim[1])

model = T3func(Xr, mydim[1], mydim[2], mydim[3], nf, nf, nf, 0, 1e-6)
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# R2 Adjustment 

model$fp # Increase the number of factors to better adjust R2

## plot tucker3 scores 1 x 2

dev.new ()
matplot(model$A[Y==1,1], model$A[Y==1,2], pch="o", col="blue", xlab="Factor 1", 
ylab="Factor 2", main="Scores (o: normal, x: cancer)")
points(model$A[Y==2,1], model$A[Y==2,2], pch="x", col="red", xlab="Factor 1", 
ylab="Factor 2", main="Scores (o: normal, x: cancer)")

## plot tucker3 loadings - emission

dev.new ()
matplot(t(nmEM), model$B, type ="l", xlab = "Emission Wavelength (nm)", ylab = 
"Intensity")

## plot tucker3 loadings – excitation

dev.new()
matplot(t(nmEX), model$C, type ="l", xlab = "Excitation Wavelength (nm)", ylab = 
"Intensity")

######### training and testing samples selection based on MLM

perc = 0.7 # 70% for training

dim_class1 = dim(X1)
dim_class2 = dim(X2)
dim_data = dim(X)

ntrain1 = ceiling(perc * dim_class1[1]) # number of training samples class 1
ntrain2 = ceiling(perc * dim_class2[1]) # number of training samples class 2

scores_X1 = model$A[1:dim_class1[1],] # scores class 1
scores_X2 = model$A[(dim_class1[1]+ 1): dim_data[1],] # scores class 2

sel1 = kenStone(scores_X1, k = ntrain1) # KS class 1
sel2 = kenStone(scores_X2, k = ntrain2) # KS class 2

train1 = scores_X1[sel1$model,] # training class 1
train2 = scores_X2[sel2$model,] # training class 2
train = rbind(train1,train2) # joining training matrices

group1 = rep(1,dim_class1[1]) # class 1
group2 = rep(2,dim_class2[1]) # class 2
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group1train = matrix(group1[sel1$model]) # class 1 training labels
group2train = matrix(group2[sel2$model]) # class 2 training labels
group_train = rbind(group1train,group2train) # training labels

test1 = scores_X1[sel1$test,] # test class 1
test2 = scores_X1[sel2$test,] # test class 2
test = rbind (test1,test2) # joining test matrices

group1test = matrix(group1[sel1$test]) # class 1 test labels
group2test = matrix(group2[sel2$test]) # class 2 test labels
group_test = rbind(group1test,group2test) # test labels

dim_train1 = dim(train1) # class 1 training dimension
dim_train2 = dim(train2) # class 2 training dimension
dim_test1 = dim(test1) # test dimension of class 1
dim_test2 = dim(test2) # class 2 test dimension

prob = 0.2 # MLM mutation probability = 20%

p1 = ceiling(prob * dim_test1[1])
p2 = ceiling(prob * dim_test2[1])

t1 = 1:dim_train1[1]
t2 = 1:dim_train2[1]

v1 = 1:dim_test1[1]
v2 = 1:dim_test2[1]

train1_sub = sample(x=t1, size=p1)
train2_sub = sample(x=t2, size=p2)

test1_sub = sample(x=v1, size=p1)
test2_sub = sample(x=v2, size=p2)

train1_new = rbind(train1[-train1_sub,],test1[test1_sub,])
train2_new = rbind(train2[-train2_sub,],test2[test2_sub,])

test1_new = rbind(test1[-test1_sub,],train1[train1_sub,])
test2_new = rbind(test2[-test2_sub,],train2[train2_sub,])

train = rbind(train1_new,train2_new)
test = rbind(test1_new,test2_new)

# LDA model

model_lda = lda(train,group_train ) # model without cross-validation
model_lda_cv = lda(train,group_train,CV=TRUE) # model with leave-one-out cross-
validation

# prediction of training and testing samples

pred_train = predict(model_lda, train) # training
pred_test = predict(model_lda, test) # test
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# figures of merit

# training

dim_train1 = dim(train1)
dim_train2 = dim(train2)

ac_train = mean(pred_train$class == group_train) # accuracy
spec_train = mean(pred_train$class[1:dim_train1[1]]==group1train) # specificity
sens_train = mean(pred_train$class[(dim_train1[1] + 1):(dim_train1[1]+dim_
train2[1])]==group2train) # sensitivity

# cross-validation

ac_cv = mean(model_lda_cv$class == group_train) # accuracy
spec_cv = mean(model_lda_cv$class[1:dim_train1[1]]==group1train) # specificity
sens_cv = mean(model_lda_cv$class[(dim_train1[1] + 1):(dim_train1[1]+dim_
train2[1])]==group2train) # sensitivity

# test

dim_test1 = dim(test1)
dim_test2 = dim(test2)

ac_test = mean(pred_test$class == group_test) # accuracy
spec_test = mean(pred_test$class[1:dim_test1[1]]==group1test) # specificity
sens_test = mean(pred_test$class[(dim_test1[1]+ 1):(dim_test1[1]+dim_
test2[1])]==group2test) # sensitivity

print("=========== Training =============")
cat("Accuracy:")
ac_train
cat("Sensitivity:")
sens_train
cat("Specificity:")
spec_train

print("=========== Cross-validation =============")
cat("Accuracy:")
ac_cv
cat("Sensitivity:")
sens_cv
cat("Specificity:")
spec_cv

print("=========== Test =============")
cat("Accuracy:")
ac_test
cat("Sensitivity:")
sens_test
cat("Specificity:")
spec_test
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# viewing posterior probabilities - training

dev.new()
matplot(pred_train$posterior[1:dim_train1[1],1 ],pch =19,col="blue",xlab="Samples", 
ylab ="LD1", main ="Posterior Probability - Training") # training class 1
points(pred_train$posterior[(dim_train1[ 1]+ 1):(dim_train1[1]+dim_
train2[1]),1],pch=19,col="red",xlab="Samples", ylab ="LD1", main ="Posterior 
Probability - Training") # training class 2

# visualizing posterior probabilities - cross validation

dev.new()
matplot(model_lda_cv$posterior[1:dim_train1[1],1 ],pch 
=19,col="blue",xlab="Samples", ylab ="LD1", main ="Posterior Probability - Cross-
Validation") # class 1 cross-validation
points(pred_train$posterior[(dim_train1[ 1]+ 1):(dim_train1[1]+dim_
train2[1]),1],pch=19,col="red",xlab="Samples", ylab ="LD1", main ="Posterior 
Probability - Cross-validation") # cross-validation class 2

# viewing posterior probabilities - test

dev.new()
matplot(pred_test$posterior[1:dim_test1[1],1],pch=19,col="blue",xlab="Samples", 
ylab ="LD1", main=" Posterior Probability - Test") # test class 1
points(pred_train$posterior[(dim_test1[ 1]+ 1):(dim_test1[1]+dim_
test2[1]),1],pch=19,col="red",xlab="Samples", ylab ="LD1", main="Posterior 
Probability - Test") # test class 2

4.9 PARAFAC–LDA
PARAFAC ("PARAllel Factor analysis") consists of a trilinear method of higher order 

data decomposition proposed by Professor Rasmus Bro in 1998 [9]. From a mathematical 
point of view, PARAFAC can be considered as a generalization of PCA, or as a restricted 
case of the Tucker-3 method. The PARAFAC model is formed by two weight matrices (B 
and C) and one of scores (A), in a mathematical representation very similar to the Tucker-3 
method, as we can see in equation 4.14:

       
Eq. 14

Where A, B and C have dimensions I x F, J x F and K x F, respectively; |⊗| is the 
Khatri-Rao operator and E is the residue tensor with the same dimensions as X. In the 
PARAFAC model, the tensor G appears, which is a hyperidentity whose value is 1 when 
d=l=h and zero for all other positions. Figure 4.4 presents a graphical representation of 2nd 
order data with PARAFAC:
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Figure 4.3: Graphical representation of the PARAFAC model through the decomposition of a three-
dimensional data array into F triads of weight vectors.

Therefore, analogously to Turkey-3, we will apply the LDA algorithm after obtaining 
the scores from the PARAFAC method as an input variable, creating a new classifier, called 
PARAFAC-LDA.

Example 10 : In this example, we present the PARAFAC-LDA algorithm using KS 
to build 2nd order multivariate classification models on normal vs. patients with colorectal 
cancer (CRC), obtained by molecular fluorescence spectrometry in blood plasma. The 
data can be obtained here: https://ucphchemometrics.com/datasets/ . The PARAFAC-LDA 
algorithm in this example needs the following R packages: multiway, ThreeWay, R.matlab, 
plot3D, plotly, prospectr, MASS, caret.

R Script
## Loading Packages

install.packages("multiway")
library(multiway)

install.packages("ThreeWay")
library(ThreeWay)

install.packages("R.matlab")
library(R.matlab)

install.packages("plot3D")
library(plot3D)

install.packages("plotly")
library(plotly)

https://ucphchemometrics.com/datasets/
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install.packages("prospectr")
install.packages("MASS")
install.packages("caret")

library(prospectr)
library(MASS)
library(caret)

## Loading Data – Establish the working directory containing the CRC.mat data
## In RStudio, go to Session > Set Working Directory > Choose Directory

data <- readMat("CRC.mat")

X <- data$Xcomb
Y <- data$Y
nmEX <- data$nmEX
nmEM <- data$nmEM

## Visualizing the data

# matrix dimensions

mydim = dim(X) # samples x emission x excitation
mydim

# average matrix of each class (1 = normal, 2 = cancer)

X1 = data$Xnormal
X2 = data$Xcancer

X1m = colMeans (X1)
X2m = colMeans (X2)

dev.new()
filled.contour(X1m,color.palette = terrain.colors,main = "Class 1 - Normal")

dev.new()
filled.contour(X2m,color.palette = terrain.colors,main = "Class 2 - Cancer")

dev.new()
matplot(t(nmEM), X1m, type="l", xlab = "Emission wavelength (nm)", ylab = "Intensity", 
main = "Class 1 - Normal")

dev.new()
matplot(t(nmEX), t(X1m), type ="l", xlab ="Excitation Wavelength (nm)", ylab 
="Intensity", main = "Class 1 - Normal")

dev.new()
matplot(t(nmEM), X2m, type="l", xlab ="Emission wavelength (nm)", ylab ="Intensity", 
main ="Class 2 - Cancer")
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dev.new()
matplot(t(nmEX), t(X2m), type ="l", xlab ="Excitation Wavelength (nm)", ylab 
="Intensity", main ="Class 2 - Cancer")

######## PARAFAC Model #########

nf = 3 # define number of factors

model = parafac(X,nfac=nf,nstart=1,maxit=500,ctol=10^-4,parallel=FALSE,cl=NULL,ou
tput=c("best","all"))
  
# R2 Adjustment
  
model$Rsq # Increase the number of factors to better adjust R2
  
## plot parafac scores 1 x 2
  
dev.new ()
matplot(model$A[Y==1,1], model$A[Y==1,2], pch="o", col="blue", xlab="Factor 1", 
ylab="Factor 2", main="Scores (o: normal, x: cancer)")
points(model$A[Y==2,1], model$A[Y==2,2], pch="x", col="red", xlab="Factor 1", 
ylab="Factor 2", main="Scores (o: normal, x: cancer)")

## plot parafac loadings - emission

dev.new ()
matplot(t(nmEM), model$B, type ="l", xlab = "Emission Wavelength (nm)", ylab = 
"Intensity")

## plot parafac loadings – excitation

dev.new()
matplot(t(nmEX), model$C, type ="l", xlab = "Excitation Wavelength (nm)", ylab = 
"Intensity")

######### selection of training and testing samples based on KS

perc = 0.7 # 70% for training

dim_class1 = dim(X1)
dim_class2 = dim(X2)
dim_data = dim(X)

ntrain1 = ceiling(perc * dim_class1[1]) # number of training samples class 1
ntrain2 = ceiling(perc * dim_class2[1]) # number of training samples class 2

scores_X1 = model$A[1:dim_class1[1],] # scores class 1
scores_X2 = model$A[(dim_class1[1]+ 1): dim_data[1],] # scores class 2



Higher order multivariate classification 167

sel1 = kenStone(scores_X1, k = ntrain1) # KS class 1
sel2 = kenStone(scores_X2, k = ntrain2) # KS class 2

train1 = scores_X1[sel1$model,] # training class 1
train2 = scores_X2[sel2$model,] # training class 2
train = rbind(train1,train2) # joining training matrices

group1 = rep(1,dim_class1[1]) # class 1
group2 = rep(2,dim_class2[1]) # class 2

group1train = matrix(group1[sel1$model]) # class 1 training labels
group2train = matrix(group2[sel2$model]) # class 2 training labels
group_train = rbind(group1train,group2train) # training labels

test1 = scores_X1[sel1$test,] # test class 1
test2 = scores_X1[sel2$test,] # test class 2
test = rbind (test1,test2) # joining test matrices

group1test = matrix(group1[sel1$test]) # class 1 test labels
group2test = matrix(group2[sel2$test]) # class 2 test labels
group_test = rbind(group1test,group2test) # test labels

# LDA model

model_lda = lda(train,group_train ) # model without cross-validation
model_lda_cv = lda(train,group_train,CV=TRUE) # model with leave-one-out cross-
validation

# prediction of training and testing samples

pred_train = predict(model_lda, train) # training
pred_test = predict(model_lda, test) # test

# figures of merit

# training

dim_train1 = dim(train1)
dim_train2 = dim(train2)

ac_train = mean(pred_train$class == group_train) # accuracy
spec_train = mean(pred_train$class[1:dim_train1[1]]==group1train) # specificity
sens_train = mean(pred_train$class[(dim_train1[1] + 1):(dim_train1[1]+dim_
train2[1])]==group2train) # sensitivity

# cross-validation

ac_cv = mean(model_lda_cv$class == group_train) # accuracy
spec_cv = mean(model_lda_cv$class[1:dim_train1[1]]==group1train) # specificity
sens_cv = mean(model_lda_cv$class[(dim_train1[1] + 1):(dim_train1[1]+dim_
train2[1])]==group2train) # sensitivity
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# test

dim_test1 = dim(test1)
dim_test2 = dim(test2)

ac_test = mean(pred_test$class == group_test) # accuracy
spec_test = mean(pred_test$class[1:dim_test1[1]]==group1test) # specificity
sens_test = mean(pred_test$class[(dim_test1[1]+ 1):(dim_test1[1]+dim_
test2[1])]==group2test) # sensitivity

print("=========== Training =============")
cat("Accuracy:")
ac_train
cat("Sensitivity:")
sens_train
cat("Specificity:")
spec_train

print("=========== Cross-validation =============")
cat("Accuracy:")
ac_cv
cat("Sensitivity:")
sens_cv
cat("Specificity:")
spec_cv

print("=========== Test =============")
cat("Accuracy:")
ac_test
cat("Sensitivity:")
sens_test
cat("Specificity:")
spec_test

# viewing posterior probabilities - training

dev.new()
matplot(pred_train$posterior[1:dim_train1[1],1 ],pch =19,col="blue",xlab="Samples", 
ylab ="LD1", main ="Posterior Probability - Training") # training class 1
points(pred_train$posterior[(dim_train1[ 1]+ 1):(dim_train1[1]+dim_
train2[1]),1],pch=19,col="red",xlab="Samples", ylab ="LD1", main ="Posterior 
Probability - Training") # training class 2

# visualizing posterior probabilities - cross validation

dev.new()
matplot(model_lda_cv$posterior[1:dim_train1[1],1 ],pch 
=19,col="blue",xlab="Samples", ylab ="LD1", main ="Posterior Probability - Cross-
Validation") # class 1 cross-validation
points(pred_train$posterior[(dim_train1[ 1]+ 1):(dim_train1[1]+dim_
train2[1]),1],pch=19,col="red",xlab="Samples", ylab ="LD1", main ="Posterior 
Probability - Cross-validation") # cross-validation class 2
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# viewing posterior probabilities - test

dev.new()
matplot(pred_test$posterior[1:dim_test1[1],1],pch=19,col="blue",xlab="Samples", 
ylab ="LD1", main=" Posterior Probability - Test") # test class 1
points(pred_train$posterior[(dim_test1[ 1]+ 1):(dim_test1[1]+dim_
test2[1]),1],pch=19,col="red",xlab="Samples", ylab ="LD1", main="Posterior 
Probability - Test") # test class 2

Example 11: Here, the PARAFAC-LDA algorithm is described using the MLM 
algorithm for sample selection in 2nd order multivariate classification models on normal vs. 
patients with colorectal cancer (CRC), obtained by molecular fluorescence spectrometry 
in blood plasma. Data can be obtained here: https://ucphchemometrics.com/datasets/ . 
The PARAFAC-LDA algorithm in this example needs the following R packages: multiway, 
ThreeWay, R.matlab, plot3D, plotly, prospectr, MASS and caret .

R Script
## Loading Packages

install.packages("multiway")
library(multiway)

install.packages("ThreeWay")
library(ThreeWay)

install.packages("R.matlab")
library(R.matlab)

install.packages("plot3D")
library(plot3D)

install.packages("plotly")
library(plotly)

install.packages("prospectr")
install.packages("MASS")
install.packages("caret")

library(prospectr)
library(MASS)
library(caret)

## Loading Data – Establish the working directory containing the CRC.mat data
## In RStudio, go to Session > Set Working Directory > Choose Directory

data <- readMat("CRC.mat")

https://ucphchemometrics.com/datasets/
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X <- data$Xcomb
Y <- data$Y
nmEX <- data$nmEX
nmEM <- data$nmEM

## Visualizing the data

# matrix dimensions

mydim = dim(X) # samples x emission x excitation
mydim

# average matrix of each class (1 = normal, 2 = cancer)

X1 = data$Xnormal
X2 = data$Xcancer

X1m = colMeans (X1)
X2m = colMeans (X2)

dev.new()
filled.contour(X1m,color.palette = terrain.colors,main = "Class 1 - Normal")

dev.new()
filled.contour(X2m,color.palette = terrain.colors,main = "Class 2 - Cancer")

dev.new()
matplot(t(nmEM), X1m, type="l", xlab = "Emission wavelength (nm)", ylab = "Intensity", 
main = "Class 1 - Normal")

dev.new()
matplot(t(nmEX), t(X1m), type ="l", xlab ="Excitation Wavelength (nm)", ylab 
="Intensity", main = "Class 1 - Normal")

dev.new()
matplot(t(nmEM), X2m, type="l", xlab ="Emission wavelength (nm)", ylab ="Intensity", 
main ="Class 2 - Cancer")

dev.new()
matplot(t(nmEX), t(X2m), type ="l", xlab ="Excitation Wavelength (nm)", ylab 
="Intensity", main ="Class 2 - Cancer")

######## PARAFAC Model #########

nf = 3 # define number of factors

model = parafac(X,nfac=nf,nstart=1,maxit=500,ctol=10^-4,parallel=FALSE,cl=NULL,ou
tput=c("best","all"))
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# R2 Adjustment
  
model$Rsq # Increase the number of factors to better adjust R2
  
## plot parafac scores 1 x 2
  
dev.new ()
matplot(model$A[Y==1,1], model$A[Y==1,2], pch="o", col="blue", xlab="Factor 1", 
ylab="Factor 2", main="Scores (o: normal, x: cancer)")
points(model$A[Y==2,1], model$A[Y==2,2], pch="x", col="red", xlab="Factor 1", 
ylab="Factor 2", main="Scores (o: normal, x: cancer)")

## plot parafac loadings - emission

dev.new ()
matplot(t(nmEM), model$B, type ="l", xlab = "Emission Wavelength (nm)", ylab = 
"Intensity")

## plot parafac loadings – excitation

dev.new()
matplot(t(nmEX), model$C, type ="l", xlab = "Excitation Wavelength (nm)", ylab = 
"Intensity")

######### training and testing samples selection based on MLM

perc = 0.7 # 70% for training

dim_class1 = dim(X1)
dim_class2 = dim(X2)
dim_data = dim(X)

ntrain1 = ceiling(perc * dim_class1[1]) # number of training samples class 1
ntrain2 = ceiling(perc * dim_class2[1]) # number of training samples class 2

scores_X1 = model$A[1:dim_class1[1],] # scores class 1
scores_X2 = model$A[(dim_class1[1]+ 1): dim_data[1],] # scores class 2

sel1 = kenStone(scores_X1, k = ntrain1) # KS class 1
sel2 = kenStone(scores_X2, k = ntrain2) # KS class 2

train1 = scores_X1[sel1$model,] # training class 1
train2 = scores_X2[sel2$model,] # training class 2
train = rbind(train1,train2) # joining training matrices

group1 = rep(1,dim_class1[1]) # class 1
group2 = rep(2,dim_class2[1]) # class 2

group1train = matrix(group1[sel1$model]) # class 1 training labels
group2train = matrix(group2[sel2$model]) # class 2 training labels
group_train = rbind(group1train,group2train) # training labels
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test1 = scores_X1[sel1$test,] # test class 1
test2 = scores_X1[sel2$test,] # test class 2
test = rbind (test1,test2) # joining test matrices

group1test = matrix(group1[sel1$test]) # class 1 test labels
group2test = matrix(group2[sel2$test]) # class 2 test labels
group_test = rbind(group1test,group2test) # test labels

dim_train1 = dim(train1) # class 1 training dimension
dim_train2 = dim(train2) # class 2 training dimension
dim_test1 = dim(test1) # test dimension of class 1
dim_test2 = dim(test2) # class 2 test dimension

prob = 0.2 # MLM mutation probability = 20%

p1 = ceiling(prob * dim_test1[1])
p2 = ceiling(prob * dim_test2[1])

t1 = 1:dim_train1[1]
t2 = 1:dim_train2[1]

v1 = 1:dim_test1[1]
v2 = 1:dim_test2[1]

train1_sub = sample(x=t1, size=p1)
train2_sub = sample(x=t2, size=p2)

test1_sub = sample(x=v1, size=p1)
test2_sub = sample(x=v2, size=p2)

train1_new = rbind(train1[-train1_sub,],test1[test1_sub,])
train2_new = rbind(train2[-train2_sub,],test2[test2_sub,])

test1_new = rbind(test1[-test1_sub,],train1[train1_sub,])
test2_new = rbind(test2[-test2_sub,],train2[train2_sub,])

train = rbind(train1_new,train2_new)
test = rbind(test1_new,test2_new)

# LDA model

model_lda = lda(train,group_train ) # model without cross-validation
model_lda_cv = lda(train,group_train,CV=TRUE) # model with leave-one-out cross-
validation

# prediction of training and testing samples

pred_train = predict(model_lda, train) # training
pred_test = predict(model_lda, test) # test

# figures of merit
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# training

dim_train1 = dim(train1)
dim_train2 = dim(train2)

ac_train = mean(pred_train$class == group_train) # accuracy
spec_train = mean(pred_train$class[1:dim_train1[1]]==group1train) # specificity
sens_train = mean(pred_train$class[(dim_train1[1] + 1):(dim_train1[1]+dim_
train2[1])]==group2train) # sensitivity

# cross-validation

ac_cv = mean(model_lda_cv$class == group_train) # accuracy
spec_cv = mean(model_lda_cv$class[1:dim_train1[1]]==group1train) # specificity
sens_cv = mean(model_lda_cv$class[(dim_train1[1] + 1):(dim_train1[1]+dim_
train2[1])]==group2train) # sensitivity

# test

dim_test1 = dim(test1)
dim_test2 = dim(test2)

ac_test = mean(pred_test$class == group_test) # accuracy
spec_test = mean(pred_test$class[1:dim_test1[1]]==group1test) # specificity
sens_test = mean(pred_test$class[(dim_test1[1]+ 1):(dim_test1[1]+dim_
test2[1])]==group2test) # sensitivity

print("=========== Training =============")
cat("Accuracy:")
ac_train
cat("Sensitivity:")
sens_train
cat("Specificity:")
spec_train

print("=========== Cross-validation =============")
cat("Accuracy:")
ac_cv
cat("Sensitivity:")
sens_cv
cat("Specificity:")
spec_cv

print("=========== Test =============")
cat("Accuracy:")
ac_test
cat("Sensitivity:")
sens_test
cat("Specificity:")
spec_test

# viewing posterior probabilities - training
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dev.new()
matplot(pred_train$posterior[1:dim_train1[1],1 ],pch =19,col="blue",xlab="Samples", 
ylab ="LD1", main ="Posterior Probability - Training") # training class 1
points(pred_train$posterior[(dim_train1[ 1]+ 1):(dim_train1[1]+dim_
train2[1]),1],pch=19,col="red",xlab="Samples", ylab ="LD1", main ="Posterior 
Probability - Training") # training class 2

# visualizing posterior probabilities - cross validation

dev.new()
matplot(model_lda_cv$posterior[1:dim_train1[1],1 ],pch 
=19,col="blue",xlab="Samples", ylab ="LD1", main ="Posterior Probability - Cross-
Validation") # class 1 cross-validation
points(pred_train$posterior[(dim_train1[ 1]+ 1):(dim_train1[1]+dim_
train2[1]),1],pch=19,col="red",xlab="Samples", ylab ="LD1", main ="Posterior 
Probability - Cross-validation") # cross-validation class 2

# viewing posterior probabilities - test

dev.new()
matplot(pred_test$posterior[1:dim_test1[1],1],pch=19,col="blue",xlab="Samples", 
ylab ="LD1", main=" Posterior Probability - Test") # test class 1
points(pred_train$posterior[(dim_test1[ 1]+ 1):(dim_test1[1]+dim_
test2[1]),1],pch=19,col="red",xlab="Samples", ylab ="LD1", main="Posterior 
Probability - Test") # test class 2

PROPOSED EXERCISES
01 – Propose the application of the PCA-LDA algorithm using some sample selection 

method (KS or MLM) through a script in the R language on an experimental data set, 
presenting your hypotheses and conclusions.

02 – Propose the application of the SPA-LDA algorithm using some sample selection 
method (KS or MLM) through a script in the R language on an experimental data set, 
presenting your hypotheses and conclusions.

03 – Propose the application of the GA-LDA algorithm using some sample selection 
method (KS or MLM) through an R script on an experimental data set, presenting your 
hypotheses and conclusions.

04 – Build multivariate classification models for the PCA-QDA, SPA-QDA and GA-
QDA algorithms using an R script from a data set and present your conclusions.

05 – Perform a comparison between the performance of PCA-LDA and PCA-QDA 
models using an R script for a given data set. Choose a sample selection method.

06 – Perform a comparison between the performance of SPA-LDA and SPA-QDA 
models using an R script for a given data set. Choose a sample selection method.

07 – Perform a comparison between the performance of GA-LDA and GA-QDA 
models using an R script for a given data set. Choose a sample selection method.
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08 – Build 2nd order multivariate classification models based on the Turkey3-LDA 
algorithm with both KS and MLM for a given dataset and present your main results.

09 – Build 2nd order multivariate classification models based on the PARAFAC-LDA 
algorithm with both KS and MLM for a given dataset and present your main results.

10 – Implement the QDA algorithm in the Turkey3 and PARAFAC algorithms and, 
based on previous exercises that used LDA models, present a comparison of results using 
QDA.

REFERENCES
1 – Scandar , GM; Olivieri, A.C. (2014). Practical three way calibration. Elsevier.

2 – Kennard, R.; Stone, L. (1969). Computer Aided Design of Experiments. Technometrics , 11(1): 137–
148.

3 – Morais, CLM; Lima, KMG; Martin, F. (2018). A computational protocol for sample selection in biological-
derived infrared spectroscopy datasets using Morais-Lima-Martin (MLM) algorithms. Protocol Exchange.

4 – Araújo, MCU; Saldanha, TCB; Galvão, RKH; Yoneyama , T.; Charm, HC; Visani , V., (2001). The 
successive projections algorithm for variable selection in spectroscopic multicomponent analysis, 
Chemometrics and Intelligent Laboratory Systems, 57: 65 – 73.

5 – Pontes, MJC; Galvão, RKH; Araújo, MCU; Moreira, PNT; Neto, ODP; Jose, GE; Saldanha, TCBS 
(2005). The successive projections algorithm for spectral variable selection in classification problems. 
Chemometrics and Intelligent Laboratory Systems. 78:11-18.

6 – Holland, JH (1975). Adaptation in natural and artificial systems. The University of Michigan Press, 
Ann Arbor, MI.

7 – Tucker, L. R. (1966). Some mathematical notes on three-mode factor analysis. Psychometrika, 31, 
279-311.

8 – Graham, A.; Kronecker Products and Matrix Calculus with Applications, Wiley: New York, 1981.

9 – Bro, R.; (1998). Multi-way Analysis in Food Industry: Models, Algorithms, and Applications. Doctoral 
Thesis, University of Amsterdam, Netherlands.



176Higher order multivariate calibration 

HiGHER ORDER MULTivARiATE CALibRATiON 

CHAPTER 5

"Model building is the art of selecting those aspects of a process that 
are relevant to the question being asked. As with any art, this selection 
is guided by taste, elegance, and metaphor; it is a matter of induction, 
rather than deduction. High science depends on this art. "  John 
Henry Holland (1929-2015)

CHAPTER IDEA 
Calibration is, in general, an experimental procedure that builds a mathematical model 

between the values indicated by a given measuring instrument and the values represented 
by a reference standard or property of interest. Prediction is a process that uses the model 
built in the calibration or training stage to predict the property of interest of a sample based 
on instrumental information. The general process of a calibration basically consists of the 
modeling (training) stage, which establishes a mathematical relationship between the 
instrumental variables and the response in the calibration set; and, the validation stage, 
which seeks to optimize the relationship to find a better description of the analyte(s) of 
interest.

In this chapter, you will learn about the advantages of multivariate calibration (1st and 
2nd order) over univariate models (0th order) and several examples guided by algorithms in 
the R language on real or simulated data sets. Furthermore, some multivariate calibration 
algorithms coupled to variable selection algorithms will be presented.

Upon completing the chapter, you should be able to:
a) Build and evaluate figures of merit for univariate calibration models (0th order) 
using R scripts;
b) Build and evaluate figures of merit for higher order calibration models (1st and 2nd 
order) using R scripts;
c) Couple variable selection algorithms with multivariate calibration and evaluate 
their performances;
d) Understand the sample and variable selection algorithms used in higher order 
multivariate calibration models;
e) Investigate the stages for building multivariate calibration models when applied 
to variable selection algorithms and evaluate their performances (figures of merit);
f) Build new scripts in the R language for decision making using 1st and 2nd order 
multivariate calibration;
g) Propose new applications in chemistry or related areas of multivariate calibration 
techniques.

https://www.azquotes.com/quote/97013
https://www.azquotes.com/quote/97013
https://www.azquotes.com/quote/97013
https://www.azquotes.com/quote/97013
https://www.azquotes.com/quote/97013
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5.1 Univariate Calibration
Basically, calibration consists of a mathematical operation that determines the 

functional relationship between values measured by some instrument and a property of 
interest, such as concentration. The calibration process also includes the selection of the 
adjustment method between the instrumental signal and the property of interest (linear, 
quadratic, cubic), the estimation of model parameters and the errors associated with these 
estimates, as well as the validation of the model.

In most cases, calibration for quantitative analysis is determined by a linear 
mathematical relationship between y (instrumental response) and x (analyte concentration) 
as follows:

       
Eq. 1

Where F is the linear calibration function.
In 0th order, or univariate calibration , the mathematical model is obtained using only 

a single value of the experimental measurement per sample, without the need to consider 
other components and interfering factors. y is a scalar quantity. However, its application has 
a prerequisite: the absence of interferences to the analyte which could cause deviations 
between its relationship with the property of interest.

5.2 Calibration by Least Squares – univariate model
The Method of Least Squares (MLS), or Ordinary Least Squares (OLS), is a 

mathematical optimization technique that seeks to find the best fit for a set of data by 
trying to minimize the sum of squares of the differences between the estimated value and 
the observed data. The pioneering work of the least squares method is attributed to the 
mathematician Carl Friedrich Gauss in 1795, but the first clear and concise explanation was 
published in 1805 by Adrien-Marie Legendre [1].

Minimizing the error of experimental measurements related to unknown true values is 
known in the literature as "the least squares problem". Here, we present a solution through a 
theorem to minimize this error: Let Y ∈ Mnx1 (ℜ) and Y ∈ Mnxm (ℜ) be matrices whose columns 
form a linearly independent set, with m ≤ n. Then, there is a singular matrix Â, such that:

   
 Eq. 2

       Eq. 3
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Another way to understand the least squares method is to write a linear empirical 
model or calibration function:

       
Eq. 4

where ŷ is the estimated response, b0 and b1 are the regression coefficients and ε is 
the random error of the system.

In practice, equation 4 is obtained using calibration samples or certified reference 
materials, standards containing one or several components, or synthetic standard materials, 
that is, samples with known concentrations and high precision and accuracy.

Thus, the sum of the total residuals of this model is given by:

        Eq. 5

where:       Eq. 6

so:       Eq. 7

If we calculate the partial derivative of the sum of residues as a function of b0 and b1, 

we obtain the values of the regression coefficients, as shown in the table below:
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Replacing the values in equations above for b0 and b1, we have:

      
 Eq. 8

Figure 5.1 presents different least squares models that can be calculated after 
minimizing the sum of residuals.

Figure 5.1: Different least squares adjustments. , , Ȃy, Ȃx are the estimates of By, Bx, Ay and Ax.
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If there is homoscedasticity (constant error variance) and normal distribution, we can 
also estimate the parameters Bx and Ax using least squares (Gaussian algorithm):

       
Eq. 9

       
Eq. 10

Where m is the total number of calibration experiments used to construct the 
calibration function, using the following sums:

   Eq. 11

   Eq. 12

 
  Eq. 13

Another parameter in the least squares method consists of the Pearson's r or 
Pearson correlation coefficient, which measures the degree and direction (positive or 
negative) of the correlation between two variables, according to the equation:

  
   

Eq. 14

Typically, the value r only takes values between -1 and 1. If r = 1, we have a perfect 
correlation between the two variables. If r = -1, we have a perfect negative correction 
between the two variables. If r= 0 the two variables do not depend linearly on each other.

When properly applying calibration models, it is necessary to test whether the 
conditions of these models are adequate. Usually, some tests are carried out such as: i) 
linearity and, ii ) homoscedasticity.

Linearity is obtained by observing the model residuals, which must be random, as 
shown in Figure 5.2a. If the errors present systematic deviations, Figure 5.2b, the indication 
of an inadequate linear model is evident. Linearity can also be assessed by observing the 
model parameters (regression coefficient, intercept and correlation coefficient). As we know 
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in analysis of variance (ANOVA), there is an assumption in which errors must have a constant 
variance, that is, they must be homoscedastic. If the variances are not homogeneous, we 
assume the case of heteroscedasticity. With a visual inspection of the residuals graph, as 
can be seen in Figure 5.2c, we can see that the variance is not constant.

Figure 5.2: Common plots for residual deviations of calibration models.

After constructing an analytical method, the method must be validated to ensure the 
results obtained through it have the required efficiency under the conditions in which it will 
be applied. Normally, this efficiency of the model (analytical validation) is carried out through 
the determination of several parameters that characterize the efficiency of the method, which 
are called figures of merit. In addition to the parameters discussed in univariate calibration 
models (linearity and homoscedasticity), we can find other figures of merit in higher order 
calibration, such as:

i) Analytical sensitivity
                                         

 Eq. 15

ii) Limit of detection (LD)
                                         

 Eq. 16

iii) Limit of quantification (LQ)
                                         

 Eq. 17
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Where Sa is the sensitivity of the property of interest; Si it is the sensitivity of an 
interferer; s is the standard deviation; and, S is the slope or angular coefficient of the 
analytical curve.

iv) Accuracy – basically, it consists on the difference between the value estimated by 
the model (here, multivariate) and the reference value. In multivariate calibration, we can 
write it as the square root of the mean squared error of prediction (RMSEP)

       
 Eq. 18

where lv represents the number of samples in the validation set, yi and ŷi correspond 
to the reference values and those predicted by the model, respectively.

v ) Precision – consists of the degree of agreement between the results of a series of 
measurements for the same sample. In multivariate calibration, we can calculate precision 
from the equation below:

precisão
 

      
 Eq. 19

where, n represents the number of samples and m the number of replicates.
vi) Sensitivity – is the fraction of the signal responsible for adding a concentration unit 

to the property of interest. In multivariate calibration models, we can write the sensitivity as:

SÊN =         
 Eq. 20

Where bk corresponds to the vector of regression coefficients.
vii) Analytical sensitivity – it is the ratio between the sensitivity and the standard 

deviation of the reference signal (dx):

        
 Eq. 21

viii) Limit of detection (LD) and quantification (LQ) – these parameters express 
the smallest quantities of the species of interest that can be detected and determined 
quantitatively, respectively. In multivariate calibration, these parameters are calculated 
according to the following equations:

       Eq. 22

       Eq. 23
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where dx is the standard deviation of the reference method, bk is the vector of 
regression coefficients of the PLS model for species k, SÊN corresponds to the analytical 
sensitivity.

Below, two examples of univariate calibration models will be presented, as well as 
some figures of merit for evaluating the constructed models.

Example 1: In the example we will describe the construction and validation of a 
univariate regression model using the AER, ggplot2, caret, lmtest and olsrr packages.

R Script
install.packages("AER")
library(AER)

# Data
# ensure reproducibility after training and val partition
set.seed (9)
data("USConsump1993", package = "AER")
plot(USConsump1993, plot.type = "single", col =1:2)

# Transforming data into data.frame = spreadsheet to facilitate formatting
consumption = data.frame(USConsump1993)

################################################ ########################
# Univariate Linear Regression #########################

#### Training

# Number of training data (70%)
tr = round(0.70* nrow (consumption))

# defining training dataset lines
training = sample(nrow (consumption), tr , replace = F)

# separating training dataset
consumption.tr = consumption[training,]

# simple linear regression model
lm1 = lm (formula = expenditure ~ income, data = consumption.tr)
summary (lm1)
confint (lm1)

# plotting
plot (expenditure ~ income, data = consumption.tr, col = "indianred", pch = 20, cex 
= 1.5)
abline (lm1, col = "palegreen", lwd = 2)
grid (lwd = 2)
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library(ggplot2)
ggplot (data = consumption.tr, aes (x = income, y = expenditure)) +
  geom_point (color = 'indianred', lwd = 2)+
  geom_smooth (method = "lm", formula = y ~ x, col = "palegreen")+
  ggtitle ("Consumption vs income (training data)") +
  xlab ("income") +
  ylab ("consumption") + theme_bw ()

##### Test
# Test data
consumption.te = consumption[-training,]

# test data prediction
res.test = predict(lm1,newdata = data.frame (income = consumption.te$income))

# Chart
plot(expenditure ~ income, data = consumption.te , col = "slateblue", pch = 20, cex 
= 1.5)
abline(lm1, col = "khaki4", lwd = 2)
grid(lwd = 2)

ggplot() + 
  geom_point(aes(x = consumption.te$income, y = consumption.te$expenditure),
             color = 'slateblue', lwd = 2) +
  geom_smooth(method = "lm", formula = y ~ x, 
              aes(x = consumption.tr$income, y = consumption.tr$expenditure), col 
= "khaki4") +
  ggtitle ("consumption vs income (test data)") +
  xlab("income") +
  ylab("consumption") + theme_bw()

# Model 1 performance with test data

test1 = data.frame( obs = consumption.te [,2], pred = res.test )
library(caret)
defaultSummary(test1)

R2(consumption.te [,2], res.test )
RMSE(consumption.te [,2], res.test )
MAE(consumption.te [,2], res.test ) # average of absolute deviations

### Model suitability
# residuals graph
par(mfrow = c(2,2))
plot(lm1)

# Normality test
shapiro.test(residuals(lm1))
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# Test for autocorrelation of residuals (they must be uncorrelated)
library(lmtest )
dwtest(lm1)

# Homoscedasticity test
install.packages("olsrr")
library(olsrr)
ols_test_breusch_pagan(lm1)

Example 2: The example we will describe here consists of the construction, validation 
and comparison of univariate regression models using different degrees of the polynomial 
through the MASS, ggplot2, caret, lmtest and olsrr packages.

R Script
library(MASS)

set.seed (9)
rehab = wtloss
? wtloss

################### 0th order model (simple) ####################### ##
### training

# Number of training data (70%)
tr = round(0.70* nrow ( rehab ))

# defining training dataset lines
training = sample(nrow (rehab), tr, replace = F)

# separating training dataset
rehab.training = rehab[training,]

# simple linear regression model
lm1 = lm( Weight ~ Days , rehab.training )
summary (lm1)
confint (lm1)

# plotting the training
plot(Weight ~ Days, rehab.training, col = "navy", pch = 20, cex = 1.5)
abline(lm1, col = "seagreen", lwd = 2)
grid(lwd = 2)

library(ggplot2)
ggplot(rehab.training, aes( x = Days, y = Weight)) +
  geom_point(color = 'orange', lwd = 2)+
  geom_smooth(method = "lm", formula = y ~ x, col = "seagreen")+
  ggtitle("Weight vs Days (training data)") +
  xlab("Days") +
  ylab("Weight") + theme_bw()
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##### Test
# Test data
rehab.test = rehab[-training,]

# test data prediction
res.test = predict(lm1,newdata = data.frame(Days = rehab.test[,1]))
rehab.test[,2]
res.test

# Plot

plot(Weight ~ Days, rehab.test, col = "orangered", pch = 20, cex = 1.5)
abline(lm1, col = "gold3", lwd = 2)
grid(lwd = 2)

ggplot() + 
  geom_point(aes(x = rehab.test$Days, y = rehab.test$Weight),
             color = 'orangered', lwd = 2) +
  geom_smooth(method = "lm", formula = y ~ x, 
              aes(x = rehab.training$Days, y = rehab.training$Weight)) + 
  ggtitle ("Weight vs days (test data)") +
  xlab("days") +
  ylab("weight") + theme_bw()

# Model 1 performance with test data

test1 = data.frame(obs = rehab.test[,2], pred = res.test)
library(caret)
defaultSummary(test1)

### Model adequacy
# residuals graph
par(mfrow = c(2,2))
plot(lm1)

# Normality test
shapiro.test(residuals(lm1))

# Test for autocorrelation of residuals (they must be uncorrelated)
library(lmtest)
dwtest(lm1)

# Homoscedasticity test
install.packages("olsrr")
library(olsrr)
ols_test_breusch_pagan(lm1)
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################### 0th order model (polynomial) ##########
# polynomial regression model (2nd degree)
lm2 = lm(Weight ~ poly (Days, 2, raw = T), rehab.training)
summary (lm2)
confint (lm2) # confidence interval for coefficients

# plotting the training data

par(mfrow = c(1,1))
plot(Weight ~ Days, rehab.training, col = "deepskyblue3", pch = 20, cex = 1.5,
     main = "Weight vs Days (training data)")
x1 = seq(0,250, by = 0.1)
lines(x1,predict(lm2, newdata = data.frame (Days = x1)), col = "mediumvioletred", 
lwd = 2)
grid(lwd = 2)

library(ggplot2)
ggplot(rehab.training, aes( x = Days, y = Weight)) +
  geom_point(color = 'deepskyblue3', lwd = 2)+
  geom_smooth(method = "lm", formula = y ~ x + I(x^2), col = "mediumvioletred")+
  ggtitle("Weight vs Days (training data)") +
  xlab("Days") +
  ylab("Weight") + theme_bw()

#### Test

# prediction with test data

res.test2 = predict(lm2, newdata = data.frame(Days = rehab.test[,1]))
rehab.test[,2]
res.test2

# lm2 model performance with test data
test2 = data.frame(obs = rehab.test[,2], pred = res.test2)
defaultSummary(test2)

# Plot with test data

plot(Weight ~ Days, rehab.test, col = "red", pch = 20, cex = 1.5,
     main = "Weight vs Days (test data)")
x1 = seq(0,250, by = 0.1)
lines(x1,predict(lm2, newdata = data.frame (Days = x1)), col = "sandybrown", lwd 
= 2)
grid(lwd = 2)
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ggplot() +
  geom_point(aes(x=rehab.test$Days, y = rehab.test$Weight),
             color = 'red', lwd = 2) +
  geom_smooth(method = "lm", formula = y ~ x + I(x^2), 
              aes(x = rehab.training$Days, y = rehab.training$Weight), col = 
'sandybrown') +
  ggtitle("Weight vs Days (test data)") +
  xlab("Days") +
  ylab("Weight") + theme_bw()

# Model suitability

# residuals graph
par(mfrow = c(2,2))
plot(lm2)

# Normality test
shapiro.test(residuals(lm2))

# Test for autocorrelation of residuals (they must be uncorrelated)
dwtest(lm2)

# Homoscedasticity test
ols_test_breusch_pagan(lm2)

################### 0th order model (polynomial) ######################## ##
# polynomial regression model (3rd degree)
# Training

lm3 = lm(Weight ~ poly(Days, 3, raw = T), rehab.training)
summary(lm3)
confint(lm3)

# Prediction for test data
res.test3 = predict(lm3, newdata = data.frame (Days = rehab.test[,1]))

# lm3 model performance with test data
test3 = data.frame(obs = rehab.test[,2], pred = res.test3)
defaultSummary(test3)

################### 0th order model (polynomial) ######################## ##
# polynomial regression model (5th degree)
# Training

lm5 = lm (Weight ~ poly(Days, 5, raw = T), rehab.training)
summary (lm5)
confint (lm5)
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# Prediction for test data
res.test5 = predict(lm5, newdata = data.frame (Days = rehab.test[,1]))

# lm3 model performance with test data
test5 = data.frame(obs = rehab.test[,2], pred = res.test5)
defaultSummary(test5)

# Choosing the best model

# Plotting model training and testing errors

RMSE_training = c(RMSE(rehab.training [,2], fitted.values(lm1)),
                  RMSE(rehab.training [,2], fitted.values(lm2)),
                  RMSE(rehab.training [,2], fitted.values(lm3)),
                  RMSE(rehab.training [,2], fitted.values(lm5))
                  
)

RMSE_test = c(RMSE(rehab.test[,2], res.test),
               RMSE(rehab.test[,2], res.test2),
               RMSE(rehab.test[,2], res.test3),
               RMSE(rehab.test[,2], res.test5)
)

order = rep(c(1:3,5),2)
set = c(rep("training", 4), rep("test",4))
rmse = c( RMSE_training,RMSE_test )

select = data.frame(order,set,rmse)

ggplot (select,aes(x = order , y = rmse, group = set)) +
  geom_point(aes(col = set, shape = set), size = 3) +
  geom_line(aes(col=set, linetype =set)) + theme_bw ()

# Cross-validation

vc_lm1 = train(Weight ~ Days, rehab, method = "lm",
               trControl = trainControl(method = "CV", number = 10))

vc_lm2 = train(Weight ~ Days + I(Days^2), rehab, method = "lm",
               trControl = trainControl (method = "CV", number = 10))

vc_lm3 = train(Weight ~ Days + I(Days^2) + I(Days^3), rehab, method = "lm",
               trControl = trainControl (method = "CV", number = 10))

vc_lm5 = train(Weight ~ Days + I(Days^2) + I(Days^3) + I(Days^4) + I(Days^5), rehab, 
method = "lm",
               trControl = trainControl (method = "CV", number = 10))
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summary(resamples(list(
  model1 = vc_lm1,
  model2 = vc_lm2,
  model3 = vc_lm3,
  model5 = vc_lm5
)))

5.3 Multiple Linear Regression (MLR)
Multiple linear regression (MLR), an extension of simple linear regression, is a 

simpler multivariate calibration technique that aims to establish a mathematical relationship 
between x (instrumental response) and y (parameter of interest) through the matrix equation, 
for situations of n > m:

Y = Xb + e             Eq. 24

where y corresponds to the vector of the parameter to be determined, X is the matrix 
of instrumental variables, b is the vector of regression coefficients, and e is the vector of 
residuals. The MLR technique assumes that concentration is a function of the instrumental 
responses, and we call it indirect or inverse calibration.

This equation can be represented graphically through Figure 5.3 below:

Figure 5.3: Graphical representation of the MLR technique.

In MLR, the regression coefficients b can be estimated by several methods, one of 
the most used of which is the least squares method, as shown in the equation below:

b = (X T X) -1 X T y        Eq. 25

 The analysis of equation (25) above points to the main limitations of the MLR 
technique: i) the inverse of XTX may not exist; ii) all information (significant variance) 
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contained in matrix X is used in building the model, regardless of whether it is relevant or 
not; and, iii) the number of independent variables cannot be greater than the number of 
calibration samples used in the analysis. When the problem of the inverse of XTX is due to 
matrix rank deficiency, the solution will not exist and this problem is known as collinearity.

However, the MLR technique, when XTX has a possible solution, is interesting for 
well-established systems. This happens when there are no collinearities in the X matrix, 
no interferences or interaction between the analytes, when the response is linear and with 
low instrumental noise. A possible solution for the MLR in systems with a great number of 
instrumental responses for a smaller quantity of samples is the use of variable selection 
algorithms, which will be discussed throughout this chapter.

Example 3: The example we will describe here consists of the construction, validation 
and comparison of MLR multivariate regression models using the Stat2Data, ggplot2, caret, 
rsm, lmtest and olsrr packages.

R Script
install.packages("Stat2Data")
library(Stat2Data)

data("ThreeCars2017")

pairs(ThreeCars2017) #scatter diagram

pairs(ThreeCars2017,
      col = viridis :: viridis(3)[ThreeCars2017$CarType],
      pch = c(15:17)[ThreeCars2017$CarType])

pairs(ThreeCars2017[,1:4],
      col = viridis :: viridis (3)[ThreeCars2017$CarType],
      pch = c(15:17)[ThreeCars2017$CarType])

######### Model 1 ##############################
#### Training
set.seed (11)

# Number of training samples (80%)
tr = round(0.8* nrow (ThreeCars2017))

# defining training dataset rows
training = sample( nrow (ThreeCars2017), tr, replace = F)

# separating the training dataset
cars.training = ThreeCars2017[training,]
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# Model 1
model1 = lm (Price ~ Mileage, cars.training )
summary(model1)

# Preview
plot (Price ~ Mileage , cars.training , col = "palegreen2", pch = 20, cex = 1.5,
       main = "Price vs  Mileage (training data)")
abline (model1, col = "steelblue", lwd = 2)
grid (lwd = 2)

library(ggplot2)
ggplot ( cars.training , aes (x = Mileage, y = Price)) +
  geom_point ( color = "palegreen", lwd = 2)+
  geom_smooth (method = "lm", formula = y ~ x)+
  ggtitle ("Price vs Mileage (training data)") +
  xlab ("Mileage") +
  ylab ("Price") + theme_bw ()

### Test
# Test data
cars.test = ThreeCars2017[-training,]

# prediction with test data
res.test1 = predict(model1, newdata = data.frame (Mileage = cars.test$Mileage))

# Model 1 performance with test data
test1 = data.frame (obs = cars.test$Price , pred = res.test1)
library(caret)
defaultSummary (test1)

# Preview
plot(Price ~ Mileage, cars.test, col = "mediumorchid", pch = 20, cex = 1.5,
     main = "Price vs  Mileage (test data)")
abline (model1, col = "olivedrab3", lwd = 2)
grid( lwd = 2)

library(ggplot2)
ggplot () +
  geom_point ( aes(x = cars.test$Mileage , y = cars.test$Price ),
               color = "mediumorchid", lwd = 2) +
  geom_smooth (method = "lm", formula = y ~ x,
               aes(x = cars.training$Mileage , y = cars.training$Price ), col = 
"olivedrab3") +
  ggtitle ("Price vs Mileage (test data)") +
  xlab ("Mileage") +
  ylab ("Price") + theme_bw ()
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######## Model 2 (considering 2 regressor variables )
model2 = lm (Price ~ Mileage + Age, cars.training )
summary(model2)

## Preview
install.packages("rsm")
library(rsm)
persp(model2, Age ~ Mileage, col = rainbow(50), contours = "colors", theta = 50, 
phi = 30)

contour(model2, Age ~ Mileage, image = TRUE)

#####
xs = seq (min( cars.training$Mileage ), max( cars.training$Mileage ), length = 20)
ys = seq (min( cars.training$Age ), max( cars.training$Age ), length = 20)
xys = expand.grid ( xs,ys )
colnames ( xys ) = c("Mileage", "Age")
zs = matrix(predict(model2, xys ), nrow = length( xs ))

n.cols = 100
palette = colorRampPalette (c("lightseagreen", "mediumvioletred"))( n.cols )
zfacet = zs[-1,-1] + zs[-1, -20] + zs[-20, -1] + zs[-20, -20]
facetcol = cut( zfacet , n.cols )

pl = persp (x = xs , y = ys , z = zs, theta = 50, phi = 30, ticktype = 'detailed',
            xlab = "Mileage", ylab = "Age", zlab = "Price", col = palette [ facetcol ])

with ( cars.training , points(trans3d(Mileage, Age, Price, pl), pch = 20, col = 
"orangered"))

### Test
# Prediction with test data
res.test2 = predict(model2, newdata = data.frame ( cars.test [c(2,4)]))

## Model 2 performance with test data
test2 = data.frame ( obs = cars.test$Price , pred = res.test2)
defaultSummary (test2)

#### Model 3
model3 = lm (Price ~ Mileage*Age, cars.training )
summary(model3)

# Preview
persp (model3, Age ~ Mileage, col = rainbow(50), contours = "colors")
contour(model3, Age ~ Mileage, image = TRUE)
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# Test
# Prediction with test data

res.test3 = predict(model3, newdata = data.frame(cars.test [c(2,4)]))

## Model 3 performance with test data
test3 = data.frame ( obs = cars.test$Price , pred = res.test3)
defaultSummary (test3)

######################## Model 4 ################
# Model 4
model4 = lm (Price ~ Mileage*Age + I(Mileage^2) + I(Age^2), cars.training )
summary(model4)

# Preview
persp(model4, Age ~ Mileage, col = rainbow(50), contours = "colors", theta = 60, 
phi = 30,)
contour(model4, Age ~ Mileage, image = TRUE)

# Prediction with test data

res.test4 = predict (model4, newdata = data.frame ( cars.test [c(2,4)]))

## Model 3 performance with test data
test4 = data.frame ( obs = cars.test$Price , pred = res.test4)
defaultSummary (test4)

############################## Model 5 ################# #####################
# Model 5
model5 = lm (Price ~ Mileage*Age + I(Mileage^2) + I(Age^2) + CarType , cars.training 
)
summary(model5)

# Preview
persp(model5, Age ~ Mileage, col = rainbow(50), contours = "colors", theta = 60, 
phi = 30)
contour(model5, Age ~ Mileage, image = TRUE)

# Prediction with test data
res.test5 = predict (model5, newdata = data.frame ( cars.test [c(1,2,4)]))

## Model 3 performance with test data
test5 = data.frame ( obs = cars.test$Price , pred = res.test5)
defaultSummary (test5)

###################### Model 6 #########################
# Model 6
model6 = step(model5, trace = 1, direction = "backward")
# tests whether it is worth removing a coefficient or not to improve the model
summary (model6)
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# Prediction with test data
res.test6 = predict(model6, newdata = data.frame ( cars.test [c(1,2,4)]))

## Model 3 performance with test data
test6 = data.frame (obs = cars.test$Price , pred = res.test6)
defaultSummary (test6)

####################### Choosing the best model ####################### #######
#### Plotting training and testing error of the best model

rmse_training = c(RMSE( cars.training$Price , fitted.values (model1)),
                RMSE( cars.training$Price , fitted.values (model2)),
                RMSE( cars.training$Price , fitted.values (model3)),
                RMSE( cars.training$Price , fitted.values (model4)),
                RMSE( cars.training$Price , fitted.values (model5)),
                RMSE( cars.training$Price , fitted.values (model6))
)

rmse_test = c(RMSE( cars.test$Price , res.test1),
               RMSE( cars.test$Price , res.test2),
               RMSE( cars.test$Price , res.test3),
               RMSE( cars.test$Price , res.test4),
               RMSE( cars.test$Price , res.test5),
               RMSE( cars.test$Price , res.test6)
)

model = rep(1:6,2)
set = c(rep("training",6), rep("test",6))
rmse = c( rmse_training,rmse_test )

select = data.frame ( model, set, rmse )

ggplot (select, aes (x = model , y = rmse , group = set)) +
  geom_point ( aes (col = set, shape = set), size = 3) +
  geom_line ( aes (col=set, linetype =set)) + theme_bw ()

#### Cross-validation

vc_lm6 = train(Price ~ Mileage*Age + I(Mileage^2) + I(Age^2) + CarType , ThreeCars2017, 
method = "lm",
               trControl = trainControl (method = "cv", number = 10))
vc_lm6

# Suitability model 6
par(mfrow = c(2,2))
plot(model6)
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shapiro.test(residuals(model6))
install.packages ("lmtest")
library(lmtest)
dwtest(model6)
install.packages("olsrr")
library(olsrr)
ols_test_breusch_pagan(model6)

5.4 MLR – SPA
As discussed previously, the MLR algorithm is one of the simplest multivariate 

calibration techniques. In MLR, the analysis can be described by a linear relationship 
between the independent variables X and a dependent variable Y, as described in Eq. 
25. It was also mentioned that this algorithm does not need to know the concentration 
for all species spectroscopy active in the samples belonging to the calibration set, i.e., 
unknown chemical species, interferences and baseline effects; since these when present, 
can be modeled. However, an important problem in MLR calibration is that the matrix (XTX) 
may not be invertible or promote the propagation of errors when there is strong correlation 
or multicollinearity between the variables. This happens when the number of variables is 
greater than the number of samples.

As we normally obtain a large number of instrumental responses and a smaller 
number of samples, this problem of inverting the XTX matrix tends to continue, except when 
we use variable selection algorithms to get around these restrictions. The SPA variable 
selection algorithm selects subsets of variables with minimally redundant content, from 
a succession of projections comprising the instrumental variables column, to correct 
collinearity problems, which is interesting for the MLR algorithm.

Example 4 : The following example consists of an application of the MLR-SPA 
multivariate regression algorithm to mid-infrared spectra in plasma samples with different 
synthetic (spiked) concentrations of dengue virus. The packages used in the script are 
R.matlab, prospectr, MASS, lintools, ggplot2,Stat2Data and Metrics. 

R Script
## Loading packages

install.packages ("R.matlab")
library(R.matlab)

install.packages("prospectr")
install.packages("MASS")
install.packages("lintools")
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library(prospectr)
library(MASS)
library(ggplot2)
library(lintools)

install.packages("Stat2Data")
library(Stat2Data)

install.packages("Metrics")
library(Metrics)

## Loading data

# Navigate in RStudio to the directory with the dataset to work with
# Session > Set Working Directory > Choose Directory
data <- readMat("data_reg.mat")

x = data$data # spectra
y = data$concentration # concentration
cm = data$cm # wave number
cmt = t(cm)

## data plot

dev.new()
matplot(t(cm),t(x), type ='l', xlab ="Wavenumber (cm-1)", ylab ="Absorbance")

## SPA for variable selection

# PCA Model

x_scal = scale(x) # mean centering
dim_x = dim(x) # dimension of the data array

x.svd = svd ( x_scal ) # SVD
x.scores = x.svd$u %*% diag ( x.svd$d ) # scores
x.loadings = x.svd$v # loadings

# SPA model

nvar = 22 # number of variables to select

xm = data.matrix (x, rownames.force =NA) # converting data to matrix

m = colMeans (x) # average of spectra

model_spa = project (x= x.loadings [,1], A= xm , b=y, neq =0) # spa model
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xabs = abs ( model_spa$x ) # leaving positive values for the SPA response vector

temp = sort.int(xabs , decreasing=TRUE, index.return =TRUE)
variables = temp$ix [1:nvar] # identifying selected variables

dev.new () # plot of selected variables
matplot (cmt,m,xlab ="Wave number (cm-1)", type ="l", ylab ="Absorbance", main 
="Average spectrum with selected variables")
points(cm[ variables ],m[ variables ], pch =19)

xm_spa = xm [, variables ] # absorbances for the selected variables
xm_spa_df = data.frame ( xm_spa )

## Division into Calibration and Prediction

perc = 0.7 # 70% for calibration and 30% for testing

size = 1:dim_x[1]

ntrain = ceiling (perc * dim_x [1]) # number of calibration samples

sel = sample(size, ntrain ) # sample selection

xcal = xm_spa [ sel ,] # calibration
ycal = matrix (y[ sel ]) # concentration calibration

xpred = xm_spa [- sel ,] # prediction
ypred = matrix (y[- sel ]) # concentration prediction

## MLR Model

xcal_df = data.frame ( xcal )
xpred_df = data.frame ( xpred )

model_mlr = lm ( ycal ~ xcal , xcal_df ) # MLR model

coef = model_mlr$coefficients # regression coefficients

ycal_calc = cbind ( rowMeans ( xcal ), xcal ) %*% matrix ( coef ) # predicted 
concentration calibration
ypred_calc = cbind ( rowMeans ( xpred ), xpred ) %*% matrix ( coef ) # predicted 
concentration prediction

## Plot measured vs.predicted concentration

dev.new ()
plot (ycal,ycal_calc,pch ='o', col ="blue", xlab ="Measured Concentration (mg/L)", 
ylab ="Predicted Concentration (mg/L)", main ="Calibration")
lines(ycal,ycal,col ='red')
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dev.new ()
plot (ypred,ypred_calc,pch =15,col="red", xlab = "Measured Concentration (mg/L)", 
ylab = "Predicted Concentration (mg/L)", main = "Predicted")
lines(ypred,ypred,col ='red')

dev.new ()
plot (ycal,ycal_calc,pch ='o', col ="blue", xlab ="Measured Concentration (mg/L)", 
ylab ="Predicted Concentration (mg/L)", main ="Calibration (blue) and Prediction 
(red)")
points(ypred,ypred_calc,pch =15,col="red")
lines(y,y,col ="red")

## Figures of merit

# Calibration

MAPEC = mean(abs (( ycal-ycal_calc )/ ycal ))*100
R2cal = cor(ycal,ycal_calc)^2
RMSEC = rmse(ycal,ycal_calc )

# Prediction

MAPEP = mean(abs(( ypred-ypred_calc )/ ypred ))*100
R2pred = cor(ypred,ypred_calc )^2
RMSEP = rmse(ypred,ypred_calc )

print("=========== Calibration =============")
print("Mean absolute error percentage (MAPE) (%):")
MAPEC
print("R2cal:")
R2cal
print("RMSEC (mg/L):")
RMSEC

print("=========== Test =============")
print("Mean absolute error percentage (MAPE) (%):")
MAPEP
print("R2pred:")
R2pred
print("RMSEP (mg/L):")
RMSEP

5.5 Principal Component Regression (PCR)
Principal component regression (PCR) is a multivariate regression technique used 

when there are many independent variables or multicollinearities (when two or more 
independent variables in a regression model are highly correlated), experimental noise or 
lack of linearity.
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We can divide the PCR technique into two phases: description of the block of 
independent variables (matrix X), being orthogonal to each other, therefore there is no 
correlation between them.

This first step of the PCR technique can be represented graphically in Figure 5.4 
below:

Figure 5.4: Graphical representation of the PCR technique

The second stage of the PCR technique consists of using the MLR technique to 
establish a mathematical relationship between the matrix of T scores (the new block of 
independent variables) and the block of dependent variables (matrix Y). Thus the MLR 
equation can be written:

Y = TB + E         Eq. 26

and the solution for the regression coefficients is:

B = (TTT)-1TT Y        Eq. 27

Note that inverting TTT will not cause problems due to the mutual orthogonality of the 
scores, correcting the collinearity problem. However, it is important to highlight that a crucial 
step in the PCR technique is choosing the number of principal components due to the risk of 
loss of information. Another issue is that PCR ignores all the information contained in the Y 
matrix in the initial step. The data from the Y matrix are only used in the second step, when 
the number of components has already been determined.

Example 5: The following example consists of a practical script for multivariate 
regression algorithms (MLR and PCR) using the Ecdat, corrplot, car, caret and pls packages.
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R Script
install.packages("hdrcde")
library(hdrcde)

install.packages("DEoptimR")
library(DEoptimR)

install.packages("Ecfun")
library(Ecfun)

install.packages("Ecdat")
library(Ecdat)

#data
data = ManufCost

? ManufCost

data = data.frame ( ManufCost )

data = na.omit (data)

# Correlation
library ( corrplot )

r = cor(data)
round(r,2)

# preview
corrplot :: corrplot ( r,method = "color",
                       type = "upper",
                       order= "hclust",
                       addCoef.col = "black", tl.srt = 45,
                       diag = FALSE)

pairs (data, col = "mediumseagreen")

################################################ ####
#### Training and Testing Data

set.seed (33)

# Separating training and testing data
tr = round(0.8* nrow (data))
training = sample( nrow (data), tr , replace = F)

data.training = data[training,]
data.test = data[-training,]
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################################################ #########################

### Visualizing correlation and principal components between two variables

par(mfrow = c(1,1))
# plotting two correlated variables
plot(scale( sl )~scale(pl), asp = 1, data, pch = 20, cex = 1.5, col = "mediumseagreen")

# separating such variables
d = data[,c(3,7)]

# correlation matrix of such variables
cm = cor(d)
cm

#eigenvalues of cm
e = eigen(cm)

# Slopes of the principal components
s1 = e$vectors [1,1]/ e$vectors [2,1] # PC1
s2 = e$vectors [1,2]/ e$vectors [2,2] # PC2

# Principal axes
abline (a=0, b=s1, col = "blue", lwd = 2)
abline (a=0, b=s2, col = "lightblue", lwd = 2)

##### Multiple Linear Regression (MLR)
# Complete model - Training
lm1 = lm (cost ~., data.training )
library("car")
vif (lm1) # variance inflation factor due to multicollinearity 
confint (lm1)

# Test
pred.lm1 = predict(lm1, newdata = data.test)

# metrics
library("caret")
test.lm = data.frame ( data.test$cost , pred.lm1)
colnames ( test.lm ) = c("obs", "pred")
defaultSummary ( test.lm )

################################################ #####################
### PCR
install.packages("pls")
library(pls)
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# PCR model training
pcr1 = pcr( cost ~., ncomp = 8, data = data.training , validation = "LOO", scale = T)
summary(pcr1)

#cross validation
ncomp.onesigma = selectNcomp (pcr1, method = "onesigma", plot = TRUE )
ncomp.permut = selectNcomp (pcr1, method = "randomization", plot = TRUE)

# preview
plot(RMSEP(pcr1), legendpos = "topright")

plot(pcr1,ncomp = 6, line = TRUE)

plot(pcr1,plottype = "scores", comps = 1:2)

plot(pcr1, "loadings", comps = 1:2, legendpos = "bottomright")
abline (h = 0, col = " lightblue ")

#model test
pred.pcr1 = predict(pcr1, ncomp = 2, newdata = data.test )

#metrics
test.pcr = data.frame ( data.test$cost , pred.pcr1)
colnames ( test.pcr ) = c("obs", "pred")
defaultSummary ( test.pcr )

5.6 Partial least squares (PLS) regression
The PLS technique was proposed by H. Wold in 1982 [2]. Unlike the PCR algorithm, 

PLS estimates scores both in the matrix of independent variables (matrix X) and in the 
dependent variables (matrix Y). However, the PLS algorithm has two main stages in its 
development. The first consists of simultaneously decomposing the matrices X and Y into a 
sum of "h" latent variables, as we can see in the following equations:

X = TPT + E =  S thpT
h + E      Eq. 28

Y = UQT + F =  S uhqT
h + F      Eq. 29

where T and U are the score matrices of matrices X and Y, respectively. P and Q 
are the loading matrices of matrices X and Y, respectively; and E and F are the residuals.

A representation of this first step of the PLS algorithm is shown in Figure 5.5 below:
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Figure 5.5: Graphical representation of the 1st stage of the PLS algorithm.

The second step of the PLS algorithm consists of calculating the linear correlation 
between the scores in matrix Y and the scores in matrix X, as described in the following 
equation:

uh = bh th                                                                                                          Eq. 30

for "h" latent variables, in which the values of bh are grouped in the diagonal matrix 
B that contains the regression coefficients between the scores matrix U of Y and the scores 
matrix T of X.

A geometric illustration of the PLS algorithm in this second stage is shown in Figure 
5.6 below:

Figure 5.6 : Geometric representation of the PLS model using one latent variable modeling each block 
(X and Y).
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An example of algorithm for calculating the PLS regression is the NIPALS algorithm 
[3], which presents two main steps: i) obtaining the orthogonal projector of the columns 
of matrix X (instrumental variables), in the subspace generated by the columns of matrix 
Y ( parameter of interest), and find the inverse projector; ii) calculate the corresponding 
directions in the spaces generated by the Y and X columns to reduce the information in the 
reducer matrix.

We can see here that the PLS algorithm's main objective is to maintain a compromise 
between the ability of the principal components to describe the samples in individual spaces 
(obtaining the scores of the matrices X and Y) and maximizing the correlation between t 
and u.

It is also worth mentioning that in the process of searching for the best number of 
latent variables in the PLS algorithm, the cross-validation process is necessary. In cross-
validation, the RMSEP of the prediction samples is calculated. Another important information 
is the differentiation between PLS1 and PLS2. In PLS1, the regression is performed for one 
dependent variable at a time (the Y matrix is a column vector), while in PLS2 all dependent 
variables are calculated simultaneously.

Example 6: The following example consists of an application of the PLS multivariate 
regression algorithm through the pls, Ecdat and caret packages.

R Script
install.packages("Ecdat")
library(Ecdat)
library(caret)
install.packages("pls")
library(pls)

#data
data = ManufCost
? ManufCost
data = data.frame ( ManufCost )
data = na.omit (data)

#### Training and Testing Data
set.seed (33)
# Separating training and testing data
tr = round(0.8* nrow (data))
training = sample( nrow (data), tr , replace = F)
data.training = data[training,]
data.test = data[-training,]

################################################ #####
### Visualizing correlation and principal components between two variables
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par(mfrow = c(1,1))
# plotting two correlated variables
plot(scale( sl )~scale(pl), asp = 1, data, pch = 20, cex = 1.5, col = "mediumseagreen")

# separating such variables
d = data[,c(3,7)]

# correlation matrix of such variables
cm = cor(d)
cm

#eigenvalues of cm
e = eigen (cm)

# Slopes of the principal components
s1 = e$vectors [1,1]/ e$vectors [2,1] # PC1
s2 = e$vectors [1,2]/ e$vectors [2,2] # PC2

# Principal axes
abline (a=0, b=s1, col = "blue", lwd = 2)
abline (a=0, b=s2, col = "lightblue", lwd = 2)

### PLS
# PLS training model
pls1 = plsr ( cost ~., ncomp = 8, data = data.training , validation = "LOO", scale 
= T)
summary(pls1)

#cross validation
ncomp.onesigma = selectNcomp (pls1, method = "onesigma", plot = TRUE )
ncomp.permut = selectNcomp (pls1, method = "randomization", plot = TRUE)

# preview
plot(RMSEP(pls1), legendpos = "topright")

plot(pls1, ncomp = 6, line = TRUE)

plot(pls1,plottype = "scores", comps = 1:5)

plot(pls1, "loadings", comps = 1:2, legendpos = "bottomright")
abline (h = 0, col = "orange")

#model test
pred.pls1 = predict (pls1,ncomp = 2, newdata = data.test )

#metrics
test.pls = data.frame ( data.test$cost , pred.pls1)
colnames ( test.pls ) = c("obs", "pred")
defaultSummary ( test.pls )
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5.6 PARAFAC
The PARAFAC algorithm, already described in the previous chapter, is also used as a 2nd order 

calibration algorithm and suitable for processing data with a trilinear structure, expressed through the 

following equation:

       Eq. 31

where F is the number of factors or components of the model; a¸ b and c are vectors; and, ⊗ 

is the external product.

For its validity, the equation 31 above assumes: i) the analytical signals of each source of 

variation contribute additively to the analytical signal of the sample; ii) the magnitudes of the signals are 

proportional to the concentration of the analyte to be calibrated; ii) the analytical signals of each analyte 

are common in all samples.

In addition to these assumptions, some aspects must be taken into account when applying the 

PARAFAC algorithm for multivariate calibration purposes: i) the agreement of the data structure; ii) the 

algorithm initialization method, the restrictions imposed on the model and the convergence criterion; 

iii) the number of factors or components; iv) identify the profiles estimated by the model in each factor 

with the species of interest and the interference present; v) construction and validation of the regression 

model to estimate the concentration of the species of interest.

Thus, the PARAFAC algorithm exemplifies a decomposition of a three-way tensor into three 

weight matrices A , B and C, called modes A, B and C. Normally, equation 31 is solved by alternating 

least squares (ALS), in which the ALS algorithm iteratively estimates two modes to estimate the third 

until some convergence criterion is reached or the previously defined number of iterations is reached. 

However, several methods can be used to obtain these profiles, such as singular value decomposition 

(SVD) or direct trilinear decomposition (DTLD).

Once an initial estimate of, for example, B and C has been obtained, an initial estimate of A can 

be obtained by least squares as follows:

       Eq. 32

where "+" indicates the Moore-Penrose pseudo-inverse of the matrix X.

For example, in excitation-emission matrices obtained by fluorescence spectroscopy, mode 

A, B and C would be, respectively, the analytical concentration of the pure components, excitation 

spectra of the pure components and emission spectra of the pure components. Thus, mode A, which 

corresponds to the concentrations of pure components, is used in the construction of calibration models 

by linear regression.
As we have discussed in the previous chapter, one of the challenges of the PARAFAC algorithm 

is determining the number of components. Depending on the complexity of the system, the choice of the 
number of components can be made based on prior knowledge of the number of species responsible 
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for the measured instrumental signal. Generally, core consistency testing (CORCONDIA) is typically 
employed when choosing the number of components. CORCONDIA values close to 100% indicate 
trilinear consistency and values below 100% indicate a deficiency in trilinearity or trilinear inconsistency 
(values close to 0). However, in systems with species in equilibrium, the use of core consistency does 
not lead to the correct number of components.

Finally, the regression model for PARAFAC, after the considerations previously described, can 
be calculated through a least squares regression between the columns of A related to the concentration 
of the species of interest (a) and the vector with the reference concentrations (y) of the calibration 
samples, according to the equation below:

        Eq. 33

Where, w are the regression coefficients between the weights a and the concentrations y.
The interesting fact about the equation 33 above is that to determine a sample of unknown 

composition we have a data cube formed by Ic calibration samples (known concentration of the species 
of interest) and a sample of unknown composition that may contain interferents present or not in the 
calibration samples. This consequence of 2nd order calibration models is known as the second order 
advantage. Thus, the concentration of the composition of an unknown sample is obtained according to 
equation 34, if the signal of interest is only in one column of A :

       
 Eq. 34

Example 7: The following example consists of an application of the PARAFAC multivariate 
regression algorithm in the analysis of fluorescence data (excitation-emission matrix) obtained in 
plasma samples with different synthetic concentrations (spiked) of a fluorescent standard. This script in 
R language uses the multiway, threeway, R.matlab, plot3D, plotly, prospectr, MASS, Stat2Data, Metrics 
and lintools packages.

R Script
## Loading Packages

install.packages ("multiway")
library(multiway)

install.packages ("ThreeWay")
library(ThreeWay)

install.packages ("R.matlab")
library(R.matlab)

install.packages ("plot3D")
library(plot3D)
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install.packages ("plotly")
library(plotly)

install.packages ("prospectr")
install.packages ("MASS")
install.packages ("caret")

library(prospectr)
library(MASS)
library(caret)

install.packages ("Stat2Data")
library(Stat2Data)

install.packages ("Metrics")
library(Metrics)

install.packages ("lintools")
library(lintools)

## Loading Data

# Navigate in RStudio to the directory with the dataset to work with
# Session > Set Working Directory > Choose Directory

data <- readMat ("data_reg_parafac.mat")

x <- data$data
y <- data$concentration
nmEX <- data$nmEX
nmEM <- data$nmEM

## Visualizing the data

# matrix dimensions

mydim = dim (x) # samples x emission x excitation
mydim

# average matrix

xm = colMeans (x)

dev.new ()
filled.contour ( xm, color.palette = terrain.colors )

dev.new ()
matplot (t( nmEM ), xm,type ="l", xlab ="Emission Wavelength (nm)", ylab ="Intensity")
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dev.new ()
matplot (t( nmEX ),t( xm ), type ="l", xlab ="Excitation Wavelength (nm)", ylab 
="Intensity")

######## PARAFAC model #########

nf = 3 # define number of factors

model = parafac ( x,nfac = nf,nstart =1,maxit=500,ctol=10^-4,parallel=FALSE, cl= 
NULL,output =c("best","all"))

# R2 Adjustment

model$Rsq # Increase the number of factors to better adjust R2

## plot Parafac scores 1 x 2

dev.new ()
matplot ( model$A [,1], model$A [,2], pch ="o", col ="blue", xlab ="Factor 
1",ylab="Factor 2",main="PARAFAC Scores" )

## plot parafac loadings - emission

dev.new ()
matplot (t( nmEM ), model$B,type ="l", xlab ="Emission Wavelength (nm)", ylab 
="Intensity")

## plot parafac loadings - excitation

dev.new ()
matplot (t( nmEX ), model$C,type ="l", xlab ="Excitation Wavelength (nm)", ylab 
="Intensity")

## Division into Calibration and Prediction

perc = 0.7 # 70% for calibration and 30% for testing

A = model$A # PARAFAC Scores

dim_x = dim (x)
size = 1:dim_x[1]

ntrain = ceiling ( perc * dim_x [1]) # number of calibration samples

sel = sample(size, ntrain ) # sample selection

xcal = A[ sel ,] # calibration
ycal = matrix (y[ sel ]) # concentration calibration
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xpred = A[- sel ,] # prediction
ypred = matrix (y[- sel ]) # concentration prediction

## Regression model

xcal_df = data.frame ( xcal )
xpred_df = data.frame ( xpred )

model_mlr = lm ( ycal ~ xcal , xcal_df ) # MLR model

coef = model_mlr$coefficients # regression coefficients

ycal_calc = xcal [,1] * coef [2] + xcal [,2] * coef [3] + coef [1] # predicted 
concentration calibration
ypred_calc = xpred [,1] * coef [2] + xpred [,2] * coef [3] + coef [1] # predicted 
concentration prediction

## Plot measured concentration vs. prediction

dev.new ()
plot (ycal,ycal_calc,pch ='o', col ="blue", xlab ="Measured Concentration (mg/L)", 
ylab ="Predicted Concentration (mg/L)", main ="Calibration")
lines(ycal,ycal,col ='red')

dev.new ()
plot (ypred,ypred_calc,pch =15,col="red", xlab = "Measured Concentration (mg/L)", 
ylab = "Predicted Concentration (mg/L)", main = "Predicted")
lines(ypred,ypred,col ='red')

dev.new ()
plot (ycal,ycal_calc,pch ='o', col ="blue", xlab ="Measured Concentration (mg/L)", 
ylab ="Predicted Concentration (mg/L)", main ="Calibration (blue) and Prediction 
(red)")
points(ypred,ypred_calc,pch =15,col="red")
lines(y,y,col ="red")

## Figures of merit

# Calibration

MAPEC = mean( abs (( ycal-ycal_calc )/ ycal ))*100
R2cal = cor( ycal,ycal_calc )^2
RMSEC = rmse( ycal,ycal_calc )

# Prediction

MAPEP = mean(abs(( ypred-ypred_calc )/ ypred ))*100
R2pred = cor ( ypred,ypred_calc )^2
RMSEP = rmse ( ypred,ypred_calc )
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print("=========== Calibration =============")
print("Mean absolute error percentage (MAPE) (%):")
MAPEC
print("R2cal:")
R2cal
print("RMSEC (mg/L):")
RMSEC

print("=========== Test =============")
print("Mean absolute error percentage (MAPE) (%):")
MAPEP
print("R2pred:")
R2pred
print("RMSEP (mg/L):")
RMSEP

5.7 MCR-ALS
As discussed in the previous chapter, the MCR-ALS algorithm is the alternating least 

squares multivariate curve resolution algorithm whose main purpose is to deconvolve curves 
in bilinear data. In other words, it reassembles the original data matrix through individual 
contributions from a given number of recovered profiles plus a random noise. However, 
MCR can be viewed as a signal resolution method that can also be used for quantitative 
purposes.

The following equation describes the decomposition of a data matrix into a bilinear 
model that makes it possible to estimate concentration and spectral profiles individually, 
maintaining the best data variance:

D = CST + E        Eq. 35

Where D corresponds to the instrumental matrix (j x k), C corresponds to the 
relative concentration matrix (j x i), S corresponds to the pure spectra matrix (i x k), and E 
corresponds to the residuals matrix (j x k).

In the iterative resolution of equation 35 described above, it is necessary to estimate 
the number of components present in the mixture that produces the analytical signal; in other 
words, we must estimate the rank of the data matrix. The number of components is normally 
estimated based on knowledge of the investigated system or from the decomposition 
results, using, for example, the singular value decomposition (SVD) algorithm. In the SVD 
algorithm, the number of species is approximated by the number of singular values, and 
above the singular value we have the estimate of the instrumental noise level of the data.

Unlike PARAFAC, which uses a trilinear decomposition and requires the presence of 
at least two different samples to form a data cube, MCR is based on bilinear decomposition 
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of data and can be applied to more than one data matrix simultaneously, as well as a single 
sample (resolution or deconvolution of signals). Here we have one of the major limitations 
of the MCR-ALS algorithm: the problem of freedom of rotation or ambiguity, that is, the 
existence of more than one set of profiles that present the same fit to the data. In PARAFAC, 
as it is based on a trilinear decomposition, this ambiguity problem is absent.

However, ambiguity minimization in MCR-ALS models is achieved through some 
restrictions, such as:

i) Non-negativity - the calculated profiles cannot be negative. This restriction can be 
applied to both concentrations and analytical signal;

ii) Unimodality – requires that the calculated profiles have only one maximum. This 
restriction can also be imposed on matrices C or ST.

iii) Closure – the sum of relative concentrations remains constant during the 
optimization process. This restriction is only applied to the concentration profile.

iv) Trilinearity – consists of subjecting the spectral and concentration profiles to non-
variation between one sample and another, establishing a unique response.

Here we list some mathematical operations used in the MCR-ALS calibration models:
i) Determination of the number of components (n).

ii) Construction of the initial S or Ck concentration spectrum profile matrix.

iii) Selection of restrictions to be applied.

iv) Optimization of initial estimates (ALS) in each iteration.

v) Reproduction of the initial matrix Dk in each iteration from S and Ck.

vi) Repeat steps iv and v until the convergence criterion is satisfied.

vii) Determination of the matrix of concentration profiles and spectra.

viii) Construction of the least squares regression model between the concentration 
profile of the species of interest from step vii and the vector with the reference 
concentrations of the calibration samples. A pseudo-univariate regression is therefore 
performed based on the recovered concentration profiles, their area or norm, and the 
analytical concentration of the sample of interest.

The MCR-ALS algorithm is successfully used on 2nd order data through data 
matrices augmented by rows and/or columns, as can be seen in Figure 5.7:
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Figure 5.7: Bilinear model of the augmented MCR: (a) by rows, (b) by columns, and (c) by rows and 
columns simultaneously.

In higher order calibration models, quantification using MCR-ALS presents several 
advantages over conventional calibration. Here, we will list the advantages in order of 
importance:

I. Neither knowledge nor the inclusion of interferers in the calibration model is 
necessary, thus achieving the so-called 2nd order advantage;

II. Possibility of using a smaller number of calibration samples as the regression 
is performed based on the relative concentration profile recovered by MCR-
ALS as a function of known concentration values;

III. Figures of merit in the validation stage can be calculated in a similar way to 
univariate calibration as the model takes a very simple mathematical form 
(pseudo-univariate).

Example 8: The following example consists of an application of the MCR-
ALS multivariate regression algorithm applied to mid-infrared spectra (2 replicates per 
experiment) in plasma samples with different synthetic (spiked) concentrations of dengue 
virus. The packages used in the script are R.matlab, prospectr, MASS, lintools, ggplot2, 
lintools, Stat2Data, Metrics and ALS.
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R Script
## Loading packages

install.packages ("R.matlab")
library(R.matlab)

install.packages ("prospectr")
install.packages ("MASS")
install.packages ("lintools")

library(prospectr)
library(MASS)
library(ggplot2)
library(lintools)

install.packages ("Stat2Data")
library(Stat2Data)

install.packages ("Metrics")
library(Metrics)

install.packages ("ALS")
library (ALS)

## Loading data

# Navigate in RStudio to the directory with the dataset to work with
# Session > Set Working Directory > Choose Directory

data <- readMat ("data_reg_mcr.mat")

x1 = data$data1 # spectra replicate 1
x2 = data$data2 # spectra replicate 2
y1 = data$concentration1 # replicate concentration 1
y2 = data$concentration2 # concentration replicate 2
cm = data$cm # wave number
cmt = t(cm)
xm = (x1+x2)/2 # average spectra
ym = (y1+y2)/2 # average concentration

## data plot

dev.new ()
matplot (t(cm),t(xm), type ='l', xlab ="Wavenumber (cm-1)", ylab ="Absorbance")

## MCR-ALS

dimS = dim (x1) # matrix dimensions
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ncomp = 2 # number of components (component 1=sample, component 2=waste)

mcr <- als (CList=list(y1,y2), S=matrix(1,nrow= dimS [2], ncol=ncomp), 
PsiList=list(x1,x2), normS=0)

# MCR-ALS with non-negativity in concentration (nonnegC=TRUE) and normalization 
(normS =0)

mcr <- als (CList=list(y1,y2), S=matrix(1,nrow=dimS [2], ncol=ncomp), 
PsiList=list(x1,x2), nonnegC=TRUE, normS=0)

## Plot of recovered components (component 1= sample, component 2 = waste)

plotS (mcr$S,cm)

## comparing the spectrum of component 1 with the original spectrum

matchFactor (colMeans (xm), mcr$S [,1])

# Copt (concentration) values

matplot (ym, mcr$CList [[1]], pch="o", col="blue", xlab="Measured concentration 
(mg/L)", ylab="Copt1") #component 1
matplot (ym,ym,type="l",col="red",add=TRUE)

Copt1=matrix (mcr$CList [[1]][,1]) # Copt of component 1

print("R2:")
print(cor(ym [,1],Copt1)^2) # R2 value between Copt and real concentration

## Division into Calibration and prediction

perc=0.7 # 70% for calibration and 30% for prediction

dim_xm=dim (xm)

size=1:dim_xm[1]

ntrain=ceiling (perc*dim_xm [1]) # number of calibration samples

sel=sample(size, ntrain) # Sample selection

xcal=Copt1[sel,] # calibration
ycal = matrix (ym [sel,1]) # concentration calibration

xpred = Copt1[-sel,] # prediction
ypred = matrix (ym [-sel,1]) # concentration prediction
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## Regression model

xcal_df = data.frame (xcal)
xpred_df = data.frame (xpred)

model_mlr = lm (ycal~xcal , xcal_df) # MLR model

coef = model_mlr$coefficients # regression coefficients

ycal_calc = xcal * coef [2] + coef [1] # predicted concentration calibration
ypred_calc = xpred * coef [2] + coef [1] # predicted concentration prediction

## Plot measured concentration vs. Prediction

y = ym [.1] # real concentration

dev.new ()
plot (ycal,ycal_calc,pch='o', col="blue", xlab="Measured Concentration (mg/L)", 
ylab="Predicted Concentration (mg/L)", main="Calibration")
lines(ycal,ycal,col="red")

dev.new ()
plot (ypred,ypred_calc,pch=15,col="red", xlab="Measured Concentration (mg/L)", 
ylab="Predicted Concentration (mg/L)", main="Predicted")
lines(ypred,ypred,col='red')

dev.new ()
plot (ycal,ycal_calc,pch='o', col="blue", xlab="Measured Concentration (mg/L)", 
ylab="Predicted Concentration (mg/L)", main="Calibration (blue) and prediction 
(red)")
points(ypred,ypred_calc,pch=15,col="red")
lines(y,y,col="red")

## Figures of merit

# Calibration

MAPEC = mean (abs((ycal-ycal_calc)/ycal))*100
R2cal = cor(ycal,ycal_calc)^2
RMSEC = rmse (ycal,ycal_calc)

# Prediction

MAPEP=mean(abs((ypred-ypred_calc)/ypred))*100
R2pred=cor(ypred,ypred_calc)^2
RMSEP=rmse(ypred,ypred_calc)
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print("=========== Calibration =============")
print("Mean absolute error percentage (MAPE) (%):")
MAPEC
print("R2cal:")
R2cal
print("RMSEC (mg/L):")
RMSEC

print("=========== Test =============")
print("Mean absolute error percentage (MAPE) (%):")
MAPEP
print("R2pred:")
R2pred
print("RMSEP (mg/L):")
RMSEP

5.8 UPLS/RBL
The PLS algorithm must be the first-order calibration model most used and described 

in the literature. The Unfolded Partial Least Squares (UPLS) algorithm is an extended 
version of partial least squares (PLS) regression, proposed by Wold and Bro [4,5], used 
for processing multilinear data by unfolding the data matrix into vectors. However, unlike 
PARAFAC and MCR-ALS, this algorithm cannot obtain the second-order advantage when 
interferents are present in the test sample but not present in the calibration set. To overcome 
this limitation and achieve second-order data analysis, a mathematical procedure called 
residual bilinearization (RBL) [4] was developed, which can model the residuals of the test 
sample as a sum of the bilinear contributions of unexpected components. Therefore, the 
function of RBL is to model the residuals and present results from test samples free of 
interferences, adjusting the values of the score matrix with the information of the interferent 
modeled separately by the RBL step.

In the first calibration step of the UPLS-RBL algorithm, a data tensor with dimensions 
(i x j x k) is unfolded into a two-dimensional matrix (i × jk), where i corresponds to the 
number of samples, j is the dimension corresponding to the excitation spectra, and k is the 
dimension of the emission spectra, in the case of molecular fluorescence data. With all the 
calibration data unfolded, a new matrix is constructed by arranging them adjacent to each 
other for the application of UPLS regression, as represented in Figure 5.8 below:
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Unfolding

Unfolding

Figure 5.8: Representation to show the breakdown of a sample into a vector (a) and a set of samples 
into vectors (b) for building a UPLS model.

Initially, the UPLS-RBL algorithm unfolds the calibration data matrix (Xcal), and a PLS 
model is built in the traditional way together with a cross-validation step to define the number 
of latent variables. The weight (P) and scores (t) matrices, originating from the unfolded 
matrix, are estimated iteratively by maximizing the variance of X cal and its covariance with 
the response vector ycal. Then, with the calculated t values, a regression model is calculated 
between the nominal concentration vector ycal and t to estimate the regression vectors v that 
minimizes the error ey, as shown in the following equation:

       Eq. 36

If there is a UPLS residue in the test sample greater than the calibration one, we have 
the presence of some uncalibrated constituent in the residue or the presence of interferents 
in the sample. If this occurs, an RBL post-calibration step is necessary to remove the 
contribution of this interference from the test sample's score value.

In the RBL step, the UPLS residue vector is reassembled into a matrix with the 
original dimensions, and an SVD is performed on the reassembled test sample residuals 
matrix (EP). When the test sample noise approaches the calibration value, we have the 
correct value of the amount of RBL needed to be used in the calibration model. Equation 
37 shows the equation of the test sample of a classic PLS plus the contribution of the 
interferent found in the RBL step plus the unfolded RBL residue (eu).

 
     Eq. 37

Where xu represents the test sample;  represents the analyte signal; BGCT 
represents the interference signal; and, eu represents the random error after the RBL step.
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After convergence, the values obtained for tu are used to estimate the sample 
concentration by the relationship expressed in Eq. 36. Therefore, the RBL step calculates 
and removes the interference contribution, represented as BGCT of the noise after UPLS 
modeling. Finally, after separating the interferent from the noise, the scores used to estimate 
the analyte concentration are corrected and can be used for quantification.

Example 9: The following example consists of an application of the UPLS multivariate 
regression algorithm in the analysis of fluorescence data (excitation-emission matrix) 
obtained in plasma samples with different synthetic concentrations (spiked) of a fluorescent 
standard. This script in R language uses the R.matlab, pls, Stat2Data and Metrics packages.

R Script
# Loading packages

install.packages ("R.matlab")
library(R.matlab)

install.packages ("pls")
library(pls)

install.packages ("Stat2Data")
library(Stat2Data)

install.packages ("Metrics")
library (Metrics)

## Loading Data

# Navigate in RStudio to the directory with the dataset to work with
# Session > Set Working Directory > Choose Directory

data <- readMat ("data_reg_parafac.mat")

x <- data$data
y <- data$concentration
nmEX <- data$nmEX
nmEM <- data$nmEM

## Visualizing the data

# matrix dimensions

mydim = dim (x) # samples x emission x excitation
mydim
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# average matrix

xm = colMeans (x)

dev.new ()
filled.contour (xm,color.palette = terrain.colors)

dev.new ()
matplot (t(nmEM), xm,type="l", xlab="Emission Wavelength (nm)", ylab="Intensity")

dev.new ()
matplot (t(nmEX),t(xm), type="l", xlab="Excitation Wavelength (nm)", 
ylab="Intensity")

## Division into Calibration and Prediction

Xr=matrix (x,nrow = mydim [1])
perc=0.7 # 70% for calibration and 30% for testing

dim_x = dim (x)
size = 1:dim_x[1]

ntrain = ceiling (perc * dim_x [1]) # number of calibration samples

sel = sample(size, ntrain) # KS

xcal = Xr [sel ,] # calibration
ycal = matrix (y[sel]) # concentration calibration

xpred = Xr [-sel,] # prediction
ypred = matrix (y[-sel]) # concentration prediction

## UPLS Model

xcal_df = data.frame (xcal)
xpred_df = data.frame (xpred)

model_pls = plsr (ycal~xcal, data=xcal_df, validation="CV")

## Determine number of components

validationplot (model_pls)

validationplot (model_pls,val.type="MSEP")

validationplot (model_pls,val.type="R2")

ncomp = 2 # number of selected components
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## Prediction

ycal_calc <- predict(model_pls, xcal, ncomp=ncomp)
ypred_calc <- predict(model_pls, xpred, ncomp=ncomp)

ycal_calc = ycal_calc [,1,1]
ypred_calc = ypred_calc [,1,1]

## Plot measured concentration vs. Prediction

dev.new ()
plot (ycal,ycal_calc,pch ='o', col="blue", xlab="Measured Concentration (mg/L)", 
ylab="Predicted Concentration (mg/L)", main ="Calibration")
lines(ycal,ycal,col='red')

dev.new ()
plot (ypred,ypred_calc,pch=15,col="red", xlab="Measured Concentration (mg/L)", 
ylab="Predicted Concentration (mg/L)", main="Predicted")
lines(ypred,ypred,col='red')

dev.new ()
plot (ycal,ycal_calc,pch='o', col="blue", xlab="Measured Concentration (mg/L)", 
ylab="Predicted Concentration (mg/L)", main="Calibration (blue) and prediction 
(red)")
points(ypred,ypred_calc,pch=15,col="red")
lines(y,y,col="red")

## Figures of merit

# Calibration

MAPEC = mean (abs((ycal-ycal_calc)/ycal))*100
R2cal = cor(ycal,ycal_calc)^2
RMSEC = rmse (ycal,ycal_calc)

# Prediction

MAPEP = mean(abs((ypred-ypred_calc)/ypred))*100
R2pred = cor (ypred,ypred_calc)^2
RMSEP = rmse (ypred,ypred_calc)

print("=========== Calibration =============")
print("Mean absolute error percentage (MAPE) (%):")
MAPEC
print("R2cal:")
R2cal
print("RMSEC (mg/L):")
RMSEC
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print("=========== Test =============")
print("Mean absolute error percentage (MAPE) (%):")
MAPEP
print("R2pred:")
R2pred
print("RMSEP (mg/L):")
RMSEP

5.9 N-PLS
The N-way Partial Least Squares (N-PLS) algorithm, proposed by Bro [5], is also an 

extension of the PLS model. Basically, the N-PLS algorithm decomposes three-dimensional 
arrays X (ixjxk) (independent data cubic matrix) and the vector of reference concentrations 
Y (ix 1) (or physicochemical property) in a set of triads, to find the maximum covariance 
between the scores of X and Y. 

The construction of N-PLS models, analogous to traditional PLS, is carried out in 
two stages: calibration and prediction. Each triad is equal to a latent variable as in the PLS 
model, and in the calibration stage the arrangement X is decomposed into scores (tn) and 
weights (wj and wk), as exemplified in Figure 5.9 below:

Figure 5.9: Schematic representation of the N-PLS algorithm.

In Figure 5.9, X is the cubic matrix of independent data, T(I,F) is the score matrix and 
the matrices wj 

(J,F) and wk 
(K,F) are weight matrices containing information about the variables. 

The arrangement E (i x j x k) represents the part not explained by the model (residuals) and 
F represents the number of latent variables. The matrix Y is also decomposed into scores 
and weights, represented by Figure 5.9, where Y is the matrix containing the property of 
interest, U is the matrix containing the scores of Y, Q is the matrix containing the loadings 
of Y, and F is the matrix of residues of Y that, as in the arrangement X, cannot be explained 
by the model.

The decomposition of the three-dimensional array X can be represented by the 
following equation:
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   Eq. 38

Where the symbol "|⊗|" represents the Khatri-Rao product, an operator used in 
higher order matrices.

For the concentration vector or physicochemical parameter of interest (y), the 
decomposition is written by the equation below:

      Eq. 39

where T is a scores matrix, whose columns consist of the individual score vectors of 
each component and b are the regression coefficients.

Finally, the predicted concentration of samples with unknown concentrations (y*), 
can be estimated from new scores (T*) according to the following equation:

        Eq. 40

Some considerations deserve to be highlighted in the N-PLS models. Despite the 
simplicity of the calibration models and the simplicity in interpreting the results, in addition 
to the lower sensitivity to noise, the 2nd order advantage will only be achieved with the 
application of the RBL algorithm. In the original work, Bro [5] compares and suggests that 
N-PLS is superior to UPLS because it uses data in its original form (without performing 
unfolding).

Example 10: The following example consists of an application of the N-PLS 
multivariate regression algorithm in the analysis of fluorescence data (excitation-emission 
matrix) obtained in plasma samples with different synthetic (spiked) concentrations of a 
fluorescent standard. This script in R language uses the R.matlab, pls, Stat2Data, Metrics 
and sNPLS packages.
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R Script
## Loading packages

install.packages ("R.matlab")
library(R.matlab)

install.packages ("pls")
library(pls)

install.packages ("Stat2Data")
library(Stat2Data)

install.packages ("Metrics")
library(Metrics)

install.packages ("sNPLS")
library (sNPLS)

## Loading Data

# Navigate in RStudio to the directory with the dataset to work with
# Session > Set Working Directory > Choose Directory

data <- readMat ("data_reg_parafac.mat")

x <- data$data
y <- data$concentration
nmEX <- data$nmEX
nmEM <- data$nmEM

## Visualizing the data

# matrix dimensions

mydim = dim (x) # samples x emission x excitation
mydim

# average matrix

xm = colMeans (x)

dev.new ()
filled.contour (xm,color.palette=terrain.colors)

dev.new ()
matplot (t(nmEM), xm,type="l", xlab="Emission Wavelength (nm)", ylab="Intensity")

dev.new ()
matplot (t(nmEX),t(xm), type="l", xlab="Excitation Wavelength (nm)", 
ylab="Intensity")
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## Division into Calibration and Forecast

perc = 0.7 # 70% for calibration and 30% for testing

dim_x = dim (x)
size = 1:dim_x[1]

ntrain = ceiling (perc*dim_x [1]) # number of calibration samples

sel = sample(size, ntrain) # sample selection

xcal = x[sel ,,] # calibration
ycal = matrix (y[sel]) # concentration calibration

xpred = x[-sel,,] # prediction
ypred = matrix (y[-sel]) # concentration prediction

## nPLS Model

cv = cv_snpls(xcal,ycal,ncomp=1:3,keepJ=1:2,keepK=1:2,sample=10,parallel=FALSE) # 
cross-validation - takes a long time

ncomp = 2 # set number of components

model_npls = sNPLS (xcal,ycal,ncomp=ncomp, keepJ=rep(2,ncomp), keepK=rep(1,ncomp)) 
# nPLS model

# Prediction

ycal_calc=predict(model_npls, xcal)
ypred_calc = predict(model_npls, xpred)

## Plot measured concentration vs. Prediction

dev.new ()
plot (ycal,ycal_calc,pch='o', col="blue", xlab="Measured Concentration (mg/L)", 
ylab="Predicted Concentration (mg/L)", main="Calibration")
lines(ycal,ycal,col='red')

dev.new ()
plot (ypred,ypred_calc,pch=15,col="red", xlab="Measured Concentration (mg/L)", 
ylab="Predicted Concentration (mg/L)", main="Predicted")
lines(ypred,ypred,col='red')

dev.new ()
plot (ycal,ycal_calc,pch='o', col="blue", xlab="Measured Concentration (mg/L)", 
ylab="Predicted Concentration (mg/L)", main="Calibration (blue) and Prediction 
(red)")
points(ypred,ypred_calc,pch =15,col="red")
lines(y,y,col="red")
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## Figures of merit

# Calibration

MAPEC = mean (abs((ycal-ycal_calc)/ycal))*100
R2cal = cor(ycal,ycal_calc)^2
RMSEC = rmse (ycal,ycal_calc)

# Prediction

MAPEP = mean(abs((ypred-ypred_calc)/ypred))*100
R2pred = cor(ypred,ypred_calc)^2
RMSEP = rmse (ypred,ypred_calc)

print("=========== Calibration =============")
print("Mean absolute error percentage (MAPE) (%):")
MAPEC
print("R2cal:")
R2cal
print("RMSEC (mg/L):")
RMSEC

print("=========== Test =============")
print("Mean absolute error percentage (MAPE) (%):")
MAPEP
print("R2pred:")
R2pred
print("RMSEP (mg/L):")
RMSEP

 

PROPOSED EXERCISES
01 – Compare the performance of a univariate calibration model with several 

polynomial degrees in a data set through a script in the R language, presenting the models' 
performance, error and conclusions.

02 – Propose an application of the MLR algorithm on a data set with more than one 
independent variable and, using a script in the R language, present your results, graphs 
and conclusions.

03 – From the previous exercise, use the MLR-SPA algorithm through a script in the 
R language and compare the results of the calibration models with and without the variable 
selection algorithm.

04 – Build multivariate calibration models for the PCR and PLS algorithms on a given 
1st order data set using an R script and present your results, figures of merit for both models 
and your main conclusions.
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05 – Apply the PARAFAC algorithm to a 2nd order data set (molecular fluorescence 
in excitation-emission mode or chromatography, for example) using R language and present 
your results and conclusions.

06 – Apply the MCR-ALS algorithm to a 2nd order data set (molecular fluorescence 
in excitation-emission mode or chromatography, for example) using R language and present 
your results and conclusions.

07 – Apply the UPLS algorithm to a 2nd order data set (molecular fluorescence in 
excitation-emission mode or chromatography, for example) using R language and present 
your results and conclusions.

08 – Apply the N-PLS algorithm to a 2nd order data set (molecular fluorescence in 
excitation-emission mode or chromatography, for example) using R language and present 
your results and conclusions.

09 – Using a 2nd order data set, perform a comparison between the calibration 
models (PARAFAC, MCR-ALS, UPLS and N-PLS), presenting their results, figures of merit 
and main conclusions.
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DiGiTAL iMAGES 

CHAPTER 6

"A picture is worth a thousand words." Confucius ( 552 BC - 489 BC) 

CHAPTER IDEA
A digital image can be interpreted as a representation of a scene through a set 

of discrete elements of finite size, known as pixels, organized in a two-dimensional 
arrangement. Commonly, the acquisition of digital images occurs through electronic devices 
(photo cameras, webcams, drones, for example) in a process known as optoelectronic 
transduction, which involves a reduction in the dimensionality of the scene through a sensor 
(Charge Coupled Device, for example ).

In this chapter you will find a theoretical foundation of digital images, color models and 
some chemometric studies using digital images in classification and multivariate calibration 
models. Examples guided by multivariate algorithms in the R language using digital images 
will be found throughout the chapter, as well as details of the models developed.

Upon completing the chapter, you should be able to:
a) Understand the stages of acquiring and importing digital images, their pre-
processing and construction of calibration and multivariate classification models 
using scripts in the R language;

b) Employ algorithms of unsupervised analysis on digital images using R scripts;

c) Build and validate multivariate classification models using digital images with R 
scripts;

d) Build and validate multivariate calibration models using digital images with R 
scripts;

e) Compare models based on variable selection for classification and calibration of 
digital images;

f) Propose new applications in chemistry or related areas using digital images in one 
of the areas of Chemometrics.
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6.1 Digital Imaging: an overview
An image to be processed on a computer must be in digital format, and this is 

represented by a two-dimensional matrix of M x N pixels. The word pixel is an abbreviation of 
"Picture element ", which means "image element". Thus, the pixel is the smallest element of 
a digital image and each pixel location in a monochrome image (normally 8 bits) corresponds 
to the gray level ranging from black (0) to white (255), thus being able to contain 256 levels 
of gray colors. Figure 6.1 presents a monochrome image and its representation in a digital 
image in the form of a data matrix.

Column (n)

Row 
(m)

Grayscale

(black)

(white)

Figure 6.1: Representation of a digital image in the form of an M x N pixel matrix.

Mathematically, as shown in equation 1, we can consider a pixel as a vector formed 
by three monochromatic images in which the components represent the intensities of the 
RGB model [1] (red (R), green (G) and blue (B)), which corresponds to the primary colors.

f(x,y) = fR(x,y) + fG(x,y) + fB(x,y)      Eq. 1

The main purpose of the RGB color model is for the detection, representation 
and exhibition of images in electronic systems such as televisions and computers. The 
frequency distribution of the values which a pixel contains in the image is called a histogram. 
It shows how many times a varying color value (0-255) can appear in the image. To illustrate 
this concept, Figure 6.2 presents a color digital image and the histograms referring to the 
frequency distribution of all possible values of a pixel in the red, green, blue and gray levels.
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Figure 6.2: Histograms in the red, green, blue and gray channels resulting from a color digital image.

We can represent the RGB model by a cube on the R, G and B axes, which takes 
on 256 color levels or values from 0-255. Each color channel is made up of a set of 8 bits 
resulting in an image with 16.7 million different colors. As shown in Figure 6.3, the edges of 
the cube have the primary colors of the RGB model and the faces in the planes GB, BR, RG 
have the secondary colors (cyan, magenta and yellow), formed from the combination of two 
primary colors. Black corresponds to the origin of the cube, white corresponds to the vertex 
furthest from the origin, and gray corresponds to the diagonal between these two points.
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Blue

Green

Red Yellow

Cian

Magenta

Black

White

Figure 6.3: RGB color model

In other words, zero intensity for each component gives the darkest color (without 
light, considered black) and the total intensity of each one results in white. When the 
intensities of all components are the same, the result is a shade of gray, darker or lighter, 
depending on the intensity. When the intensities are different, the result is a colorful hue, 
more or less saturated, depending on the difference between the strongest and weakest 
intensities of the primary colors used [2].

Another color model, based on polar coordinates, represented by an inverted six-
sided pyramid, frequently used in computer graphics is called HSV, as shown in Figure 6.4.
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Preto
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240°
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0°

S
H

V

V

S

Blue Magenta

Red
Cian

Green Yellow

White

Black

Figure 6.4: HSV color model
This model describes three fundamental attributes: hue (H), saturation (S) and value 
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(V). In this model, hue (H) is the dominant wavelength of the color (defines the tone of an 
area) and is measured in angles, arranged around the central axis, ranging from 0 o to 360 o 

(red corresponds to 0 o , green corresponds to 120º and blue to 240º). The secondary colors 
are in opposite positions (180º) on the graduated circle. Saturation (S) is the purity of color, 
in the sense of the amount of white light mixed with hue. In other words, saturation is given 
by the distance from the central axis to the edges, and can vary from 0 (completely white 
color) to 1 (pure color). Finally, the value (V), also known as luminance, is the brightness 
of the color and corresponds to the height of the pyramid, and can vary from 0 (black) to 1 
(white) along the V axis of the pyramid, where the gray scale is located [3].

Next, several examples based on R scripts will be presented with the use of digital 
images in unsupervised and supervised analysis as well as in calibration and multivariate 
classification. Steps such as selecting the area on the figure, obtaining the histograms and 
arranging the data matrices for chemometric analysis (exploratory analysis, classification 
and multivariate regression) will be detailed throughout these examples.

6.2 RGB to HSV and Grayscale Conversion
Example 1: The example we will describe here consists of converting an RGB image 

to HSV and grayscale using the imager package in R.

R Script
## Loading packages

install.packages("imager")
library(imager)
library(purrr)

## Loading image

# Navigate to the directory containing the image for testing
# In RStudio, go in Session > Set Working Directory > Choose Directory...

im_rgb = load.image("bird.jpg")

## viewing image

plot (im_rgb)

## converting to HSV
RGBtoHSV ( im_rgb ) %>% imsplit ("c") %>%
  modify_at ( 2,~ . / 2) %>% imappend ("c") %>%
  HSVtoRGB %>% plot(rescale=FALSE)

## converting to grayscale
grayscale ( im_rgb ) %>% plot ( colourscale = gray, rescale = FALSE)
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6.3 Exploratory Analysis
Example 2: The example we will describe here consists of the exploratory analysis 

(PCA, HCA and K-means) of RGB images obtained from ELISA plates containing albumin 
and creatinine concentrations using the imager, ggplot2, dplyr, prospectr, MASS, plot3D, 
plotly and factoextra packages.

R Script
## Loading packages

install.packages("imager")
library(imager)
library(ggplot2)
library(dplyr)
library(prospectr)
library(MASS)

install.packages("plot3D")
library(plot3D)

install.packages("plotly")
library(plotly)

install.packages("factoextra")
library(factoextra)

# establishing the working directory

# Navigate to the directory containing the images for testing
# In RStudio, go in Session > Set Working Directory > Choose Directory...

## loading images

im1 = load.image ("creatinine/im1.png")
im2 = load.image ("creatinine/im2.png")
im3 = load.image ("creatinine/im3.png")
im4 = load.image ("creatinine/im4.png")
im5 = load.image ("creatinine/im5.png")
im6 = load.image ("creatinine/im6.png")
im7 = load.image ("creatinine/im7.png")
im8 = load.image ("creatinine/im8.png")

## generating histograms

im1df <- as.data.frame (im1)
im2df <- as.data.frame (im2)
im3df <- as.data.frame (im3)
im4df <- as.data.frame (im4)
im5df <- as.data.frame (im5)
im6df <- as.data.frame (im6)
im7df <- as.data.frame (im7)
im8df <- as.data.frame (im8)
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## plotting histograms for each image - image 1

bdf <- mutate(im1df,channel=factor( cc,labels =c('R','G','B')))
ggplot( bdf,aes (value,col=channel))+geom_histogram(bins=30)+facet_wrap(~ channel)

## image 2

bdf <- mutate(im2df,channel=factor( cc,labels =c('R','G','B')))
ggplot( bdf,aes (value,col=channel))+geom_histogram(bins=30)+facet_wrap(~ channel)

## image 3

bdf <- mutate(im3df,channel=factor( cc,labels =c('R','G','B')))
ggplot( bdf,aes (value,col=channel))+geom_histogram(bins=30)+facet_wrap(~ channel)

## image 4

bdf <- mutate(im4df,channel=factor( cc,labels =c('R','G','B')))
ggplot( bdf,aes (value,col=channel))+geom_histogram(bins=30)+facet_wrap(~ channel)

## image 5

bdf <- mutate(im5df,channel=factor( cc,labels =c('R','G','B')))
ggplot( bdf,aes (value,col=channel))+geom_histogram(bins=30)+facet_wrap(~ channel)

## image 6

bdf <- mutate(im6df,channel=factor( cc,labels =c('R','G','B')))
ggplot( bdf,aes (value,col=channel))+geom_histogram(bins=30)+facet_wrap(~ channel)

## image 7

bdf <- mutate(im7df,channel=factor( cc,labels =c('R','G','B')))
ggplot( bdf,aes (value,col=channel))+geom_histogram(bins=30)+facet_wrap(~ channel)

## figure 8

bdf <- mutate(im8df,channel=factor( cc,labels =c('R','G','B')))
ggplot( bdf,aes (value,col=channel))+geom_histogram(bins=30)+facet_wrap(~ channel)

## extracting all image pixels to a vector

im1v <- matrix (im1)
im2v <- matrix (im2)
im3v <- matrix (im3)
im4v <- matrix (im4)
im5v <- matrix (im5)
im6v <- matrix (im6)
im7v <- matrix (im7)
im8v <- matrix (im8)
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## joining all images

data = rbind(t(im1v),t(im2v),t(im3v),t(im4v),t(im5v),t(im6v),t(im7v),t(im8v))

dim_data = dim (data)

## performing PCA

# scaling data

data_scal = scale ( data, center=TRUE, scale =FALSE)

# PCA Model

data.svd = svd ( data_scal ) # SVD
data.scores = data.svd$u %*% diag ( data.svd$d ) # scores
data.loadings = data.svd$v # loadings

# PCA Variances

data.vars = data.svd$d^2 / ( nrow (data)-1) # variance per PC
data.totalvar = sum( data.vars ) # total variance
data.relvars = data.vars / data.totalvar # cumulative variance
variances = 100 * round( data.relvars , digits = 3) # cumulative variance in %
variances [ 1:10] # variance in % in the first 10 PCs

# Choose the number of PCs

par(mfrow = c( 2,2))
barplot (data.vars [1:10], main="Variance", names.arg = paste("PC", 1:10))
barplot (log( data.vars [1:10]), main="Log( variance )", names.arg = paste("PC", 
1:10))
barplot (data.relvars [1:10], main="Relative Variances", names.arg = paste("PC", 
1:10))
barplot (cumsum (100* data.relvars [1:10]), main="Cumulative variances (%)", names.
arg = paste("PC", 1:10), ylim = c(0,100))

npc = 2 # number of PCs chosen to run the PCA

scores = data.scores [1:dim_data[1],1:npc] # PCA scores up to the chosen number of 
PC
loadings = data.loadings [1:dim_data[2], 1:npc] # PCA loadings up to the chosen PC 
number

# concentration vector in mg/ dL

y <- c( 0.03125,0.0625,0.125,0.25,0.5,1,2,4)
ys <- c( "1","2","3","4","5","6","7","8")
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# plotting PCA scores PC1 x PC2

dev.new ( )
plot(data.scores [,1],data.scores[,2],pch=ys,xlab='PC1',ylab='PC2',main='PCA 
scores - numbers for each image')

# plotting PCA loadings PC1 & PC2

dev.new ( )
matplot(data.loadings 
[,1],type="l",col="blue",xlab="Pixels",ylab='Loadings',main='PCA loadings')
lines(data.loadings 
[,2],type="l",col="red",xlab="Pixels",ylab='Loadings',main='PCA loadings')

## repeating PCA to compare creatinine images vs. albumin

creatinine_data = data # saving creatinine data

## Loading albumin images

im1 = load.image ("albumin/im1.png")
im2 = load.image ("albumin/im2.png")
im3 = load.image ("albumin/im3.png")
im4 = load.image ("albumin/im4.png")
im5 = load.image ("albumin/im5.png")
im6 = load.image ("albumin/im6.png")
im7 = load.image ("albumin/im7.png")
im8 = load.image ("albumin/im8.png")

## extracting all image pixels to a vector

im1v <- matrix (im1)
im2v <- matrix (im2)
im3v <- matrix (im3)
im4v <- matrix (im4)
im5v <- matrix (im5)
im6v <- matrix (im6)
im7v <- matrix (im7)
im8v <- matrix (im8)

## joining all albumin images

albumin_data = 
rbind(t(im1v),t(im2v),t(im3v),t(im4v),t(im5v),t(im6v),t(im7v),t(im8v))

## joining the images of creatinine and albumin

data = rbind ( creatinine_data , albumin_data )
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group1 = rep(1,8) # class 1 - creatinine
group2 = rep(2,8) # class 2 - albumin
group12 = rbind ( matrix (group1), matrix (group2))

dim_data = dim (data)

## performing PCA

# scaling data

data_scal = scale ( data, center=TRUE, scale =FALSE)

# PCA Model

data.svd = svd ( data_scal ) # SVD
data.scores = data.svd$u %*% diag ( data.svd$d ) # scores
data.loadings = data.svd$v # loadings

# PCA Variances

data.vars = data.svd$d^2 / ( nrow (data)-1) # variance per PC
data.totalvar = sum( data.vars ) # total variance
data.relvars = data.vars / data.totalvar # cumulative variance
variances = 100 * round( data.relvars , digits = 3) # cumulative variance in %
variances [ 1:10] # variance in % in the first 10 PCs

# Choose the number of PCs

par(mfrow = c( 2,2))
barplot (data.vars [1:10], main=" Variance ", names.arg = paste("PC", 1:10))
barplot (log( data.vars [1:10]), main="Log( variance )", names.arg = paste("PC", 
1:10))
barplot (data.relvars [1:10], main="Relative Variance", names.arg = paste("PC", 
1:10))
barplot (cumsum (100* data.relvars [1:10]), main="Cumulative variance (%)", names.
arg = paste("PC", 1:10), ylim = c(0,100))

npc = 2 # number of PCs chosen to run the PCA

scores = data.scores [1:dim_data[1],1:npc] # PCA scores up to the chosen number 
of PC
loadings = data.loadings [1:dim_data[2], 1:npc] # PCA loadings up to the chosen 
PC number

# plotting PCA scores PC1 x PC2

col = 
c("blue","blue","blue","blue","blue","blue","blue","blue","red","red","red","red 
","red","red","red","red","red")
dev.new ( )
plot(data.scores[,1],data.
scores[,2],pch=19,col=col,xlab='PC1',ylab='PC2',main='PCA scores - blue = 
creatinine , red = albumin ')
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# plotting PCA loadings PC1 & PC2

dev.new ( )
matplot(data.loadings 
[,1],type="l",col="blue",xlab="Pixels",ylab='Loadings',main='PCA loadings')
lines(data.loadings 
[,2],type="l",col="red",xlab="Pixels",ylab='Loadings',main='PCA loadings')

#################################### HCA model ########### 
#############################

clusters <- hclust(dist(data_scal),method ="average")

# viewing dendrogram

plot(clusters,xlab ="Samples (1-8: creatinine, 9-16: albumin)", ylab ="Distance", 
main =" HCA dendrogram, numbers = sample index ")

# samples are grouped into 2 clusters - high concentration (on the left) and low 
concentration (on the right)

#################################### K-Means model ######### 
###############################

set.seed (123)
km.res <- kmeans(data_scal,2,nstart =1)

# viewing results

kmeans_out = km.res$cluster

plot(kmeans_out,pch =19,xlab="Samples (1-8: creatinine , 9-16: albumin)", ylab =" 
Response K- Means",main ="K-Means")
points(c( 1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2))

# Classification rate to differentiate albumin x creatinine

ac = sum(kmeans_out==group12,na.rm=T)/ nrow(group12) * 100
ac

# Classification rate to differentiate low and high concentrations

groupConc = c( 2,2,2,1,1,1,1,1,2,2,2,1,1,1,1,1)
ac = sum(kmeans_out==groupConc,na.rm=T)/ nrow (group12) * 100
ac

# K-Means is distinguishing lows vs. high concentrations
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6.4 Multivariate classification
Example 3: The example we will describe here consists of multivariate classification 

using three algorithms (PCA-LDA, SPA-LDA and GA-LDA) on RGB images obtained from 
ELISA plates containing albumin and creatinine concentrations using the imager, ggplot2, 
dplyr, prospectr, MASS, plot3D, plotly and factoextra packages.

Script
## Loading packages

install.packages("imager")
library(imager)
library(ggplot2)
library(dplyr)
library(prospectr)
library(MASS)

install.packages("plot3D")
library(plot3D)

install.packages("plotly")
library(plotly)

install.packages("factoextra")
library(factoextra)

install.packages("lintools")
library(lintools)

install.packages("caret")
install.packages("GA")

library(caret)
library(GA)

# establishing the working directory

# Navigate to the directory containing the images for testing
# In RStudio, go in Session > Set Working Directory > Choose Directory...

## loading images - creatinine

im1 = load.image ("creatinine/im1.png")
im2 = load.image ("creatinine/im2.png")
im3 = load.image ("creatinine/im3.png")
im4 = load.image ("creatinine/im4.png")
im5 = load.image ("creatinine/im5.png")
im6 = load.image ("creatinine/im6.png")
im7 = load.image ("creatinine/im7.png")
im8 = load.image ("creatinine/im8.png")
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## extracting all image pixels to a vector

im1v <- matrix (im1)
im2v <- matrix (im2)
im3v <- matrix (im3)
im4v <- matrix (im4)
im5v <- matrix (im5)
im6v <- matrix (im6)
im7v <- matrix (im7)
im8v <- matrix (im8)

## joining all images

creatinine_data = 
rbind(t(im1v),t(im2v),t(im3v),t(im4v),t(im5v),t(im6v),t(im7v),t(im8v))

## Loading albumin images

im1 = load.image ("albumin/im1.png")
im2 = load.image ("albumin/im2.png")
im3 = load.image ("albumin/im3.png")
im4 = load.image ("albumin/im4.png")
im5 = load.image ("albumin/im5.png")
im6 = load.image ("albumin/im6.png")
im7 = load.image ("albumin/im7.png")
im8 = load.image ("albumin/im8.png")

## extracting all image pixels to a vector

im1v <- matrix (im1)
im2v <- matrix (im2)
im3v <- matrix (im3)
im4v <- matrix (im4)
im5v <- matrix (im5)
im6v <- matrix (im6)
im7v <- matrix (im7)
im8v <- matrix (im8)

## joining all albumin images

albumin_data = 
rbind(t(im1v),t(im2v),t(im3v),t(im4v),t(im5v),t(im6v),t(im7v),t(im8v))

## joining the images of creatinine and albumin

data = rbind ( creatinine_data , albumin_data )
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group1 = rep(1,8) # class 1 - creatinine
group2 = rep(2,8) # class 2 - albumin
group12 = rbind ( matrix (group1), matrix (group2))

dim_data = dim (data)
dim_class1 = 8
dim_class2 = 8

#################################### PCA-LDA ####################################

# scaling the data

data_scal = scale (data, center=TRUE, scale =FALSE)
dim_data = dim(data) # dimension of the data array

# PCA Model

data.svd = svd ( data_scal ) # SVD
data.scores = data.svd$u %*% diag ( data.svd$d ) # scores
data.loadings = data.svd$v # loadings

# PCA Variances

data.vars = data.svd$d^2 / ( nrow (data)-1) # variance per PC
data.totalvar = sum( data.vars ) # total variance
data.relvars = data.vars / data.totalvar # cumulative variance
variances = 100 * round( data.relvars , digits = 3) # cumulative variance in %
variances [ 1:10] # variance in % in the first 10 PCs

# Choose the number of PCs

par(mfrow = c( 2,2))
barplot (data.vars [1:10], main="Variance", names.arg = paste("PC", 1:10))
barplot (log( data.vars [1:10]), main="Log( variance )", names.arg = paste("PC", 
1:10))
barplot (data.relvars [1:10], main="Relative variance", names.arg = paste("PC", 
1:10))
barplot (cumsum (100* data.relvars [1:10]), main="Cumulative variance (%)", names.
arg = paste("PC", 1:10), ylim = c(0,100))

npc = 2 # number of PCs chosen to run the PCA

scores = data.scores [1:dim_data[1],1:npc] # PCA scores up to the chosen number 
of PC
loadings = data.loadings [1:dim_data[2], 1:npc] # PCA loadings up to the chosen 
PC number
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# selection of training and testing samples based on KS

perc = 0.7 # 70% for training and 30% for testing

ntrain1 = ceiling (perc * dim_class1[1]) # number of training samples class 1
ntrain2 = ceiling (perc * dim_class2[1]) # number of training samples class 2

scores1 = scores[1:8,1:npc] # scores class 1
scores2 = scores[(8+1): dim_data[1],1:npc] # scores class 2

sel1 = kenStone (scores1, k = ntrain1) # KS class 1
sel2 = kenStone (scores2, k = ntrain2) # KS class 2

train1 = scores1[sel1$model,1:npc] # training class 1
train2 = scores2[sel2$model,1:npc] # training class 2
train = rbind (train1,train2) # joining training matrices

group1train = matrix (group1[sel1$model]) # class 1 training labels
group2train = matrix (group2[sel2$model]) # class 2 training labels
group_train = rbind (group1train,group2train ) # training labels

test1 = scores1[sel1$test, 1:npc] # test class 1
test2 = scores2[sel2$test, 1:npc] # test class 2
test = rbind (test1,test2) # joining test matrices

group1test = matrix (group1[sel1$test]) # class 1 test labels
group2test = matrix (group2[sel2$test]) # class 2 test labels
group_test = rbind (group1test,group2test ) # test labels

# LDA Model

model_lda = lda ( train,group_train ) # model without cross-validation
model_lda_cv = lda ( train,group_train , CV=TRUE) # model with cross-validation 
leave-one-out

# prediction of training and testing samples

pred_train = predict( model_lda, train ) # training
pred_test = predict( model_lda, test ) # test

# figures of merit

# training

dim_train1 = dim(train1)
dim_train2 = dim(train2)

ac_train = mean(pred_train$class == group_train ) # accuracy
spec_train = mean(pred_train$class[1:dim_train1[1]]==group1train) # specificity
sens_train = mean(pred_train$class[(dim_train1[ 1]+ 1):(dim_train1[1]+dim_
train2[1])]==group2train) # sensitivity
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# cross-validation

ac_cv = mean (model_lda_cv$class == group_train ) # accuracy
spec_cv = mean (model_lda_cv$class[1:dim_train1[1]]==group1train) # specificity
sens_cv = mean(model_lda_cv$class[(dim_train1[1]+ 1):(dim_train1[1]+dim_
train2[1])]==group2train) # sensitivity

# test

dim_test1 = dim(test1)
dim_test2 = dim(test2)

ac_test = mean(pred_test$class == group_test ) # accuracy
spec_test = mean(pred_test$class[1:dim_test1[1]]==group1test) # specificity
sens_test = mean(pred_test$class[(dim_test1[1]+ 1):(dim_test1[1]+dim_
test2[1])]==group2test) # sensitivity

print( "=========== Training =============")
cat ("Accuracy:")
ac_train
cat ("Sensitivity:")
sens_train
cat ("Specificity:")
spec_train

print( "=========== Cross-validation =============")
cat ("Accuracy:")
ac_cv
cat ("Sensitivity:")
sens_cv
cat ("Specificity:")
spec_cv

print( "=========== Test =============")
cat("Accuracy:")
ac_test
cat ("Sensitivity:")
sens_test
cat ("Specificity:")
spec_test

# plotting PCA scores PC1 x PC2

col = 
c("blue","blue","blue","blue","blue","blue","blue","blue","red","red","red","red", 
"red","red","red","red","red")
dev.new ( )
plot(data.scores[,1],data.
scores[,2],pch=19,col=col,xlab='PC1',ylab='PC2',main='PCA scores - blue = 
creatinine, red = albumin ')
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# plotting PCA loadings PC1 & PC2

dev.new ( )
matplot(data.
loadings[,1],type="l",col="blue",xlab="Pixels",ylab='Loadings',main='PCA 
loadings')
lines(data.loadings[,2],type="l",col="red",xlab="Pixels",ylab='Loadings',main='PCA 
loadings')

# viewing posterior probabilities - training

col = 
c("blue","blue","blue","blue","blue","blue","red","red","red","red","red","red", 
"red")
dev.new()
plot(pred_train$posterior,pch =19,col= col,xlab ="LD1", ylab ="LD2", main=" 
Training - blue = creatinine , red = albumin ")

# visualizing posterior probabilities - cross-validation

col = 
c("blue","blue","blue","blue","blue","blue","red","red","red","red","red","red", 
"red")
dev.new ()
plot(model_lda_cv$posterior,pch =19,col= col,xlab ="LD1", ylab ="LD2", main 
="Cross Validation - blue = creatinine, red = albumin")

# viewing posterior probabilities - test

col = c("blue","blue","red","red")
dev.new ( )
plot(pred_test$posterior,pch=19,col= col,xlab ="LD1", ylab ="LD2", main="Test - 
blue = creatinine , red = albumin ")

#################################### SPA-LDA ##################################

# SPA model

nvar = 8 # number of variables to select

datam = data.matrix(data, rownames.force=NA) # converting data to matrix

m = colMeans (data) # average of the spectra

spa_model = project (x= data.loadings [,1], A= datam , b=group12, neq =0) # spa 
model
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x = abs ( model_spa$x ) # leaving positive values for the SPA response vector

temp = sort.int( x, decreasing=TRUE, index.return =TRUE)
variables = temp$ix [1:nvar] # identifying selected variables

dev.new ( ) # plot of selected variables
matplot( m,xlab="Pixels",type="l",ylab="Intensity",main="Average spectrum with 
selected variables")
points( variables,m [ variables ], pch =19,col=" red ")

datam_spa = datam [, variables ] # absorbances for the selected variables

# selection of training and testing samples based on KS

perc = 0.7 # 70% for training and 30% for testing

ntrain1 = ceiling ( perc * dim_class1[1]) # number of training samples class 1
ntrain2 = ceiling ( perc * dim_class2[1]) # number of training samples class 2

datam_spa1 = datam_spa [1:dim_class1[1],] # scores class 1
datam_spa2 = datam_spa [(dim_class1[1]+ 1): dim_data[1],] # scores class 2

sel1 = kenStone ( datam_spa1, k = ntrain1) # KS class 1
sel2 = kenStone ( datam_spa2, k = ntrain2) # KS class 2

train1 = datam_spa1[sel1$model,] # training class 1
train2 = datam_spa2[sel2$model,] # training class 2
train = rbind (train1,train2) # joining training matrices

group1train = matrix (group1[sel1$model]) # class 1 training labels
group2train = matrix (group2[sel2$model]) # class 2 training labels
group_train = rbind (group1train,group2train ) # training labels

test1 = datam_spa1[sel1$test,] # test class 1
test2 = datam_spa2[sel2$test,] # test class 2
test = rbind (test1,test2) # joining test matrices

group1test = matrix (group1[sel1$test]) # class 1 test labels
group2test = matrix (group2[sel2$test]) # class 2 test labels
group_test = rbind (group1test,group2test ) # test labels

# LDA Model

model_lda = lda ( train,group_train ) # model without cross-validation
model_lda_cv = lda ( train,group_train , CV=TRUE) # model with cross-validation 
leave-one-out

# prediction of training and testing samples
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pred_train = predict( model_lda, train ) # training
pred_test = predict( model_lda, test ) # test

# figures of merit

# training

dim_train1 = dim(train1)
dim_train2 = dim(train2)

ac_train = mean(pred_train$class == group_train ) # accuracy
spec_train = mean(pred_train$class[1:dim_train1[1]]==group1train) # specificity
sens_train = mean(pred_train$class[(dim_train1[ 1]+ 1):(dim_train1[1]+dim_
train2[1])]==group2train) # sensitivity

# cross-validation

ac_cv = mean (model_lda_cv$class == group_train ) # accuracy
spec_cv = mean (model_lda_cv$class[1:dim_train1[1]]==group1train) # specificity
sens_cv = mean(model_lda_cv$class[(dim_train1[1]+ 1):(dim_train1[1]+dim_
train2[1])]==group2train) # sensitivity

# test

dim_test1 = dim(test1)
dim_test2 = dim(test2)

ac_test = mean(pred_test$class == group_test ) # accuracy
spec_test = mean(pred_test$class[1:dim_test1[1]]==group1test) # specificity
sens_test = mean(pred_test$class[(dim_test1[1]+ 1):(dim_test1[1]+dim_
test2[1])]==group2test) # sensitivity

print( "=========== Training =============")
cat ("Accuracy:")
ac_train
cat ("Sensitivity:")
sens_train
cat ("Specificity:")
spec_train

print( "=========== Cross-validation =============")
cat ("Accuracy:")
ac_cv
cat ("Sensitivity:")
sens_cv
cat ("Specificity:")
spec_cv
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print( "=========== Test =============")
cat("Accuracy:")
ac_test
cat ("Sensitivity:")
sens_test
cat ("Specificity:")
spec_test

# viewing posterior probabilities - training

col = 
c("blue","blue","blue","blue","blue","blue","red","red","red","red","red","red", 
"red")
dev.new()
plot(pred_train$posterior,pch =19,col= col,xlab ="LD1", ylab ="LD2", main=" 
Training - blue = creatinine , red = albumin ")

# visualizing posterior probabilities - cross-validation

col = 
c("blue","blue","blue","blue","blue","blue","red","red","red","red","red","red", 
"red")
dev.new ()
plot(model_lda_cv$posterior,pch =19,col= col,xlab ="LD1", ylab ="LD2", main 
="Cross Validation - blue = creatinine, red = albumin")

# viewing posterior probabilities - test

col = c("blue","blue","red","red")
dev.new ( )
plot(pred_test$posterior,pch=19,col= col,xlab ="LD1", ylab ="LD2", main="Test - 
blue = creatinine , red = albumin ")

#################################### GA-LDA ########## ########################

# GA algorithm

datam = data.matrix (data, rownames.force =NA) # converting data to matrix
datam_m = colMeans ( datam )
ind = datam_m != 1
datam_ga = datam[, ind ==TRUE]
datam = datam_ga

# Function to Establish Population

myInit <- function(k){
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  function(GA){
    m <- matrix(0, ncol = GA@nBits, nrow = GA@popSize)
    
    for(i in seq_len(GA@popSize))
      m[i, sample(GA@nBits, k)] <- 1 
    
    m
  }
}

# Function for Crossover

myCrossover <- function(GA, parents){
  
  parents <- GA@population[parents,] %>%
    apply(1, function(x) which(x == 1)) %>%
    t()
  
  parents_diff <- list("vector", 2)
  parents_diff[[1]] <- setdiff(parents[2,], parents[1,])
  parents_diff[[2]] <- setdiff(parents[1,], parents[2,])
  
  children_ind <- list("vector", 2)
  for(i in 1:2){
    k <- length(parents_diff[[i]])
    change_k <- sample(k, sample(ceiling(k/2), 1))
    children_ind[[i]] <- if(length(change_k) > 0){
      c(parents[i, -change_k], parents_diff[[i]][change_k])
    } else {
      parents[i,]
    }
  }
  
  children <- matrix(0, nrow = 2, ncol = GA@nBits)
  for(i in 1:2)
    children[i, children_ind[[i]]] <- 1
  
  list(children = children, fitness = c(NA, NA))
}

# Mutation Function

myMutation <- function(GA, parent){
  
  ind <- which(GA@population[parent,] == 1) 
  n_change <- sample(3, 1)
  ind[sample(length(ind), n_change)] <- sample(setdiff(seq_len(GA@nBits), ind), 
n_change)
  parent <- integer(GA@nBits)
  parent[ind] <- 1
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  parent
}

# Adjustment Function

f <- function(x, values){
  
  ind <- which(x == 1)
  y <- values[ind]
  y <- ifelse(y %% 2 != 0, y, 0) 
  y <- y[1:10]
  return(sum(y))
}

# GA Model

GA_model = ga(type="binary", fitness=f, values= datam, nBits = ncol (datam), 
population= myInit ( nrow ( datam )), crossover = myCrossover , mutation= myMutation 
, run=200, pmutation =0.1 , maxiter =1000, popSize = nrow ( datam ))

# selected variables

ind = which ( GA_model@solution[1,] == 1)
if ( length ( ind ) > 8){
  indmax = 8 # maximum number of variables selected
  ind = ind [1:indmax]
}

# array with selected variables

datam_ga = datam [, ind ]
m = colMeans ( datam )
variables = ind

dev.new ( ) # plot of selected variables
matplot( m,xlab="Pixels",type="l",ylab="Intensity",main="Average spectrum with 
selected variables")
points( variables,m [ variables ], pch =19,col="red")

# selection of training and testing samples based on KS

perc = 0.7 # 70% for training and 30% for testing

ntrain1 = ceiling ( perc * dim_class1[1]) # number of training samples class 1
ntrain2 = ceiling ( perc * dim_class2[1]) # number of training samples class 2

datam_ga1 = datam_ga [1:dim_class1[1],] # scores class 1
datam_ga2 = datam_ga [(dim_class1[1]+ 1): dim_data[1],] # scores class 2

sel1 = kenStone ( datam_ga1, k = ntrain1) # KS class 1
sel2 = kenStone ( datam_ga2, k = ntrain2) # KS class 2
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train1 = datam_ga1[sel1$model,] # training class 1
train2 = datam_ga2[sel2$model,] # training class 2
train = rbind (train1,train2) # joining training matrices

group1train = matrix (group1[sel1$model]) # class 1 training labels
group2train = matrix (group2[sel2$model]) # class 2 training labels
group_train = rbind (group1train,group2train ) # training labels

test1 = datam_ga1[sel1$test,] # test class 1
test2 = datam_ga2[sel2$test,] # test class 2
test = rbind (test1,test2) # joining test matrices

group1test = matrix (group1[sel1$test]) # class 1 test labels
group2test = matrix (group2[sel2$test]) # class 2 test labels
group_test = rbind (group1test,group2test ) # test labels

# LDA Model

model_lda = lda ( train,group_train ) # model without cross-validation
model_lda_cv = lda ( train,group_train , CV=TRUE) # model with cross-validation 
leave-one-out

# prediction of training and testing samples

pred_train = predict( model_lda, train ) # training
pred_test = predict( model_lda, test ) # test

# figures of merit

# training

dim_train1 = dim(train1)
dim_train2 = dim(train2)

ac_train = mean(pred_train$class == group_train ) # accuracy
spec_train = mean(pred_train$class[1:dim_train1[1]]==group1train) # specificity
sens_train = mean(pred_train$class[(dim_train1[ 1]+ 1):(dim_train1[1]+dim_
train2[1])]==group2train) # sensitivity

# cross-validation

ac_cv = mean (model_lda_cv$class == group_train ) # accuracy
spec_cv = mean (model_lda_cv$class[1:dim_train1[1]]==group1train) # specificity
sens_cv = mean(model_lda_cv$class[(dim_train1[1]+ 1):(dim_train1[1]+dim_
train2[1])]==group2train) # sensitivity

# test
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dim_test1 = dim(test1)
dim_test2 = dim(test2)

ac_test = mean(pred_test$class == group_test ) # accuracy
spec_test = mean(pred_test$class[1:dim_test1[1]]==group1test) # specificity
sens_test = mean(pred_test$class[(dim_test1[1]+ 1):(dim_test1[1]+dim_
test2[1])]==group2test) # sensitivity

print( "=========== Training =============")
cat ("Accuracy:")
ac_train
cat ("Sensitivity:")
sens_train
cat ("Specificity:")
spec_train

print( "=========== Cross-validation =============")
cat ("Accuracy:")
ac_cv
cat ("Sensitivity:")
sens_cv
cat ("Specificity:")
spec_cv

print( "=========== Test =============")
cat("Accuracy:")
ac_test
cat ("Sensitivity:")
sens_test
cat ("Specificity:")
spec_test

# viewing posterior probabilities - training

col = 
c("blue","blue","blue","blue","blue","blue","red","red","red","red","red","red", 
"red")
dev.new()
plot(pred_train$posterior,pch =19,col= col,xlab ="LD1", ylab ="LD2", main=" 
Training - blue = creatinine , red = albumin ")

# visualizing posterior probabilities - cross-validation

col = 
c("blue","blue","blue","blue","blue","blue","red","red","red","red","red","red", 
"red")
dev.new ()
plot(model_lda_cv$posterior,pch =19,col= col,xlab ="LD1", ylab ="LD2", main 
="Cross Validation - blue = creatinine, red = albumin")
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# viewing posterior probabilities - test

col = c("blue","blue","red","red")
dev.new ( )
plot(pred_test$posterior,pch=19,col= col,xlab ="LD1", ylab ="LD2", main="Test - 
blue = creatinine , red = albumin ")

6.5 Multivariate Regression
Example 4: The example we will describe here consists of multivariate regression 

(MLR, PCR and PLS) of RGB images obtained from ELISA plates containing albumin and 
creatinine concentrations using the imager, ggplot2, dplyr, prospectr, MASS, plot3D, plotly, 
factoextra, Stat2Data, Metrics and PLS packages.

Script
# Loading Packages

install.packages("imager")
library(imager)
library(ggplot2)
library(dplyr)
library(prospectr)
library(MASS)

install.packages("plot3D")
library(plot3D)

install.packages("plotly")
library(plotly)

install.packages("factoextra")
library(factoextra)

install.packages("Stat2Data")
library(Stat2Data)

install.packages("Metrics")
library(Metrics)

install.packages("pls")
library(pls)

# establishing the working directory

# Navigate to the directory containing the images for testing
# In RStudio, go in Session > Set Working Directory > Choose Directory...
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## loading images

im1 = load.image ("creatinine/im1.png")
im2 = load.image ("creatinine/im2.png")
im3 = load.image ("creatinine/im3.png")
im4 = load.image ("creatinine/im4.png")
im5 = load.image ("creatinine/im5.png")
im6 = load.image ("creatinine/im6.png")
im7 = load.image ("creatinine/im7.png")
im8 = load.image ("creatinine/im8.png")

## extracting all image pixels to a vector

im1v <- matrix (im1)
im2v <- matrix (im2)
im3v <- matrix (im3)
im4v <- matrix (im4)
im5v <- matrix (im5)
im6v <- matrix (im6)
im7v <- matrix (im7)
im8v <- matrix (im8)

## joining all images

data = rbind(t(im1v),t(im2v),t(im3v),t(im4v),t(im5v),t(im6v),t(im7v),t(im8v))
dim_data = dim(data)

# concentration vector in mg/ dL

y <- c(0.03125,0.0625,0.125,0.25,0.5,1,2,4)

####################### MLR Model ######################

# RGB intensities

im1_RGB = cbind (mean(mean(R(im1))),mean(mean(G(im1))),mean(mean(B(im1))))
im2_RGB = cbind (mean(mean(R(im2))),mean(mean(G(im2))),mean(mean(B(im2))))
im3_RGB = cbind (mean(mean(R(im3))),mean(mean(G(im3))),mean(mean(B(im3))))
im4_RGB = cbind (mean(mean(R(im4))),mean(mean(G(im4))),mean(mean(B(im4))))
im5_RGB = cbind (mean(mean(R(im5))),mean(mean(G(im5))),mean(mean(B(im5))))
im6_RGB = cbind (mean(mean(R(im6))),mean(mean(G(im6))),mean(mean(B(im6))))
im7_RGB = cbind (mean(mean(R(im7))),mean(mean(G(im7))),mean(mean(B(im7))))
im8_RGB = cbind (mean(mean(R(im8))),mean(mean(G(im8))),mean(mean(B(im8))))

# RGB absorbances
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im1abs = -log10(im1_RGB/1)
im2abs = -log10(im2_RGB/1)
im3abs = -log10(im3_RGB/1)
im4abs = -log10(im4_RGB/1)
im5abs = -log10(im5_RGB/1)
im6abs = -log10(im6_RGB/1)
im7abs = -log10(im7_RGB/1)
im8abs = -log10(im8_RGB/1)

x = rbind (im1abs,im2abs,im3abs,im4abs,im5abs,im6abs,im7abs,im8abs)
dim_x = dim (x)

## Division into Calibration and Prediction

perc = 0.7 # 70% for calibration and 30% for testing

size = 1:dim_x [ 1]

ntrain = ceiling ( perc * dim_x [1]) # number of calibration samples

sel = sample( size, ntrain ) # sample selection

xcal = x[ sel ,] # calibration
ycal = matrix (y[ sel ]) # concentration calibration

xpred = x[- sel ,] # prediction
ypred = matrix (y[- sel ]) # concentration prediction

## MLR Model

xcal_df = data.frame ( xcal )
xpred_df = data.frame ( xpred )

model_mlr = lm ( ycal ~ xcal , xcal_df ) # MLR model

coef = model_mlr$coefficients # regression coefficients

ycal_calc = xcal %*% coef [2:4] + coef [1] # predicted concentration calibration
ypred_calc = xpred %*% coef [2:4] + coef [1] # predicted concentration prediction

## Plot measured concentration vs. predicted

dev.new ( )
plot (ycal,ycal_calc,pch='o',col ="blue", xlab ="Measured concentration (mg/dL)", 
ylab ="Predicted concentration (mg/dL)", main ="Calibration")
lines(ycal,ycal,col="red")
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dev.new ( )
plot (ypred,ypred_calc,pch=15,col="red", xlab = "Measured concentration (mg/dL)", 
ylab = "Predicted concentration (mg/dL)", main = "Prediction")
lines(ypred,ypred ,col ="red")

dev.new ( )
plot (ycal,ycal_calc,pch='o', col="blue", xlab ="Measured concentration (mg/dL)", 
ylab ="Predicted concentration (mg/dL)", main ="Calibration (blue) and Prediction 
(red)")
points(ypred,ypred_calc,pch =15,col="red")
lines(y,y ,col="red")

## Figures of merit

# Calibration

MAPEC = mean (abs((ycal-ycal_calc)/ycal))*100
R2cal = cor (ycal,ycal_calc)^2
RMSEC = rmse (ycal,ycal_calc)

# Prediction

MAPEP = mean(abs((ypred-ypred_calc )/ypred))* 100
R2pred = cor(ypred,ypred_calc)^2
RMSEP = rmse(ypred,ypred_calc)

print("=========== Calibration =============")
print("Mean Absolute Error Percentage (MAPE) (%):")
MAPEC
print("R2cal:")
R2cal
print("RMSEC (mg/dL):")
RMSEC

print("=========== Test =============")
print("Mean Absolute Error Percentage (MAPE) (%):")
MAPEP
print("R2pred:")
R2pred
print("RMSEP (mg/dL):")
RMSEP

####################### PCR Model ######################

# scaling the data

data_scal = scale(data, center=TRUE, scale =FALSE)
dim_data = dim (data) # dimension of the data array
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# PCA Model

data.svd = svd ( data_scal ) # SVD
data.scores = data.svd$u %*% diag ( data.svd$d ) # scores
data.loadings = data.svd$v # loadings

# PCA Variances

data.vars = data.svd$d^2 / (nrow (data)-1) # variance per PC
data.totalvar = sum( data.vars ) # total variance
data.relvars = data.vars / data.totalvar # cumulative variance
variances = 100 * round( data.relvars , digits = 3) # cumulative variance in %
variances [1:10] # variance in % in the first 10 PCs

# Choose the number of PCs

par(mfrow = c( 2,2))
barplot (data.vars [1:10], main="Variance", names.arg = paste("PC", 1:10))
barplot (log( data.vars [1:10]), main="Log( variance )", names.arg = paste("PC", 
1:10))
barplot (data.relvars [1:10], main="Relative variance", names.arg = paste("PC", 
1:10))
barplot (cumsum (100* data.relvars [1:10]), main="Cumulative variance (%)", names.
arg = paste("PC", 1:10), ylim = c(0,100))

npc = 3 # number of PCs chosen to run the PCA

scores = data.scores[1:dim_data[1],1:npc] # PCA scores up to the chosen number of PC
loadings = data.loadings[1:dim_data[2], 1:npc] # PCA loadings up to the chosen PC 
number

# Linear Regression on PCA Scores

x = scores
dim_x = dim (x)

## Division into Calibration and Prediction

perc = 0.7 # 70% for calibration and 30% for testing

size = 1:dim_x[1]

ntrain = ceiling( perc * dim_x [1]) # number of calibration samples

sel = sample( size, ntrain ) # sample selection

xcal = x[ sel ,] # calibration
ycal = matrix (y[ sel ]) # concentration calibration
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xpred = x[- sel ,] # prediction
ypred = matrix (y[- sel ]) # concentration prediction

## PCR model

xcal_df = data.frame(xcal)
xpred_df = data.frame(xpred)

modelo_mlr = lm(ycal ~ xcal, xcal_df) # MLR model

coef = modelo_mlr$coefficients # regression coefficients

ycal_calc = xcal %*% coef[2:4] + coef[1] # predicted concentration - calibration
ypred_calc = xpred %*% coef[2:4] + coef[1] # predicted concentration - prediction

## Plot measured concentration vs. Prediction

dev.new ( )
plot (ycal,ycal_calc,pch ='o', col ="blue", xlab ="Measured concentration (mg/dL)", 
ylab ="Predicted concentration (mg/dL)", main ="Calibration")
lines(ycal,ycal,col="red")

dev.new ( )
plot (ypred,ypred_calc,pch =15,col="red", xlab = "Measured concentration (mg/dL)", 
ylab = "Predicted concentration (mg/dL)", main = "Prediction")
lines(ypred,ypred,col ="red")

dev.new ( )
plot (ycal,ycal_calc,pch ='o', col ="blue", xlab ="Measured concentration (mg/dL)", 
ylab ="Predicted concentration (mg/dL)", main ="Calibration (blue) and Prediction 
(red)")
points(ypred,ypred_calc,pch =15,col="red")
lines(y,y,col ="red")

## Figures of merit

# Calibration

MAPEC = mean (abs((ycal-ycal_calc)/ycal))*100
R2cal = cor (ycal,ycal_calc)^2
RMSEC = rmse (ycal,ycal_calc)

# Prediction

MAPEP = mean(abs((ypred-ypred_calc )/ypred))* 100
R2pred = cor(ypred,ypred_calc)^2
RMSEP = rmse(ypred,ypred_calc)
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print("=========== Calibration =============")
print("Mean Absolute Error Percentage (MAPE) (%):")
MAPEC
print("R2cal:")
R2cal
print("RMSEC (mg/dL):")
RMSEC

print("=========== Test =============")
print("Mean Absolute Error Percentage (MAPE) (%):")
MAPEP
print("R2pred:")
R2pred
print("RMSEP (mg/dL):")
RMSEP

####################### PLS Model ######################

## Division into Calibration and Prediction

mydim = dim (data)
Xr = data
perc = 0.7 # 70% for calibration and 30% for testing

dim_x = dim (x)
size = 1:dim_x[1]

ntrain = ceiling ( perc * dim_x [1]) # number of calibration samples

sel = sample(size, ntrain) # KS

xcal = Xr [ sel ,] # calibration
ycal = matrix (y[ sel ]) # concentration-calibration

xpred = Xr [- sel ,] # prediction
ypred = matrix (y[- sel ]) # concentration-prediction

## PLS Model

xcal_df = data.frame ( xcal )
xpred_df = data.frame ( xpred )

model_pls = plsr ( ycal ~ xcal , data = xcal_df )

## Determine number of components

validationplot ( model_pls )
validationplot ( model_pls,val.type = "MSEP")
validationplot ( model_pls,val.type = "R2")
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ncomp = 2 # number of selected components

## prediction

ycal_calc <- predict( model_pls, xcal, ncomp = ncomp )
ypred_calc <- predict( model_pls, xpred, ncomp = ncomp )

ycal_calc = ycal_calc [,1,1]
ypred_calc = ypred_calc [,1,1]

## Plot measured concentration vs. prediction

dev.new ( )
plot (ycal,ycal_calc,pch ='o', col ="blue", xlab ="Measured concentration (mg/dL)", 
ylab ="Predicted concentration (mg/dL)", main ="Calibration")
lines(ycal,ycal,col ="red")

dev.new ( )
plot (ypred,ypred_calc,pch =15,col="red", xlab = "Measured concentration (mg/dL)", 
ylab = "Predicted concentration (mg/dL)", main = "Prediction")
lines(ypred,ypred,col ="red")

dev.new ( )
plot (ycal,ycal_calc,pch ='o', col ="blue", xlab ="Measured concentration (mg/dL)", 
ylab ="Predicted concentration (mg/dL)", main ="Calibration (blue) and Prediction 
(red)")
points(ypred,ypred_calc,pch=15,col="red")
lines(y,y,col ="red")

## Figures of merit

# Calibration

MAPEC = mean (abs((ycal-ycal_calc)/ycal))*100
R2cal = cor (ycal,ycal_calc)^2
RMSEC = rmse (ycal,ycal_calc)

# Prediction

MAPEP = mean(abs((ypred-ypred_calc )/ypred))* 100
R2pred = cor(ypred,ypred_calc)^2
RMSEP = rmse(ypred,ypred_calc)

print("=========== Calibration =============")
print("Mean Absolute Error Percentage (MAPE) (%):")
MAPEC
print("R2cal:")
R2cal
print("RMSEC (mg/dL):")
RMSEC
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print("=========== Test =============")
print("Mean Absolute Error Percentage (MAPE) (%):")
MAPEP
print("R2pred:")
R2pred
print("RMSEP (mg/dL):")
RMSEP

PROPOSED EXERCISES
01 – Using a digital image dataset available in repositories or through images 

collected with some equipment (cell phone, scanner), perform an exploratory analysis using 
the main algorithms in the R language (PCA, HCA and K- means). Present your results and 
main conclusions.

02 – Using a digital image dataset available in repositories or through images 
collected with some equipment (cell phone, scanner), perform a multivariate classification 
using algorithms in the R language (PCA-LDA, SPA-LDA and GA-LDA). Present your results 
and main conclusions.

03 – From the previous exercise, write multivariate classification scripts in R (PCA-
QDA, SPA-QDA and GA-QDA) for a given dataset (simulated or experimental). Finally, 
present your results and conclusions when compared to the multivariate classification 
models used in the LDA function.

04 – Using a digital image dataset available in repositories or through images 
collected with some equipment (cell phone, scanner), perform a multivariate regression 
using algorithms in the R language (MLR, PCR and PLS). Present your results and main 
conclusions.

REFERENCES
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Heidelberg; New York; Barcelona; Hong Kong; London; Milano; Paris; Singapore; Tokyo: Springer.

3 – Gonzalez, RC; Woods, RE Digital image processing. 1st Ed. São Paulo: Editora Blucher , 2000.
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APPENDix A 

A1 – LOADING SPECTRAL DATA USING R
Example A1: Loading raw data (.csv format) of near-infrared (NIR) spectroscopy 

in R software using the data.table package. Data extracted from: https://doi.org/10.1016/j.
dib.2020.106647  

R Script
install.packages("data.table")
library (data.table)

## loading data .csv

data = fread ("dataset/spectra_standard_cells.csv")

## visualize data

View (data)

## extracting the spectra

d = dim (data) # data dimensions

nm = data[1,4:d[2]] # wavelength = 1st row of table from column 4

x = data[2:16,4:d[2]] # spectrum = rows 2-16 and columns 4 to the end of the table

## plotting spectra

matplot (t(nm),t(x), type ="l", xlab ="Wavelength (nm)", ylab ="Absorbance")

https://doi.org/10.1016/j.dib.2020.106647
https://doi.org/10.1016/j.dib.2020.106647
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A2 – PREPROCESSING SPECTRAL DATA IN R
Example A2: Applying different preprocessing to near-infrared (NIR) spectroscopy 

data using data.table, pracma , pls and hyperSpec packages. Data extracted from: https://
doi.org/10.1016/j.dib.2020.106647  

R Script
## packages

library(data.table)

# Smoothing Savitzkt-Golay

install.packages("pracma")
library(pracma)

#MSC

install.packages("pls")
library(pls)

# Baseline correction

install.packages("hyperSpec")
library(hyperSpec)

## loading data. csv

data = fread("dataset/spectra_standard_cells.csv")

## visualize data

View (data)

## extracting the spectra

d = dim (data) # data dimensions

nm = data[1,4:d[2]] # wavelength = 1st row of table from column 4

x = data[2:16,4:d[2]] # spectrum = rows 2-16 and columns 4 to the end of the table

x_dm = data.matrix (x) # converting spectra to numeric format

## plotting spectra

matplot (t(nm), t(x), type ="l", xlab ="Wavelength (nm)", ylab ="Absorbance", main 
="Raw data")

https://doi.org/10.1016/j.dib.2020.106647
https://doi.org/10.1016/j.dib.2020.106647
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## ==================== Pre-processing ====================

######### Savitzky-Golay smoothing #########

w = 7 # window size (must be an odd number )
ord = 2 # filter order (example: 2 = 2nd order polynomial)
der = 0 # order of the derivative (0 = no derivative, 1 = 1st derivative, 2 = 2nd 
derivative)

# smoothing across all spectra

x_sg = matrix (, nrow = dim (x)[1], ncol = dim (x)[2])
for ( i in 1:dim(x)[1]){
  x_sg [ i ,] = savgol ( x_dm [ i ,], w, ord , der)
}

x_sg [,1:w] = x_dm [,1:w]
x_sg [,(dim(x)[2]-w):dim(x)[2]] = x_dm [,(dim(x)[2]-w):dim(x)[2]]

# plotting pre -processed data

matplot (t( nm ),t( x_sg ), type ="l", xlab ="Wavelength (nm)", ylab ="Absorbance", 
main ="Smoothed data - Savitzky-Golay ")

######### smoothing by moving window #########

w = 7 # window size (must be an odd number )

# smoothing function

SmoothFast <-function( Spectra,windowsize ){
  Mat<-matrix(0,length((windowsize+1):(ncol(Spectra)-windowsize)),2*windowsize+1)
  for(j in 1:nrow(Mat)){Mat[j,]<- seq (j,j+2*windowsize,1)}
  newspectra <-matrix(0,nrow(Spectra),
                      length((windowsize+1):( ncol (Spectra)- windowsize )))
  for( i in 1:nrow(Mat)){ newspectra [, i ]<-apply(Spectra[,Mat[ i ,]],1,mean)}
  fronttail <- newspectra [,1]
  endtail <- newspectra [, ncol ( newspectra )]
  for(k in 1:(windowsize-1)){fronttail<-data.frame(fronttail,newspectra[,1])
  endtail <- data.frame ( endtail, newspectra [, ncol ( newspectra )])}
  newspectra <- data.frame ( fronttail,newspectra,endtail )
  return ( newspectra )}

# applying the smoothing function

x_sw = SmoothFast ( x_dm,windowsize =w)
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# plotting preprocessed data

matplot (t( nm ),t( x_sw ), type ="l", xlab ="Wavelength (nm)", ylab ="Absorbance", 
main ="Smoothed data - Moving Window")

######### SNV (Standard Normal Variate ) #########

# SNV function

SNV<-function(spectra){
  spectra<- as.matrix (spectra)
  spectrat <-t(spectra)
  spectrat_snv <-scale( spectrat,center = TRUE,scale =TRUE)
  spectra_snv <-t( spectrat_snv )
  return ( spectra_snv )}

# applying SNV

x_snv = SNV( x_dm )

# plotting preprocessed data

matplot (t( nm ),t( x_snv ), type ="l", xlab ="Wavelength (nm)", ylab ="Absorbance", 
main ="SNV")

######### MSC (Multiplicative Scatter Correction) #########

# applying MSC

x_msc = msc ( x_dm )

# plotting preprocessed data

matplot (t( nm ),t( x_msc ), type ="l", xlab ="Wavelength (nm)", ylab ="Absorbance", 
main ="MSC")

######### Baseline correction #########

# pseudo-image object

x_im = new("hyperSpec", spc = x_dm , wavelength = as.numeric ( nm ))

# applying baseline correction

pord = 2 # order of the baseline adjustment polynomial function

baseline = spc.fit.poly.below (fit.to = x_im , poly.order = pord )

x_base = x_im@data$spc - baseline@data$spc

# plotting preprocessed data
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matplot (t( nm ),t( x_base ), type ="l", xlab ="Wavelength (nm)", ylab ="Absorbance", 
main ="Baseline Correction")

######### 1st derivative #########

w = 7 # window size (must be an odd number )
ord = 2 # filter order (example: 2 = 2nd order polynomial)
der = 1 # order of derivative (0 = no derivative, 1 = 1st derivative, 2 = 2nd 
derivative)

# SG filter across all spectra

x_1d = matrix (, nrow = dim (x)[1], ncol = dim (x)[2])
for ( i in 1:dim(x)[1]){
  x_1d[ i ,] = savgol ( x_dm [ i ,], w, ord , der)
}

x_1d = x_1d[,w:(dim(x)[2]-w)]
nm_dm = data.matrix (nm)
nm_1d = nm_dm [,w:(dim(x)[2]-w)]

# plotting preprocessed data

matplot (nm_1d,t(x_1d), type ="l", xlab ="Wavelength (nm)", ylab ="Absorbance", 
main ="1st derivative Savitzky-Golay ")

######### 2nd derivative #########

w = 7 # window size (must be an odd number )
ord = 2 # filter order (example: 2 = 2nd order polynomial)
der = 2 # order of the derivative (0 = no derivative, 1 = 1st derivative, 2 = 2nd 
derivative)

# SG filter across all spectrums

x_2d = matrix (, nrow = dim (x)[1], ncol = dim (x)[2])
for ( i in 1:dim(x)[1]){
  x_2d[ i ,] = savgol ( x_dm [ i ,], w, ord , der)
}

x_2d = x_2d[,w:(dim(x)[2]-w)]
nm_dm = data.matrix (nm)
nm_2d = nm_dm [,w:(dim(x)[2]-w)]

# plotting preprocessed data

matplot (nm_2d,t(x_2d), type ="l", xlab ="Wavelength (nm)", ylab ="Absorbance", 
main ="2nd derivative Savitzky-Golay ")
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A3 – LOADING MOLECULAR FLUORESCENCE DATA: EXCITATION-EMISSION 
MATRIX (EEM)

Example A3: Loading raw molecular fluorescence data (excitation-emission matrix 
– EEM). Data extracted from: https://doi.org/10.3390/data8050081 

R Script
## loading data

# sample 1

data <- read.csv( "dataset\\Raw_data\\Aging Step 0\\Fluorescence\\20210512_0752_
AS0_Q1K2V1U0.csv",header=FALSE, sep =",")

## visualize data

View (data)

# comments:
# columns V1 to V50 are the excitation wavelengths
# for each excitation wavelength there is an emission wavelength and the associated 
intensity
# the emission wavelength values are constant, only the intensity varies

## extracting the excitation-emission matrix

dim_data = dim (data) # data dimension

# excitation wavelength

nm_ex = data[seq (1, dim_data[2], 2)] # extracting each 2nd column of data from 
column 1
nm_ex = nm_ex[1,] # extracting only the 1st row

# emission wavelength

nm_em = data[3:253,1] # extracting rows 3 to 253 from the 1st column

# intensities

eem = data[seq(2, dim_data[2], 2)] # extracting each 2nd column of data from column 
2
eem = eem [3:253,1:length(eem)] # extracting rows between 3 and 253 to match with 
emission
eem = data.matrix(eem) # converting to numeric values

# comments:
# in the matrix, each row corresponds to an emission wavelength and each column to 
an excitation wavelength

https://doi.org/10.3390/data8050081
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## viewing the eem matrix

filled.contour(eem,color.palette = terrain.colors,main ="Sample 1")

## comments:

# each sample must be loaded individually or through a loop
# the eem matrices of each sample can be organized into a 3D tensor using the 
command:
# Example

# sample 2

data2 <- read.csv("dataset\\Raw_data\\Aging Step 0\\Fluorescence\\20210512_0915_
AS0_X0S0V2W2.csv",header=FALSE, sep =",")

dim_data2 = dim (data2)

# eem2 - intensities

eem2 = data2[seq(2, dim_data2[2], 2)]# extracting each 2nd column of data from 
column 2
eem2 = eem2[3:253,1:length(eem2)] # extracting rows between 3 and 253 to match with 
emission
eem2 = data.matrix(eem2) # converting to numeric values

filled.contour(eem2,color.palette = terrain.colors,main = "Sample 2")

# 3D tensor

tensor = array (c(eem,eem2), c(dim(eem)[1], dim(eem2)[2], 2)) # for 2 samples

dim(tensor) # dimensions of the 3D tensor

############ EEM and eemR PACKAGES ############

# EEM data in other formats (other devices) can be loaded using the EEM or eemR 
packages

# Examples:

# EEM PACKAGE: https://cran.r-project.org/web/packages/EEM/vignettes/vignette.html

## loading packages

# install.packages ("EEM")
# library (EEM)
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## loading sample

# data = readEEM('filename') # data in .csv or .txt

## viewing the sample

# drawEEM(data, n=1)

# eemR PACKAGE: https://cran.r-project.org/web/packages/eemR/eemR.pdf

## loading packages

# install.packages ("eemR")
# library (eemR)

## loading sample

# data = eem_read ('filename', recursive = FALSE, import_function ="cary") # Cary 
equipment data
# data = eem_read ('filename', recursive = FALSE, import_function ="aqualog") # 
Aqualog equipment data
# data = eem_read ('filename', recursive = FALSE, import_function ="shimadzu") # 
Shimadzu equipment data
# data = eem_read ('filename', recursive = FALSE, import_function = "fluoromax4") # 
Fluoromax equipment data

# eemR packages perform pre-processing on loaded data through specific routines - see 
tutorials in the links
# EEM: https://cran.r-project.org/web/packages/EEM/vignettes/vignette.html
# eemR: https://cran.r-project.org/web/packages/eemR/eemR.pdf






