

Chief editor

Profª Drª Antonella Carvalho de Oliveira

Executive editor

Natalia Oliveira

Editorial assistant

Flávia Roberta Barão

Librarian

Janaina Ramos

Graphic project

Ellen Andressa Kubisty

Luiza Alves Batista

Nataly Evilin Gayde

Thamires Camili Gayde

Cover pictures

iStock

Art edition

Luiza Alves Batista

2024 by Atena Editora

Copyright © Atena Editora

Copyright of the text © 2024 The

authors

Copyright of the edition © 2024 Atena

Editora

Rights for this edition granted to Atena

Editora by the authors.

Open access publication by Atena

Editora

All content in this book is licensed under a Creative

Commons Attribution License. Attribution-Non-Commercial-

NonDerivatives 4.0 International (CC BY-NC-ND 4.0).

The content of the text and their data in their form, correctness and reliability are the

sole responsibility of the authors, and they do not necessarily represent the official

position of Atena Editora. It is allowed to download the work and share it as long as

credits are given to the authors, but without the possibility of altering it in any way or

using it for commercial purposes.

All manuscripts were previously submitted to blind evaluation by peers, members of

the Editorial Board of this Publisher, having been approved for publication based on

criteria of academic neutrality and impartiality.

Atena Editora is committed to ensuring editorial integrity at all stages of the publication

process, avoiding plagiarism, fraudulent data or results and preventing financial

interests from compromising the publication's ethical standards. Suspected scientific

misconduct situations will be investigated to the highest standard of academic and

ethical rigor.

Editorial Board

Exact and earth sciences and engineering

Prof. Dr. Adélio Alcino Sampaio Castro Machado – Universidade do Porto

Profª Drª Alana Maria Cerqueira de Oliveira – Instituto Federal do Acre

Profª Drª Ana Grasielle Dionísio Corrêa – Universidade Presbiteriana Mackenzie

Profª Drª Ana Paula Florêncio Aires – Universidade de Trás-os-Montes e Alto Douro

Prof. Dr. Carlos Eduardo Sanches de Andrade – Universidade Federal de Goiás

Profª Drª Carmen Lúcia Voigt – Universidade Norte do Paraná

https://www.edocbrasil.com.br/

Prof. Dr. Cleiseano Emanuel da Silva Paniagua – Colégio Militar Dr. José Aluisio da

Silva Luz / Colégio Santa Cruz de Araguaina/TO

Profª Drª Cristina Aledi Felsemburgh – Universidade Federal do Oeste do Pará

Prof. Dr. Diogo Peixoto Cordova – Universidade Federal do Pampa, Campus Caçapava

do Sul

Prof. Dr. Douglas Gonçalves da Silva – Universidade Estadual do Sudoeste da Bahia

Prof. Dr. Eloi Rufato Junior – Universidade Tecnológica Federal do Paraná

Profª Drª Érica de Melo Azevedo – Instituto Federal do Rio de Janeiro

Prof. Dr. Fabrício Menezes Ramos – Instituto Federal do Pará

Prof. Dr. Fabrício Moraes de Almeida – Universidade Federal de Rondônia

Profª Drª Glécilla Colombelli de Souza Nunes – Universidade Estadual de Maringá

Prof. Dr. Hauster Maximiler Campos de Paula – Universidade Federal de Viçosa

Profª Drª Iara Margolis Ribeiro – Universidade Federal de Pernambuco

Profª Drª Jéssica Barbosa da Silva do Nascimento – Universidade Estadual de Santa

Cruz

Profª Drª Jéssica Verger Nardeli – Universidade Estadual Paulista Júlio de Mesquita

Filho

Prof. Dr. Juliano Bitencourt Campos – Universidade do Extremo Sul Catarinense

Prof. Dr. Juliano Carlo Rufino de Freitas – Universidade Federal de Campina Grande

Prof. Dr. Leonardo França da Silva – Universidade Federal de Viçosa

Profª Drª Luciana do Nascimento Mendes – Instituto Federal de Educação, Ciência e

Tecnologia do Rio Grande do Norte

Prof. Dr. Marcelo Marques – Universidade Estadual de Maringá

Prof. Dr. Marco Aurélio Kistemann Junior – Universidade Federal de Juiz de Fora

Prof. Dr. Marcos Vinicius Winckler Caldeira – Universidade Federal do Espírito Santo

Profª Drª Maria Iaponeide Fernandes Macêdo – Universidade do Estado do Rio de

Janeiro

Profª Drª Maria José de Holanda Leite – Universidade Federal de Alagoas

Profª Drª Mariana Natale Fiorelli Fabiche – Universidade Estadual de Maringá

Prof. Dr. Miguel Adriano Inácio – Instituto Nacional de Pesquisas Espaciais

Prof. Dr. Milson dos Santos Barbosa – Universidade Tiradentes

Profª Drª Natiéli Piovesan – Instituto Federal do Rio Grande do Norte

Profª Drª Neiva Maria de Almeida – Universidade Federal da Paraíba

Prof. Dr. Nilzo Ivo Ladwig – Universidade do Extremo Sul Catarinense

Profª Drª Priscila Natasha Kinas – Universidade do Estado de Santa Catarina

Profª Drª Priscila Tessmer Scaglioni – Universidade Federal de Pelotas

Prof. Dr. Rafael Pacheco dos Santos – Universidade do Estado de Santa Catarina

Prof. Dr. Ramiro Picoli Nippes – Universidade Estadual de Maringá

Profª Drª Regina Célia da Silva Barros Allil – Universidade Federal do Rio de Janeiro

Prof. Dr. Sidney Gonçalo de Lima – Universidade Federal do Piauí

Prof. Dr. Takeshy Tachizawa – Faculdade de Campo Limpo Paulista

Chemometrics: a university course using the R language

Diagramming:

Correction:

Indexing:

Review:

Authors:

Nataly Gayde

Maiara Ferreira

Amanda Kelly da Costa Veiga

The authors

Kássio Michell Gomes de Lima

Camilo de Lelis Medeiros de Morais

Ana Carolina de Oliveira Neves

International Cataloging-in-Publication Data (CIP)

L732 Lima, Kássio Michell Gomes de

Chemometrics: a university course using the R language /

Kássio Michell Gomes de Lima, Camilo de Lelis

Medeiros de Morais, Ana Carolina de Oliveira Neves. –

Ponta Grossa - PR: Atena, 2024.

 Format: PDF

System requirements: Adobe Acrobat Reader

Access mode: World Wide Web

Includes bibliography

ISBN 978-65-258-2700-1

DOI: https://doi.org/10.22533/at.ed.001241508

1. Chemometrics. 2. Analytical chemistry. I. Lima,

Kássio Michell Gomes de. II. Morais, Camilo de Lelis

Medeiros de. III. Neves, Ana Carolina de Oliveira. IV. Title.
CDD 543.085

Prepared by Librarian Janaina Ramos – CRB-8/9166

Atena Editora

Ponta Grossa – Paraná – Brasil

Telefone: +55 (42) 3323-5493

www.atenaeditora.com.br

contato@atenaeditora.com.br

http://www.atenaeditora.com.br/

AUTHORS' DECLARATION

The authors of this work: 1. Attest that they do not have any commercial interest that

constitutes a conflict of interest in relation to the published scientific article; 2. They

declare that they actively participated in the construction of their manuscripts,

preferably in: a) Study design, and/or data acquisition, and/or data analysis and

interpretation; b) Elaboration of the article or revision in order to make the material

intellectually relevant; c) Final approval of the manuscript for submission; 3. They certify

that published scientific articles are completely free from fraudulent data and/or

results; 4. Confirm correct citation and reference of all data and interpretations of data

from other research; 5. They acknowledge having informed all sources of funding

received for carrying out the research; 6. Authorize the publication of the work, which

includes the catalog records, ISBN (Internacional Standard Serial Number), D.O.I.

(Digital Object Identifier) and other indexes, visual design and cover creation, interior

layout, as well as the release and dissemination according to Atena Editora's criteria.

PUBLISHER'S DECLARATION

Atena Editora declares, for all legal purposes, that: 1. This publication constitutes only

a temporary transfer of copyright, right to publication, and does not constitute joint and

several liability in the creation of published manuscripts, under the terms provided for

in the Law on Rights copyright (Law 9610/98), in art. 184 of the Penal Code and in art.

927 of the Civil Code; 2. Authorizes and encourages authors to sign contracts with

institutional repositories, with the exclusive purpose of disseminating the work,

provided that with due acknowledgment of authorship and editing and without any

commercial purpose; 3. All e-books are open access, so it does not sell them on its

website, partner sites, e-commerce platforms, or any other virtual or physical means,

therefore, it is exempt from copyright transfers to authors; 4. All members of the

editorial board are PhDs and linked to public higher education institutions, as

recommended by CAPES for obtaining the Qualis book; 5. It does not transfer,

commercialize or authorize the use of the authors' names and e-mails, as well as any

other data from them, for any purpose other than the scope of dissemination of this

work.

PR
EF

A
C

E
The origin of this book arose when the authors saw the need to write

theoretical and experimental material for the Chemometrics discipline of the
undergraduate and postgraduate Chemistry course at UFRN/Brazil. The R
programming language was chosen in this book because it presents a free, easily
accessible work environment, rich in a variety of packages and various statistical
tools capable of exploring different functionalities through different means and
formats. Furthermore, with the versatility of being able to work through a command
line or through menus pre-defined by the software itself, it is very accessible and
practical to explore the main concepts of Chemometrics.

 The main topics of Chemometrics that are explored in undergraduate
and postgraduate courses at UFRN are, among them, Descriptive Statistics and
their properties (Chapter 1), Design and Optimization of Experiments (Chapter
2), Pattern Recognition (Chapter 3), Higher-order Multivariate Classification
(Chapter 4), Higher-order Multivariate Regression (Chapter 5) and Digital Images
(Chapter 6). All chapters contain the fundamentals descriptions and examples
on simulated or real data through scripts in the R language. In addition, the book
presents an appendix which brings together the main scripts in the R language
for importing, pre-processing and organizing matrices that are necessary for the
development of multivariate models. Finally, to encourage learning, proposed
exercises were created so that students can try to answer them based on theory
and solved examples in each chapter.

The authors

A
C

KN
O

W
LE

D
G

EM
EN

TS
The support, collaboration and encouragement of several people was

relevant for this textbook, to whom we would like to give special thanks. Firstly,
we would like to thank our dear Professor Luiz Seixas das Neves (Institute
of Chemistry/UFRN) for the learning, for the opportunity to share ideas and
knowledge, and above all, for the consideration and trust placed in our work
throughout our academic career. Secondly, we want to thank Professor Hélio
Scatena Júnior (in memory) for teaching the Contemporary Chemistry subject
offered in Chemistry courses at UFRN for some years. We also want to thank the
Research Group in Biological Chemistry and Chemometrics at UFRN, especially
professors Edgar Perin Moraes, Davi Serradella Vieira, Fabrício Gava Menezes
and Luiz Henrique da Silva Gasparotto who enriched the Chemometrics
environment with discussions and applications in studies published in over more
than a decade. I would also like to thank all the students and collaborators who
passed through and were part of the world of Chemometrics built here at UFRN
and in various parts of the world, especially the esteemed Prof. Francis L. Martin
(United Kingdom).

I, professor, Kássio Lima, now want to thank my wife Katarina, who was
undoubtedly a great pillar in the writing and preparation phases of this work.
Always helpful, understanding and the person who always believed in my work.
For all the love and friendship to whom I can only thank for understanding the
number of hours put into this book, especially regarding the education of our
beloved children, João Pedro and Maria Luísa. These beloved children, two
graces achieved, were and will continue to be my greatest inspirations for this
book.

I, professor, Camilo Morais, would like to thank my friends and family who
have always believed and supported my work. In particular, I want to thank my
wife and partner, Julyana, for showing me her love, dedication and friendship
at all times during the writing and preparation of this book. Finally, I would like
to thank the other authors, professors Kássio Lima and Ana Carolina, for the
invitation, discussions, understanding and hours dedicated for preparing this
book with such care.

I, professor, Ana Carolina, would like to especially thank those who have
always been my biggest supporters throughout the journey that brought me here:
my parents, Gladson and Maria da Conceição, and Fabrício, a great friend and
life partner. Without your support, it wouldn't have been possible. I would also like
to thank the other authors, professors Kássio and Camilo, for the invitation, for
the rich exchange of knowledge and for the friendship.

SU
M

M
A

RY
CHAPTER 1 - DESCRIPTIVE STATISTICS AND ITS PROPERTIES..............1

1.1 Some important concepts in descriptive statistics ..1

1.2 Normal distribution .. 5

1.3 Normality test – Shapiro-Wilk ... 8

1.4 Levene's test .. 9

1.5 Standardized normal distribution ..10

1.6 t-test .. 11

1.7 Analysis of variance: ANOVA ..15

1.8 Post-Hoc Tests in ANOVA .. 20

1.9 Non-parametric tests .. 22

Proposed exercises ... 29

CHAPTER 2 - DESIGN OF EXPERIMENTS 31

2.1 Fundamental steps for planning experiments ...31

2.2 Full Factorial Design ... 32

2.3 Factorial Design 22 ... 33

2.4 Factorial Design 23 ... 36

2.5 Unreplicated Factorial Design ..41

2.6 Fractional Factorial Design .. 42

2.7 2k Factorial Design with center-point ... 47

2.8 Box-Behnken Design ... 50

2.9 Multi-level Factorial Design ... 53

2.10 Nonlinear optimization for response surface ... 57

2.11 Simplex-lattice Design ... 59

2.12 Simplex-centroid Design ... 63

Proposed exercises ... 65

CHAPTER 3 - PATTERN RECOGNITION ...67

UNSUPERVISED ANALYSIS ... 68

SU
M

M
A

RY
3.1 Cluster Analysis ...68

3.2 Hierarchical Cluster Analysis (HCA) ...68

3.3 K-means ...75

3.4 Principal Component Analysis (PCA) ...78

3.5 Multivariate Curve Resolution with Alternating Least Squares (MCR-ALS)..86

SUPERVISED ANALYSIS.. 88

3.6 KNN (K-Nearest Neighbors) ...88

3.6 Linear Discriminant Analysis (LDA) ... 91

3.7 Quadratic Discriminant Analysis (QDA) ..97

3.8 Support Vector Machines (SVM) ... 100

3.10 Decision Trees ... 107

Proposed exercises ..109

CHAPTER 4 - HIGHER ORDER MULTIVARIATE CLASSIFICATION........111

4.1 Types of analytical data .. 112

4.2 Methods for selecting samples in multivariate classification 113

4.3 Methods for selecting variables in multivariate classification 113

4.4 Performance metrics ... 114

4.5 – PCA-LDA ... 115

4.6 SPA-LDA ... 127

4.7 GA-LDA .. 138

4.8 TUCKER3–LDA ... 151

4.9 PARAFAC–LDA ...163

Proposed exercises ..174

CHAPTER 5 - HIGHER ORDER MULTIVARIATE CALIBRATION...........176

5.1 Univariate Calibration ..177

5.2 Calibration by Least Squares – univariate model 177

5.3 Multiple Linear Regression (MLR) ..190

SU
M

M
A

RY
5.4 MLR – SPA ..196

5.5 Principal Component Regression (PCR) ...199

5.6 Partial least squares (PLS) regression ..203

5.6 PARAFAC.. 207

5.7 MCR-ALS ...212

5.8 UPLS/RBL ..218

5.9 N-PLS ...223

Proposed exercises ... 227

CHAPTER 6 - DIGITAL IMAGES ...229

6.1 Digital Imaging: an overview ..230

6.2 RGB to HSV and Grayscale Conversion .. 233

6.3 Exploratory Analysis ...234

6.4 Multivariate classification ...240

6.5 Multivariate Regression ...253

Proposed exercises ..261

APPENDIX A ..262

A1 – Loading spectral data using R ... 262

A2 – Preprocessing spectral data in R ... 263

A3 – Loading molecular fluorescence data: excitation-emission matrix (EEM)....267

1Descriptive statistics and its properties

CHAPTER 1

DESCRiPTivE STATiSTiCS AND iTS PROPERTiES
"It is not knowledge, but the act of learning, not possession but the
act of getting there, which grants the greatest enjoyment." Friedrich
Gauss (1777-1855)

CHAPTER IDEA
We need statistical calculations to make decisions about the quality of our experimental

measurements. In this chapter, some important concepts for this decision making will be
presented, including: normal distribution, parametric and non-parametric statistical tests.

Upon completing the chapter, you should be able to:
a) Explain what a normal distribution is and when its application is appropriate.

b) Use descriptive statistical parameters on a set of observations.

c) Define parametric and non-parametric tests.

d) Discuss the assumptions for parametric tests to be used.

e) Determine the best statistical strategy for a real experiment.

f) Propose new analytical methodologies based on statistical tests.

g) Build new scripts in R language for decision making.

1. Some important concepts in descriptive statistics
In general, chemistry researchers use authentic replicas of a sample to carry out an

analytical method. In this sense, some types of variables appear (qualitative, quantitative,
discrete and continuous). Variable, in statistics, is the assignment of a number to each
characteristic of the observation unit, that is, it is a defined mathematical function of the
population.

The statistical technique to be used must be appropriate to the type of variable.
In quantitative variables, we have a list of position measures (mean, median, quartiles,
mode) and dispersion measures (variance, coefficient of variation, range). The equations
and definitions of the main descriptive statistical parameters will be presented in Table 1 .

2Descriptive statistics and its properties

Table 1: Descriptive statistical parameters.

Population average

Sample mean

Median It is the central value in a dataset that has been arranged in order of
magnitude

Population standard
deviation

Sample standard
deviation

Combined standard
deviation

Population variance σ2

Sample variance s2

Mean standard error

Coefficient of
Variation

Relative Standard
Deviation (RSD)

Spread or range (f) It is the difference between the highest value and the lowest value in the set

Mode (m0) It is the value (or values) of maximum frequency
Absolute frequency

(fi)
It is the number of times a given value (xi) is observed.

Relative frequency or
proportion (p'i)

It is the quotient between its absolute frequency and the total number of

observations.
Maximum Largest value from a set of n observations
Minimum Smallest value from a set of n observations
Quartiles These are values that divide a data sample into four equal parts. 1st.

Quartile: the value that leaves 25% of the data below it and 75% above it.
2nd. Quartile: the value that leaves 50% of the data below it and 50% above
it (median). 3rd. Quartile: the value that leaves 75% of the data below it and

25% above it.
Pearson's coefficient

of Skewness (Ap)
If | A p | < 0.15, symmetric distribution
If 0.15 ≤| A p | ≤1, moderately asymmetric distribution
If | A p | >1, strongly asymmetric distribution

Amplitude (R) Difference between the largest and smallest value in a set of n observations

Descriptive statistics and its properties 3

Where:

• x i = individual values of the variable X;

• N = number of measurements for the entire population/sample;

• Nt = total number of data sets being combined.

Each of these statistical parameters will be calculated and discussed below, through
Example 1.

Example 1: The following example was carried out by students of the Quantitative
Analytical Chemistry course at the Federal University of Rio Grande do Norte, 2023.1, in
which we have the experimental results of the calibration of a 10 mL graduated pipette.
Using the data in the table below, calculate and discuss all parameters or graphs generated
by this experiment.

Replicas Volume, mL
1 9.988
2 9.993
3 9.986
4 9.980
5 9.975
6 9.982
7 9.986
8 9.982
9 9.981
10 9.990

Descriptive statistics and its properties 4

R Script

#################### Loading packages ###################

Installation/loading of packages if not installed

install.packages ("dplyr")
library (dplyr)
install.packages ("psych")
library (psych)

############### Loading the database ###############

Select the working directory (working directory)
Session > Set Working Directory > Choose Directory

Load the database

pipette = c(9.988, 9.993, 9.986, 9.980, 9.975, 9.982, 9.986, 9.982, 9.981, 9.990)
data <- data.frame (pipette) # create dataset
View (data)
glimpse (data)

############## Measures for quantitative variables ##############

Amplitude
range(pipette)
hist(pipette)
summary(pipette)
boxplot (pipette)

Frequency tables of categorical variables

Absolute frequencies:

table (pipette)

Relative frequencies:

prop.table (table (pipette))

Functions describe and describe.by (package 'psych')
describe (pipette)

Descriptive statistics and its properties 5

1.2 Normal distribution
Experimental measurements present random or undetermined errors. These errors

cannot be eliminated, but can be estimated from a certain number of repetitions. When we
perform a very large number of experiments, we result in a bell-shaped curve known as a
Gaussian curve or normal error curve, as shown in Figure 1 .

Figure 1 : Probability density function graph.

The two important parameters of the Gaussian distribution are the mean (µ), describing
where the experimental values are centered, and the variance (σ2) which describes their
degree of dispersion. Depending on the parameters (µ and σ), we will have different normal
distributions. Furthermore, the variable X is a continuous variable comprised between
-∞ <x <+ ∞ and the area under the curve is equal to 1. This area we call probability. The
probability density function, Equation 1, is described as:

 Eq. 1

A common way of writing whether X describes a normal distribution is to write
X ~ N (µ, σ2). Below, we have a practical exercise using the R language to build the probability
function, histograms and check some sample statistics.

Descriptive statistics and its properties 6

Example 2: Using the R script proposed below, we will explore the dataset by
calculating some statistical parameters. We will build graphs (histograms and boxplots)
and discuss statistical concepts presented here (probability density, for example).

R Script

Normal distribution in R

#################### Loading packages ###################

install.packages ("dplyr")
library (dplyr)
install.packages ("psych")
library (psych)

Normal probability density function
Sequence for the horizontal axis

x = seq (from = 95, to = 105, length =500)

Evaluating x in the pdf

y = dnorm (x, mean = 100, sd = 1)

Plotting the pdf

plot (x, y, type = "l", ylab = "density")

Random sample taken from the normal distribution
#x ~ N(100.1)

set.seed (7) # seed for randomization

Collecting the sample

sample = rnorm (1000,mean = 100, sd = 1)

Sample histogram

hist (sample, main = "sample, n = 1000", ylab = "frequency", col = "cadetblue")

Sample statistics

mean (sample) # average
sd (sample) # standard deviation
summary (sample) # sample distribution measures (min; 1st Quart.; Median; Mean; 3rd
Qu.; Max)
boxplot (sample, ylab = "sample", col = "gold")

Descriptive statistics and its properties 7

Example 3: We will show, through this R script, how it is possible to calculate the
probability of finding a continuous variable (x). In this case, less than 3.3, assuming that
the probability function can be described as X ~ N (3.4, 0.12). Thus, we will show how it
is possible to calculate the probability of a continuous variable (x) between 3.1 and 3.7,
assuming the same probability function. Additionally, we will construct a graph that presents
a region of interest within a given probability function.

R Script
probability calculations

#################### Loading packages ###################
install.packages ("dplyr")
library(dplyr)
install.packages ("psych")
library(psych)

#X ~ N(3.4, 0.1^2)
P(X < 3.3) = ?

pnorm (3.3, mean = 3.4, sd = 0.1)

P(3.1 < X < 3.7) = P(X < 3.7) - P (X < 3.1)?

pnorm (3.7, mean = 3.4, sd = 0.1) - pnorm (3.1, mean = 3.4, sd = 0.1)

Illustrating P (X < 3.3)
x axis sequence

x1 = seq (from = 3, to = 3.8, length = 500)

evaluating x1 in the pdf

y1 = dnorm (x1, mean = 3.4, sd = 0.1)

plotting the pdf

plot (x1, y1, type = "l", ylab = "density")

sequence of x to color

a = seq (3, 3.3, length = 100)

evaluating the pdf

b = dnorm (a, mean = 3.4, sd = 0.1)

coloring probability of interest

polygon (c(3,a ,3.3), c(0,b,0), col = "coral")

Descriptive statistics and its properties 8

1.3 Normality test – Shapiro-Wilk
In 1965, Samuel Sanford Shapiro and Martin Bradbury Wilk [1] proposed a statistical

test to evaluate whether a given data distribution is similar to the Gaussian normal
distribution. As a result, the test will return the W statistic, which will have an associated
significance value, the p-value.

Here, it is important to define some fundamental concepts based on hypothesis tests
that will serve to understand decision making.

1. the null hypothesis indicated by H0 states that there is no effect or variation
in the population; the alternative hypothesis is indicated by H1 and both must
be mutually exclusive and exhaustive. After the test, we make one of two
decisions: reject H0 and accept H1; or not reject H0.

2. there are two types of errors possible to occur in hypothesis testing: i) type I
error (rejecting H0 and H0 being true); or, ii) type II error (not rejecting H0 and
H0 being false.

3. the probability of a type I error occurring is indicated by the significance level
(a). It is usually a = 5%

4. the probability of a type II error occurring is indicated by b.

5. the probability of occurring a value as extreme (much greater or much smaller
than the value of H0) as that obtained in the sample is indicated by P. Here, we
can have two situations: i) if P ≤ a, we reject H0 (in this case, the sample value
is as or more extreme than the critical value). ii) if P > a, we do not reject H0 (in
this case, the sample value is less extreme than the critical value).

Descriptive statistics and its properties 9

Example 4: Using the R script below, we will show how to determine whether a given
variable presents normality using the Shapiro-Wilk test.

R Script

Installing packages and importing a dataset (30 obs vs 7 variables)

install.packages ("dplyr")
library(dplyr)
install.packages ("RVAideMemoire")
library(RVAideMemoire)

Read csv file

data <- read.csv('Database 2.csv', sep = ';', dec = ',',
 stringsAsFactors = T, fileEncoding = "latin1")

View data in a separate window

View (data)

View a summary of the data

glimpse (data)

Checking data normality

shapiro.test(data$Height)

Checking data normality
Shapiro by group (RVAideMemoire package)

#(dependent variable ~ independent variable, data)

byf.shapiro(Salary ~ Education , data)

1.4 Levene's test
We can consider that Levene's test [2] evaluates the equality of variances

(homogeneity of variances or homoscedasticity) of a variable calculated for two or more
groups. After testing, there are two possibilities:

H o : group variances are homogeneous → p > 0.05
H 1 : group variances are not homogeneous → p < 0.05
Example 5: Using the R Script below, we will show whether there is homogeneity of

variances through Levene's test for a given dataset.

Descriptive statistics and its properties 10

R Script

Checking the homogeneity of variances

Loading Packages

install.packages ("car")
library (car)

Loading data

data <- read.csv('Database 3.csv', sep = ';', dec = ',',
 stringsAsFactors = T, fileEncoding = "latin1")

Levene's test

H0: group variances are homogeneous -> p > 0.05
H1: group variances are not homogeneous -> p < 0.05

leveneTest (Grade_Biology ~ Room_Position , data, center = mean)

1.5 Standardized normal distribution
Now, we can perform the calculations of the standardized normal distribution, in

which the relative frequency is represented in a graphical form as a function of the quantity
z. This value is basically the deviation from the mean divided by the standard deviation of the
population. Here, the numbers contained in the shaded areas represent the percentage of
the area over the curve, which is included among the z values. Let's look at some examples:
i) 50% of the area of the Gaussian curve is present between -0.67 σ and +0.67 σ; ii) 80%
of the area of the Gaussian curve is contained between -1.28 σ and +1.28 σ; iii) 90% are
located between -1.64 σ and 1.64 σ. These previously mentioned values (50%, 80% and
90%) are also called confidence level, as they consist of the probability that the true mean
is located within a certain interval, as long as we have a reasonable estimate of σ. The
probability of a result being outside the confidence interval can be called the significance
level.

In statistics, we can state that the confidence interval (CI) for a true value of the mean
m is the range of values between which the population mean µ is expected to be contained
with a certain probability. Its limits are known as confidence limits. This concept was
introduced into statistics by Jerzy Neyman in 1937 [3]. When we write a set of experimental
measurements in the form of 5.25 ± 0.15, according to this concept, the true value of the
mean must be contained in the range between 5.40 to 5.10, with a certain probability (95%,
for example).

Example 6: Using the R script, we will show some probability calculations for
standardized distributions.

Descriptive statistics and its properties 11

R Script
Standardized normal distribution

Loading Packages

install.packages ("rstatix")
library (rstatix)

Z ~ N(0.1)
phi (-1.64) = P(Z < 1.64) = to be determined

pnorm (-1.64)

P (z < z_alpha) = 0.05, z_alpha = to be determined

qnorm (0.05)

P(- z_alpha < z < z_alpha) = 0.95, | z_alpha | = to be determined

qnorm (0.025)
abs (qnorm (0.025))

P(z > z_alpha) = 0.10, z_alpha = to be determined

qnorm (0.10, lower.tail = F)
qnorm (0.90)

We cannot estimate the true mean from a single observation. Typically, it is
recommended to use the experimental mean of N experimental measurements as an
estimate of µ. Thus, we have:

 Eq. 2

Equation 2 is only applied in experiments with no systematic errors and in which the
values of s are a good approximation of the values of σ.

1.6 t-test
Often in Chemometrics, we have a limitation in time or in the number of samples to

consider that s is a good estimate of σ. The determination of the confidence interval when
σ is unknown was originally proposed by the English statistician Mr. WS Gosset, in 1908,
in a classic article published in the journal Biometrika [4]. The curious fact was: to avoid
the discovery of any commercial secret from his employer (hired by the Guinnes brewery
to statistically analyze the results of alcohol content determinations), Gosset published the

Descriptive statistics and its properties 12

article under the name Student. This pseudonym "Student" and his work on the Student
t-distribution became famous in the world of statistics.

Commonly, we can find three types of Student's t-test. Here they are:

a. Single-sample t-test: We use this test when we want to compare the mean of
a single sample with a known population mean (reference value). After testing,
there are two possibilities:

H o: sample mean = reference value → p >0.05

H 1: sample mean ≠ reference value → p <0.05

Example 7: We will use the following R script to demonstrate how we should employ
the single-sample t-test. We will discuss their results and present some graphs that confirm
our observations.

R Script

Performing the t-test for one sample

Loading Packages

install.packages ("rstatix")
library(rstatix)

Loading the data

data <- read.csv('Database 2.csv', sep = ';', dec = ',',
 stringsAsFactors = T, fileEncoding = "latin1")

t-test

t.test (data$Height , mu = 167)

Observation:
The two-tailed test is the default; If you want one-tailed , you need to include:
alternative = "greater" or alternative = "less"
Example: t. test (data$Height , mu = 167, alternative = "greater")
In this case, the test checks whether the sample mean is greater than the tested
mean
Visualization of data distribution

boxplot (data$Height , ylab = "Height (cm)")

b. t for independent samples: We use this test when we want to compare the
means of two independent samples.

Descriptive statistics and its properties 13

After testing, there are two possibilities:

H o: mean of group A = mean of group B → p >0.05

H 1: mean of group A ≠ mean of group B → p <0.05

Example 8: Use the following R script to calculate the independent samples t-test.
We will discuss the results and evaluate your assumptions.

R Script

Installing packages, if not done previously

install.packages("dplyr")
library(dplyr)
install.packages("RVAideMemoire")
library(RVAideMemoire)
install.packages("car")
library(car)

Loading the data

data <- read.csv('Database 3.csv', sep = ';', dec = ',',
 stringsAsFactors = T, fileEncoding = "latin1")
View(data)
glimpse (data)

Performing the t test for independent samples

t.test (Grade_Biology ~ Room_Position , data, var.equal =TRUE)

t.test (Grade_Physics ~ Room_Position , data, var.equal =FALSE)

t.test (Grade_History ~ Room_Position , data, var.equal =FALSE)

Observation
var.equal =FALSE does not consider the two variances as equal, between the two
groups
The two-tailed test is the default; If you want one-tailed , you need to include:
alternative = "greater" or alternative = "less"
Example: t.test (Grade_Biology ~ Room_Position , data, var.equal =TRUE,
alternative ="greater")
In this case, the test checks whether the average of the first group is greater
than the average of the second
OR is considering "Front" as the first group

Descriptive statistics and its properties 14

Visualization of data distribution

par(mfrow = c(1,3)) # Graphs come out on the same line
boxplot (Grade_Biology ~ Room_Position , data = data, ylab = "Biology Grades", xlab
= "Position in the Room")
boxplot (Grade_Physics ~ Room_Position , data = data, ylab = "Physics Grades", xlab
= "Position in the Room")
boxplot (Grade_History ~ Room_Position , data = data, ylab = "History Grades", xlab
= "Position in the Room")

c. T-test for dependent (paired) samples: The t test for dependent samples is
used when you want to compare the means of two samples that are dependent,
that is, when one sample is obtained from the same population as the other.

Example 9: Using the following R script, we will show how the paired t-test and its
results are determined.

R Script

Load the packages that will be used

install.packages ("dplyr")
library(dplyr)
install.packages ("psych")
library(psych)

Load the database

data <- read.csv('Database 4.csv', sep = ';', dec = ',', fileEncoding = "latin1")
View (data)
glimpse (data)

Performing the paired t test

t.test (data$Seizures_PT, data$Seizures_S1, paired = TRUE)

Visualization of data distribution

par(mfrow = c(1,2)) # Graphs on the same line
boxplot (data$Seizures_PT , ylab = "Number of Seizures", xlab = "Pre-Treatment")
boxplot (data$Seizures_S1, ylab = "Number of Seizures", xlab = "1st week of
Treatment")

Descriptive statistics and its properties 15

Descriptive data analysis (part 1)

summary (data$Seizures_PT)
summary (data$Seizures_S1)

Descriptive data analysis (part 2):

describe (data$Seizures_PT)
describe (data$Seizures_S1)

1.7 Analysis of variance: ANOVA
Basically, ANOVA consists of a statistical method for testing the equality of three

or more population means, based on the analysis of sample variances. Its purpose is to
understand whether there is a significant difference between the groups being compared.
Experimental data must be separated into groups according to a characteristic or factor. In
this case, each factor can have two or more groups.

a. One-way ANOVA or treatment with repeated measures

Here some requirements need to be met:

I. populations must present normal distributions and with the same variance;

II. samples must be random and mutually independent;

III. the different samples are obtained from populations classified in just one
category.

Once these requirements are met, we need to declare the null (H0) and alternative
(H1) hypotheses for the one-way ANOVA. Ho assumes that the mean of all populations are
equal (µ 1 = µ 2 = µ 3 = ... = µk) and the variance between groups (variation due to interaction
between groups) is significantly smaller than the variance within groups (variation due to
chance). On the other hand, H1 assumes that at least one population mean is different, that
is, there is an effect of factor or treatment.

Therefore,
Ho: there are no differences between the group means → p >0.05
H1: there are differences between the group means → p <0.05
The basic idea of ANOVA also consists of the partition of variability, in which one part

represents the variability of groups (between groups) and the other represents the variability
due to other factors (within groups). A common practice for testing H0 and H1 is to summarize
the results of the one-way ANOVA test in the form of a table, as shown below:

Descriptive statistics and its properties 16

Table 2: One-way ANOVA.

Source of variation Sum of
Squares (SS)

Degrees of
Freedom (DF) Mean Square (MS) F

Factor Effect (between
groups) FSS I – 1

Error (within groups) ESS N – 1

Total TSS N – 1

Example 10: Let's look at an R script of a 1-way ANOVA with repeated measures.
We will take it step by step and discuss its main results.

R Script

Loading Packages

install.packages ("psych")
library(psych)
install.packages ("ggplot2")
library(ggplot2)

Read data from a file (import Dataset)

data <- read.table ("data.txt" ,header=TRUE)

Shows boxplots of the classifiers, side by side, in relation to the PCC performance
response

data$Classifiers <- as.factor (data$Classifiers)
bp <- ggplot (data, aes (x=Classifiers, y= PCC,fill =Classifiers)) +
 geom_boxplot () +
 labs(title="PCC Boxplot by Classifiers",x="Classifiers", y = "PCC")
bp + theme_classic()

Create the ANOVA table

data.anova <- aov (data$PCC ~ data$Classifiers)

Show the ANOVA table

summary (data.anova)

another way to perform ANOVA (using the esyanova package)

install.packages ("easyanova")
library(easyanova)

ea1(data, design = 1, alpha = 0.05)

Descriptive statistics and its properties 17

b. multiple ANOVA

When an experiment involves two or more factors, then we have a multiple ANOVA.
We test two-way ANOVA when we have a numerical dependent variable of two or more
categorical independent variables. This test allows you to verify the effect of each of the
independent variables as well as the interaction between them.

Table 2: Two-way ANOVA.

Source of
variation

Sum of Squares
(SS)

Degrees of
Freedom (DF) Mean Square (MS) F

Factor A SSA r – 1

B Factor SSB c – 1

AB (interaction) SSAB (r-1).(c-1)

Error EES rc(n' – 1)

Total TSS n – 1

Example 11: Below we have an R script to apply a two-factor ANOVA.

R Script

Load the packages that will be used

install.packages ("dplyr")
library(dplyr)
install.packages ("car")
library(car)
install.packages ("rstatix")
library(rstatix)
install.packages ("emmeans")
library(emmeans)
install.packages ("ggplot2")
library(ggplot2)

csv file (database 6)

data <- read.csv('Database 6.csv', sep = ';', dec = ',', fileEncoding = "latin1")

Descriptive statistics and its properties 18

View (data) # View data in a separate window
glimpse (data) # View a summary of the data

data$Alcohol <- factor (data$Alcohol ,
 levels = c("None",
 "2 Mugs",
 "4 Mugs"))
summary (data$Alcohol)

Check the 3 assumptions (normality, outliers, homogeneity) in the raw data

1 - Normality of groups - Shapiro test

data %>% group_by(Gender , Alcohol) %>%
 shapiro_test (Memory)

Here, all the observations follow a normal distribution and the assumption has
been met for ANOVA

2 - Presence of outliers per group in two ways

form 1 - uses the quartiles calculated without the median

boxplot (data$Memory ~ data$Gender:data$Alcohol)

form 2 - uses the quartiles calculated with the median

data %>% group_by (Gender, Alcohol) %>%
 identify_outliers (Memory)

3 Verification of homogeneity of variances - Levene's test (car package)

leveneTest (Memory ~ Gender * Alcohol , data, center = mean)

By default, the test performed by the car package is based on the median (median)
Mean-based testing is more robust
Changed to be average based

Construction of the ANOVA model

model <- aov (Memory ~ Gender * Alcohol , data)
model$coefficients
summary.aov(model)

Anova in another way

install.packages ("easyanova")
library(easyanova)

Descriptive statistics and its properties 19

ea2(data, design = 1)

Normality test for residuals:

shapiro.test (model$residuals)

Ho = Null hypothesis follows normal distribution and p > 0.05
HA = Alternative hypothesis does not follow normal distribution and p < 0.05

Checking the presence of outliers among the residues:

boxplot (model$residuals)
data$residuals <- model$residuals
data %>% group_by(Gender, Alcohol)%>%
 identify_outliers(residuals)
data %>% identify_outliers (residuals)
Verification of homogeneity of variances - Levene's test (car package)

leveneTest (residuals ~ Gender * Alcohol , data, center = mean)

Carrying out ANOVA

Change in contrast to match SPSS:

options (contrasts = c("contr.sum", "contr.poly"))

Model creation:

model <- aov(Memory ~ Gender * Alcohol , data)
summary(model)
Anova(model, type = 'III')

type III = sum of squares of residuals and does not take into account the order
of factors
type I = depends on the order of factors at insertion time
H0 p > 0.05
Ha p < 0.05
Interaction plot (ggplot2 package)
With genders with different colors

ggplot(data, aes(x = Alcohol, y = Memory, group = Gender, color = Gender)) +
 geom_line(stat = "summary", fun.data = "mean_se", size = 0.6) +
 geom_point(stat = "summary", fun = "mean") +
 geom_errorbar(stat = "summary", fun.data = "mean_se", width = 0.2)

there is dependence on the effect of alcohol depending on gender

With Genders with different lines

Descriptive statistics and its properties 20

ggplot(data, aes(x = Alcohol, y = Memory, group = Gender)) +
 geom_line(stat = "summary", fun.data="mean_se", size = 0.6, aes(linetype =
Gender)) +
 geom_point(stat = "summary", fun = "mean", size = 2, aes(shape = Gender)) +
 geom_errorbar(stat = "summary", fun.data = "mean_se", width = 0.2)

Estimated Marginal Means (emmeans package)
here we will analyze whether there are # statistics between genders as a function
of memory

data %>% group_by(Gender) %>%
 emmeans_test(Memory ~ Alcohol, p.adjust.method = "bonferroni")

data %>% group_by(Alcohol) %>%
 emmeans_test(Memory ~ Gender, p.adjust.method = "bonferroni")

In the example above, the two-way ANOVA showed that there is an effect of alcohol
F(2.42) = 20.06; p < 0.001 and interaction between alcohol and gender F(2,42) = 11.91;
p < 0.001 on memory. Subsequent analyzes (estimated marginal means, with Bonferroni
correction) showed that alcohol consumption did not affect the memory of female individuals,
but the consumption of 4 mugs decreased the memory score of male individuals, when
compared to individuals of the same gender who did not consume alcohol, or only consumed
2 mugs.

1.8 Post-Hoc Tests in ANOVA
In Latin, post hoc means "after this", that is, analyzing the experimental data later.

The goal of a post-hoc analysis is to find patterns after the study is completed, and to find
results that were not the main objective. In the particular case of ANOVA, after determining
what differences exist between the means, post hoc range tests and multiple pairwise
comparisons can determine which means differ. Range tests identify homogeneous subsets
of means that are not different from each other. There are several post-hoc methods
available, among them we have the "hsd", "bonferroni", "lsd", "scheffe", "newmankeuls" and
"duncan" methods.

The Tukey test [5], named after John Tukey, consists of comparing all possible pairs
of means and is based on the least significant difference (LSD), considering the group's
percentiles. When calculating the LSD, the distribution of the studentized amplitude, the
mean square of the ANOVA residuals and the sample size of the groups are also used.

Descriptive statistics and its properties 21

Example 12: Below, there is an R script for applying Tukey's parametric test. What
main results are obtained in this test?

R Script

Creating the dataset

analyst1 = c(10.3, 9.8, 11.4)
analyst2 = c(9.5, 8.6, 8.9)
analyst3 = c(12.1, 13.0, 12.4)
analyst4 = c(9.6, 8.3, 8.2)
analyst5 = c(11.6, 12.5, 11.4)

data <- data.frame (analyst1, analyst2, analyst3, analyst4, analyst5)
dat <- stack (data) # creates vector in stack format

Performing the ANOVA

anova = aov (dat$values~dat$ind)
summary(anova)

qf (0.95, df1 = 4, df2 = 10) # f critical

Tukey test
Who differs from whom? To do this, we need to compare the averages
We will perform the Tukey Test.

tk_test <- TukeyHSD (anova)
tk_test

For p values < α we can say that the means differ
at a significance level of 5% (α = 0.05).
When p > α it is not possible to say that the means differ.
The same result can be expressed by the test graph

plot (tk_test)

Finally, we can make a boxplot to better represent the data:

boxplot (data)

Here we can also find a statistical package in R called DescTools to perform post-hoc
analysis.

Descriptive statistics and its properties 22

R Script

Post-hoc analysis (DescTools Package)
Post hocs allowed : "hsd", "bonferroni", "lsd", "scheffe", "newmankeuls", "duncan"

install.packages ("DescTools")
library(DescTools)

#PostHocTest
Using Duncan

PostHocTest(anova, method = "duncan")

Using TukeyHSD

PostHocTest(anova, method = "hsd")

Using Bonferroni

PostHocTest(anova, method = "bonferroni")

1.9 Non-parametric tests
Non-parametric techniques or tests encompass a series of statistical tests that

have in common the absence of assumptions about distribution followed by the population
from which the sample was drawn. Basically, when the assumptions of normality and
homoscedasticity are not met, non-parametric tests are necessary for decision making.

Here some non-parametric tests for decision making will be presented.

a) Friedman
 The Friedman test is a non-parametric statistical test developed by Milton

Friedman [6-8] similar to ANOVA. It is used to detect differences in treatments in various
test experiments. The procedure involves sorting each row (or block), then considering the
column rank values.

https://pt.wikipedia.org/wiki/Testes_de_hip%C3%B3teses
https://pt.wikipedia.org/wiki/Milton_Friedman
https://pt.wikipedia.org/wiki/Milton_Friedman
https://pt.wikipedia.org/wiki/Ranking

Descriptive statistics and its properties 23

Example 13: Below there is an R script to perform the Friedman test.

R Script

Loading Packages

install.packages("dplyr")
library(dplyr)
install.packages("rstatix")
library(rstatix)
install.packages("reshape")
library(reshape)
install.packages("PMCMRplus")
library(PMCMRplus)
install.packages("ggplot2")
library(ggplot2)

Load the database

Important: select the working directory (working directory)
This can be done manually: Session > Set Working Directory > Choose Directory

data <- read.csv2('Database 7.csv', stringsAsFactors = T) # Loading csv file

View (data)
glimpse (data)

Change database format from "wide" to "long" (package: reshape)
Restructuring the database

datal <- melt (data,
 id = "ID",
 measured = c("Professor1", "Professor2", "Professor3", "Professor4"))

View (datal)

Renaming the columns of the new database

colnames(datal) = c("ID", "Teacher", "Grade")

Ordering the columns by experimental subject

datal <- sort_df(datal , vars = "ID")

glimpse(datal)

Transforming the ID variable into a factor

Descriptive statistics and its properties 24

datal$ID <- factor(datal$ID)

Carrying out the Friedman test

friedman.test(Grade ~ Teacher | ID, data = datal)

Another option:
friedman.test(datal$Grade , datal$Professor , datal$ID)

Post-hoc testing

Option 1: Wilcoxon with Bonferroni correction

datal %>% wilcox_test(Grade ~ Teacher, paired = TRUE, p.adjust.method = "bonferroni")

Option 2 - post- hocs from the PMCMRplus package :
Dunn- Bonferroni - equivalent to SPSS:
frdAllPairsSiegelTest(datal$Grade, datal$Teacher,
 datal$ID, p.adjust.method = "bonferroni")

Others:

frdAllPairsNemenyiTest(datal$Grade, datal$Teacher,
 datal$ID, p.adjust.method = "bonferroni")

frdAllPairsConoverTest(datal$Grade, datal$Teacher,
 datal$ID, p.adjust.method = "bonferroni")

Descriptive data analysis

datal %>% group_by(Teacher) %>%
 get_summary_stats(Grade, type="median_iqr")

Data visualization

boxplot(Grade ~ Teacher, data = datal)

Distribution analysis

par(mfrow=c(2,2))
hist(datal$Grade [datal$Teacher == "Professor1"],
 ylab = "Attendance", xlab = "Grades", main = "Teacher 1")
hist(datal$Grade [datal$Teacher == "Professor2"],
 ylab = "Attendance", xlab = "Grades", main = "Teacher 2")
hist(datal$Grade [datal$Teacher == "Professor3"],
 ylab = "Attendance", xlab = "Grades", main = "Teacher 3")
hist(datal$Grade [datal$Teacher == "Professor4"],
 ylab = "Attendance", xlab = "Grades", main = "Teacher 4")

Descriptive statistics and its properties 25

Histogram with all groups, separated by color

ggplot(datal , aes (x = Grade)) +
 geom_histogram(aes (color = Teacher, fill = Teacher),
 alpha = 0.3, position = "stack", binwidth = 1)

b) Wilkoxon
This non-parametric test developed by F. Wilcoxon in 1945 [9] is used as an alternative

to the paired t-student test when samples do not follow a normal distribution. Thus, the
Wilcoxon test is used to test whether the sample medians are equal in cases where the
normality hypothesis is not accepted or when it is not possible to check this assumption.
There are two important assumptions in this non-parametric test: i) the dependent variable
must be originally numeric or categorical; ii) the independent variable must be composed of
two dependent (paired) groups.

Example 14: Below there is an R script to check the Wilcoxon test on a given dataset.

R Script

Load the packages that will be used

install.packages ("dplyr")
library (dplyr)
install.packages ("rstatix")
library (rstatix)

Load the database

Important: select the working directory (working directory)
This can be done manually: Session > Set Working Directory > Choose Directory

data <- read.csv('Database 4.csv', sep=";", dec=",", stringsAsFactors = T,
 fileEncoding = "latin1")

View (data)
glimpse (data)

Wilcoxon test

wilcox.test(data$Seizures_PT , data$Seizures_S1, paired = TRUE)

Observation:
The two-tailed test is the default; If you want one-tailed, you need to include:
alternative = "greater" or alternative = "less"
Example: wilcox.test(data$Convulsoes_PT , data$Convulsoes_S1,
paired = TRUE, alternative ="greater")
In this case, the test will check whether the median of Seizures_PT is greater
than the median of Seizures_S1

Descriptive statistics and its properties 26

c) Mann-Whitney test
In 1947, HB Mann and DR Whitney [10] generalized the technique developed by

Wilcoxon (1945) to compare central tendencies of two independent samples of equal size.
The Mann-Whitney test (Wilcoxon rank-sum test) is indicated for comparing two unpaired
groups to verify whether or not they belong to the same population whose requirements for
applying the Student's t test have not been met. Unlike the t-test, which tests the equality of
means, the Mann-Whitney (U) test tests the equality of medians.

Example 15: Below there is an R script to perform the non-parametric Mann-Whitney
test. Was this test helpful?

R Script

Load the packages that will be used

install.packages("dplyr")
library(dplyr)
install.packages("rstatix")
library (rstatix)

Load the database
Important: select the working directory (working directory)
This can be done manually: Session > Set Working Directory > Choose Directory

data <- read.csv('Database 3.csv', sep = ';', dec = ',',
 stringsAsFactors = T, fileEncoding = "latin1") # Loading csv file

View(data) # View data in a separate window
glimpse(data) # View a summary of the data

Performing the Mann-Whitney test

wilcox.test(Grade_Biology ~ Room_Position , data = data)
wilcox.test(Grade_Physics ~ Room_Position , data = data)
wilcox.test(Grade_History ~ Room_Position , data = data)

Observation:
The two-tailed test is the default; If you want one-tailed, you need to include:
alternative = "greater" or alternative = "less"
Example: wilcox.test(Grade_History ~ Room_Position , data = data, alternative =
"greater")
In this case, the test checks whether the median of the first group is greater than
the median of the second
OR is considering "Front" as the first group

Descriptive statistics and its properties 27

Step 4: Descriptive data analysis

data %>% group_by(Room_Position) %>%
 get_summary_stats(Grade_Biology, Grade_History, Grade_Physics, type = "median_
iqr")

Parametric data

data %>% group_by(Room_Position) %>%
 get_summary_stats(Grade_Biology, Grade_History, Grade_Physics, type = "mean_sd")

Distribution preview

par(mfrow=c(1,2))
hist(data$Grade_Biology[data$Room_Position == "Front"],
 ylab ="Frequency", xlab ="Grade", main ="Front Group")
hist(data$Grade_Biology[data$Room_Position == "Back"],
 ylab ="Frequency", xlab ="Grade", main ="Back Group")

d) Kruskal-Wallis test
 The non-parametric Kruskal-Wallis test, named after William Kruskal and W. Allen

Wallis [11] in 1952, is a method used to test whether samples originate from the same
distribution. We typically use it to compare two or more independent samples of equal or
different sizes. The parametric equivalent of this test is the F test used in one-way ANOVA.

Example 16: Below there is an R script to perform the Kruskal-Wallis non-parametric
test. Comment on the results of this test.

R Script

Load the packages that will be used

install.packages("dplyr")
library(dplyr)
install.packages ("rstatix")
library(rstatix)
install.packages("ggplot2")
library(ggplot2)

Load the database

Important: select the working directory (working directory)
This can be done manually: Session > Set Working Directory > Choose Directory

Descriptive statistics and its properties 28

data <- read.csv('Database 5.csv', sep = ';', dec = ',',
 stringsAsFactors = T, fileEncoding = "latin1") # Loading csv file

View (data)
glimpse (data)

Kruskal-Wallis test

kruskal.test(BC ~ Group, data = data)
kruskal.test(Pressure ~ Group, data = data)

Post-hoc testing
Dunn's test with p-value adjustment

dunn_test(BC ~ Group, data = data, p.adjust.method = "bonferroni")
dunn_test(Pressure ~ Group, data = data, p.adjust.method = "bonferroni")

Descriptive data analysis

data %>% group_by(Group) %>%
 get_summary_stats(BC, Pressure , type="median_iqr")

Data visualization

par(mfrow=c(1,2))
boxplot(BC ~ Group, data = data)
boxplot(Pressure ~ Group, data = data)

Distribution analysis

par(mfrow=c(1,3))
hist(data$BC[data$Group=="Placebo"],
 ylab="Frequency",xlab="bps",main="Placebo")
hist(data$BC[data$Group == "AH New"],
 ylab = "Frequency", xlab = "bps", main="AH New")
hist(data$BC[data$Group == "AH Default"],
 ylab = "Frequency", xlab = "bps", main="AH Default")

par(mfrow=c(1,3))
hist(data$Pressure[data$Group == "Placebo"],
 ylab ="Frequency", xlab ="bps", main ="Placebo")
hist(data$Pressure[data$Group == "AH New"],
 ylab ="Frequency", xlab ="bps", main ="AH New")
hist(data$Pressure[data$Group == "AH Default"],
 ylab ="Frequency", xlab ="bps", main ="AH Default")

Descriptive statistics and its properties 29

Histogram with all groups, separated by color

ggplot(data, aes(x = BC)) +
 geom_histogram(aes(color = Group, fill = Group),
 alpha = 0.3, position = "identity", binwidth = 10)

ggplot(data, aes(x = Pressure)) +
 geom_histogram(aes(color = Group, fill = Group),
 alpha = 0.3, position = "dodge", binwidth = 10)

Below there is a table that summarizes the main statistical concepts discussed
throughout Chapter 1 for comparison purposes.

Table 3: Summary of statistical concepts from Chapter 1

Independent Groups Parametric Confidence interval and limits
(1 or 2 groups) Student's t (1 or 2 groups)

Non-parametric Mann-Whitney's U
Paired groups Parametric paired Student's t

Non-parametric Wilkoxon's test
≥ 3 independent groups Parametric 1 or 2 factor ANOVA

Non-parametric Kruskall-Walls
≥ 3 paired groups Parametric Anova for repeated measures

Non-parametric Friedman's test

PROPOSED EXERCISES
01 – Propose a chemical experiment that contains replicas and, based on the

observations, present the statistical parameters described using an R script.
02 – There is a repository of univariate and multivariate data on the internet based on

the R language (https://archive.ics.uci.edu/) in which you must choose one or more sets of
data to carry out a descriptive statistical study in detail. Present your results.

03 – Propose an experiment or use a dataset from a public database (preferably) to
apply the t-test for a single sample. Build an R script to demonstrate your hypotheses and
main conclusions.

04 – Propose an experiment or use a dataset from a public database (preferably) to
apply the t-test for independent samples. Build an R script to demonstrate your hypotheses
and main conclusions.

05 – Propose an experiment or use a dataset from a public database (preferably)
to apply the paired t-test. Build an R script to demonstrate your hypotheses and main
conclusions.

https://archive.ics.uci.edu/

Descriptive statistics and its properties 30

06 – Propose an experiment or use a dataset from a public database (preferably)
aiming to use 1-way ANOVA. In this exercise, use an R script so that you can test your
hypotheses, make assumptions, post hoc evaluation, construct graphs and interpret results.

07 – Like the previous exercise, use an ANOVA of two or more factors for a given
experiment or a dataset extracted from a public database (preferably). Show step-by-step
in a R script for testing hypotheses, assumptions, post hoc, graphs and interpretation of
results.

08 – During Chapter 1 of this book, some non-parametric tests were presented
(Friedman, Wilkoxon, Mann-Whitney, Kruskal-Wallis). Each non-parametric test is a
hypothesis test that does not require the population distribution to be characterized by
certain parameters (μ and σ). Therefore, based on experiments or datasets found in a
database (preferably public), present results of the four non-parametric tests mentioned and
discuss their results.

REFERENCES
[1] Shapiro, SS; Wilk, M.B. (1965). An analysis of variance test for normality (complete samples).
Biometrika . 52 (3–4): 591–611.

[2] Levene, Howard (1960). Robust tests for equality of variances. In: Ingram Olkin ; Harold Hotelling .
Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling. [Sl]: Stanford University
Press. pp. 278–292.

[3] Neyman, J. (1937). Outline of a Theory of Statistical Estimation Based on the Classical Theory of
Probability . Philosophical Transactions of the Royal Society . 236 : 333 – 380.

[4] Pearson, ES (1939). Willian Sealy Gosset, "Student" as statistician. Biometrika , 30 (3-4): 210-250.

[5] Tukey, John (1949). Comparing Individual Means in the Analysis of Variance. Biometrics . 5 (2):99–114.

[6] Friedman, Milton (1937). The use of ranks to avoid the assumption of normality implicit in the analysis
of variance. Journal of the American Statistical Association. 32 (200): 675–701.

[7] Friedman, Milton (1939). A correction: The use of ranks to avoid the assumption of normality implicit in
the analysis of variance». Journal of the American Statistical Association. 34 (205): 109.

[8] Friedman, Milton (1940). A comparison of alternative tests of significance for the problem of m rankings.
The Annals of Mathematical Statistics. 11 (1): 86-92.

[9] Wilcoxon, Frank (1945). Individual comparisons by ranking methods . Biometrics Bulletin . 1 (6): 80-83

[10] Mann, HB and Whitney, DR (1947) On a Test of Whether One of Two Random Variables Is
Stochastically Larger than the Other. Annals of Mathematical Statistics, 18, 50-60.

[11] Kruskal, William H.; Wallis, W. Allen (1952). Use of Ranks in One-Criterion Variance Analysis . Journal
of the American Statistical Association . 47 (260): 583–621.

https://pt.wikipedia.org/w/index.php?title=Martin_Wilk&action=edit&redlink=1
https://pt.wikipedia.org/w/index.php?title=Biometrika&action=edit&redlink=1
https://pt.wikipedia.org/wiki/Ingram_Olkin
https://pt.wikipedia.org/wiki/Harold_Hotelling
https://en.wikipedia.org/wiki/Biometrics_(journal)
http://sci2s.ugr.es/keel/pdf/algorithm/articulo/wilcoxon1945.pdf
http://www.tandfonline.com/doi/abs/10.1080/01621459.1952.10483441

31Design of experiments

CHAPTER 2

DESiGN OF ExPERiMENTS
"To consult the statistician after an experiment is finished is often merely to
ask him to conduct a postmortem examination. He can perhaps say what the
experiment died of." Ronald Fisher (1890-1962)

CHAPTER IDEA
Design of Experiments (DOE) or experimental design is an ideal technique for

studying the effect of a set of several factors on a response variable of interest. The main
objectives of experimental planning are to reduce process time, reduce the number of tests
without compromising the quality of information, reduce operational costs and increase the
quality and yield of processes.

In this chapter, after analyzing the data presented in the examples, some practical
conclusions from the experiment will be detailed through graphs to present the results and
some confirmation tests. Upon completing the chapter, you should be able to:

a) Understand the main terms (response variable, levels, factors or treatments,
randomization and blocks) used in planning;

b) Define the stages of experimental design (recognition and identification of the
problem, goals, choice of response variable, choice of experimental design types,
and others);

c) Carry out graphic analysis for a more assertive interpretation of experiments;

d) Represent the studied process through mathematical expressions;

e) Carry out a selection of variables that influence the process with a reduced number
of tests;

f) Build new scripts in R language for decision making using experiment design;

g) Understand the importance of knowing in depth the problem (system or process)
you want to study.

2.1 Fundamental steps for planning experiments
Experiments can be considered a series of tests in which intentional changes are

made to the input variable of a process or system so that we can analyze and identify the
reasons for changes that can be observed in the response variable. When designing and
carrying out experiments, one of the main goals is to ensure that the process is minimally
affected by external sources of variability.

The fundamental steps of experimental design are:

https://www.azquotes.com/quote/97013
https://www.azquotes.com/quote/97013
https://www.azquotes.com/quote/97013
https://www.azquotes.com/quote/97013
https://www.azquotes.com/quote/97013

Design of experiments 32

a) Recognition of the problem;

b) Determining the goals;

c) Choosing the response variable, factors and levels;

d) Choosing the type of experimental design;

e) Formulation of a hypothesis;

f) Analysis of results;

g) Preparation of conclusions and recommendations.

Basically, there are three techniques used to define tests in experimental planning: i)
use of replicates; ii) randomization; and, iii) blocking.

The replication consists of repeating a test under pre-established conditions,
obtaining an estimate of how the experimental error may affect the results of the experiments
and whether these results are statistically different. Randomization is a purely statistical
experimental design technique in which the sequence of tests is random, and the choice
of materials that will be used in these tests is also random. Experimental blocking is a
statistical technique that consists of organizing experimental units into groups (blocks) that
are similar to each other. The purpose of blocking is to contain and evaluate the variability
produced by the disturbing factors of the experiment. Blocking allows you to create a more
homogeneous experiment and increase the precision of the responses that are analyzed.
The central idea of blocking is to make the experimental units (EUs) homogeneous within
the blocks.

Now, some experimental designs will be presented (full factorial, fractional factorial,
Box-Behnken, mixtures, multi-levels) through examples written in the R language.

2.2 Full Factorial Design
Factorial design makes it possible to simultaneously evaluate the effect of a set of

factors (each variable of the system under study) from a reduced number of experiments
(trials), when compared to univariate processes. This design is very interesting when you
want to study the effects (change in the response when moving from a low level (-) to a high
level (+)) of two or more influencing variables, and in each attempt or replication, all the
possible combinations of levels of each variable are studied.

We can present some advantages of using factorial designs: i) fewer tests without
loss of information quality; ii) simultaneous determination of several factors, separating their
effects; iii) selection of factors that influence a process with a reduced number of tests; and,
iv) description of the experimental procedure through a mathematical model.

Factorial design is represented by bk , in which k represents the number of factors
and b the number of levels chosen. In general, if there are n1 levels of factor 1, n2 of factor

Design of experiments 33

2, ..., and nk of factor k, the planning will be a factorial n1 x n2 x ... x nk. Here we can state
that it does not necessarily mean that only n1 x n2 x ... x nk experiments will be carried
out. This is the minimum number to have a complete factorial design. Factorial planning
is indicated for starting the experimental procedure when there is a need to identify the
influencing variables and study their effects on the chosen response variable.

2.3 Factorial Design 22

Factorial design with k factors and 2 levels is a particular case, called 2k factorial
design. The factors and levels are pre-determined, establishing this design as a fixed
effects model. To ensure objectiveness in the analysis, the hypotheses of normality and
homoscedasticity must be satisfied. This type of design is normally used in the initial stages
of research, allowing the study of several factors with a reduced number of experiments.

Example 1: In this example, we will describe a step-by-step guide for creating a
complete factorial design (2 factors and 2 levels), t-test, ANOVA and regression.

R Script

levels
levels = c(-1,1)

planning
plan = expand.grid(levels, levels)

#replicating the planning
plan = rbind(plan, plan)
plan

column names
colnames(plan) = c("x1", "x2")

Response
y = c(5.1, 8.6, 7.7, 13.5, 5.0, 8.5, 8.2, 13.9)

adding response to planning
plan$y = y
plan

#############
Step by step analysis
Planning matrix
x = model.matrix(~x1*x2, data = plan [,-3])
x
Effects
effects = crossprod(x,y)/(2*2^2/2)
effects

Design of experiments 34

Coefficients
coef = effects/2
coef

adjusted values
fitted = x%*% coef
fitted

waste
resi = y - fitted
resi

number of trials (N) and terms in the model (r)
N = dim(x)[1]
r = dim(x)[2]

Sum of squares
Waste SS
SSE = sum(resi^2)
Total SS
SST = sum(y^2)-sum(y)^2/N

Degrees of freedom
of errors
DFE = N-r

total
DFT = N-1

Mean of squares
of errors
MSE = SSE/DFE
total
MST = SST/DFT

#t calculated
t0 = coef / sqrt (MSE/N)
t0

#t critical
t_critical = qt(0.025, df = DFE, lower.tail = F)
t_critical

#p-value
pvalue = 2*pt(abs(t0), df = DFE, lower.tail = F)
pvalue

data frame t-test summary

Design of experiments 35

ttest = data.frame (coef , rep(sqrt(MSE/N),4),t0,pvalue)
colnames (ttest) = c("coef", "SE_coef", "p- value")

coefficient of multiple determination
R2 = 1 - SSE/SST
R2_aj = 1 - MSE/MST

The new
Sum of squares of effects

SS_x = crossprod(x [,-1],y)^2/N

mean of squares of effects
MS_x = SS_x /1

F calculated
F0 = MS_x /MSE
F0

pvalue
p = pf(F0, 1, DFE, lower.tail = F)
p

ANOVA summary table

source = c("x1", "x2", "x1x2", "Error", "Total")
SS = c(SS_x , SSE, SST)
DF = c(rep(1,3), DFE, DFT)
MS = c(MS_x , MSE, MST)
F0 = c(F0, NA, NA)
pvalue = c(p, NA, NA)

ANOVA = data.frame (SS, DF, MS, F0, pvalue)
rownames (ANOVA) = source
ANOVA

#############
Matrix least squares

Multiplying X transposed by
t(x)%*%x

#inverse of previous result
solve(t(x)%*%x)

#multiplying X transposed by y
t(x)%*%y

Design of experiments 36

#getting the coefficients
beta_mat = solve(t(x)%*%x)%*%t(x)%*%y
beta_mat

prediction for all experimental results
y_hat = x %*% beta_mat
y_hat

#prediction for specific values of x1 and x2
#x1 = 0, x2 = 0.5
x_esp = matrix(c(1,0,0.5,0), nrow = 4, ncol = 1)
y_esp_hat = t(x_esp)%*%beta_mat
y_esp_hat

2.4 Factorial Design 23

A factorial design with three factors (A, B and C), each with two levels (high and low),
is called a complete factorial design 23 , that is, we will have 8 trials that combine all the
factors and their levels, whose matrix is presented in Table 1.

Table 1: Complete Factorial Design Matrix 23

Test Factor 1 Factor 2 Factor 3
1 - - -
2 + - -
3 - + -
4 + + -
5 - - +
6 + - +
7 - + +
8 + + +

Example 2: In this example we will describe a step-by-step guide for creating a
complete factorial design (3 factors and 2 levels), ANOVA test, assumption test, construction
of the Pareto chart and regression analysis. The goal of this experiment is to define the
optimal conditions for determining the copper content in water samples using the ICP-OES
technique [1]. In this design, we will use the FrF2 package of R software.

Design of experiments 37

R Script
Factors
x1 = pH
x2 = flow rate, vz (mL /min)
x3 = eluent concentration, cE (mol/L)

Response
y = normalized instrumental peak height

Planning

install.packages("FrF2")
library(FrF2)

planning
plan = FrF2(nruns = 16,
 nfactors = 3 ,
 factor.names = list(pH = c(4,8) , # -
 vz = c(2.8), # mL /min
 CE = c(0.7,2)), # mol/L
 randomize = F)
experiment carried out we use F, otherwise T
summary(plan)

response - relative analytical signal
y = c(13.66, 23.60, 39.13, 95.65, 17.39, 22.36, 35.40, 100.00,
 13.04, 23.60, 35.40, 91.93, 13.66, 25.47, 33.54, 95.03)

adding response
add.response command from FrF2 package
plan = add.response(plan, y)
summary(plan)

############################ Analysis #####################
lm1 = lm(plan) # model with 2nd order interactions
summary(lm1)

anova1 = aov(lm1) # anova with 2nd order interactions
summary(anova1)

lm2 = lm(y ~ pH * vz * CE, data = plan) #complete model
summary(lm2)

anova2 = aov(lm2)
summary(lm2)

model comparison
anova(lm1, lm2) #best complete lm2

Design of experiments 38

confidence interval for coefficients
confint(lm2)

Assumptions
#normality
shapiro.test(lm2$residuals)

par(mfrow = c(2,2))
plot(lm2)
par(mfrow = c(1,1))

homoscedasticity

install.packages("olsrr")
library(olsrr) # another package option for Breuch-Pagan test
ols_test_breusch_pagan(lm2, rhs = T, multiple = T)

Graphics
via FrF2

MEPlot(lm2)

IAPlot(lm2)

cubePlot(lm2,eff1 = "pH", eff2 = "vz", eff3 = "CE", main = "")

install.packages("ggpubr")
library(ggpubr)

effects graph
p1 = ggline(data = plan ,
 x = "pH", y = "y",
 add = c("mean_se","jitter"),
 color = "blue") + theme_bw ()
p1

p2 = ggline(data = plan,
 x = "vz", y = "y",
 add = c("mean_se","jitter"),
 color = "green") + theme_bw ()
p2

p3 = ggline(data = plan,
 x = "CE", y = "y",
 add = c("mean_se","jitter"),
 color = "red") + theme_bw ()

Design of experiments 39

p3

p12 = ggline(data = plan,
 x = "pH", y = "y",
 add = c("mean_se","jitter"),
 color = "black") + theme_bw ()
p12

ggarrange(p1,p2,p12)

Pareto chart of standardized effects
t_critical = qt(0.025, df.residual (lm2), lower.tail = F) # t-critical

MSE = deviance(lm2)/ df.residual (lm2)
SE_coef = sqrt(MSE/16) # standard error of coefficients
t0 = lm2$coefficients/ SE_coef # t0

#data frame for t0
t_0 = data.frame(names(coef(lm2)), abs (t0))
colnames(t_0) = c("term","t0")

Pareto Chart - standardized effect
pPar = ggbarplot(data = t_0[-1,],
 x = "term", y = "t0",
 col = "green4",
 fill = "lightgreen",
 rotate = T,
 sort.val = "asc") + theme_bw() +
 geom_hline(yintercept = t_critical, col = "red")
pPar

ggarrange(p1,p2,p12,pPar)

Contour plots

library(ggplot2)

planning via expand.grid
plan2 = expand.grid(c(4,8),
 c(2,8),
 c(0.7,2))
plan2

plan2 = rbind(plan2,plan2)
colnames(plan2) = c("pH", "vz", "CE")
plan2$y = y

Design of experiments 40

model decoded via expand.grid
lm3 = lm(y ~ pH * vz * CE, plan2)
lm3 # never test significance of decoded coefficients

mesh
grid = expand.grid(pH = seq(4,8, length = 40),
 vz = seq(2,8, length = 40),
 CE = seq(0.7,2, length = 40))

prediction on the mesh
y_hat = predict(lm3, newdata = grid)
grid$y = y_hat

contour plots

cp1 = ggplot(data = grid,
 mapping = aes(x = pH, y = vz, z = y)) +
 geom_line() +
 scale_fill_distiller(palette = "Spectral",
 direction = -1) +
 geom_contour(color = "gray50") + theme_bw()
cp1

cp2 = ggplot(data = grid,
 mapping = aes(x = pH, y = CE, z = y)) +
 geom_line() +
 scale_fill_distiller(palette = "Spectral",
 direction = -1) +
 geom_contour(color = "gray50") + theme_bw()
cp2

cp3 = ggplot(data = grid,
 mapping = aes(x = CE, y = vz, z = y)) +
 geom_line() +
 scale_fill_distiller(palette = "Spectral",
 direction = -1) +
 geom_contour(color = "gray50") + theme_bw()
cp3

ggarrange(cp1,cp2,cp3)

Prediction

Using model made via expand.grid - lm3
predict(lm3, newdata = data.frame (pH = 6,
 vz = 5,
 CE = 2))

lm3$fitted.values

Design of experiments 41

2.5 Unreplicated Factorial Design
Example 3: This example was taken from the study [2] in which the influence of

four factors on flexural strength (response) was investigated using an unreplicated factorial
design. In this design, we will use the unrepx package of R software.

R Script
Factors
dc = density of the compound
vf = fiber fraction volume
tp = pyrolysis temperature
ta = softening temperature of the synthesized methyl-polycarboxylane

response
FS = flexural strength
https://doi.org/10.1007/s12034-017-1535-5

######
planning

library(FrF2)

design = FrF2(nruns = 16,
 nfactors = 4,
 factor.names = c("dc", "vf", "tp", "ta"),
 randomize = F) # generate the planning in the default order
summary(design)

answer - flexural strength (MPa)
FS = c(425,495,450,571,374,441,409,468,
 399,525,461,592,401,489,393,487)

adding response to planning
design$y = FS
summary(design)

#####
Calculating the effects

X = model.matrix(~dc*vf*tp*ta, data = design[,-5])
X

N = dim(X)[1]

effects = crossprod(X,FS)/(N/2)
effects

Design of experiments 42

#######################
Working with the unrepx package for unreplicated factorial
Package authored by Professor Russell V. Lenth

install.packages("unrepx")
library(unrepx)

Effects
effects2 = yates(FS) # responses must be in standard order
effects2

attr(effects2,"mean")

Half normal plot
hnplot(effects2, half = TRUE, method = "Lenth", ID = ME(effects2))

Pareto PSE plot
parplot(effects2, method = "Lenth")

Significance analysis of effects
t-test via Lenth 's pseudo standard error
eff.test(effects2, method = "Lenth")

2.6 Fractional Factorial Design
Assuming the exponential character existing in factorial design (2k), we must

consider the possibility of having full designs that are unfeasible, especially in cases of
a great number of factors (k > 4). If we had a complete factorial design of 8 factors, we
would have a composition of 256 trials (28 = 256). A more interesting alternative would be to
employ a selection of the most significant factors or to carry out a fractional factorial design
that uses a much smaller number of tests.

We can assume that the fractional factorial designs are determined in the form 2k-p,
in which k represents the number of factors and p represents the fraction of the complete
scheme 2k. For example, if we sought to halve the number of trials in a 24 design with 16
trials (4 factors and 2 levels), we would have trials. Table
2 presents a matrix of a fractional design 24-1 (4 factors with two levels), in which the product
of the column levels of factors 1, 2 and 3 corresponds to the column level of factor 4. Note
that there is interaction between factors 1, 2 and 3 confused with factor 4, assuming the
impossibility of distinguishing the interaction between the three factors and the fourth factor.

Design of experiments 43

Table 2: Fractional Planning Matrix 24-1

Test Factor 1 Factor 2 Factor 3 Factor 4
1 - - - -
2 + - - +
3 - + - +
4 + + - -
5 - - + +
6 + - + -
7 - + + -
8 + + + +

Example 4: This example was taken from the study [3] in which the adsorption
efficiency of thiomethoxam was investigated using oxidized multi-walled carbon nanotubes
(MwCNTs) as adsorbents through a fractional factorial design (). In this design, we will
use the FrF2 and unrepx packages of R software.

R Script
via FrF2

library(FrF2)

design - 2^(5-1)

frac = FrF2(nruns = 16,
 nfactors = 5,
 factor.names = list(x1 = c(50,150), # initial concentration (mg/L)
 x2 = c(25,45), # temperature (oC)
 x3 = c(5,9), # pH
 x4 = c(50,150), # adsorbent mass (mg)
 x5 = c(1,3)), # time (h)
 randomize = F,
 alias.info = 3)
summary(frac)

answer - quantity adsorbed
qty = c(24.15, 31.5, 33.62, 63.48, 19.64, 94.08, 20.34, 57.38,
 28.12, 46.99, 24.62, 44.18, 19.29, 50.83, 19.02, 61.22)
frac$y = qty

Coded design - 2^(5-1) main fraction
frac_p = FrF2(nruns = 16,

Design of experiments 44

 nfactors = 5,
 factor.names = c("x1", "x2", "x3", "x4", "x5"),
 randomize = F,
 alias.info = 3) #3rd order information
summary(frac_p)

Coded design - 2^(5-1) alternative fraction
frac_alt = FrF2(nruns = 16,
 nfactors = 5,
 factor.names = c ("x1", "x2", "x3", "x4", "x5"),
 generators = "-ABCD", ### planning generator
 randomize = F,
 alias.info = 3) #3rd order information
summary(frac_alt)

complete model
lm1 = lm(y ~ .^5, data = frac)
summary(lm1)

model 1 confounding structure
aliases(lm1)

2nd order model to avoid confusion (interactions from 3rd to 5th order removed)
lm2 = lm(y ~ .^2, data = frac)
summary(lm2)

graphics
MEPlot(lm2)
IAPlot(lm2)

confusion lm2
aliases(lm2)

model without interaction x2*x4
lm3 = lm(y ~ x1+x2+x3+x4+x5 + x1*x2 + x1*x3 + x1*x4 + x1*x5
 + x2*x3 + x2*x5 + x3*x4 + x3*x5 + x4*x5, data = frac)
summary(lm3)

Pareto chart of standardized effects
library(ggpubr)

#t critical
t_critical = qt(0.025, df.residual(lm3), lower.tail = F) # t critical

t calculated
MSE = deviance(lm3)/df.residual(lm3) # MSE, obs = deviance = sum(lm3$residuals^2)
SE_coef = sqrt(MSE/16) #standard error of coefficients
t0 = lm3$coefficients/SE_coef # t0

Design of experiments 45

data frame for t0
t_0 = data.frame(names(coef(lm3)),abs(t0))
colnames(t_0) = c("term","t0")

Pareto chart - standardized effects
pPar = ggbarplot(data=t_0[-1,],
 x = "term", y = "t0",
 col = "green4",
 fill = "lightgreen",
 rotate = T,
 sort.val = "asc") + theme_bw()+
 geom_hline(yintercept = t_critical , col = "red")
pPar

#####
Via Lenth's pseudo standard error

library(unrepx)

#design matrix
X = model.matrix(~x1*x2*x3*x4*x5, data = frac[,-6])
X

effects
effects = crossprod(X,qty)/(16/2) # here there are confusing effects
effects = effects[2:16] # only main effects and 2nd order interactions
names(effects) = c("x1", "x2", "x3", "x4", "x5", "x1x2", "x1x3", "x1x4", "x1x5",
 "x2x3", "x2x4", "x2x5", "x3x4", "x3x5", "x4x5")
effects

#graphics
hnplot(effects, method = "Lenth", ID = ME(effects))
parplot(effects, method = "Lenth")

Design of experiments 46

Example 5: The following example, also using fractional factorial design (),
is taken from study [4] in the development of HSLA (high-strength low-alloy) steel wire
electrodeposition. In this design, we will use the FrF2 and unrepx packages of R software.

R Script
via FrF2

library(FrF2)

design - 2^(5-1)

frac2 = FrF2(nruns = 16,
 nfactors = 5,
 factor.names = list(x1 = c(32,96), # pulsed time (us)
 x2 = c(6,9), # pulse ratio (t_off/t_on)
 x3 = c(3,5), # power (mu)
 x4 = c(30,60), # wire frequency (HZ)
 x5 = c(50,150)), # pulse (mu)
 randomize = F,
 alias.info = 3) # 3rd order information
summary(frac2)

answer - average roughness
Ra = c(4.086, 6.847, 4.314, 6.185, 4.684, 5.469, 4.467, 6.52,
 4.804, 6.908, 5.073, 7.335, 5.907, 7.66, 5.688, 7.764)
frac2$y = Ra

complete model
lm1 = lm(y ~ .^5, data = frac2)
summary(lm1)

model 1 confounding structure
aliases(lm1)

2nd order model to avoid confusion (interactions from 3rd to 5th order removed)
lm2 = lm(y ~ .^2, data = frac2)
summary(lm2)

Eliminating x2 and projecting the planning in a 2^4 full factorial
lm3 = lm(y ~ (x1+x3+x4+x5)^4, data = frac2)
summary(lm3)

reducing previous model
lm4 = lm(y ~ (x1+x3+x4+x5)^3, data = frac2)
summary(lm4)

Design of experiments 47

lm5 = step(lm4, direction = "backward")
summary(lm5)

###
Via Lenth 's pseudo standard error (Hypothesis test)

library(unrepx)

design matrix
X = model.matrix(~x1*x2*x3*x4*x5, data = frac2[,-6])
X

effects
effects = crossprod(X,Ra)/(16/2) # here there are confusing effects
effects = effects[2:16] # only main effects and 2nd order interactions
names(effects) = c("x1", "x2", "x3", "x4", "x5", "x1x2", "x1x3", "x1x4", "x1x5",
 "x2x3", "x2x4", "x2x5", "x3x4", "x3x5", "x4x5")
effects

#graphics
hnplot(effects, method = "Lenth", ID = ME(effects))
parplot(effects, method = "Lenth")

2.7 2k Factorial Design with center-point
Central composite design is a type of experimental design that allows obtaining more

detailed information about a system, with the adjustment of a useful second-order model
to find the ideal conditions of the relevant factors, commonly for optimization purposes.
Such design consists of three sequential parts, the first refers to the complete or fractional
factorial design with factors (k) coded at two levels (+ and -) and with 2k tests, another axial
part consisting of points in all null coordinates and in coordinate α (+α or -α) with 2k tests,
and the last part is composed of nc tests carried out at the central point with values equal
to zero (minimum of 3 tests). Table 3 presents the matrix of this type of design for the case
of three factors.

Design of experiments 48

Table 3: Central composite design matrix for 3 factors

Test Factor 1 Factor 2 Factor 3
1 - - -
2 + - -
3 - + -
4 + + -
5 - - +
6 + - +
7 - + +
8 + + +
9 -a 0 0
10 a 0 0
11 0 -a 0
12 0 a 0
13 0 0 -a
14 0 0 a

15 0 0 0
16 0 0 0
17 0 0 0

The value of α is a new parameter that must be declared and has a value located
between 1 and √k, where k represents the number of factors investigated. The value of α
is based on the distance of the axial points in relation to the central points and is related to
the shape and size of the central composite design domain, being spherical, when α=√k, or
cubic, when α=1, with impact in the design rotation.

As in other experimental designs, in this design the values of coefficients used in
a model are extracted using regression, calculation of coefficients significance (ANOVA),
hypothesis tests or other statistical operations to extract information from the design. Finally,
a mathematical model generates a response surface with the aim of optimizing the system
and obtaining a graphical visualization of the optimum point.

Design of experiments 49

Example 6: The following example consists of the optimization of a factorial design
with a central point for determining the copper content in different water samples by ICP-
OES, extracted from the study [1]. In this design, we will use the FrF2 and rsm packages
of R software.

R Script
Factors
x1: pH
x2: flow rate - vz(mL/min)

Response
y: relative analytical signal (resulting from normalized instrumental peak
measurements).

##
via FrF2

library(FrF2)
plan.ctpt = FrF2(nruns = 4,
 nfactors = 2,
 ncenter = 3,
 factor.names = c("x1", "x2"),
 randomize = F)

summary(plan.ctpt)

response - relative analytical signal
y = c(68.64, 69.82, 81.66, 85.80, 100, 99.41, 100)

plan.ctpt$y = y
summary(plan.ctpt)

the term to evaluate liscube curvature(plan.ctpt)
lm1 = lm(y ~ x1*x2 + !iscube(plan.ctpt), data = plan.ctpt)
summary(lm1)

ANOVA
summary(aov(lm1))

##
Performing design with a central point using the rsm package

install.packages("rsm")
library(rsm)

Design of experiments 50

plan.ctpt2 = cube(basis = ~x1+x2,
 n0 = 3,
 randomize = F)

plan.ctpt2$y = y
plan.ctpt2

lm2 = lm(y ~ SO(x1,x2), data = plan.ctpt2)
summary(lm2)

#####################
Graphics for main effects and interaction

library(ggpubr)

p1 <- ggline(plan.ctpt ,
 x = "x1",
 y = "y",
 add = c("mean"),
 color = "blue") + theme_bw()

p2 <- ggline(plan.ctpt,
 x = "x2",
 y = "y",
 add = c("mean"),
 color = "green") + theme_bw()

plan.plot = plan.ctpt
plan.plot$x1 = as.factor(plan.ctpt$x1)
plan.plot$x2 = as.factor(plan.ctpt$x2)

p12 <- ggline(plan.plot,
 x = "x1",
 y = "y",
 add = c("mean", "point"),
 color = "x2") + theme_bw()

ggarrange(p1,p2,p12)

2.8 Box-Behnken Design
This type of design was proposed by Box and Behnken in 1960 and is characterized

by second order designing to generate a response surface. Like the central composite
design, this design has the disadvantages of using only three factor levels and always
results in a greater number of tests than some other designs. The Box-Behnken design
combines a 2k factorial structure with an incomplete block design, as shown in Table 4. The

Design of experiments 51

result is very economical and efficient as it generates a small number of tests; in addition,
it has rotational properties and constitutes an alternative to the central composite design.

Table 4: Box-Behnken construction scheme

Blocks Factor 1 Factor 2 Factor 3
1 b b x

2 b x b

3 x b b

The construction of the design matrix can be exemplified by the scheme in Table
4, which considers of three blocks in the composition of the tests for three factors studied.
Each β symbol, in each of the blocks, is replaced by the two-level encoded column of the
corresponding factor, extracted from the matrix of a 22 design; and, the x is filled with a
column of zeros. The procedure is repeated for each block, considering the factors that
participate in the block and, at the end, at least three tests are added at the central point,
resulting in 15 tests, as shown in Table 5.

Table 5: Box-Behnken Design's Example

Test Factor 1 Factor 2 Factor 3
1 - - 0
2 - + 0
3 + - 0
4 + + 0
5 - 0 -
6 - 0 +
7 + 0 -
8 + 0 +
9 0 - -
10 0 - +
11 0 + -
12 0 + +
13 0 0 0
14 0 0 0
15 0 0 0

Example 7: The following example consists of optimizing a Box-Behnken design with
four factors (F1 – layer thickness, F2 – heater energy, F3 – heater advance speed and F4
– printer advance speed) used in selective inhibition sintering of high-density polyethylene
parts, extracted from the study [5]. In this design, we will use the rsm package of R software
and a restricted designing optimization.

Design of experiments 52

R Script
#####
install.packages("rsm")
library(rsm)

design = bbd(k = ~x1+x2+x3+x4,
 block = F,
 n0 = 5,
 randomize = F,
 coding = list(x1 ~ (Ac - 0.2)/0.1,
 x2 ~ (Ea - 25.32)/3.16,
 x3 ~ (vf_a - 3.5)/0.5,
 x4 ~ (vf_p - 100)/20))
design

width deviation

width = c(5.3533, 5.2615, 5.0008, 4.2712, 4.5840, 2.7470, 3.8086, 3.9839, 4.3630,
3.5519, 4.0534,
 4.0031, 5.1495, 4.5581, 4.1959, 3.5946, 5.1642, 4.0103, 3.6354, 4.2529,
3.5171, 4.4485,
 5.3879, 3.4132, 3.8905, 4.3263, 4.2263, 3.9451, 3.9024)

design$y = width

###
Analysis
rsm.bbd = rsm(y ~ SO(x1,x2,x3,x4), data = design)
summary(rsm.bbd)

###
Normality
shapiro.test(rsm.bbd$residuals)

###
Graphics

Contour plots
par(mfrow = c(2,3))
contour(rsm.bbd , ~x1 + x2, image = TRUE)
contour(rsm.bbd , ~x1 + x3, image = TRUE)
contour(rsm.bbd , ~x1 + x4, image = TRUE)
contour(rsm.bbd , ~x2 + x3, image = TRUE)
contour(rsm.bbd , ~x2 + x4, image = TRUE)
contour(rsm.bbd , ~x3 + x4, image = TRUE)

Perspective plots

Design of experiments 53

persp(rsm.bbd , ~x1 + x2, zlab = "y [%]", col = rainbow(50), contours = "colors")
persp(rsm.bbd , ~x1 + x3, zlab = "y [%]", col = rainbow(50), contours = "colors")
persp(rsm.bbd , ~x1 + x4, zlab = "y [%]", col = rainbow(50), contours = "colors")
persp(rsm.bbd , ~x2 + x3, zlab = "y [%]", col = rainbow(50), contours = "colors")
persp(rsm.bbd , ~x2 + x4, zlab = "y [%]", col = rainbow(50), contours = "colors")
persp(rsm.bbd , ~x3 + x4, zlab = "y [%]", col = rainbow(50), contours = "colors")

###############
Optimization restricted
optimal = steepest(rsm.bbd , dist = seq(0, sqrt(2), by = .1), descent = T)

x_ = c(optimal$x1[nrow (optimal)], optimal$x2[nrow (optimal)], optimal$x3[nrow
(optimal)], optimal$x4[nrow(optimal)])
names(x_) = c("x1", "x2", "x3", "x4")

par(mfrow = c(2,3))
contour(rsm.bbd , ~x1+x2, col = "black", decode = F, at = x_)
points(x2 ~ x1, data = optimal , col = "blue", pch = "*")

contour(rsm.bbd , ~x1+x3, col = "black", decode = F, at = x_)
points(x3 ~ x1, data = optimal , col = "blue", pch = "*")

contour(rsm.bbd , ~x1+x4, col = "black", decode = F, at = x_)
points(x4 ~ x1, data = optimal , col = "blue", pch = "*")

contour(rsm.bbd , ~x2+x3, col = "black", decode = F, at = x_)
points(x3 ~ x2, data = optimal , col = "blue", pch = "*")

contour(rsm.bbd , ~x2+x4, col = "black", decode = F, at = x_)
points(x4 ~ x2, data = optimal , col = "blue", pch = "*")

contour(rsm.bbd , ~x3+x4, col = "black", decode = F, at = x_)
points(x4 ~ x3, data = optimal , col = "blue", pch = "*")

2.9 Multi-level Factorial Design
Multi-level factorial design, also known as generalized factorial design, is a method

used when the control factors are qualitative. In this method, each factor can have several
distinct levels. For example, Factor A can have two levels, Factor B can have three levels,
and Factor C can have five levels. Experimental trials include all combinations of these
factor levels.

The number of experiments in this design is the number of replicates times the
number of levels of each factor. For example, if one factor has four levels, another has three
and another has two, the number of combinations is 4 x 3 x 2 = 24. The simplest case of
factorial design is one in which each factor is present in only two levels. In this case, for an
experiment with k factors and two levels, 2 x 2 x ... x 2 (k times) = 2k observations of the
response variable are carried out.

Design of experiments 54

Example 8: The following example consists of the use of a multi-level factorial design
applied to turning ABNT 1045 steel, extracted from study [6]. In this design, we will use the
DoE.base package and phia of R software and a restricted designing optimization.

R Script
library(DoE.base)

Planning decoded via DoE .base package
design = fac.design(factor.names = list(CB = c("PF", "PM", "QM", "KR"),
 f = c(0.16, 0.24, 0.32),
 vc = c(310,380)),
 replications = 3,
 randomize = FALSE)
design

Planning encoded

design2 =fac.design(factor.names = list(CB = c(-1, -0.33, 0.33, 1),
 f = c(-1,0,1),
 vc = c(-1,1)),
 replications = 3,
 randomize = FALSE)
design2

Cutting force - Fc

Fc <- c(902.30, 877.31, 845.72, 991.03, 1287.40, 1198.23, 1166.36,
 1399.52, 1724.08, 1544.10, 1510.12, 1712.83, 870.88, 888.42,
 857.49, 955.14, 1280.49, 1200.65, 1161.42, 1342.05, 1674.23,
 1522.24, 1508.66, 1687.77, 912.67, 882.97, 835.37, 974.67,
 1309.27, 1205.55, 1194.54, 1370.80, 1721.67, 1528.56, 1545.90,
 1727.58, 894.77, 880.27, 846.80, 959.81, 1280.55, 1227.36,
 1169.19, 1330.01, 1676.26, 1501.24, 1509.74, 1650.20, 916.21,
 880.05, 850.29, 1008.54, 1311.10, 1209.18, 1200.13, 1356.21,
 1697.23, 1566.89, 1525.19, 1683.15, 885.12, 875.53, 838.02,
 979.96, 1286.59, 1193.36, 1164.99, 1350.14, 1686.84, 1503.87,
 1536.91, 1690.23)

design$Fc = Fc
design2$Fc = Fc

#
Analysis####

ANOVA for Fc
res.Fc = aov(Fc ~ CB*f* vc , data = design)
summary(res.Fc)

Design of experiments 55

lm.Fc = lm(Fc ~ CB*f* vc , data = design2)
summary(lm.Fc)

####### Assumptions

Normality
shapiro.test(res.Fc $residuals)

par(mfrow = c(2,2))
plot(res.Fc)

Homoscedasticity

library(car)
leveneTest(Fc ~ CB*f* vc , data = design)

multiple comparisons test

library(emmeans)
Tukey.Fc = emmeans(res.Fc, # Tukey)
 ~ CB|f)
plot(Tukey.Fc)

install.packages("ScottKnott")
library(ScottKnott)

sk1 <- with(design,
 SK(x = res.Fc, # Scott-Knott
 y = Fc,
 model = 'Fc ~ CB*f',
 which = 'f:CB',
 fl1 = 1))

sk2 = with(design,
 SK(x = res.Fc, # Scott-Knott
 y = Fc,
 model = 'Fc ~ CB*f',
 which = 'f:CB',
 fl1 = 2))

sk3 = with(design,
 SK(x = res.Fc, # Scott-Knott
 y = Fc,
 model = 'Fc ~ CB*f',
 which = 'f:CB',
 fl1 = 3))

Design of experiments 56

summary(sk1) # equal characters, equal statistical averages
summary(sk2)
summary(sk3)

par(mfrow=c(1,3))
plot(sk1)
plot(sk2)
plot(sk3)

########### Effects graph

install.packages("phia")
library(phia)
IM = interactionMeans(res.Fc)
IM
plot(IM)

library(ggpubr)

p1 <- ggline(design,
 x = "CB",
 y = "Fc",
 add = c("mean", "jitter"),
 color = "blue") + theme_bw()

p2 <- ggline(design,
 x = "f",
 y = "Fc",
 add = c("mean", "jitter"),
 color = "red") + theme_bw()

p3 <- ggline(design,
 x = "vc",
 y = "Fc",
 add = c("mean", "jitter"),
 color = "green") + theme_bw()

ggarrange(p1,p2,p3)

p12 <- ggline(design,
 x = "f",
 y = "Fc",
 add = c("mean", "jitter"),
 color = "CB") + theme_bw()

p13 <- ggline(design,
 x = "vc",
 y = "Fc",

Design of experiments 57

 add = c("mean", "jitter"),
 color = "CB") + theme_bw()

p23 <- ggline(design,
 x = "f",
 y = "Fc",
 add = c("mean", "jitter"),
 color = "vc") + theme_bw()

ggarrange(p12,p13,p23)

2.10 Nonlinear optimization for response surface
Response surface methodology (RSM) is a collection of statistical and mathematical

techniques that can be used to optimize processes. RSM is useful for modeling and analyzing
problems where the response variable is influenced by multiple factors. RSM can be used to
optimize extractive processes for one or more bioactive compounds, among others.

In the optimization process, the first part consists of finding a suitable approximation
for the relationship between the response and the factors, generally using low-degree
polynomials. RSM can also be used to combine multiple responses into a single response
using a mathematical function. The response surface obtained can be used to calculate the
optimal values for each variable, to simultaneously satisfy all responses considered.

When we are at a point on the surface far from the optimum, there will be small
curvature and a first-order model is adequate. The aim is to get as close as possible to this
optimum and once it has been found, we can use a more elaborate analysis (second order
model, for example).

Normally in the optimization process, the steepest ascending method is used to find
the maximum increase direction of the response. The steepest upward path consists of
a line that passes through the center of the region of interest and is perpendicular to the
contours of the fitted surface.

Example 9: The following example consists of the non-linear optimization for the
response surface of the components of a catalyst, taken from study [7]. In this design, we
will use the rsm and phia package of R software and a rigid analysis of the design.

Design of experiments 58

R Script
#######

library(rsm)

designing with central points via RSM

plan = ccd(basis = ~x1+x2+x3,
 n0 = c(0,3),
 randomize = F,
 alpha = "rotatable",
 coding = list(x1 ~ (Co - 10)/2, # Co mass
 x2 ~ (W - 1.5)/0.5, # W mass
 x3 ~(Ce - 4)/1)) # Ce mass
plan

y = c(88.36, 93.40, 89.22, 92.02, 91.28, 92.02, 89.62, 88.92, # factorials points
 85.98, 89.72, 91.43, 88.53, 95.66, 94.63, # axial points
 94.38, 94.53, 94.08) # central points

plan$y = y

########################
Analysis via RSM

res.rsm = rsm(y ~ SO(x1,x2,x3), data = plan)
summary(res.rsm)

####### Assumptions

Normality
shapiro.test(res.rsm$residuals)

Graphics
Contour and Surface
par(mfrow = c(2,3))
contour(res.rsm , ~x1 + x2, image = TRUE)
contour(res.rsm , ~x1 + x3, image = TRUE)
contour(res.rsm , ~x2 + x3, image = TRUE)
persp (res.rsm , ~x1 + x2, zlab = "y", col = rainbow(50), contours = ("colors"))
persp (res.rsm , ~x1 + x3, zlab = "y", col = rainbow(50), contours = ("colors"))
persp (res.rsm , ~x2 + x3, zlab = "y", col = rainbow(50), contours = ("colors"))

Optimization

radius = (2^ 3)^ 0.25 # radius of the CCD (alpha) or root 4 of 2k

Design of experiments 59

Rigid Analysis
optimum = steepest(res.rsm , dist = seq (0, radius, by =.1), descent = F)
maximize response
optimum

par(mfrow = c(1,3))
contour(res.rsm , ~x1 + x2, col = "black", decode = F)
points(c(-1, 1,- 1,1,-radius,radius,0,0,0), c(-1,-1,1,1,0,0,-radius,radius,0), col
= "blue", pch = 19)
points(x2 ~ x1, data = optimum , col = "magenta", pch = "*")

contour(res.rsm , ~x1 + x3, col = "black", decode = F)
points(c(-1, 1,- 1,1,-radius,radius,0,0,0), c(-1,-1,1,1,0,0,-radius,radius,0), col
= "blue", pch = 19)
points(x3 ~ x1, data = optimal , col = "magenta", pch = "*")

contour(res.rsm , ~x2 + x3, col = "black", decode = F)
points(c(-1, 1,- 1,1,-radius,radius,0,0,0), c(-1,-1,1,1,0,0,-radius,radius,0), col
= "blue", pch = 19)
points(x3 ~ x2, data = optimal , col = "magenta", pch = "*")

2.11 Simplex-lattice Design
A simplex-lattice planning {q,m} is a set of uniformly spaced points in a simplex

consisting of a q-component design that supports up to a polynomial of degree m. The
m+1 points are equally spaced, observing that the proportion of the ith component and all
possible combinations (mixtures) of the equation below are used:

 Eq. 1

For a three-component mixture fitting a polynomial of degree 2 (q = 3, m = 2), the
simplex-lattice consists of the six points:

(x1, x2, x3)= (1,0,0), (0,1,0), (0,0,1), (½, ½, 0), (½, 0, ½) and (0, ½, ½) eq. (2.1)
For this simplex-lattice {3,2}, the three vertices (1,0,0), (0,1,0) and (0,0,1) are pure

mixtures, and the points (½, ½, 0) , (½, 0, ½) and (0, ½, ½) are binary mixtures, located at
the midpoints of the three edges of the triangle in Fig. 2.1.

Design of experiments 60

Fig. 2.1: Simplex-lattice design for three components.

The simplex-lattice design is an experimental design where the points are located
on the edges or boundaries of the simplex. It is represented by six points, with the pure
components being the vertices of the triangle and the binary mixtures. Simplex-lattice design
was presented by Scheffé (1958) at the beginning of studies on experiments with mixtures.

Example 10: The following example consists of using simplex-lattice mixture design
to optimize the natural fiber composition of a fiber-reinforced composite in 3 factors (F1 –
sisal fiber, F2 – jute fiber, F3 – coconut fiber), extracted from the study [8]. In this design, we
will use the mixexp and NlcOptim package of R software.

R Script
install.packages("mixexp")
library(mixexp)

Simplex-lattice design with 3 components and grade 2
plan.simplex = SLD(3,2)
plan.simplex

Planning was replicated 3 times

plan.simplex = rbind(plan.simplex, plan.simplex, plan.simplex)
plan.simplex

Design planning
DesignPoints((plan.simplex))

Design of experiments 61

answer - specific breaking stress (SBS)
y = c(28.56, 21.73, 26.38, 33.71, 24.22, 22.93,
 29.58, 20.98, 25.9, 32.98, 23.98, 21.79,
 29.26, 21.23, 26.65, 34, 23.15, 22.17)

plan.simplex$SBS = y

############ Analysis

complete model

res.composite = MixModel(frame = plan.simplex,
 response = "SBS",
 mixcomps = c("x1", "x2", "x3"),
 model = 2)
summary(res.composite)

reduced model - lm command
res.composite.reduced = lm(SBS ~ -1 + x1 + x2 + x3 + x1*x2 + x1*x3,
 data = plan.simplex)
summary(res.composite.reduced)

Graphics

Contour full model plot

ModelPlot(model = res.composite,
 dimensions = list(x1="x1", x2="x2", x3="x3"),
 contour = T,
 fill = T,
 axislabs = c("sisal", "juta", "coconut"),
 color.palette = cm.colors ,
 colorkey = T)

Effects chart

ModelEff(nfac = 3,
 mod = 2,
 dir = 2,
 nproc = 0,
 ufunc = res.composite)

Assumptions

Design of experiments 62

#normality
shapiro.test(res.composite$residuals)
par(mfrow = c(2,2))
plot(res.composite)

Non-linear optimization - rigid analysis

install.packages("NlcOptim")
library(NlcOptim)

Objective function to be optimized
obj = function(x){
 y_hat = predict(res.composite , newdata = data.frame (x1 = x[1],
 x2 = x[2],
 x3 = x[3]))
 return(-y_hat)
}

equality constraint
cons_eq = function(x){
 g = x[1] + x[2] + x[3] -1
 return(list(ceq = g,c = NULL))
}

initial x

x0 = c(1/3, 1/3, 1/3)

test objective function and constraint

obj(x0)
cons_eq(x0)

optimization

opt = solnl(X = x0, objfun = obj, confun = cons_eq, lb = rep (0,3), ub = rep(1,3))

Optimal proportions
x_optim = opt$par
x_optim

Great answer
y_ = opt$fn
y_

Design of experiments 63

2.12 Simplex-centroid Design
Simplex-centroid is a design where the points are located on the edges or borders

of the simplex, with the exception of the central point (centroid). Simplex-centroid allows
you to reduce the number of coefficients in a model. It is an alternative to the simplex-
lattice design. The difference between the two designs is that the simplex-centroid creates
additional points always aligned to the centroid, while in the simplex-lattice, the points cover
the entire internal space.

Example 11: The following example consists of using simplex-centroid mixture
design to optimize the composition of biodiesel based on vegetable oil and animal fat
(factors: soybean oil, beef tallow, poultry fat; response: induction period), extracted from
study [9]. In this design, we will use the mixexp and NlcOptim package of R software.

R Script
install.packages("mixexp")
library(mixexp)

Simplex-centroide q = 3
plan.centroide = SCD(3)

replicating the central points
plan.centroide = rbind(plan.centroide , plan.centroide [7,], plan.centroide [7,],
plan.centroide [7,])
plan.centroide

Drawing planning
DesignPoints((plan.centroide))

Answer - Induction period
IP = c(3.76, 9.57, 9.77, 8.19, 7.92, 12.92,
 10.04, 9.27, 10.07, 9.35)

adding response to planning
plan.centroide$y = IP
plan.centroide

################# Analysis

complete model

res.centroide = MixModel(frame = plan.centroide,
 response = "IP",
 mixcomps = c("x1", "x2", "x3"),
 model = 4) #special cube = 4
summary(res.centroide)

Design of experiments 64

Graphics

Contour full model plot

ModelPlot(model = res.centroide ,
 dimensions = list(x1="x1", x2="x2", x3="x3"),
 contour = T,
 fill = T,
 axislabs = c("oleo_soy", "tallow_beef", "fat_birds"),
 color.palette = terrain.colors ,
 colorkey = T)

Effects chart
ModelEff(nfac = 3,
 mod = 4,
 dir = 2,
 nproc = 0,
 ufunc = res.centroide)

Assumptions

Normality
shapiro.test(res.centroide$residuals)

Non-linear optimization - rigid analysis

library(NlcOptim)

Objective function to be optimized
obj = function(x){
 y_hat = predict(res.centroide , newdata = data.frame (x1 = x[1],
 x2 = x[2],
 x3 = x[3]))
 return(-y_hat)
}

equality constraint
cons_eq = function(x){
 g = x[1] + x[2] + x[3] -1
 return(list(ceq = g,c = NULL))
}

initial x

x0 = c(1/3, 1/3, 1/3)

Design of experiments 65

test objective function and constraint

obj(x0)
cons_eq(x0)

optimization

opt = solnl(X = x0, objfun = obj, confun = cons_eq, lb = rep (0,3), ub = rep(1,3))

Optimal proportions
x_optim = opt$par
x_optim

Great answer
y_ = opt$fn
y_

PROPOSED EXERCISES
01 – Propose a complete factorial design (2 levels) using a script in R language and

present your main conclusions.
02 – There are multivariate data repositories on the internet (web of science, Science

Direct, and others) in which you must choose a full 3-level factorial design to perform a
statistical study in detail. Present the main results and conclusions.

03 – Present a fractional factorial design through a real example containing an R
script to demonstrate your hypotheses and main conclusions.

04 – Propose a Box-Behnken experiment and perform a statistical interpretation
presenting its main conclusions.

05 – Present a simplex-lattice design of mixtures and your main conclusions. Also,
perform non-linear optimization or rigid analysis of the experiment.

06 – In the same way as the previous exercise, present a simplex-centroid design of
mixtures and your main conclusions. Also, perform non-linear optimization or rigid analysis
of the experiment.

07 – Present a multi-level factorial design and its main conclusions using the R
language.

REFERENCES
1 – Escudero , LA; Cerutti, S.; Olsina , RA; Salonia, JA; Gasquez , J. A. (2010). Factorial design optimization
of experimental variables in the on-line separation/preconcentration of copper in water samples using
solid phase extraction and ICP-OES determination. Journal of Hazardous Materials. 183 (1-3): 218-223.

Design of experiments 66

2 – Kumar, S.; Bablu, M.; Janghela , S. et al. (2018). Factorial design, processing, characterization and
microstructure analysis of PIP-based C/ SiC composites. Bull Mater Sci . 41 (17): 1:13.

3 – X, Hu.; J, Xu.; C, Wu et al. (2017). Ethylenediamine grafted to graphene oxide@Fe3O4 for chromium(
VI) decontamination: Performance, modeling, and fractional factorial design. PLoS One . 12(10): 1:14.

4 – Azam, M., Jahanzaib , M., Abbasi, JA et al. (2016). Parametric analysis of recast layer formation in
wire-cut EDM of HSLA steel. Int J Adv Manuf Technol 87 :713–722.

5 – Azhikannickal , Elizabeth & Uhrin, Aaron. (2019). Dimensional Stability of 3D Printed Parts: Effects of
Process Parameters. The Ohio Journal of Science. 119(2): 9-16.

6 – Pereira, RBD, Braga, DU, Nevez , FO et al. (2013). Analysis of surface roughness and cutting force
when turning AISI 1045 steel with grooved tools through Scott–Knott method. Int J Adv Manuf Technol 69,
1431–1441.

7 – Li, S.; Qin, X.; Zhang, G. et al. (2020). Optimization of content of components over activated carbon
catalyst on CO 2 reforming of methane using multi-response surface methodology. International Journal of
Hydrogen Energy . 45(16): 9695-9709.

8 – D, Das.; S, Mukhopadhyay.; H, Kaur.; (2012). Optimization of fiber composition in natural fiber-
reinforced composites using a simplex lattice design. Journal of Composite Materials . 46(26):3311-3319.

9 – Orives , JR; Galvan, D.; Coppo, R.L.; et al. (2014). Multiresponse optimization on biodiesel obtained
through a ternary mixture of vegetable oil and animal fat: Simplex-centroid mixture design application.
Energy Conversion and Management . 398-404.

67Pattern recognition

PATTERN RECOGNiTiON

CHAPTER 3

" There is no short cut to truth, no way to gain a knowledge of the
universe except through the gateway of scientific method " Karl
Pearson (1857-1936)

CHAPTER IDEA
The term pattern can be defined as the opposite of chaos or a loosely defined entity

that can be given a name. Formally, pattern recognition is the area of science that aims to
classify objects (patterns) into a number of categories or classes. Thus, for a given set of c
classes, ω1 , ω2 , ..., ωc , and unknown pattern x, a pattern recognizer will be a system that,
aided by pre-processing, feature extraction and selection, associates x to label i of a class
ωi .

We can find pattern recognition techniques in several applications, such as: i)
analysis of genome sequences, in microarray applications and technology (bioinformatics);
ii) data mining; iii) medical diagnosis; iv) biometric recognition; v) remote sensing using
multispectral images; and, vi) speech recognition.

Basically, pattern recognition techniques are based on three main steps: i)
data acquisition for extraction and selection of the most informative features; ii) data
representation; and, iii) construction of a classifier or descriptor for decision making.

Generally, the classifier used in pattern recognition techniques learns how to map
the feature data space Thus, we can group pattern classification techniques, according
to the type of learning, into two forms: i) unsupervised analysis (they use patterns that do
not have defined class labels); and, (ii) supervised analysis (the patterns belong to a pre-
defined class).

Upon completing the chapter, you should be able to:
a) Apply the main unsupervised analysis algorithms (HCA, K-means and PCA) to a
set of real or simulated data, seeking to identify patterns in the analyzed data;
b) Apply the main supervised analysis algorithms (LDA, QDA, KNN, SVM and
decision trees) to real or simulated data sets in the construction of classification
models;
c) Understand the stages of building multivariate classification models and evaluating
the models (confusion matrix and ROC curve);
e) Build new scripts in R language for decision making using the pattern recognition
technique;
f) Propose new applications in chemistry or related areas of pattern recognition
techniques.

https://www.azquotes.com/quote/97013
https://www.azquotes.com/quote/97013
https://www.azquotes.com/quote/97013

Pattern recognition 68

UNSUPERVISED ANALYSIS

3.1 Cluster Analysis
The term Cluster Analysis was first used by Tyron in 1939 [1] in an attempt to organize

observed data into structures that make sense or in the construction of taxonomies capable
of classifying samples into different classes. In Biology, Zoologists use taxonomy in an
attempt to classify observed specimens (samples) into groups. In Chemistry, for example,
there are many situations in which Cluster Analysis appears, and throughout the text, they
will be presented and discussed in detail.

The purpose of grouping (clustering) is to define intrinsic groups in a set of data
that does not have labels, so that the objects in each group are similar according to some
pre-established criteria. In other words, we have a statistical tool with which it is possible to
form groups with homogeneity within the grouping, and heterogeneity between them. The
presence of personal computers has made routine evaluation of complex data sets (with
thousands of variables and samples) possible. Currently, there are several tools available to
extract useful information from complex data using the detection and evaluation of patterns
in your dataset.

Generally speaking, cluster analysis does not require any initial assumptions about
the structure of the data. The search for a natural grouping structure in the data itself is an
important exploratory technique. The aim, therefore, is to find natural groupings and classify
samples characterized by the values of a set of variables into groups. This technique aims
to partition the elements of a data set into two or more groupings based on their similarity
founded on a set of variables. We must remember that the cluster solution is not generalizable
because it is totally dependent on the variables used as a basis for the similarity measure.
Finally, we can identify three common applications in cluster analysis: i) classification of
elements (taxonomy); ii) data simplification; and, iii) identification of relationships between
elements.

3.2 Hierarchical Cluster Analysis (HCA)
A hierarchical cluster is a sequence of partitions in which each partition is allocated

to its neighboring partition in the sequence. The aim of this technique is to classify samples
using similarity measures. We can understand the similarity between elements as an
empirical measure of correspondence (distance) or similarity between the elements to be
grouped. The smaller the distance between samples in n-dimensional space, the greater the
similarity. In summary, distance measures are actually dissimilarity measures, that is, higher
values indicate greater dissimilarity between the variables. From the results, and using the
inverse relationship, it is possible to identify the similarity measure.

Pattern recognition 69

In HCA, metric distances are calculated between the samples (objects) that form
the data set, and these are grouped according to the degree of similarity presented. HCA
comprises agglomerative and divisive ways of forming clusters. In agglomerative procedures
(most common), we start with the instances forming disjoint unitary groups (singletons),
that is, each of the n instances in the data set will be assigned to a group (cluster). In
divisive hierarchical analysis, the process occurs in the opposite order to the agglomerative
one. The results provided by HCA are called dendrograms (Figure 3.1), which graphically
express the distance (similarity) between the samples.

Figure 3.1 : Representation of a dendrogram or binary tree.

Several criteria can be adopted to choose the number of clusters. The desired
number of clusters can be known in advance or apredetermined distance value is used as
a criterion to separate the number of clusters. The number of clusters is chosen based on
observation of the dendrogram, based on knowledge of the data.

For Cluster Criteria, the distance from an object to cluster k can be calculated as the
average distance of objects A and B to object i, in several ways:

I. Single Link (KNN) – The shortest distance between clusters is calculated.
This procedure is also known as KNN (Kth Nearest Neighbor);

II. Complete connection – Based on the greatest distance between objects in
opposite groupings. In general, small, compact, spherical and well-separated
clusters tend to form;

III. Centroid link (k-means) – A centroid is calculated as the average of the
objects in a cluster. Spatial distortion of the grouping is avoided and tends to
preserve groups of small importance in relation to larger ones;

IV. Ward's method – The clusters are aggregated in such a way as to minimize
the sum of squares of the deviations of each centroid in relation to the group
itself.

Pattern recognition 70

Example 1: In this example, an HCA is performed for a simulated dataset using the
dist function in the R language.

R Script
Simulated data

A=c(9.60, 8.40, 2.40, 18.20, 3.90, 6.40)
B=c(28, 31, 42, 38, 25, 41)

data= cbind(A,B)

Distance calculation

? dist

DE= dist(data, method = "euclidean", diag = TRUE, upper = TRUE, p =2)
dendo = hclust (DE,method = "average")

Dendogram

plot(dendo)

Example 2: In this example, an HCA is performed for an ICP-OES dataset using the
R packages factoextra and NbClust .

R Script
Loading the dataset

D1= read.table("ICPOES.txt")
D2= D1[,-1]

Detection of atypical variables
Calculating Mahalanobis distance
p.cov <- var(scale(D2)) # standardize first
p.cov <- var(D2)
p.mean <- apply(D2,2,mean)
p.mah <- mahalanobis(D2, p.mean, p.cov)
View(p.mah)

Analyzing variance
Variables with different scales and different variances can distort the analysis
apply(D2, 2, var)

#Standardizing variables
DP <- scale(D2)
apply(DP, 2, mean)
apply(DP, 2, var)

Pattern recognition 71

#-- --------------
2. Selection of grouping criteria
Database rows must represent observations (samples)
that you want to group.
Columns must be formed by variables.
#-- --------------
Select the similarity (or dissimilarity) criterion that will determine
which observations are similar, and should be grouped into a given group, and
which are not
similar, and must be in different groups.
For a similarity measure, the lower its value, the more similar two observations
are.
Calculating Euclidean distance
d.eucl <- dist(DP, method = "euclidean")

#Viewing the Euclidean distance rounding 1 decimal place:
round(as.matrix(d.eucl)[1:4, 1:4], 1)

#-- ---------------
3. Selection of clustering algorithm
Hierarchical x Non-hierarchical
#-- ----------------

#Hierarchical method of Ward's minimum variance or mean distance

res.hc <- hclust(d = d.eucl, method = "ward.D2")

Calculating the cophenetic matrix
Compares the distances actually observed between objects and
the distances predicted from the grouping process.
res.coph <- cophenetic(res.hc)

Correlation between the cophenetic distance and the original distance
cor(d.eucl, res.coph)

#Comparing with the average link method
hc.m <- hclust(d.eucl, method = "average")

Correlation between the cophenetic distance and the original distance
cor(d.eucl, cophenetic(hc.m))

#-- ----------------
4. Defining the number of clusters
#-- ----------------
#Loading the factoextra package

install.packages("factoextra")
library(factoextra)

Pattern recognition 72

Obtaining the dendrogram
fviz_dend(hc.m, cex = 0.5)

Some indicators can be used to help choose the number of groupings.
#To calculate these indices we must install the NbClust package
install.packages("NbClust")
library(NbClust)

Note: We can install more than one package at a time using
pkgs <- c("factoextra", "NbClust")
install.packages(pkgs)

nb <- NbClust(DP, distance = "euclidean", min.nc = 2,
 max.nc = 10, method = "average", index = "all")

 #method = NULL must be replaced by the grouping algorithm used ("ward.D",
"ward.D2", "single", "complete", "average", "kmeans", etc.)

#Getting the indicators
nb[["All.index"]]

#------------------------
#For just one indicator, use the help
?NbClust

#For only the ccc index

nb.c <- NbClust(DP, distance = "euclidean", min.nc = 2,
 max.nc = 10, method = "ward.D2", index = "ccc")

fviz_nbclust(nb.c)

#-----------------------
#For pseudo-f('ch')
nb.i <- NbClust(DP, distance = "euclidean", min.nc = 2,
 max.nc = 10, method = "ward.D2", index = "ch")

fviz_nbclust(nb.i)

#-- ----------------

#5. Interpretation and validation of groupings
#-- ----------------

#Getting the groupings
g <- cutree(hc.m,k =3)

Pattern recognition 73

#Number of members in each group
table(g)

#We can visualize the clustering result in the dendrogram
fviz_dend(hc.m, k = 3, # Cut in four groups
 cex = 0.5, # label size
 k_colors = c("#2E9FDF", "#00BB0C", "#E7B800", "#FC4E07"),
 color_labels_by_k = TRUE, # color labels by groups
 rect = TRUE # Add rectangle around groups
)

Example 3: In this example, an HCA is performed for a dataset containing 8
physicochemical properties of 89 chemical elements using the R packages factoextra and
NbClust .

R Script
load the TP dataset (89 x 9)
D1 = read.table("TP.txt")
D2 = D1[,-1]

Detection of atypical variables
Calculating Mahalonobis distance
p.cov <- var(scale(D2)) # standardize first
p.cov <- var(D2)
p.mean <- apply(D2,2,mean)
p.mah <- mahalanobis(D2, p.mean, p.cov)
View(p.mah)

#Variables with different scales and different variances can distort
the analysis
apply(D2, 2, var)

#Standardizing variables
DP <- scale(D2)
apply(DP,2,mean)
apply(DP,2,var)

#-- --------------
2. Selection of similarity or dissimilarity criterion
For a similarity measure, the lower its value, the more similar two observations
are.
Calculating Euclidean distance
d.eucl <- dist(DP, method = "euclidean")

#Viewing the Euclidean distance rounding 1 decimal place:
round(as.matrix(d.eucl)[89:8, 89:8], 1)

Pattern recognition 74

#-- ---------------
3. Selection of clustering algorithm
Hierarchical x Non-hierarchical
#-- ----------------

#Hierarchical method of Ward's minimum variance or mean distance
res.hc <- hclust(d = d.eucl, method = "ward.D2")

Calculating the cophenetic matrix
Compares the distances actually observed between objects and
the distances predicted from the grouping process.
res.coph <- cophenetic(res.hc)

Correlation between the cophenetic distance and the original distance
cor(d.eucl, res.coph)

#Comparing with the average link method
hc.m <- hclust(d.eucl, method = "average")

#cophenetic distance and the original distance
cor(d.eucl, cophenetic(hc.m))

#-- ----------------
4. Defining the number of clusters
#-- ----------------
#Loading the factoextra package
install.packages("factoextra")
library(factoextra)

Obtaining the dendrogram
fviz_dend(hc.m, cex = 0.5)

Some indicators can be used to help choose the number of groupings.
To calculate these indices we must install the NbClust package
install.packages("NbClust")
library(NbClust)

Note: We can install more than one package at a time using
pkgs <- c("factoextra", "NbClust")
install.packages(pkgs)

nb <- NbClust(DP, distance = "euclidean", min.nc = 2,
 max.nc = 10, method = "average", index = "all")

method = NULL must be replaced by the grouping algorithm used ("ward.D",
"ward.D 2", "single", "complete", "average", "kmeans", etc.)

#Getting the indicators
nb[["All.index"]]

Pattern recognition 75

#------------------------
#For just one indicator, use the help
?NbClust

#For only the ccc index

nb.c <- NbClust(DP, distance = "euclidean", min.nc = 2,
 max.nc = 10, method = "ward.D2", index = "ccc")

fviz_nbclust(nb.c)

#-----------------------
#For pseudo-f('ch')
nb.i <- NbClust(DP, distance = "euclidean", min.nc = 2,
 max.nc = 10, method = "ward.D2", index = "ch")

fviz_nbclust(nb.i)

#-- ----------------

#5. Interpretation and validation of groupings.
#-- ----------------

#Getting the groupings
g <- cutree(hc.m,k=4)
#Number of members in each group
table(g)

#We can visualize the clustering result in the dendrogram
fviz_dend(hc.m, k = 4, # Cut in four groups
 cex = 0.5, # label size
 k_colors = c("#2E9FDF", "#00BB0C", "#E7B800", "#FC4E07"),
 color_labels_by_k = TRUE, # color labels by groups
 rect = TRUE # Add rectangle around groups
)

3.3 K-means
K-means is partitional (non-hierarchical) center-based technique, that is, the groups

formed by this technique are represented by a centroid (a central point in the group).
K-means was proposed in a pioneering work by S. Lloyd in 1957, however, it was only
published in 1982 [2]. For Lloyd, the centroid was chosen as the point that minimizes the
sum of the square of the Euclidean distance, dE , between itself and each point in the set,
according to the equation:

 Eq. 1

Pattern recognition 76

The aim of the K-means algorithm is to minimize the sum of squared error over all k
groups:

 Eq. 2

Basically, K-means performs five main steps: i) selects k instances (randomly) to
be the initial centroids of the groups; ii) assigns all instances to the closest centroid; iii)
recalculates the centroid for each group; iv) calculates the averages of all instances of the
group; v) repeat steps (ii and iii) until the centroids do not change.

 A critical point in the use of K-means that determines its performance is the choice
of initial centroids. The choices, despite being random, in general, can lead to a local
minimum. However, we can find the use of K-means in various applications, such as: data
mining, statistics, engineering, machine learning, medicine, marketing, administration and
biology.

Example 4: In this example the K-means algorithm is applied to an ICP-OES dataset
using the R stats and cluster packages.

R Script
loading data
D1= read.table ("ICPOES.txt")
D2=D1[,-1]

kmeans(x, centers, iter.max = 10, nstart = 1)
Defining a seed. This allows the result to be
reproducible, since the seed interferes with the final result
set.seed(123)

DP <- scale(D2)
km.res <- kmeans(DP, 3, nstart = 25)
print(km.res)

#Interpretation and validation of clusters
#-- ---------------
#Adding the k-means cluster column to the original data
DPK <- cbind(D2, Groups=km.res$cluster)
DPK

#Calculating the group average for the original data
aggregate(D2, by=list(cluster= km.res$cluster), mean)

round(aggregate(D2, by=list(cluster= km.res$cluster), mean),1)

Pattern recognition 77

vizualizing the clusters

fviz_cluster (km.res, data = D2,
 palette = c("#2E9FDF", "#00BB0C", "#E7B800", "#FC4E07"),
 ellipse.type = "euclid", # Concentration ellipse
 star.plot = TRUE, # Add segments from centroids to items
 repel = TRUE, # Avoid label overplotting (slow)
 ggtheme = theme_minimal())

vizualizing the clusters in 2D

install.packages("cluster")
library(cluster)
clusplot (DP, km.res$cluster , main='Two-dimensional cluster representation',
 color=TRUE, shade=TRUE,
 labels=2, lines=0)

Example 5: In this example the K-means algorithm is applied to an ICP-OES dataset
using the FactoMineR , factoextra , cluster, ggplot2 and xlsx packages.

R Script
install.packages("FactorMineR")
install.packages("factoextra")
install.packages("cluster")
install.packages("ggplot2")

library(FactoMineR)
library(factoextra)
library(cluster)
library(ggplot2)

importing data

D1= read.table("Matrix 54x7.txt", head=T)
D2=D1[,-1]
DP=apply(D2, 2, function(x)(x-mean(x))/sd (x))

#Bloxplot
boxplot(D2$Ca)

#Scaling
Data = scale(D2)

#Defining optimal number of cluster
fviz_nbclust(DP, kmeans, method = "gap_stat")

#Generate kmeans
data_kmeans = kmeans(DP,5)

Pattern recognition 78

#vizualizing the clusters
fviz_cluster(data_kmeans, data = DP, ellipse.type = "t")

#Creating a list of clusters

list = data_kmeans$cluster
#Grouping data into a table
general_data = cbind(D2, list)
general_data

3.4 Principal Component Analysis (PCA)
Principal component analysis technique (PCA), originally proposed in 1901 by

Karl Pearson [3], is a mathematical procedure that uses an orthogonal transformation or
orthogonalization of vectors to convert a set of observations of possibly correlated variables
into a set of values of linearly uncorrelated variables called principal components. PCA is a
tool used to reduce the dimensionality of a set of variables by creating a new base, whose
components are linearly independent and fewer in number. These components are ordered
in order to maintain the largest portion of the original variance in the first components.

One of the ways to calculate the PCA is through the covariance method. This method
presents some main steps: i) organize the data set in the form of an nxm matrix (n is
the number of observations or samples and m is the number of measured variables); ii)
if necessary, carry out some pre-treatment (normalization, correlation or autoscaling); iii)
calculate the covariance matrix; iv) calculate the eigenvalues and eigenvectors associated
with the covariance matrix; v) order the eigenvectors according to the associated eigenvalues
- the first eigenvector is the first principal component and so on; vi) calculate the percentage
of the original variance from the associated eigenvalues. Another way to perform PCA is
through singular value decomposition (SVD). The SVD method of matrix X is X = WΣV
T, where the m × m matrix W is the eigenvector matrix of the covariance matrix XXT , the
matrix Σ is m × n and is a rectangular diagonal matrix with non-negative real numbers on the
diagonal, and the n × n matrix V is the eigenvector matrix of XTX .

In a principal components analysis, the grouping of samples defines the structure of
the data through graphs of scores and loadings whose axes are principal components onto
which the data is projected. The scores provide the composition of the PCs in relation to the
samples, while the loadings provide this same composition in relation to the variables. As
the principal components are orthogonal, it is possible to examine the relationships between
samples and variables through scores and loadings graphs.

Example 6: In this example, the PCA algorithm is applied to an ICP-OES dataset
using the FactoMineR and factoextra packages.

https://pt.wikipedia.org/wiki/Autovetor
https://pt.wikipedia.org/wiki/Matriz_de_covari%C3%A2ncia
https://pt.wikipedia.org/wiki/Matriz_diagonal

Pattern recognition 79

R Script
#loading the ICP-OES dataset (54 x 7)

D1 = read.table("ICPOES.txt")
D2 = D1[,- 1]

#Calculating the covaraince matrix var-cov(X)
cov.c <- cov(D2)

#Checking the type of the cov.c object
class(cov.c)

##Viewing only some elements of the var-cov(X) matrix
cov.c[1:5,1:4]

##Calculating the total variance:
sum(diag(cov.c))

##Calculating the generalized variance:
det(cov.c)

#-- --
#Calculating the correlation matrix (X)
cor.c <- cor(D2)

#Viewing the cor.c matrix
cor.c

##Calculating the total variance
var.total <- sum(diag(cor.c))
var.total

#-- ---
#Calculating eigenvalues and eigenvectors for cor.c
ev <- eigen(cor.c)

#Viewing the data stored in the ev objective
ev

Extracting the eigenvalues
c.values <- ev$values

#Extracting the eigenvectors
c.vectors <- ev$vectors

##Calculating the percentage explained by each component (Yi=ei1x1+ei2x2+...+ eipxp)
per.var <- c((c.values/var.total)* 100)
per.var

Pattern recognition 80

#######
#Principal component analysis.
install.packages(c("FactoMineR", #for analysis
 "factoextra" #to plot the principal components
))

library(FactoMineR)
library(factoextra)

res.pca <- PCA(D2, graph = T)

print(res.pca)

#See the components included in the res.pca object
eig.val <- get_eigenvalue(res.pca)
eig.val

#Determining the number of components to maintain
fviz_eig(res.pca)
fviz_eig(res.pca , addlabels = TRUE, xlab = "PCs", ylab = "Percent of explained
variance", ylim = c(0, 80))

#Correlation circle
fviz_pca_var (res.pca , #name of the object that saved the results
 col.var = "black" ,
 repel = TRUE, # Prevent text from overlapping
 title = "Correlation circle, variables x PC" #title
)

Quality of representation is measured by "cos2":

install.packages("corrplot")
library(corrplot)

corrplot(res.pcavarcos2, is.corr =TRUE)

#bar chart for "cos2"

fviz_cos2(res.pca, choice = "var", axes = 2:3,
 title =("Bar chart for cos2"))

#We can represent variables in a colorful and gradient way

fviz_pca_var(res.pca, col.var = "cos2",
 gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07"),
 repel = TRUE) # Avoid text overlapping

Pattern recognition 81

#Biplot graph (scores and loadings)

fviz_pca_biplot(res.pca , title = "PCA Plot")

#-- ----------
#Variables that are correlated with PC1 (Dim1) and PC2 (Dim2)
head(res.pcavarcontrib, 4)

corrplot(res.pcavarcontrib, is.corr=FALSE)

Contribution of variables to PC1

fviz_contrib(res.pca, choice = "var", axes = 1, top = 10,
 title ="Variables contribution to PC 1")

Contribution of variables to PC2

fviz_contrib(res.pca, choice = "var", axes = 2, top = 10,
 title ="Variables contribution to PC 2")

#Contribution of variables to PC1 and PC2
fviz_contrib(res.pca, choice = "var", axes = 1:2, top = 10)

We can use the function dimdesc() [in FactoMineR], to identify
the variables associated with the greater signifcance with the component

res.desc <- dimdesc(res.pca, axes = c(1,2,3), proba = 0.05)
print(res.desc)

#-- ---------
#To export the results, we use

write.infile(res.pca, "pca.csv", sep = ";")

#Saving the value of components
cp <- res.pcaindcoord

#Exporting to a .csv file named cp

library(FactoMineR)
write.infile(cp, "cp.csv", sep = ";")

Pattern recognition 82

Example 7: In this example, the PCA algorithm is applied to the Iris dataset (150 x 5)
using the FactoMineR and factoextra. Note that PCA will be performed both for the original
dataset and for the same one after pre-processing (done using the "scale" function).

R Script
loading dataset

D = iris
D1 = data.frame(D[,c(1:4)]) # original dataset
D2 = scale(D1) # pre-processed dataset

#---
#calculating the var-cov matrix (X)
cov.c = cov(D1)
cov.c2 = cov(D2)

#calculating the total variance
sum(diag(cov.c))
sum(diag(cov.c2))

#calculating the generalized variance
det(cov.c)
det(cov.c2)

#--
#calculating the correlation matrix
cor.c = cor(D1)
cor.c2 = cor(D2)

#calculating the total variance
var.total = sum(diag(cor.c))
var.total2 = sum(diag(cor.c2))
#-- ---

#Calculating eigenvalues and eigenvectors for cor.c
ev =eigen(cor.c)
ev2=eigen(cor.c2)

#visualizing the data stored in the eigenvalues
ev
ev2

#extracting the eigenvalues
c.values = ev$values
c.values2 = ev2$values

#extracting the eigenvectors
c.vectors = ev$vectors
c.vectors2 = ev2$vectors

Pattern recognition 83

#calculating the percentage explained by each component (Yi=ei1x1+ei2x2+.... eipxp)
per.var = c((c.values/var.total)*100)
per.var
per.var2 = c((c.values2/var.total2)*100)
per.var2

########################
#Principal component analysis

#Installing the packages
install.packages("FactoMineR")
install.packages("factoextra")
install.packages("ggplot2")

library(FactoMineR)
library(factoextra)
library(ggplot2)

res.pca = PCA(D1, graph = T)
res.pca2 = PCA(D2, graph=T)

#Biplot graph (scores and loadings)

fviz_pca_biplot(res.pca, title = "PCA Iris Plot")

fviz_pca_biplot(res.pca2, title = "PCA Iris Plot")

#The values for each of the components are stored in
indi$coord

eig.val = get_eigenvalue(res.pca)
eig.val2 = get_eigenvalue(res.pca2)

##Determining the number of components maintained
eig.val
eig.val2

#Determining the number of components to maintain

fviz_eig(res.pca, addlabels = TRUE, xlab = "PCs", ylab = "Percent of exaplined
variance", ylim =c(0,100))

fviz_eig(res.pca2, addlabels = TRUE, xlab = "PCs", ylab = "Percent of exaplined
variance", ylim =c(0,100))

Pattern recognition 84

#-- ---
#Correlation circle
fviz_pca_var (res.pca ,
 col.var = "black",
 repel = TRUE,
 title = "Correlation circle, variables X PC") #title

fviz_pca_var (res.pca2 ,
 col.var = "black",
 repel = TRUE,
 title = "Correlation circle, variables X PC") #title

#Quality of representation is measured by cos2

install.packages("corrplot")
library(corrplot)

corrplot(res.pcavarcos2, is.corr = FALSE)
corrplot(res.pca2varcos2, is.corr = FALSE)

#We can represent variables in a colorful and gradient way

fviz_pca_var(res.pca, col.var = "cos2",
 gradient.cols= c("#00AFBB", "#E7B800", "#FC4E07"),
 repel = TRUE)

fviz_pca_var(res.pca2, col.var = "cos2",
 gradient.cols= c("#00AFBB", "#E7B800", "#FC4E07"),
 repel = TRUE)

#-- ----------------

#Variables that are correlated with PC1 (Dim1) and PC2 (Dim2)

head(res.pcavarcontrib,4)
corrplot(res.pcavarcontrib , is.corr = FALSE)

head(res.pca2varcontrib,4)
corrplot(res.pca2varcontrib, is.corr = FALSE)

#contribution of variables to PC1

fviz_contrib (res.pca , choice = "var", axes =1, top = 10,
 title ="contribution of variables to Dim1")

Pattern recognition 85

fviz_contrib (res.pca2, choice = "var", axes = 1, top = 10,
 title ="contribution of variables to Dim1")

#contribution of variables to PC2

fviz_contrib (res.pca , choice = "var", axes = 2, top = 10,
 title ="contribution of variables to Dim2")

fviz_contrib (res.pca2, choice = "var", axes = 2, top = 10,
 title ="contribution of variables to Dim2")

#contribution of variables to PC1 and PC2

fviz_contrib (res.pca , choice = "var", axes = 1:2, top = 10)

fviz_contrib (res.pca2, choice = "var", axes = 1:2, top = 10)

We can use the function dimdesc () [in FactoMiner], to identify
the variables associated with greater significance with the component

res.desc = dimdesc(res.pca, axes = c(1,2,3), proba = 0.05)
print(res.desc)

res.desc = dimdesc(res.pca2, axes = c(1,2,3), proba = 0.05)
print(res.desc)

#to export the results, we use

write.infile(res.pca, "pca.csv", sep = ";")

write.infile(res.pca2, "pca2.csv", sep = ";")

#saving the value of components

cp = res.pcaindcoord

cp2 = res.pca2indcoord

#Exporting to a .csv file named cp

library(FactoMineR)

write.infile(cp, "cp.csv", sep =";")
write.infile(cp, "cp2.csv", sep =";")

Pattern recognition 86

3.5 Multivariate Curve Resolution with Alternating Least Squares (MCR-ALS)
In 1971, Lawton and Sylvestre [4] presented to the scientific community the

emergence of methodologies called Curve Resolution with the study entitled "Self Modeling
Curve Resolution ". Basically, these researchers present a method for determining the
forms of two overlapping functions f1(x) and f2(x) from an observed set of additive mixtures,
{αif1(x)+βif2 (x); i = 1, ..., n}, of the two functions.

 From this initial study, there was an evolution of Multivariate Curve Resolution
(MCR) methods for analytical signal processing whose goal is to resolve mixtures of non-
selective signals originating from an instrument (D) into real contributions from the pure
components in the system (represented by the concentration profiles in C and spectral
profiles in ST), as exemplified in the equation below:

D = CST Eq. 3

where D is the instrumental response matrix, C is the relative concentration matrix,
and S is a matrix of pure spectra.

It is important to point out that the MCR method does not require a priori information
about the contribution of different factors to the overall response. However, for the MCR
method to be successful in the analysis, two requirements are fundamental: i) the analytical
signal must obey a relationship similar to the Beer-Lambert law (linear relationship with
concentration); ii) the rank of the matrix must be equal to the number of species that produce
analytical signal present in the mixtures (i.e., the number of vectors that cannot be written as
a linear combination of the others).

The calculation performed by MCR-ALS uses alternating least squares (ALS) to seek
the result that presents the best fit through a process called "optimization". This process
allows the recovery of individual concentration profiles and species signals that best explain
the variance of the observed data based on knowledge of the signals or concentrations of
pure components present in the data matrix.

 Iterative optimization, with constraints, via ALS can be described in two main steps:

C = DS(STS)-1 Eq. 4

ST = (CTC)-1CTD Eq. 5

In this process, a matrix D, reconstructed from the product of the CST matrices, in
which C or ST comes from the initial estimate, is calculated and compared with the original
matrix D. Iterative optimization continues until the convergence criterion is met. Figure 3.2
shows a graphical representation of the MCR-ALS method.

Pattern recognition 87

Figure 3.2: Graphical representation of the MCR-ALS method.

Example 8: In this example, the MCR-ALS algorithm is applied to a dataset of
chromatographic data (elution time x mass spectrum) using the ALS package, in which the
components recovered by the MCR-ALS model in the mixture are similar to the values of a
known standard.

R Script
Loading Packages

install.packages("ALS")
library(ALS)

Chromatography elution profiles - 2 components (2 replicates)

data(multiex)

matplot(x, Cstart1, type="l", xlab = "Elution time", ylab = "Intensity", main =
"Chromatographic components")

matplot(x, Cstart2, type="l", add =TRUE)

Pattern recognition 88

MCR-ALS

dimS = dim(S) # dimensions of mass spectra array

mcr <- als(CList=list(Cstart1,Cstart2), S=matrix(1, nrow=dimS[1], ncol=2),
PsiList=list(d1,d2), x=x, x2=x2, uniC=TRUE, normS =0)

MCR-ALS with unimodality constraint (uniC = TRUE) and normalization (normS = 0)

Plot of recovered mass components

plotS(mcr$S,x2)

comparing the mass spectrum of the known standard S with the recovered profiles
mcr$S (fit rate)

matchFactor(S[,1], mcr$S[,1])
matchFactor(S[,2], mcr$S[,2])

Copt values (estimated elution values)

matplot(x, mcr$CList[[1]], type="l")

matplot(x, mcr$CList[[2]], type="l", add = TRUE)

SUPERVISED ANALYSIS
Supervised pattern recognition is a machine learning method that uses techniques to

identify similarities and differences between different types of samples. Pattern recognition
techniques are based on the following assumptions: i) Samples of the same type are similar;
and, ii) The classes are defined by the system designer.

In general, supervised algorithms present a classifier, also called a model, that will be
able to predict the class of a new set of data. The classifier produced can also be described
as a function f, which takes a given x and provides a prediction y.

3.6 KNN (K-Nearest Neighbors)
In 1951, Evelyn Fix and Joseph Hodges [5] described the fundamentals of classifying

unknown data points based on classes of nearest points. In 1967, Thomas Cover and Peter
Hart [6] explored and addressed the concept of the K-Nearest Neighbors (KNN) technique
through the parameter K (selection of the number of neighbors) and the choice of distance
metrics to measure the proximity between data points.

The KNN algorithm basically uses a training set made up of n-dimensional vectors
and each element of this set represents a point in an n-dimensional space. The KNN

Pattern recognition 89

methodology is based on three fundamental steps: i) determining the distance between a
new sample and the other samples in the training set; ii) identify the K closest samples or
with the most similar characteristics; iii) with the k known elements of k-nearest neighbors,
the closest class will be assigned to the class of the unknown element.

Example 9: Analysis of a data set to perform KNN extracted from the DAAG and
Caret packages.

R Script
reading data

install.packages("DAAG")
library(DAAG)

data("leafshape")
?leafshape
data = leafshape
data = na.omit(data)
data = data[,-c(1:3,9)]

set.seed(2)

K-fold cross validation via caret

install.packages("caret")
library(caret)

defining the number of partitions (folds)
trControl = trainControl(method = "CV",
 number = 10)
KNN CV
knn.cv = train(as.factor(arch) ~ .,
 method = "knn",
 tuneGrid = expand.grid(k=seq(5,95, by = 10)), ## k = 1:100),
 trControl = trControl,
 metric = "Accuracy",
 data = data)
knn.cv
plot(knn.cv)

plotting
pairs(data, col = rainbow(2)[as.factor(data$arch)])

#########################
separating training and testing data
set.seed(13)

Pattern recognition 90

tr = round(0.5* nrow (data))
training = sample(nrow(data), tr, replace = F)

data.training = data[training,]
data.test = data[-training,]

x.training = data.training[,-5]
x.test = data.test[,-5]
y.training = data.training[,5]
y.test = data.test[,5]

########################## knn for k = 5 neighbors

library(class)

knn5 = knn(x.training, x.test, y.training , k = 5)

confusion matrix
table(knn5, y.test)

mean(knn5 == y.test)

Preview

grid = expand.grid(logwid = seq(min(data$logwid),
 max(data$logwid), length = 200),
 logpet = seq(min(data$logpet),
 max(data$logpet), length = 200))
grid$class = knn (x.training [,2:3], grid, y.training , k = 5)

Training

ggplot () +
 geom_raster (aes (x= grid$logwid , y = grid$logpet , fill = grid$class),
 alpha = 0.3, interpolate = T) +
 geom_point (aes (x = data.training$logwid , y = data.training$logpet ,
 color = as.factor (data.training$arch),
 shape = as.factor (data.training$arch)), size = 2) +
 labs(x = "logwid", y = "logpet",
 col = "arch", shape = "arch", fill = "arch") + theme_bw ()

Test

Pattern recognition 91

ggplot () +
 geom_raster (aes (x= grid$logwid , y = grid$logpet , fill = grid$class),
 alpha = 0.3, interpolate = T) +
 geom_point (aes (x = data.test$logwid , y = data.test$logpet ,
 color = as.factor (data.test$arch),
 shape = as.factor (data.test$arch)), size = 2) +
 labs(x = "logwid", y = "logpet",
 col = "arch", shape = "arch", fill = "arch") + theme_bw ()

3.6 Linear Discriminant Analysis (LDA)
Linear discriminant analysis (LDA) was introduced in its initial form by Ronald Fisher

in 1936 [6] for two classes, as a method employed for solving classification problems,
dimensionality reduction and data visualization. In 1948, CR Rao [7] proposed a generalization
to multiple classes. Basically, the LDA algorithm tries to find a linear transformation by
maximizing the inter-class distance and minimizing the intra-class distance. The method
seeks to find the best direction, so that when data are projected onto a plane, classes can
be separated.

For a univariate case, we have two classes: class 1: x ~ N(µ1 , σ2) and class
2: x ~ N(µ2 , σ2). The probability ratio l(x) that indicates the density ratio to classify a given
sample (x) into one of the classes can be written as:

 Eq. 6

Assuming that f1 and f2 are normal distribution densities, we can rewrite the probability
ratio as:

 Eq. 7

 The quality of discrimination will depend on the degree of intersection of the two
densities. Therefore, the functions l(x) and -2logl(x) are called discriminant functions and
have the following properties, as exemplified in Table 1 below:

Table 3.1: Properties of LDA discriminant functions.

l(x) -2 log l(x) Situation
>1 <0 x closest to µ1

<1 >0 x closest to µ2

=1 =0 x equally close to µ1 and µ2

Pattern recognition 92

For a multivariate case, in which we have p variables, we call X ~ N (µ1, S1) for class
1 and X ~ N (µ1 , S2) for class 2, we can rewrite the discriminant function as being:

 Eq. 8

where S represents the covariance matrix.
Equation 3.8 can be rewritten as:

 Eq. 9

Thus, we can classify x in class 1 if -2 log l(x) <0 and in class 2 if -2logl(x)>0. The
classification rule for the Fisher discriminant function is met when S

1
 = S

2
 = S. For this reason

we have:

 Eq. 10

A sample element with observation vector x would be classified in class 1 if fd(x) > 0
and would be classified in class 2 if fd(x) < 0.

Example 10: Analysis of a data set to perform linear discriminant analysis (LDA)
using R packages called datasetsICR, dplyr, GGally, DFA.CANCOR, heplots, MVM and
MASS.

R Script
Loading packages and data

install.packages("datasetsICR")
library(datasetsICR)

data("seeds")
?seeds

data = seeds

head(data)
levels(data$variety)
library(dplyr)
glimpse(data)
########################

Pattern recognition 93

plotting
pairs(data, col = rainbow(3)[data$variety])

library(ggplot2)
install.packages("GGally")
library(GGally)

ggpairs(data, aes(color = variety, alpha = 0.5)) + theme_bw ()

#########################

Separating training and validation data

set.seed(1)

tr = round(0.7* nrow(data))
training = sample(nrow(data), tr, replace = F)
training

data.training = data[training,]
data.test = data[-training,]

########################
#Assumptions

Homogeneity of variance/covariance matrices

install.packages("DFA.CANCOR")
library(DFA.CANCOR)

HOMOGENEITY(data.training,group='variety',
 variables = c('area','perimeter'))
HOMOGENEITY(data.test,group='variety',
 variables = c('area', 'perimeter', 'compactness','length of kernel',
'width of kernel',
 'asymmetry coefficient', 'length of kernel groove'))
H0 p>0.05
H1 p<0.05

Another homogeneity test
library(heplots)
boxM(data.training [,1:7], data.training$variety)

Multivariate normality

library(MVN)

Pattern recognition 94

mvn(data.training, subset = "variety")

########################

#Linear discriminant analysis (LDA)

library(MASS)

#Model 1
fit.lda1 = lda(variety ~ compactness+perimeter, data.training)
fit.lda1

#prediction for training data
lda.pred1= predict(fit.lda1)

#Graphics
plot(fit.lda1)
pairs(fit.lda1)

ldahist(lda.pred1$x[,1], g = lda.pred1$class)

Confusion matrix
cm1 = table(data.training$variety, lda.pred1$class)
cm1

#Prediction ability
mean(data.training$variety == lda.pred1$class)

#plotting classes in new directions
d.plot = data.frame(Class = data.training$variety, lda = lda.pred1$x)

library(ggplot2)

grid = expand.grid (compactness = seq(min(data$compactness),
 max(data$compactness), length = 200),
 perimeter = seq(min(data$perimeter),
 max(data$perimeter), length = 200))

grid$class = predict(fit.lda1,grid)$class

ggplot() +
 geom_raster(aes(x=grid$compactness, y = grid$perimeter, fill = grid$class),
 alpha = 0.3, interpolate = T) +
 geom_point(aes(x = data.training$compactness, y = data.training$perimeter,
 color = as.factor(data.training$variety),
 shape = as.factor(data.training$variety)), size = 2) +
 labs(x = "compactness", y = "perimeter",
 col = "variety", shape = "variety", fill = "variety") + theme_bw()

d.plot = data.frame(Class = data.training$variety, lda = lda.pred1$x)

Pattern recognition 95

ggplot(d.plot, aes(lda.LD1, lda.LD2, group = Class)) +
 geom_point(aes(col = Class), size = 2.5) +
 stat_ellipse(aes(fill = Class), geom = "polygon", alpha = .3) +
 theme_bw()

Model Test 1

prediction for test data
lda.pred1.t = predict(fit.lda1, data.test)

confusion matrix
cm1.t = table(data.test$variety, lda.pred1.t$class)
cm1.t

prediction ability
mean(data.test$variety == lda.pred1.t$class)

plotting classes in new directions

d.plot.t = data.frame(Class = data.test$variety, lda = lda.pred1.t$x)

ggplot(d.plot.t, aes(lda.LD1, lda.LD2, group = Class)) +
 geom_point(aes(col = Class), size = 2.5) +
 stat_ellipse(aes(fill = Class), geom = "polygon", alpha = .3) +
 theme_bw()

ggplot() +
 geom_raster(aes(x=grid$compactness, y = grid$perimeter, fill = grid$class),
 alpha = 0.3, interpolate = T) +
 geom_point(aes(x = data.test$compactness, y = data.test$perimeter,
 color = as.factor(data.test$variety),
 shape = as.factor(data.test$variety)), size = 2) +
 labs(x = "compactness", y = "perimeter",
 col = "variety", shape = "variety", fill = "variety") + theme_bw()

##########################
Training model 2

Model 2
fit.lda2 = lda(variety ~., data.training)
fit.lda2

prediction for training data
lda.pred2 = predict(fit.lda2)

plot(fit.lda2)
pairs(fit.lda2)

Pattern recognition 96

Confusion matrix
cm2 = table(data.training$variety, lda.pred2$class)
cm2

#Prediction ability
mean(data.training$variety == lda.pred2$class)

plotting classes in new directions

library(ggplot2)
d.plot2 = data.frame(Class = data.training$variety, lda = lda.pred2$x)
ggplot(d.plot2, aes(lda.LD1, lda.LD2, group = Class)) +
 geom_point(aes(col = Class), size = 2.5) +
 stat_ellipse(aes(fill = Class), geom = "polygon", alpha = .3) +
 theme_bw()

##################

install.packages ("klaR")
library (klaR)

data.training2 = data.training
colnames(data.training2) = c("x1", "x2", "x3", "x4", "x5", "x6", "x7", "variety")
dev.new ()
partimat(variety ~., data = data.training2, method = "lda")

#########################
Test model 2

prediction for test data
lda.pred2.t = predict(fit.lda2, data.test)

confusion matrix
cm2.t = table(data.test$variety, lda.pred2.t$class)
cm2.t

prediction ability
mean(data.test$variety == lda.pred2.t$class)

prediction
head(lda.pred2.t$class,10)

predicted probabilities for classes
head(lda.pred2.t$posterior,10)

linear discriminants
head(lda.pred2.t$x,10)

#######################

Pattern recognition 97

3.7 Quadratic Discriminant Analysis (QDA)
In quadratic discriminant analysis (QDA), there is no assumption that classes have

equal covariance matrices. As in linear discriminant analysis, an observation is classified
into the group with the smallest squared distance. However, the squared distance does not
result in a linear function, hence the name quadratic discriminant analysis.

In QDA, for each of the classes y, the covariance arrangement is given by:

Eq. 11

Taking the log for both sides of the above equation, the quadratic discriminant
function will be given by:

 Eq. 12

A sample element with observation vector x would be classified in class 1 if fd(x) > 0

and would be classified in class 2 if fd(x) < 0.

Example 11: Analysis of a data set to perform quadratic discriminant analysis (QDA)
using R packages called datasetsICR, dplyr, GGally, DFA.CANCOR, heplots, MVM and
MASS.

R Script

Loading packages and data

install.packages("datasetsICR")
library(datasetsICR)
install.packages("klaR")
library(klaR)

Dataset - seeds
data("seeds")
?seeds

data = seeds

Pattern recognition 98

head(data)
levels(data$variety)
library(dplyr)
glimpse (data)
########################

plotting
pairs(data, col = rainbow(3)[data$variety])

library(ggplot2)
install.packages ("GGally")
library(GGally)

ggpairs(data, aes(color = variety, alpha = 0.5)) + theme_bw ()

########################

Separating training and validation data

set.seed (1)

tr = round(0.7* nrow (data))
training = sample(nrow (data), tr , replace = F)
training

data.training = data[training,]
data.test = data[-training,]

########################
#Assumptions

Homogeneity of variance/covariance matrices

install.packages("DFA.CANCOR")
library(DFA.CANCOR)

HOMOGENEITY(data.training,group='variety',
 variables = c('area','perimeter'))
HOMOGENEITY(data.training,group='variety',
 variables = c('area', 'perimeter', 'compactness','length of kernel',
'width of kernel',
 'asymmetry coefficient', 'length of kernel groove'))
H0 p>0.05
H1 p<0.05

Another homogeneity test
library(heplots)
boxM(data.training[,1:7], data.training$variety)

Pattern recognition 99

Multivariate normality

library(MVN)

mvn(data.training, subset = "variety")

########################

#Quadratic linear discriminant analysis (QDA)

library(MASS)

#training model 1
fit.qda1 = qda(variety~compactness+perimeter, data.training)
fit.qda1

#prediction for training data
qda.pred1=predict(fit.qda1)

Confusion matrix
cm1 = table(data.training$variety, qda.pred1$class)
cm1

prediction ability
mean(data.training$variety == qda.pred1$class)

plotting classes in new directions

library(ggplot2)

grid = expand.grid(compactness = seq(min(data$compactness),
 max(data$compactness), length = 200),
 perimeter = seq(min(data$perimeter),
 max(data$perimeter), length = 200))

grid$class = predict(fit.qda1,grid)$class

ggplot() +
 geom_raster(aes(x=grid$compactness, y = grid$perimeter, fill = grid$class),
 alpha = 0.3, interpolate = T) +
 geom_point(aes(x = data.training$compactness, y = data.training$perimeter,
 color = as.factor(data.training$variety),
 shape = as.factor(data.training$variety)), size = 2) +
 labs(x = "compactness", y = "perimeter",
 col = "variety", shape = "variety", fill = "variety") + theme_bw()

################################
Test model 1

Pattern recognition 100

prediction for test data
qda.pred1.t = predict(fit.qda1, data.test)

confusion matrix
cm1.t = table(data.test$variety, qda.pred1.t$class)
cm1.t

prediction ability
mean(data.test$variety == qda.pred1.t$class)

grid$class = predict(fit.qda1, grid)$class

ggplot() +
 geom_raster(aes(x=grid$compactness, y = grid$perimeter, fill = grid$class),
 alpha = 0.3, interpolate = T) +
 geom_point(aes(x = data.training$compactness, y = data.training$perimeter,
 color = as.factor(data.training$variety),
 shape = as.factor(data.training$variety)), size = 2) +
 labs(x = "compactness", y = "perimeter",
 col = "variety", shape = "variety", fill = "variety") + theme_bw()

#######################

3.8 Support Vector Machines (SVM)
Support Vector Machines (SVM) originated in the studies of Vapnik and Chervonenkis

[8] in 1971. Essentially, the SVM is responsible for finding the best possible separation
boundary between classes for a given data set that are linearly separable. For SVM, the
various possible separation boundaries that are capable of completely separating classes
are called hyperplanes. In this way, SVM seeks to find the best hyperplane for a given data
set whose classes are linearly separable.

Immediately, we can observe that the dimensionality of the hyperplane is directly
proportional to the dimension of the data set (n):

 Eq. 13

Therefore, in a two-dimensional dataset, the hyperplane is a straight line. In a
three-dimensional dataset, the hyperplane is in fact a plane. And so on. The hyperplane
is located at the midpoint between the two groups of classes, providing a characteristic
of symmetry in the classification, in which the closest point of each class is at a distance
d from the hyperplane, in order to minimize classification errors and problems of model
bias (overfitting). The points closest to the hyperplane are called support vectors, giving

Pattern recognition 101

the algorithm its name, as it is from them that the model will be mathematically developed,
trained and optimized. The distance between the support vectors and the hyperplane is
called the margin.

The equation of a hyperplane is presented in equation 3.14, in which w.x is the dot
product between the vectors w and x, w ∈ X is the normal vector to the described hyperplane
and corresponds to the distance of the hyperplane in relation to the origin, with b ∈ ℜ.

 Eq. 14

A signal function is finally written in obtaining
classifications by the SVM algorithm.

Example 12: Analysis of a data set to perform SVM using R packages called mvtnorm
and e1071.

R Script
Simulating data
Parameters to simulate data
library(mvtnorm)
set.seed(14)
m= c(0,0) # vector of means
S= matrix(c(1, 0.2, 0.2,1),2) # covariance matrix

Simulating data
data = rmvnorm(1000, mean = m, sigma = S)

Calculating distance to separate classes
S2 = matrix(c(1,-0.5,-0.5,1),2)
dist = mahalanobis(data, c(0,0), S2)
dist

transforming into data.frame
data = data.frame(data)
colnames(data) = c("x1","x2")

#defining column with classes
data$y = ifelse(dist + rnorm(nrow(data), sd = 0.3) < 1.7, 1, -1)
data$y = as.factor((data$y))

#plotting data
library(ggplot2)
ggplot(data, aes(x = x1, y = x2, group = y))+
 geom_point(aes (color=y)) + theme_bw ()

Pattern recognition 102

summary(data$y)

################
#Separating training and testing data

set.seed(1)

tr = round(0.7* nrow (data))
training = sample(nrow (data), tr , replace = F)

data.training = data[training,]
data.test = data[-training,]

#############
#Library for SVM and other ML methods
library(e1071)

support vector classifier 1 (linear)

svc1= svm(y~., data = data.training, kernel = "linear", cost = 10, scale = FALSE)

plot(svc1,data.training)
svc1$index # support vectors
summary(svc1) # analysis summary

cross validation to define parameter c (cost - limit for slack variables)
set.seed(1)
tune.out = tune(svm , y~., data = data.training, kernel = "linear",
 ranges = list (cost = c(0.001, 0.01, 0.1, 1, 10, 100, 1000)))
summary(tune.out)

support vector classifier 1 (linear)

svc1 = svm(y~ ., data = data.training, kernel = "linear", cost = 100, scale = FALSE)

confusion matrix - test data
cm = table(true = data.test[,"y"], pred = predict(tune.out$best.model , newdata =
data.test))
cm

test classification ratio
(cm[1,1] + cm[2,2])/sum(cm)

##################################

Preview
grid = expand.grid (x1 = seq(min(c(data.training$x1, data.test$x1)),
 max(c(data.training$x1, data.test$x1)), length = 200),
 x2 = seq(min(c(data.training$x2, data.test$x2)),
 max(c(data.training$x2, data.test$x2)), length = 200))

Pattern recognition 103

grid$class = predict(svc1, grid)

##Training
ggplot() +
 geom_raster(aes(x=grid$x1, y=grid$x2, fill=grid$class),
 alpha = 0.3, interpolate = T) +
 scale_fill_brewer(palette = "Dark2", drop = FALSE)+
 geom_point(aes(x = data.training$x1, y = data.training$x2,
 color = data.training$y,
 shape = data.training$y), size = 2) +
 scale_color_brewer(palette = "Dark2") +
 labs(x = "x1", y = "x2", col = "class",
 shape = "class", fill = "class") + theme_bw()

Test
ggplot() +
 geom_raster(aes(x=grid$x1, y=grid$x2, fill=grid$class),
 alpha = 0.3, interpolate = T) +
 scale_fill_brewer(palette = "Dark2", drop = FALSE)+
 geom_point(aes(x = data.test$x1, y = data.test$x2,
 color = data.test$y,
 shape = data.test$y), size = 2) +
 scale_color_brewer(palette = "Dark2") +
 labs(x = "x1", y = "x2", col = "class",
 shape = "class", fill = "class") + theme_bw()

#################

SVM with Radial Kernel
svm1 = svm(y~ .,data = data.training, kernel = "radial", cost = 10, gamma = 0.1,
scale = FALSE)

plot(svm1, data.training)
svm1$index
summary(svm1)

cross validation to define ce gamma
set.seed (1)
tune.out = tune(svm , y~., data = data.training, kernel = "radial",
 ranges = list (cost = c(0.001, 0.01, 0.1, 1, 10, 100),
 gamma = c(0.5, 1,2,3,4)))
summary(tune.out)

Model with greater gamma
svm1 = svm(y~ ., data = data.training, kernel = "radial", cost = 10, gamma = 0.5,
scale = FALSE)

Pattern recognition 104

Confusion matrix - test

cm = table(true = data.test[,"y"], pred = predict(tune.out$best.model, newdata =
data.test))
cm

test classification ratio

(cm[1,1] + cm[2,2])/sum(cm)

##################################

Preview
grid = expand.grid (x1 = seq (min(c(data.training$x1, data.test$x1)),
 max (c(data.training$x1, data.test$x1)), length = 200),
 x2 = seq (min(c(data.training$x2, data.test$x2)),
 max (c(data.training$x2, data.test$x2)), length = 200))

grid$class = predict(svm1, grid)

##Training
ggplot() +
 geom_raster(aes(x=grid$x1, y=grid$x2, fill=grid$class),
 alpha = 0.3, interpolate = T) +
 scale_fill_brewer(palette = "Set1", drop = FALSE)+
 geom_point(aes(x = data.training$x1, y = data.training$x2,
 color = data.training$y,
 shape = data.training$y), size = 2) +
 scale_color_brewer(palette = "Set1") +
 labs(x = "x1", y = "x2", col = "class",
 shape = "class", fill = "class") + theme_bw()

Test
ggplot() +
 geom_raster(aes(x=grid$x1, y=grid$x2, fill=grid$class),
 alpha = 0.3, interpolate = T) +
 scale_fill_brewer(palette = "Set1", drop = FALSE)+
 geom_point(aes(x = data.test$x1, y = data.test$x2,
 color = data.test$y,
 shape = data.test$y), size = 2) +
 scale_color_brewer(palette = "Set1") +
 labs(x = "x1", y = "x2", col = "class",
 shape = "class", fill = "class") + theme_bw()

############
ROC curve
install.packages("ROCR")
library(ROCR)

Pattern recognition 105

ROC model SVC
fitted1 = attributes(predict(svc1, data.test, decision.values = T))$decision.values
pred1 = prediction(fitted1, data.test$y)
perf1 = performance(pred1, "tpr", "fpr")

plot(perf1,
 avg = 'vertical',
 lwd = 3, main = "ROC curve model scv1 - test data",
 col = 'blue')

####### ROC model SVM
fitted2 = attributes(predict(svm1, data.test, decision.values = T))$decision.values
pred2 = prediction(fitted2, data.test$y)
perf2 = performance(pred2, "tpr", "fpr")

plot (perf2,
 avg = 'vertical',
 lwd = 3, main = "ROC curve model svm1 - test data" ,
 col = 'green3')

#################

SVM with polynomial kernel of degree 2

svm2 = svm (y~.,data = data.training, kernel = "polynomial", cost = 10, degree =
2, scale = FALSE)

plot(svm2, data.training)
svm2$index
summary(svm2)

cross validation to define c
set.seed(1)
tune.out = tune(svm, y~., data = data.training, kernel = "polynomial", degree = 2,
 ranges = list(cost = c(0.001, 0.01, 0.1, 1, 10, 100)))
summary(tune.out)

Model with great c
svm2 = svm(y~ ., data = data.training, kernel = "polynomial", cost = 100, degree
= 2, scale = FALSE)

Confusion matrix - test

cm = table(true = data.test[,"y"], pred = predict(tune.out$best.model, newdata =
data.test))
cm

Pattern recognition 106

test classification ratio

(cm[1,1] + cm[2,2])/sum(cm)

##################################

Preview
grid = expand.grid (x1 = seq (min(c(data.training$x1, data.test$x1)),
 max(c(data.training$x1, data.test$x1)), length = 200),
 x2 = seq (min(c(data.training$x2, data.test$x2)),
 max(c(data.training$x2, data.test$x2)), length = 200))

grid$class = predict(svm2, grid)

##Training
ggplot() +
 geom_raster(aes(x=grid$x1, y=grid$x2, fill=grid$class),
 alpha = 0.3, interpolate = T) +
 scale_fill_brewer(palette = "Set1", drop = FALSE)+
 geom_point(aes(x = data.training$x1, y = data.training$x2,
 color = data.training$y,
 shape = data.training$y), size = 2) +
 scale_color_brewer(palette = "Set1") +
 labs(x = "x1", y = "x2", col = "class",
 shape = "class", fill = "class") + theme_bw()

Test
ggplot() +
 geom_raster(aes(x=grid$x1, y=grid$x2, fill=grid$class),
 alpha = 0.3, interpolate = T) +
 scale_fill_brewer(palette = "Set1", drop = FALSE)+
 geom_point(aes(x = data.test$x1, y = data.test$x2,
 color = data.test$y,
 shape = data.test$y), size = 2) +
 scale_color_brewer(palette = "Set1") +
 labs(x = "x1", y = "x2", col = "class",
 shape = "class", fill = "class") + theme_bw()

############

####### ROC model SVM2
fitted3 = attributes(predict(svm2, data.test, decision.values = T))$decision.values
pred3 = prediction(fitted3, data.test$y)
perf3 = performance(pred3, "tpr", "fpr")

plot (perf3,
 avg = 'vertical',
 lwd = 3, main = "ROC curve model svm2 - test data" ,
 col = 'green3')

#################

Pattern recognition 107

3.10 Decision Trees
The decision tree concept was developed by J. Ross Quinlan in 1975 [9]. Decision

trees learning is one of the predictive modeling approaches that can be found in statistics,
data mining, or machine learning. Basically, a decision tree is used (as a predictive model)
to verify observations about an item (represented in the branches) and obtain conclusions
about the target value of the item (represented in the leaves). In other words, a decision tree
is a tree in which each internal (non-leaf) node is labeled with an input feature. Arcs coming
from a node labeled with an input feature are labeled with each of the possible values of the
target feature, or the arc leads to a subordinate decision node on a different input feature.
Each leaf of the tree is labeled with a class or probability distribution over classes, which
means that the data set has been classified by the tree into a specific class or a specific
probability distribution (which, if the decision tree is well constructed, is biased towards
certain subsets of classes).

The way the algorithm will know how to build the tree is based on conditions that
minimize entropy and increase information gain. Entropy is the measure that tells us how
disorganized and mixed the original data is. The higher the entropy, the lower the information
gain and vice versa. The entropy value of a data can be calculated using the following
equation:

 Eq. 15

Entropy usually varies between 0 and our number of classes -1, assuming its
maximum value when the probabilities of each class occur. The goal with a decision tree is
to achieve the lowest entropy possible.

Example 13: Analysis of a data set to create the decision tree using R packages
called rpart.plot , caret , Amelia, pROC.

R Script
Loading and Separating training and testing data
train <- read.csv("trainTitanic.csv", header = T)
test <- read.csv("testTitanic.csv", header = T)

Tidying up the dataset
train$X <- NULL
test$X <- NULL

Check the encoding of variables
str(train)
str(test)

Pattern recognition 108

Transforming the variables that need to be categorical
train$Survived <- as.factor(train$Survived)
test$Survived <- as.factor(test$Survived)

train$Pclass <- as.factor(train$Pclass)
test$Pclass <- as.factor(test$Pclass)

train$Sex <- as.factor(train$Sex)
test$Sex <- as.factor(test$Sex)

train$Embarked <- as.factor(train$Embarked)
test$Embarked <- as.factor(test$Embarked)

Variables
Survived : 0 = No, 1 = Yes
SibSp : Number of siblings/spouses on board
Parch : Number of parents/children on board
Fare: Fare
Embarked : Port of embarkation C = Cherbourg , Q = Queenstown , S = Southampton
Pclass : Ship class

Parameter Adjustment

Loading packages
install.packages("caret")
install.packages("Amelia")
install.packages("pROC")
library(caret)
library(Amelia)
library(pROC)

Defining the seed
set.seed(123)

Let's use a 10-fold cross-validation
ctrl <- trainControl (method = "cv",
 number = 10,
 summaryFunction = twoClassSummary ,
 classProbs = TRUE)

We have to change the variable - when we use twoClassSummary
levels(train$Survived) <- c("M", "S")
levels(test$Survived) <- c("M", "S")

dtFit <- train(Survived ~ .,
 method = "rpart2", # uses depth maximum
 tuneLength = 20,
 trControl = ctrl,
 metric = "ROC",
 data = train)
dtFit
plot(dtFit)

Pattern recognition 109

Tree drawing
install.packages("rpart.plot")
library(rpart.plot)
rpart.plot (dtFit$finalModel,
 cex = 0.7,
 extra = 4,
 type = 1,
 box.palette = "RdYlGn")

Predictions

preddt <- predict(dtFit, test, type = "prob")
resultdt <- as.factor(ifelse(preddt [,2] > 0.5,"S","M"))

Model performance

Confusion matrix and measurements
library(caret)
confusionMatrix(resultdt, test$Survived , positive = "S")

ROC curve and AUC
library(pROC)
aucdt <- roc(test$Survived, preddt[,2])
plot.roc(aucdt, print.thres = T) # find the cutoff point that provides the best sum
of S and E

Using the new cutoff point
resultdt2 <- as.factor(ifelse(preddt[,2] > 0.393, "S", "M"))
confusionMatrix(resultdt2, test$Survived, positive = "S")

PROPOSED EXERCISES
01 – Propose the application of the HCA algorithm through a script in the R language

on an experimental data set, presenting your hypotheses and conclusions.
02 – There are multivariate data repositories on the internet (web of science, science

direct and others) in which you must choose a dataset to use the K-means algorithm in the R
language and carry out a statistical study in detail. Present the main results and conclusions.

03 – Present a script in the R language for the PCA algorithm for a dataset and
demonstrate your hypotheses and main conclusions.

04 – Propose a script in the R language for the KNN algorithm using a given dataset
and perform a statistical interpretation presenting its main conclusions.

05 – Present a script for the LDA and QDA algorithms in the R language for a given
dataset and present your main results.

06 – Like the previous exercise, present a script in the R language to build a decision
tree algorithm for a dataset. Present your conclusions.

Pattern recognition 110

REFERENCES
1 – Tryon, RC (1939), Cluster analysis: correlation profile and orthometric (factor) analysis for the isolation
of units in mind and personality, Ann Arbor, Mich: Edwards brothers, inc., lithoprinters and publishers.

2 – Lloyd, Stuart P. (1982). Least squares quantization in PCM. IEEE Transactions on Information Theory.
28 (2): 129–137.

3 – Pearson, K. (1901). On Lines and Planes of Closest Fit to Systems of Points in Space. Philosophical
Magazine. 2(6):559–572.

4 – Lawton, WH; Sylvestre, EA; (1971). Self modeling curve resolution. Technometrics , 13: 617-633.

4 – Fix, E.; Jr., J. L. H. (1951). Discriminatory Analysis. Nonparametric Discrimination: Consistency
Properties. International Statistical Review. 57(3): 238-247.

5 – Cover, T.; Hart, P. (1967). Nearest neighbor pattern classification. IEEE Transactions on Information
Theory , 13(1): 21-27.

6 – Fisher, RA (1936). The Use of Multiple Measurements in Taxonomic Problems. Annals of Eugenics.
7 (2): 179–188.

7 – Rao, CR (1948) The Use of Multiple Measurements in Problems of Biological Classification. Journal
of the Royal Statistical Society: Series B, 10, 159-203.

8 – Vapnik , VN; Chervonenkis , A. Y. (1971). On the uniform convergence of relative frequencies of
events to their probabilities. Theory of Probability and its Applications, 16(2):283–305.

9 – Quinlan, JR (1975). Machine Learning, vol. 1, no 1.

111Higher order multivariate classification

HiGHER ORDER MULTivARiATE CLASSiFiCATiON

CHAPTER 4

"Model building is the art of selecting those aspects of a process that
are relevant to the question being asked. As with any art, this selection
is guided by taste, elegance, and metaphor; it is a matter of induction,
rather than deduction. High science depends on this art. " John Henry
Holland (1929-2015)

CHAPTER IDEA
According to the amount of information generated per sample, analytical data can be

categorized into 0th order, 1st order, 2nd order, 3rd order and 4th order. We obtain for each
sample analyzed in 0th order (a scalar), in 1st order (a vector), in 2nd order (a matrix), in
3rd order (3 ways) and 4th order (4 ways). In this chapter, we will explore some multivariate
classification algorithms that are typically employed on 1st and 2nd order data in real
datasets. In addition, some methods for selecting samples and variables in multivariate
classification will be presented.

Upon completing the chapter, you should be able to:
a) Apply the main 1st order multivariate classification algorithms coupled with variable
selection methods (PCA-LDA, SPA-LDA, GA-LDA) to a set of real data seeking to
build models and analyze them.

b) Incorporate QDA models into PCA, SPA and GA algorithms.

c) Understand the sample and variable selection algorithms used in multivariate
classification models.

d) Apply the main 2nd order multivariate classification algorithms (Turkey-3 and
PARAFAC) using the sample selection algorithms (KS and MLM) and the two
classifiers (LDA and QDA) on real or simulated data sets seeking to build models
and analyze them.

e) Investigate the stages of building multivariate classification models when applied
to variable selection algorithms and model performance assessment (figures of
merit).

f) Build new scripts in R language for decision making using 1st and 2nd order
multivariate classification.

g) Propose new applications in chemistry or related areas of multivariate classification
techniques.

https://www.azquotes.com/quote/97013
https://www.azquotes.com/quote/97013
https://www.azquotes.com/quote/97013
https://www.azquotes.com/quote/97013
https://www.azquotes.com/quote/97013
https://www.azquotes.com/quote/97013

Higher order multivariate classification 112

4.1 Types of analytical data
According to the amount of information generated per sample [1], the analytical data

can be divided as shown in Figure 4.1 below:

Figure 4.1: Types of analytical data

The 1st order or 2-way data results in a vector of information per sample resulting in a
two-dimensional matrix X. In this type of data arrangement, we have the 1st order advantage
which consists of the ability to build multivariate models in the presence of interferers as
long as they are present in the training samples. The algorithms used in 1st order data are
based on bilinear models that consist of interpreting an instrumental response function X(r1,
r2) as a product of two independent functions X1(r1) and X2(r2). Bilinear models are obeyed
when the mathematical rank is equal to the chemical rank.

In 2nd order or 3-way data, we have as a response a matrix (second order tensor)
of data for each sample and when the data matrices are placed side by side they generate
a parallelepiped. Here we have the 2nd order advantage which consists of the possibility of
quantifying the analyte in the presence of interferers even if these interferers are not present
in the training set. Furthermore, 2nd order algorithms use a reduced number of samples
in the training set since potential interferents do not need to be modeled. The algorithms
used in 2nd order models use the concept of trilinearity, which consists of a generalization
of bilinearity for a three-way arrangement (IxJxK). Rank deficiency due to the presence of
highly correlated spectral profiles can be a source of trilinearity breakdown .

Higher order multivariate classification 113

4.2 Methods for selecting samples in multivariate classification
One of the limitations in building multivariate classification models (1st or 2nd order)

is the appropriate choice of samples that represent the greatest variance in the analyzed
data, improving their predictive capacity.

In 1969, Kennard -Stone (KS) [2] proposed a sample selection algorithm dividing the
original data set into two sub-sets (training and validation) so that each sub-set of samples
maintains maximum data variability. This algorithm uses Euclidean distances for each pair
(p, q) of samples to select the samples that will compose the training subset, according to
equation 4.1:

Eq. 1

Where j represents the number of covariates and N corresponds to the sample size.
To ensure the uniformity of distribution of each subset throughout the instrumental

response space, KS follows a stepwise procedure, in which a new selection is made in
regions of space far from the already selected samples. With each subsequent iteration, the
algorithm selects the sample that exhibits the greatest minimum distance from an already
selected sample. This procedure is repeated until the number of samples specified by the
analyst is reached.

The Morais-Lima-Martim (MLM) algorithm for sample selection was proposed in
2018 [3] and consists of a modification of the Kennard-Stone (KS) algorithm, in which a
random mutation factor is inserted into the latter. That is, after executing the KS algorithm,
some training samples are randomly selected and transferred to the validation set and vice
versa. Usually, this number of transferred samples is 20%, that is, 80% of the validation
set remains with the samples selected by KS, and the rest are samples randomly chosen
from the training set. MLM proved to be superior to the KS algorithm, showing that there is
a synergistic effect when combining the KS deterministic process with a small randomness
when selecting training and validation samples.

4.3 Methods for selecting variables in multivariate classification
Variable selection is an important step for data analysis. This step identifies the most

informative subsets of variables for building more accurate models. Basically, three main
approaches for variable selection methods can be found in the literature: i) filter; ii) wrapper
; iii) embedded.

In filter-based methods, variables are evaluated considering the characteristics
of their nature and normally use statistical tests of significance previously applied to a

Higher order multivariate classification 114

classification algorithm. Correlation-based feature selection (CFS), Minimum Redundancy
Maximum Relevance (MRMR), Information Gain and Joint Mutual Information (JMI) are
some examples of filter-based variable selection methods. For wrapper-based methods,
subsets of variables are evaluated using learning algorithms to find the subset that performs
best. Genetic algorithm (GA), successive projection algorithm (SPA), Particle Swarm
Optimization (PSO), and Simulated Annealing are some examples of variable selection
methods in the wrapper approach. Finally, embedded-based methods are those that select
the subset of variables during the classification model construction process itself. Least
Absolute Selection (LAS), Shrinkage Operator (LASSO) and deep learning are some
examples of the embedded method.

4.4 Performance metrics
Normally the performance of multivariate classification techniques is evaluated

through error. The efficiency of a classification model is the ability to correctly classify
samples into their respective classes. Generally, the results of the error rate made by the
classifier are organized in the form of a table or confusion matrix. If a sample classified as
positive by the reference or gold standard method is correctly classified by the classification
model, it is considered true positive (TP). However, if it is classified as negative, we have
a false negative (FN) or Type II error. In the case of a sample classified as negative by
the reference method and the classification model calculates as negative, we have a true
negative (TN). However, if a sample is classified as positive, it is counted as a false positive
(FP), or Type I error. Table 4.1 exemplifies a confusion matrix based on the concepts of TP,
FN, FP and TN for two classes.

Table 4.1 : Confusion matrix for multivariate classification models

true class
A B

predicted class
A TP FP
B FN TN

On the other hand, there are other performance metrics that indicate the efficiency of
classification models, as shown in Table 4.2 .

Higher order multivariate classification 115

Metric Calculation

Correct classification

Sensitivity (sens)

Specificity (spec)

Positive predictive value (PPV)

Negative predictive value (NPV)

Negative likelihood ratio

Accuracy

F–score (FS)

In addition to these metrics already described, there is a statistical tool that allows

evaluating the performance of a classification system: the ROC curve (Receiver Operating
Characteristic). A ROC curve is a two-dimensional line graph that represents the relationship
between the sensitivity and specificity of a classification model. The index that evaluates the
accuracy of these graphs is the area under the curve (AUC), and the larger the area, the
greater the performance of the system in question. An ideal test is one whose area under
the ROC curve is equal to 1.

4.5 – PCA-LDA
Mathematically, the multivariate classification algorithm PCA-LDA (Principal

Component Analysis with Linear Discriminant Analysi) is built in six main steps:

Step 1: The maximum number of k principal components (PC) is initially determined
according to the Xtrain training matrix (mxn). k is (m – 1) for (m ≥ n) or (n–1) for (n ≥ m).

Step 2: Xtrain is decomposed into k PCs, which are defined by the product between
the training scores vector (ttrain) and the loadings vector transposed (lT

train):

Xtrain = [ttrainlT
train]1 + [ttrainlT

train]2 + ... + [ttrainlT
train]k + Etrain Eq. 2

Higher order multivariate classification 116

Step 3: The score matrix of the test set (Ttest) is calculated from the loadings matrix
Itrain obtained in step 2.

Ttest = XtestIT
Train Eq. 3

Step 4: The discrimination (Di) of the score vector ti related to each principal
component is determined and ranked in descending order of discrimination:

Eq. 4

Where Sbi and Swi correspond to the inter and intra class dispersions for the score
vector ti, respectively. Intra-class dispersion Swi is defined as:

Eq. 5

Where C is the number of classes in the data set and Sij is the dispersion of ti in class
j and expressed as:

Eq. 6

Where corresponds to the score value ti in the nth k object, and mij corresponds
to the average value of ti in class j calculated as:

Eq. 7

The dispersion between classes (SBi) is defined as:

 Eq. 8

Where mi is the average of all training objects for the score vector ti.

Step 5: The training set scores are used as input variables for building the LDA
model. The optimal number of scores is chosen based on the smallest error obtained
through cross-validation.

Higher order multivariate classification 117

Step 6: The LDA model built is used to predict the classes of test samples based on
their scores.

Example 1: In this example we will describe a script in the R language for building
and validating multivariate classification models using the PCA-LDA and Kennard-stone
algorithm for two classes (healthy and dengue, ATR-FTIR data) through the prospectr, mass
and ggplot2 packages.

R Script
installing packages

install.packages ("prospectr")
install.packages ("MASS")

reading packages

library(prospectr)
library(MASS)
library(ggplot2)

reading the samples

class1 = read.table("DATASET/healthy.csv", header=FALSE) # samples of healthy
patients
class2 = read.table("DATASET/dengue.csv", header=FALSE) # samples from dengue
patients
cm = read.table("DATASET/cm.csv", header=FALSE) # wavelength

class1 = healthy - control samples
class2 = dengue - case samples

dim_class1 = dim (class1) # dimension of class1 array
dim_class2 = dim (class2) # dimension of class2 array

transposing the data

class1t = t(class1)
class2t = t(class2)
cmt = t(cm)

viewing data - all spectra

dev.new()
matplot(cmt, class1t, type ="l", col ="blue", xlab ="Wavenumber (cm-1)", ylab
="Absorbance", main ="Raw spectra")
matplot(cmt,class2t, type ="l", col ="red", xlab ="Wavenumber (cm-1)", ylab
="Absorbance", main ="Raw spectra", add =TRUE)

Higher order multivariate classification 118

viewing data - just the averages

dev.new()
matplot(cmt, colMeans (class1), type ="l", col ="blue", xlab ="Wavenumber (cm-1)",
ylab ="Absorbance", main ="Average spectra")
matplot(cmt,colMeans (class2), type ="l", col ="red", xlab ="Wavenumber (cm-1)",
ylab ="Absorbance", main ="Mean spectra", add =TRUE)

scaling the data

data = rbind(class1, class2) # combining matrices one under the other
data_scal = scale(data) # scaling the data
dim_data = dim(data) # dimension of the data array

PCA Model

data.svd = svd(data_scal) # SVD
data.scores = data.svd$u %*% diag(data.svd$d) # scores
data.loadings = data.svd$v # loadings

PCA Variances

data.vars = data.svd$d^2 / (nrow (data)-1) # variance per PC
data.totalvar = sum(data.vars) # total variance
data.relvars = data.vars/data.totalvar # cumulative variance
variances = 100*round(data.relvars, digits = 3) # cumulative variance in %
variances[1:10] # variance in % in the first 10 PCs

Choosing the number of PCs

par(mfrow = c(2,2))
barplot(data.vars[1:10], main="Variance", names.arg = paste("PC", 1:10))
barplot(log(data.vars[1:10]), main="Log(variance)", names.arg = paste("PC", 1:10))
barplot(data.relvars[1:10], main="Relative Variances", names.arg = paste("PC",
1:10))
barplot(cumsum (100*data.relvars[1:10]), main="Cumulative Variance(%)", names.arg
= paste("PC", 1:10), ylim = c(0,100))

npc = 2 # number of PCs chosen to run the PCA

scores = data.scores[1:dim_data[1],1:npc] # PCA scores up to the chosen PC number
loadings = data.loadings[1:dim_data[2],1:npc] # PCA loadings up to the chosen PC
number

Creation of the category vector: classes (1 = healthy, 2 = dengue)

group1 = rep(1,dim_class1[1]) # class 1
group2 = rep(2,dim_class2[1]) # class 2

Higher order multivariate classification 119

Selection of training and testing samples based on KS

perc = 0.7 # 70% for training

ntrain1 = ceiling(perc * dim_class1[1]) # number of training samples class 1
ntrain2 = ceiling(perc * dim_class2[1]) # number of training samples class 2

scores1 = scores[1:dim_class1[1],1:npc] # scores class 1
scores2 = scores[(dim_class1[1]+ 1):dim_data[1],1:npc] # scores class 2

sel1 = kenStone(scores1, k = ntrain1) # KS class 1
sel2 = kenStone(scores2, k = ntrain2) # KS class 2

train1 = scores1[sel1$model,1:npc] # training class 1
train2 = scores2[sel2$model,1:npc] # training class 2
train = rbind(train1,train2) # joining training matrices

group1train = matrix(group1[sel1$model]) # class 1 training labels
group2train = matrix(group2[sel2$model]) # class 2 training labels
group_train = rbind(group1train,group2train) # training labels

test1 = scores1[sel1$test, 1:npc] # test class 1
test2 = scores2[sel2$test, 1:npc] # test class 2
test = rbind(test1,test2) # joining test matrices

group1test = matrix(group1[sel1$test]) # class 1 test labels
group2test = matrix(group2[sel2$test]) # class 2 test labels
group_test = rbind(group1test,group2test) # test labels

LDA model

model_lda = lda(train,group_train) # model without cross-validation
model_lda_cv = lda(train,group_train,CV=TRUE) # model with leave-one-out cross-
validation

prediction of training and testing samples

pred_train = predict(model_lda, train) # training
pred_test = predict(model_lda, test) # test

figures of merit

training

dim_train1 = dim(train1)
dim_train2 = dim(train2)

Higher order multivariate classification 120

ac_train = mean(pred_train$class == group_train) # accuracy
spec_train = mean(pred_train$class[1:dim_train1[1]]==group1train) # specificity
sens_train = mean(pred_train$class[(dim_train1[1] + 1):(dim_train1[1]+dim_
train2[1])]==group2train) # sensitivity

cross-validation

ac_cv = mean(model_lda_cv$class == group_train) # accuracy
spec_cv = mean(model_lda_cv$class[1:dim_train1[1]]==group1train) # specificity
sens_cv = mean(model_lda_cv$class[(dim_train1[1] + 1):(dim_train1[1]+dim_
train2[1])]==group2train) # sensitivity

test

dim_test1 = dim(test1)
dim_test2 = dim(test2)

ac_test = mean(pred_test$class == group_test) # accuracy
spec_test = mean(pred_test$class[1:dim_test1[1]]==group1test) # specificity
sens_test = mean(pred_test$class[(dim_test1[1]+ 1):(dim_test1[1]+dim_
test2[1])]==group2test) # sensitivity

print("=========== Training =============")
cat("Accuracy:")
ac_train
cat("Sensitivity:")
sens_train
cat("Specificity:")
spec_train

print("=========== Cross-validation =============")
cat("Accuracy:")
ac_cv
cat("Sensitivity:")
sens_cv
cat("Specificity:")
spec_cv

print("=========== Test =============")
cat("Accuracy:")
ac_test
cat("Sensitivity:")
sens_test
cat("Specificity:")
spec_test

plotting PCA scores PC1 x PC2

Higher order multivariate classification 121

dev.new()
group12 = rbind(matrix(group1), matrix(group2))
matplot(data.scores[group12==1,1],data.
scores[group12==1,2],pch=19,col='blue',xlab='PC1',ylab='PC2',main= 'PCA scores')
points(data.scores[group12==2,1],data.
scores[group12==2,2],pch=19,col='red',xlab='PC1',ylab='PC2',main= 'PCA scores')

plotting PCA loadings PC1 & PC2

dev.new()
matplot(cmt,data.loadings[,1], type ="l", col = "blue", xlab ="Wavenumber (cm-1)",
ylab ='Loadings', main ='PCA loadings')
par(new=TRUE)
matplot(cmt,data.loadings[,2], type ="l", col = "red", xlab = "Wavenumber (cm-1)",
ylab ='Loadings',main ='PCA loadings')

viewing posterior probabilities - training

dev.new()
matplot(pred_train$posterior[1:dim_train1[1],1],pch =19,col="blue",xlab="Samples",
ylab ="LD1", main ="Posterior Probability - Training") # training class 1
points(pred_train$posterior[(dim_train1[1]+ 1):(dim_train1[1]+dim_train2[1]),1],
pch=19,col="red",xlab="Samples", ylab ="LD1 ", main ="Posterior Probability -
Training") # training class 2

visualizing posterior probabilities - cross validation

dev.new()
matplot(model_lda_cv$posterior[1:dim_train1[1],1],pch
=19,col="blue",xlab="Samples", ylab ="LD1", main ="Posterior Probability - Cross-
Validation") # class 1 cross-validation
points(pred_train$posterior[(dim_train1[1]+ 1):(dim_train1[1]+dim_
train2[1]),1],pch=19,col="red",xlab="Samples", ylab ="LD1 ", main ="Posterior
Probability - Cross-validation") # cross-validation class 2

viewing posterior probabilities - test

dev.new()
matplot(pred_test$posterior[1:dim_test1[1],1],pch=19,col="blue",xlab="Samples",
ylab ="LD1", main=" Posterior Probability - Test") # test class 1
points(pred_train$posterior[(dim_test1[1]+ 1):(dim_test1[1]+dim_
test2[1]),1],pch=19,col="red",xlab="Samples", ylab ="LD1", main="Posterior
Probability - Test") # test class 2

Higher order multivariate classification 122

Example 2 : The example we will describe here is basically what was described in
the previous example, only changing the training and prediction sample selection method.
In this case we present the MLM algorithm in the construction of PCA-LDA classification
models for two classes (healthy and dengue, ATR-FTIR data) through the prospectr, mass
and ggplot2 packages.

R Script
installing packages

install.packages ("prospectr")
install.packages ("MASS")

reading packages

library(prospectr)
library(MASS)
library(ggplot2)

reading the samples

class1 = read.table("DATASET/healthy.csv", header=FALSE) # samples of healthy
patients
class2 = read.table("DATASET/dengue.csv", header=FALSE) # samples from dengue
patients
cm = read.table("DATASET/cm.csv", header=FALSE) # wavelength

class1 = healthy - control samples
class2 = dengue - case samples

dim_class1 = dim (class1) # dimension of class1 array
dim_class2 = dim (class2) # dimension of class2 array

transposing the data

class1t = t(class1)
class2t = t(class2)
cmt = t(cm)

viewing data - all spectra

dev.new()
matplot(cmt, class1t, type ="l", col ="blue", xlab ="Wavenumber (cm-1)", ylab
="Absorbance", main ="Raw spectra")
matplot(cmt,class2t, type ="l", col ="red", xlab ="Wavenumber (cm-1)", ylab
="Absorbance", main ="Raw spectra", add =TRUE)

viewing data - just the averages

Higher order multivariate classification 123

dev.new()
matplot(cmt, colMeans (class1), type ="l", col ="blue", xlab ="Wavenumber (cm-1)",
ylab ="Absorbance", main ="Average spectra")
matplot(cmt,colMeans (class2), type ="l", col ="red", xlab ="Wavenumber (cm-1)",
ylab ="Absorbance", main ="Mean spectra", add =TRUE)

scaling the data

data = rbind(class1, class2) # combining matrices one under the other
data_scal = scale(data) # scaling the data
dim_data = dim(data) # dimension of the data array

PCA Model

data.svd = svd(data_scal) # SVD
data.scores = data.svd$u %*% diag(data.svd$d) # scores
data.loadings = data.svd$v # loadings

PCA Variances

data.vars = data.svd$d^2 / (nrow (data)-1) # variance per PC
data.totalvar = sum(data.vars) # total variance
data.relvars = data.vars/data.totalvar # cumulative variance
variances = 100*round(data.relvars, digits = 3) # cumulative variance in %
variances[1:10] # variance in % in the first 10 PCs

Choosing the number of PCs

par(mfrow = c(2,2))
barplot(data.vars[1:10], main="Variance", names.arg = paste("PC", 1:10))
barplot(log(data.vars[1:10]), main="Log(variance)", names.arg = paste("PC", 1:10))
barplot(data.relvars[1:10], main="Relative Variances", names.arg = paste("PC",
1:10))
barplot(cumsum (100*data.relvars[1:10]), main="Cumulative Variance(%)", names.arg
= paste("PC", 1:10), ylim = c(0,100))

npc = 2 # number of PCs chosen to run the PCA

scores = data.scores[1:dim_data[1],1:npc] # PCA scores up to the chosen PC number
loadings = data.loadings[1:dim_data[2],1:npc] # PCA loadings up to the chosen PC
number

Creation of the category vector: classes (1 = healthy, 2 = dengue)

group1 = rep(1,dim_class1[1]) # class 1
group2 = rep(2,dim_class2[1]) # class 2

Higher order multivariate classification 124

Selection of training and testing samples based on MLM

perc = 0.7 # 70% for training

ntrain1 = ceiling(perc * dim_class1[1]) # number of training samples class 1
ntrain2 = ceiling(perc * dim_class2[1]) # number of training samples class 2

scores1 = scores[1:dim_class1[1],1:npc] # scores class 1
scores2 = scores[(dim_class1[1]+ 1):dim_data[1],1:npc] # scores class 2

sel1 = kenStone(scores1, k = ntrain1) # KS class 1
sel2 = kenStone(scores2, k = ntrain2) # KS class 2

train1 = scores1[sel1$model,1:npc] # training class 1
train2 = scores2[sel2$model,1:npc] # training class 2
train = rbind(train1, train2) # joining training matrices

group1train = matrix(group1[sel1$model]) # class 1 training labels
group2train = matrix(group2[sel2$model]) # class 2 training labels
group_train = rbind(group1train, group2train) # training labels

test1 = scores1[sel1$test, 1:npc] # test class 1
test2 = scores2[sel2$test, 1:npc] # test class 2
test = rbind(test1, test2) # joining test matrices

group1test = matrix(group1[sel1$test]) # class 1 test labels
group2test = matrix(group2[sel2$test]) # class 2 test labels
group_test = rbind(group1test, group2test) # test labels

dim_train1 = dim(train1) # class 1 training dimension
dim_train2 = dim(train2) # class 2 training dimension
dim_test1 = dim(test1) # test dimension of class 1
dim_test2 = dim(test2) # class 2 test dimension

prob = 0.2 # MLM mutation probability = 20%

p1 = ceiling(prob * dim_test1[1])
p2 = ceiling(prob * dim_test2[1])

t1 = 1:dim_train1[1]
t2 = 1:dim_train2[1]

v1 = 1:dim_test1[1]
v2 = 1:dim_test2[1]

train1_sub = sample(x=t1, size=p1)
train2_sub = sample(x=t2, size=p2)

Higher order multivariate classification 125

test1_sub = sample(x=v1, size=p1)
test2_sub = sample(x=v2, size=p2)

train1_new = rbind(train1[-train1_sub,],test1[test1_sub,])
train2_new = rbind(train2[-train2_sub,],test2[test2_sub,])

test1_new = rbind(test1[-test1_sub,],train1[train1_sub,])
test2_new = rbind(test2[-test2_sub,],train2[train2_sub,])

train = rbind(train1_new, train2_new)
test = rbind(test1_new, test2_new)

LDA model

model_lda = lda(train,group_train) # model without cross-validation
model_lda_cv = lda(train,group_train,CV=TRUE) # model with leave-one-out cross-
validation

prediction of training and testing samples

pred_train = predict(model_lda, train) # training
pred_test = predict(model_lda, test) # test

figures of merit

training

dim_train1 = dim(train1)
dim_train2 = dim(train2)

ac_train = mean(pred_train$class == group_train) # accuracy
spec_train = mean(pred_train$class[1:dim_train1[1]]==group1train) # specificity
sens_train = mean(pred_train$class[(dim_train1[1] + 1):(dim_train1[1]+dim_
train2[1])]==group2train) # sensitivity

cross-validation

ac_cv = mean(model_lda_cv$class == group_train) # accuracy
spec_cv = mean(model_lda_cv$class[1:dim_train1[1]]==group1train) # specificity
sens_cv = mean(model_lda_cv$class[(dim_train1[1] + 1):(dim_train1[1]+dim_
train2[1])]==group2train) # sensitivity

test

dim_test1 = dim(test1)
dim_test2 = dim(test2)

Higher order multivariate classification 126

ac_test = mean(pred_test$class == group_test) # accuracy
spec_test = mean(pred_test$class[1:dim_test1[1]]==group1test) # specificity
sens_test = mean(pred_test$class[(dim_test1[1]+ 1):(dim_test1[1]+dim_
test2[1])]==group2test) # sensitivity

print("=========== Training =============")
cat("Accuracy:")
ac_train
cat("Sensitivity:")
sens_train
cat("Specificity:")
spec_train

print("=========== Cross-validation =============")
cat("Accuracy:")
ac_cv
cat("Sensitivity:")
sens_cv
cat("Specificity:")
spec_cv

print("=========== Test =============")
cat("Accuracy:")
ac_test
cat("Sensitivity:")
sens_test
cat("Specificity:")
spec_test

plotting PCA scores PC1 x PC2

dev.new()
group12 = rbind(matrix(group1), matrix(group2))
matplot(data.scores[group12==1,1],data.
scores[group12==1,2],pch=19,col='blue',xlab='PC1',ylab='PC2',main= 'PCA scores')
points(data.scores[group12==2,1],data.
scores[group12==2,2],pch=19,col='red',xlab='PC1',ylab='PC2',main= 'PCA scores')

plotting PCA loadings PC1 & PC2

dev.new()
matplot(cmt,data.loadings[,1], type ="l", col = "blue", xlab ="Wavenumber (cm-1)",
ylab ='Loadings', main ='PCA loadings ')
par(new=TRUE)
matplot(cmt,data.loadings[,2], type ="l", col = "red", xlab = "Wavenumber (cm-1)",
ylab ='Loadings',main ='PCA loadings')

viewing posterior probabilities - training

Higher order multivariate classification 127

dev.new()
matplot(pred_train$posterior[1:dim_train1[1],1],pch
=19,col="blue",xlab="Samples", ylab ="LD1", main ="Posterior Probability -
Training") # training class 1
points(pred_train$posterior[(dim_train1[1]+ 1):(dim_train1[1]+dim_
train2[1]),1],pch=19,col="red",xlab="Samples", ylab ="LD1 ", main ="Posterior
Probability - Training") # training class 2

visualizing posterior probabilities - cross validation

dev.new()
matplot(model_lda_cv$posterior[1:dim_train1[1],1],pch
=19,col="blue",xlab="Samples", ylab ="LD1", main ="Posterior Probability - Cross-
Validation") # class 1 cross-validation
points(pred_train$posterior[(dim_train1[1]+ 1):(dim_train1[1]+dim_
train2[1]),1],pch=19,col="red",xlab="Samples", ylab ="LD1 ", main ="Posterior
Probability - Cross-validation") # cross-validation class 2

viewing posterior probabilities - test

dev.new()
matplot(pred_test$posterior[1:dim_test1[1],1],pch=19,col="blue",xlab="Samples",
ylab ="LD1", main=" Posterior Probability - Test") # test class 1
points(pred_train$posterior[(dim_test1[1]+ 1):(dim_test1[1]+dim_
test2[1]),1],pch=19,col="red",xlab="Samples", ylab ="LD1", main="Posterior
Probability - Test") # test class 2

4.6 SPA-LDA
In 2001, Araújo et al. [4] proposed a variable selection technique called the

Successive Projections Algorithm (SPA). This technique basically uses simple operations
in a vector space to minimize collinearity problems and has good efficiency in the context
of multivariate calibration, specifically when applied to Multiple Linear Regression (MLR).

In 2005, Pontes et al. [5] adapted SPA, originally proposed for selecting spectral
variables in MLR models, to be used in classification problems using the LDA classifier,
resulting in SPA-LDA. SPA-LDA uses a cost function that calculates the average risk G of
an incorrect classification by LDA based on the validation set as per the equation below:

 Eq. 9

Where gk (risk of misclassifying the object xk of kth validation sample) is defined
according to the equation:

Higher order multivariate classification 128

Eq. 10

Where the numerator r2(xk, μIk) consists of the square of the Mahalanobis distance
between the object xk (with class index Ik) and the mean of its class (μIk). The denominator
of the same equation corresponds to the square of the Mahalanobis distance between the
object xk and the center of the nearest wrong class. This distance is calculated according to
the equation below:

r2(xk , µIk) = (xk - µIk)S
-1(xk - µIk)

T Eq. 11

where the sample mean (µIk) and covariance R are calculated on the training set. As
desired, the value of gk should be as small as possible, that is, the object xk should be close
to the center of its true class and far from the centers of other classes.

Example 3: In this example, we present the SPA-LDA algorithm together with the
sample selection algorithm (KS) in building multivariate classification models into two
classes (healthy and dengue, ATR-FTIR) through the prospectr, mass, ggplot2 and lintools
packages.

R Script
installing packages

install.packages("prospectr")
install.packages("MASS")
install.packages("lintools")

reading packages

library(prospectr)
library(MASS)
library(ggplot2)
library (lintools)

reading the samples

class1 = read.table("DATASET/healthy.csv", header=FALSE) # samples of healthy
patients
class2 = read.table("DATASET/dengue.csv", header=FALSE) # samples from dengue
patients
cm = read.table("DATASET/cm.csv", header=FALSE) # wavelength

Higher order multivariate classification 129

class1 = healthy - control samples
class2 = dengue - case samples

dim_class1 = dim (class1) # dimension of class1 array
dim_class2 = dim (class2) # dimension of class2 array

transposing the data

class1t = t(class1)
class2t = t(class2)
cmt = t(cm)

viewing data - all spectra

dev.new()
matplot(cmt, class1t, type ="l", col ="blue", xlab ="Wavenumber (cm-1)", ylab
="Absorbance", main ="Raw spectra")
matplot(cmt,class2t, type ="l", col ="red", xlab ="Wavenumber (cm-1)", ylab
="Absorbance", main ="Raw spectra", add =TRUE)

viewing data - just the averages

dev.new()
matplot(cmt, colMeans (class1), type ="l", col ="blue", xlab ="Wavenumber (cm-1)",
ylab ="Absorbance", main ="Average spectra")
matplot(cmt,colMeans (class2), type ="l", col ="red", xlab ="Wavenumber (cm-1)",
ylab ="Absorbance", main ="Mean spectra", add =TRUE)

scaling the data

data = rbind(class1, class2) # combining matrices one under the other
data_scal = scale(data) # scaling the data
dim_data = dim(data) # dimension of the data array

PCA Model

data.svd = svd(data_scal) # SVD
data.scores = data.svd$u %*% diag(data.svd$d) # scores
data.loadings = data.svd$v # loadings

Creation of the category vector: classes (1 = healthy, 2 = dengue)

group1 = rep(1,dim_class1[1]) # class 1
group2 = rep(2,dim_class2[1]) # class 2
group12 = rbind(matrix(group1), matrix(group2)) # group 1 and 2

SPA model

Higher order multivariate classification 130

nvar = 22 # number of variables to select

datam = data.matrix(data, rownames.force=NA) # converting data to matrix

m = colMeans(data) # average of the spectra

model_spa = project(x= data.loadings[,1], A=datam, b=group12, neq =0) # spa model

x = abs(model_spa$x) # leaving positive values for the SPA response vector

temp = sort.int(x, decreasing=TRUE, index.return =TRUE)
variables = temp$ix[1:nvar] # identifying selected variables

plot of selected variables

dev.new()
matplot(cmt,m,xlab="Wavenumber (cm-1)", type="l", ylab="Absorbance", main ="Average
spectrum with selected variables")
points(cm[variables],m[variables], pch =19)

datam_spa = datam[,variables] # absorbances for the selected variables

selection of training and testing samples based on KS

perc = 0.7 # 70% for training

ntrain1 = ceiling(perc * dim_class1[1]) # number of training samples class 1
ntrain2 = ceiling(perc * dim_class2[1]) # number of training samples class 2

datam_spa1 = datam_spa[1:dim_class1[1],] # scores class 1
datam_spa2 = datam_spa[(dim_class1[1]+ 1): dim_data[1],] # scores class 2

sel1 = kenStone(datam_spa1, k = ntrain1) # KS class 1
sel2 = kenStone(datam_spa2, k = ntrain2) # KS class 2

train1 = datam_spa1[sel1$model,] # training class 1
train2 = datam_spa2[sel2$model,] # training class 2
train = rbind(train1,train2) # joining training matrices

group1train = matrix(group1[sel1$model]) # class 1 training labels
group2train = matrix(group2[sel2$model]) # class 2 training labels
group_train = rbind(group1train,group2train) # training labels

test1 = datam_spa1[sel1$test,] # test class 1
test2 = datam_spa2[sel2$test,] # test class 2
test = rbind(test1,test2) # joining test matrices

group1test = matrix(group1[sel1$test]) # class 1 test labels
group2test = matrix(group2[sel2$test]) # class 2 test labels
group_test = rbind(group1test,group2test) # test labels

Higher order multivariate classification 131

LDA model

model_lda = lda(train,group_train) # model without cross-validation
model_lda_cv = lda(train,group_train,CV=TRUE) # model with leave-one-out cross-
validation

prediction of training and testing samples

pred_train = predict(model_lda, train) # training
pred_test = predict(model_lda, test) # test

figures of merit

training

dim_train1 = dim(train1)
dim_train2 = dim(train2)

ac_train = mean(pred_train$class == group_train) # accuracy
spec_train = mean(pred_train$class[1:dim_train1[1]]==group1train) # specificity
sens_train = mean(pred_train$class[(dim_train1[1] + 1):(dim_train1[1]+dim_
train2[1])]==group2train) # sensitivity

cross-validation

ac_cv = mean(model_lda_cv$class == group_train) # accuracy
spec_cv = mean(model_lda_cv$class[1:dim_train1[1]]==group1train) # specificity
sens_cv = mean(model_lda_cv$class[(dim_train1[1] + 1):(dim_train1[1]+dim_
train2[1])]==group2train) # sensitivity

test

dim_test1 = dim(test1)
dim_test2 = dim(test2)

ac_test = mean(pred_test$class == group_test) # accuracy
spec_test = mean(pred_test$class[1:dim_test1[1]]==group1test) # specificity
sens_test = mean(pred_test$class[(dim_test1[1]+ 1):(dim_test1[1]+dim_
test2[1])]==group2test) # sensitivity

print("=========== Training =============")
cat("Accuracy:")
ac_train
cat("Sensitivity:")
sens_train
cat("Specificity:")
spec_train

Higher order multivariate classification 132

print("=========== Cross-validation =============")
cat("Accuracy:")
ac_cv
cat("Sensitivity:")
sens_cv
cat("Specificity:")
spec_cv

print("=========== Test =============")
cat("Accuracy:")
ac_test
cat("Sensitivity:")
sens_test
cat("Specificity:")
spec_test

viewing posterior probabilities - training

dev.new()
matplot(pred_train$posterior[1:dim_train1[1],1],pch
=19,col="blue",xlab="Samples", ylab ="LD1", main ="Posterior Probability -
Training") # training class 1
points(pred_train$posterior[(dim_train1[1]+ 1):(dim_train1[1]+dim_
train2[1]),1],pch=19,col="red",xlab="Samples", ylab ="LD1 ", main ="Posterior
Probability - Training") # training class 2

visualizing posterior probabilities - cross validation

dev.new()
matplot(model_lda_cv$posterior[1:dim_train1[1],1],pch
=19,col="blue",xlab="Samples", ylab ="LD1", main ="Posterior Probability - Cross-
Validation") # class 1 cross-validation
points(pred_train$posterior[(dim_train1[1]+ 1):(dim_train1[1]+dim_
train2[1]),1],pch=19,col="red",xlab="Samples", ylab ="LD1 ", main ="Posterior
Probability - Cross-validation") # cross-validation class 2

viewing posterior probabilities - test

dev.new()
matplot(pred_test$posterior[1:dim_test1[1],1],pch=19,col="blue",xlab="Samples",
ylab ="LD1", main=" Posterior Probability - Test") # test class 1
points(pred_train$posterior[(dim_test1[1]+ 1):(dim_test1[1]+dim_
test2[1]),1],pch=19,col="red",xlab="Samples", ylab ="LD1", main="Posterior
Probability - Test") # test class 2

Higher order multivariate classification 133

Example 4: In this example, we present the SPA-LDA algorithm together with the
sample selection algorithm (MLM) in building multivariate classification models into two
classes (healthy and dengue, ATR-FTIR) through the prospect, mass, ggplot2 and lintools
packages.

R Script
installing packages

install.packages("prospectr")
install.packages("MASS")
install.packages("lintools")

reading packages

library(prospectr)
library(MASS)
library(ggplot2)
library (lintools)

reading the samples

class1 = read.table("DATASET/healthy.csv", header=FALSE) # samples of healthy
patients
class2 = read.table("DATASET/dengue.csv", header=FALSE) # samples from dengue
patients
cm = read.table("DATASET/cm.csv", header=FALSE) # wavelength

class1 = healthy - control samples
class2 = dengue - case samples

dim_class1 = dim (class1) # dimension of class1 array
dim_class2 = dim (class2) # dimension of class2 array

transposing the data

class1t = t(class1)
class2t = t(class2)
cmt = t(cm)

viewing data - all spectra

dev.new()
matplot(cmt, class1t, type ="l", col ="blue", xlab ="Wavenumber (cm-1)", ylab
="Absorbance", main ="Raw spectra")
matplot(cmt,class2t, type ="l", col ="red", xlab ="Wavenumber (cm-1)", ylab
="Absorbance", main ="Raw spectra", add =TRUE)

Higher order multivariate classification 134

viewing data - just the averages

dev.new()
matplot(cmt, colMeans (class1), type ="l", col ="blue", xlab ="Wavenumber (cm-1)",
ylab ="Absorbance", main ="Average spectra")
matplot(cmt,colMeans (class2), type ="l", col ="red", xlab ="Wavenumber (cm-1)",
ylab ="Absorbance", main ="Mean spectra", add =TRUE)

scaling the data

data = rbind(class1, class2) # combining matrices one under the other
data_scal = scale(data) # scaling the data
dim_data = dim(data) # dimension of the data array

PCA Model

data.svd = svd(data_scal) # SVD
data.scores = data.svd$u %*% diag(data.svd$d) # scores
data.loadings = data.svd$v # loadings

Creation of the category vector: classes (1 = healthy, 2 = dengue)

group1 = rep(1,dim_class1[1]) # class 1
group2 = rep(2,dim_class2[1]) # class 2
group12 = rbind(matrix(group1), matrix(group2)) # group 1 and 2

SPA model

nvar = 22 # number of variables to select

datam = data.matrix(data, rownames.force=NA) # converting data to matrix

m = colMeans(data) # average of the spectra

model_spa = project(x= data.loadings[,1], A=datam, b=group12, neq =0) # spa model

x = abs(model_spa$x) # leaving positive values for the SPA response vector

temp = sort.int(x, decreasing=TRUE, index.return =TRUE)
variables = temp$ix[1:nvar] # identifying selected variables

plot of selected variables

dev.new()
matplot(cmt,m,xlab="Wavenumber (cm-1)", type="l", ylab="Absorbance", main ="Average
spectrum with selected variables")
points(cm[variables],m[variables], pch =19)

Higher order multivariate classification 135

datam_spa = datam[,variables] # absorbances for the selected variables

selection of training and testing samples based on MLM

perc = 0.7 # 70% for training

ntrain1 = ceiling(perc * dim_class1[1]) # number of training samples class 1
ntrain2 = ceiling(perc * dim_class2[1]) # number of training samples class 2

datam_spa1 = datam_spa[1:dim_class1[1],] # scores class 1
datam_spa2 = datam_spa[(dim_class1[1]+ 1): dim_data[1],] # scores class 2

sel1 = kenStone(datam_spa1, k = ntrain1) # KS class 1
sel2 = kenStone(datam_spa2, k = ntrain2) # KS class 2

train1 = datam_spa1[sel1$model,] # training class 1
train2 = datam_spa2[sel2$model,] # training class 2
train = rbind(train1,train2) # joining training matrices

group1train = matrix(group1[sel1$model]) # class 1 training labels
group2train = matrix(group2[sel2$model]) # class 2 training labels
group_train = rbind(group1train,group2train) # training labels

test1 = datam_spa1[sel1$test,] # test class 1
test2 = datam_spa2[sel2$test,] # test class 2
test = rbind(test1,test2) # joining test matrices

group1test = matrix(group1[sel1$test]) # class 1 test labels
group2test = matrix(group2[sel2$test]) # class 2 test labels
group_test = rbind(group1test,group2test) # test labels

dim_train1 = dim(train1) # class 1 training dimension
dim_train2 = dim(train2) # class 2 training dimension
dim_test1 = dim(test1) # test dimension of class 1
dim_test2 = dim(test2) # class 2 test dimension

prob = 0.2 # MLM mutation probability = 20%

p1 = ceiling(prob * dim_test1[1])
p2 = ceiling(prob * dim_test2[1])

t1 = 1:dim_train1[1]
t2 = 1:dim_train2[1]

v1 = 1:dim_test1[1]
v2 = 1:dim_test2[1]

Higher order multivariate classification 136

rain1_sub = sample(x=t1, size=p1)
train2_sub = sample(x=t2, size=p2)

test1_sub = sample(x=v1, size=p1)
test2_sub = sample(x=v2, size=p2)

train1_new = rbind(train1[-train1_sub,],test1[test1_sub,])
train2_new = rbind(train2[-train2_sub,],test2[test2_sub,])

test1_new = rbind(test1[-test1_sub,],train1[train1_sub,])
test2_new = rbind(test2[-test2_sub,],train2[train2_sub,])

train = rbind(train1_new,train2_new)
test = rbind(test1_new,test2_new)

LDA model

model_lda = lda(train,group_train) # model without cross-validation
model_lda_cv = lda(train,group_train,CV=TRUE) # model with leave-one-out cross-
validation

prediction of training and testing samples

pred_train = predict(model_lda, train) # training
pred_test = predict(model_lda, test) # test

figures of merit

training

dim_train1 = dim(train1)
dim_train2 = dim(train2)

ac_train = mean(pred_train$class == group_train) # accuracy
spec_train = mean(pred_train$class[1:dim_train1[1]]==group1train) # specificity
sens_train = mean(pred_train$class[(dim_train1[1] + 1):(dim_train1[1]+dim_
train2[1])]==group2train) # sensitivity

cross-validation

ac_cv = mean(model_lda_cv$class == group_train) # accuracy
spec_cv = mean(model_lda_cv$class[1:dim_train1[1]]==group1train) # specificity
sens_cv = mean(model_lda_cv$class[(dim_train1[1] + 1):(dim_train1[1]+dim_
train2[1])]==group2train) # sensitivity

test

Higher order multivariate classification 137

t
dim_test1 = dim(test1)
dim_test2 = dim(test2)

ac_test = mean(pred_test$class == group_test) # accuracy
spec_test = mean(pred_test$class[1:dim_test1[1]]==group1test) # specificity
sens_test = mean(pred_test$class[(dim_test1[1]+ 1):(dim_test1[1]+dim_
test2[1])]==group2test) # sensitivity

print("=========== Training =============")
cat("Accuracy:")
ac_train
cat("Sensitivity:")
sens_train
cat("Specificity:")
spec_train

print("=========== Cross-validation =============")
cat("Accuracy:")
ac_cv
cat("Sensitivity:")
sens_cv
cat("Specificity:")
spec_cv

print("=========== Test =============")
cat("Accuracy:")
ac_test
cat("Sensitivity:")
sens_test
cat("Specificity:")
spec_test

viewing posterior probabilities - training

dev.new()
matplot(pred_train$posterior[1:dim_train1[1],1],pch
=19,col="blue",xlab="Samples", ylab ="LD1", main ="Posterior Probability -
Training") # training class 1
points(pred_train$posterior[(dim_train1[1]+ 1):(dim_train1[1]+dim_
train2[1]),1],pch=19,col="red",xlab="Samples", ylab ="LD1 ", main ="Posterior
Probability - Training") # training class 2

visualizing posterior probabilities - cross validation

dev.new()
matplot(model_lda_cv$posterior[1:dim_train1[1],1],pch
=19,col="blue",xlab="Samples", ylab ="LD1", main ="Posterior Probability - Cross-
Validation") # class 1 cross-validation
points(pred_train$posterior[(dim_train1[1]+ 1):(dim_train1[1]+dim_
train2[1]),1],pch=19,col="red",xlab="Samples", ylab ="LD1 ", main ="Posterior
Probability - Cross-validation") # cross-validation class 2

Higher order multivariate classification 138

viewing posterior probabilities - test

dev.new()
matplot(pred_test$posterior[1:dim_test1[1],1],pch=19,col="blue",xlab="Samples",
ylab ="LD1", main=" Posterior Probability - Test") # test class 1
points(pred_train$posterior[(dim_test1[1]+ 1):(dim_test1[1]+dim_
test2[1]),1],pch=19,col="red",xlab="Samples", ylab ="LD1", main="Posterior
Probability - Test") # test class 2

4.7 GA-LDA
The genetic algorithm (GA) is a bioinspired optimization method developed to solve

optimization and machine learning problems, created by John Henry Holland in 1975 [6]. It
is also considered a method of selecting variables of stochastic nature. GA simulates natural
processes of survival and reproduction of populations, especially based on the theory of
species evolution proposed by Darwin. Chromosomes encoded by real numbers is a context
applied to the genetic algorithm, as it is possible to construct artificial chromosomes and
simulate a natural evolutionary process.

Basically, GA encodes subsets of variables in the form of a series of binary values
(chromosomes) and the position on the chromosome (gene) is associated with one of the
variables for selection. In this way, a population is generated from a random set of individuals
and during the evolution process, the population receives an index that reflects the ability to
adapt to a given fitness. Finally, the fittest individuals are selected for the selection process
and the least fit are eliminated. The process is repeated until a certain satisfactory solution
is reached or the maximum number of generations is reached.

In spectroscopic studies, for example, standard binary chromosomes are used
with a size equal to the number of wavelengths in a spectrum. The GA-LDA algorithm
in multivariate classification uses a cost function calculated as the inverse of the risk G
described in equation 4.9 using the wavelengths encoded in the chromosome. Normally,
crossover and mutation operators are used at a level of probability as well as the size of the
population at each generation.

Example 5: In this example, we present the GA-LDA algorithm along with the sample
selection algorithm (KS) to build multivariate classification models for two classes (healthy
and dengue, ATR-FTIR) through the prospectr, mass, ggplot2, lintools, caret, dplyr, lattice
and GA packages.

Higher order multivariate classification 139

R Script
installing packages

install.packages("prospectr")
install.packages("MASS")
install.packages("caret")
install.packages("GA")

reading packages

library(prospectr)
library(MASS)
library(ggplot2)
library(lintools)
library(caret)
library(dplyr)
library(lattice)
library(GA)

reading the samples

class1 = read.table("DATASET/healthy.csv", header=FALSE) # samples of healthy
patients
class2 = read.table("DATASET/dengue.csv", header=FALSE) # samples from dengue
patients
cm = read.table("DATASET/cm.csv", header=FALSE) # wavelength

class1 = healthy - control samples
class2 = dengue - case samples

dim_class1 = dim (class1) # dimension of class1 array
dim_class2 = dim (class2) # dimension of class2 array

transposing the data

class1t = t(class1)
class2t = t(class2)
cmt = t(cm)

viewing data - all spectra

dev.new()
matplot(cmt, class1t, type ="l", col ="blue", xlab ="Wavenumber (cm-1)", ylab
="Absorbance", main ="Raw spectra")
matplot(cmt,class2t, type ="l", col =" red ", xlab ="Wavenumber (cm-1)", ylab
="Absorbance", main ="Raw spectra", add =TRUE)

viewing data - just the averages

Higher order multivariate classification 140

dev.new()
matplot(cmt, colMeans (class1), type ="l", col ="blue", xlab ="Wavenumber (cm-1)",
ylab ="Absorbance", main ="Average spectra")
matplot(cmt,colMeans (class2), type ="l", col =" red ", xlab ="Wavenumber (cm-1)",
ylab ="Absorbance", main ="Mean spectra", add =TRUE)

scaling the data

data = rbind(class1, class2) # combining matrices one under the other
data_scal = scale(data) # scaling the data
dim_data = dim(data) # dimension of the data array

Creation of the category vector: classes (1 = healthy, 2 = dengue)

group1 = rep(1,dim_class1[1]) # class 1
group2 = rep(2,dim_class2[1]) # class 2
group12 = rbind(matrix(group1), matrix(group2)) # group 1 and 2

GA algorithm

datam = data.matrix(data, rownames.force=NA) # converting data to matrix

Function to Establish Population

myInit <- function(k){

 function(GA){
 m <- matrix(0, ncol = GA@nBits, nrow = GA@popSize)

 for(i in seq_len(GA@popSize))
 m[i, sample(GA@nBits, k)] <- 1

 m
 }
}

Crossover Function

myCrossover <- function(GA, parents){

 parents <- GA@population[parents,] %>%
 apply(1, function(x) which(x == 1)) %>%
 t()

 parents_diff <- list("vector", 2)
 parents_diff[[1]] <- setdiff(parents[2,], parents[1,])
 parents_diff[[2]] <- setdiff(parents[1,], parents[2,])

Higher order multivariate classification 141

 children_ind <- list("vector", 2)
 for(i in 1:2){
 k <- length(parents_diff[[i]])
 change_k <- sample(k, sample(ceiling(k/2), 1))
 children_ind[[i]] <- if(length(change_k) > 0){
 c(parents[i, -change_k], parents_diff[[i]][change_k])
 } else {
 parents[i,]
 }
 }

 children <- matrix(0, nrow = 2, ncol = GA@nBits)
 for(i in 1:2)
 children[i, children_ind[[i]]] <- 1

 list(children = children, fitness = c(NA, NA))
}

Mutation Function

myMutation <- function(GA, parent){

 ind <- which(GA@population[parent,] == 1)
 n_change <- sample(3, 1)
 ind[sample(length(ind), n_change)] <- sample(setdiff(seq_len(GA@nBits), ind),
n_change)
 parent <- integer(GA@nBits)
 parent[ind] <- 1

 parent
}

Adjustment Function

f <- function(x, values){

 ind <- which(x == 1)
 y <- values[ind]
 y <- ifelse(y %% 2 != 0, y, 0)
 y <- y[1:10]
 return(sum(y))
}

GA Model

model_GA = ga(type="binary", fitness=f, values=datam , nBits=ncol(datam),
population=myInit(nrow(datam)), crossover = myCrossover, mutation=myMutation,
run=200, pmutation=0.1, maxiter=1000, popSize = nrow(datam))

Higher order multivariate classification 142

selected variables

ind = which(model_GA@solution[1,] == 1)
if (length(ind) > 22){
 indmax = 22 # maximum number of variables selected
 ind = ind[1:indmax]
}

array with selected variables

datam_ga = datam[,ind]
m = colMeans(datam)
variables = ind

plot of selected variables
dev.new()
matplot(cmt,m,xlab="Wavenumber (cm-1)", type ="l", ylab ="Absorbance", main
="Average spectrum with selected variables")
points(cm[variables],m[variables], pch=19)

selection of training and testing samples based on KS

perc = 0.7 # 70% for training

ntrain1 = ceiling(perc * dim_class1[1]) # number of training samples class 1
ntrain2 = ceiling(perc * dim_class2[1]) # number of training samples class 2

datam_ga1 = datam_ga[1:dim_class1[1],] # scores class 1
datam_ga2 = datam_ga[(dim_class1[1]+ 1): dim_data[1],] # scores class 2

sel1 = kenStone(datam_ga1, k = ntrain1) # KS class 1
sel2 = kenStone(datam_ga2, k = ntrain2) # KS class 2

train1 = datam_ga1[sel1$model,] # training class 1
train2 = datam_ga2[sel2$model,] # training class 2
train = rbind(train1,train2) # joining training matrices

group1train = matrix(group1[sel1$model]) # class 1 training labels
group2train = matrix(group2[sel2$model]) # class 2 training labels
group_train = rbind(group1train,group2train) # training labels

test1 = datam_ga1[sel1$test,] # test class 1
test2 = datam_ga2[sel2$test,] # test class 2
test = rbind(test1,test2) # joining test matrices

group1test = matrix(group1[sel1$test]) # class 1 test labels
group2test = matrix(group2[sel2$test]) # class 2 test labels
group_test = rbind(group1test,group2test) # test labels

Higher order multivariate classification 143

LDA model

model_lda = lda(train,group_train) # model without cross-validation
model_lda_cv = lda(train,group_train,CV=TRUE) # model with leave-one-out cross-
validation

prediction of training and testing samples

pred_train = predict(model_lda, train) # training
pred_test = predict(model_lda, test) # test

figures of merit

training

dim_train1 = dim(train1)
dim_train2 = dim(train2)

ac_train = mean(pred_train$class == group_train) # accuracy
spec_train = mean(pred_train$class[1:dim_train1[1]]==group1train) # specificity
sens_train = mean(pred_train$class[(dim_train1[1] + 1):(dim_train1[1]+dim_
train2[1])]==group2train) # sensitivity

cross-validation

ac_cv = mean(model_lda_cv$class == group_train) # accuracy
spec_cv = mean(model_lda_cv$class[1:dim_train1[1]]==group1train) # specificity
sens_cv = mean(model_lda_cv$class[(dim_train1[1] + 1):(dim_train1[1]+dim_
train2[1])]==group2train) # sensitivity

test

dim_test1 = dim(test1)
dim_test2 = dim(test2)

ac_test = mean(pred_test$class == group_test) # accuracy
spec_test = mean(pred_test$class[1:dim_test1[1]]==group1test) # specificity
sens_test = mean(pred_test$class[(dim_test1[1]+ 1):(dim_test1[1]+dim_
test2[1])]==group2test) # sensitivity

print("=========== Training =============")
cat("Accuracy:")
ac_train
cat("Sensitivity:")
sens_train
cat("Specificity:")
spec_train

Higher order multivariate classification 144

print("=========== Cross-validation =============")
cat("Accuracy:")
ac_cv
cat("Sensitivity:")
sens_cv
cat("Specificity:")
spec_cv

print("=========== Test =============")
cat("Accuracy:")
ac_test
cat("Sensitivity:")
sens_test
cat("Specificity:")
spec_test

viewing posterior probabilities - training

dev.new()
matplot(pred_train$posterior[1:dim_train1[1],1],pch
=19,col="blue",xlab="Samples", ylab ="LD1", main ="Posterior Probability -
Training") # training class 1
points(pred_train$posterior[(dim_train1[1]+ 1):(dim_train1[1]+dim_
train2[1]),1],pch=19,col="red",xlab="Samples", ylab ="LD1", main ="Posterior
Probability - Training") # training class 2

visualizing posterior probabilities - cross validation

dev.new()
matplot(model_lda_cv$posterior[1:dim_train1[1],1],pch
=19,col="blue",xlab="Samples", ylab ="LD1", main ="Posterior Probability - Cross-
Validation") # class 1 cross-validation
points(pred_train$posterior[(dim_train1[1]+ 1):(dim_train1[1]+dim_
train2[1]),1],pch=19,col="red",xlab="Samples", ylab ="LD1", main ="Posterior
Probability - Cross-validation") # cross-validation class 2

viewing posterior probabilities - test

dev.new()
matplot(pred_test$posterior[1:dim_test1[1],1],pch=19,col="blue",xlab="Samples",
ylab ="LD1", main=" Posterior Probability - Test") # test class 1
points(pred_train$posterior[(dim_test1[1]+ 1):(dim_test1[1]+dim_
test2[1]),1],pch=19,col="red",xlab="Samples", ylab ="LD1", main="Posterior
Probability - Test") # test class 2

Higher order multivariate classification 145

Example 6: In this example, we present the GA-LDA algorithm together with the
sample selection algorithm (MLM) to build multivariate classification models for two classes
(healthy and dengue, ATR-FTIR) through the prospectr, mass, ggplot2, lintools, caret, dplyr,
lattice and GA packages.

R Script
installing packages

install.packages("prospectr")
install.packages("MASS")
install.packages("caret")
install.packages("GA")

reading packages

library(prospectr)
library(MASS)
library(ggplot2)
library(lintools)
library(caret)
library(dplyr)
library(lattice)
library(GA)

reading the samples

class1 = read.table("DATASET/healthy.csv", header=FALSE) # samples of healthy
patients
class2 = read.table("DATASET/dengue.csv", header=FALSE) # samples from dengue
patients
cm = read.table("DATASET/cm.csv", header=FALSE) # wavelength

class1 = healthy - control samples
class2 = dengue - case samples

dim_class1 = dim (class1) # dimension of class1 array
dim_class2 = dim (class2) # dimension of class2 array

transposing the data

class1t = t(class1)
class2t = t(class2)
cmt = t(cm)

viewing data - all spectra

dev.new()
matplot(cmt, class1t, type ="l", col ="blue", xlab ="Wavenumber (cm-1)", ylab
="Absorbance", main ="Raw spectra")
matplot(cmt,class2t, type ="l", col ="red", xlab ="Wavenumber (cm-1)", ylab
="Absorbance", main ="Raw spectra", add =TRUE)

Higher order multivariate classification 146

viewing data - just the averages

dev.new()
matplot(cmt, colMeans (class1), type ="l", col ="blue", xlab ="Wavenumber (cm-1)",
ylab ="Absorbance", main ="Average spectra")
matplot(cmt,colMeans (class2), type ="l", col ="red", xlab ="Wavenumber (cm-1)",
ylab ="Absorbance", main ="Mean spectra", add =TRUE)

scaling the data

data = rbind(class1, class2) # combining matrices one under the other
data_scal = scale(data) # scaling the data
dim_data = dim(data) # dimension of the data array

Creation of the category vector: classes (1 = healthy, 2 = dengue)

group1 = rep(1,dim_class1[1]) # class 1
group2 = rep(2,dim_class2[1]) # class 2
group12 = rbind(matrix(group1), matrix(group2)) # group 1 and 2

GA algorithm

datam = data.matrix(data, rownames.force=NA) # converting data to matrix

Function to Establish Population

myInit <- function(k){

 function(GA){
 m <- matrix(0, ncol = GA@nBits, nrow = GA@popSize)

 for(i in seq_len(GA@popSize))
 m[i, sample(GA@nBits, k)] <- 1

 m
 }
}

Crossover Function

myCrossover <- function(GA, parents){

 parents <- GA@population[parents,] %>%
 apply(1, function(x) which(x == 1)) %>%
 t()

Higher order multivariate classification 147

 parents_diff <- list("vector", 2)
 parents_diff[[1]] <- setdiff(parents[2,], parents[1,])
 parents_diff[[2]] <- setdiff(parents[1,], parents[2,])

 children_ind <- list("vector", 2)
 for(i in 1:2){
 k <- length(parents_diff[[i]])
 change_k <- sample(k, sample(ceiling(k/2), 1))
 children_ind[[i]] <- if(length(change_k) > 0){
 c(parents[i, -change_k], parents_diff[[i]][change_k])
 } else {
 parents[i,]
 }
 }

 children <- matrix(0, nrow = 2, ncol = GA@nBits)
 for(i in 1:2)
 children[i, children_ind[[i]]] <- 1

 list(children = children, fitness = c(NA, NA))
}

Mutation Function

myMutation <- function(GA, parent){

 ind <- which(GA@population[parent,] == 1)
 n_change <- sample(3, 1)
 ind[sample(length(ind), n_change)] <- sample(setdiff(seq_len(GA@nBits), ind),
n_change)
 parent <- integer(GA@nBits)
 parent[ind] <- 1

 parent
}

Adjustment Function

f <- function(x, values){

 ind <- which(x == 1)
 y <- values[ind]
 y <- ifelse(y %% 2 != 0, y, 0)
 y <- y[1:10]
 return(sum(y))
}

GA Model

Higher order multivariate classification 148

model_GA = ga(type="binary", fitness=f, values=datam, nBits=ncol(datam),
population=myInit(nrow(datam)), crossover = myCrossover, mutation=myMutation,
run=200, pmutation=0.1, maxiter=1000, popSize = nrow(datam))

selected variables

ind = which(model_GA@solution[1,] == 1)
if (length(ind) > 22){
 indmax = 22 # maximum number of variables selected
 ind = ind[1:indmax]
}

array with selected variables

datam_ga = datam[,ind]
m = colMeans(datam)
variables = ind

plot of selected variables
dev.new()
matplot(cmt,m,xlab="Wavenumber (cm-1)", type ="l", ylab ="Absorbance", main
="Average spectrum with selected variables")
points(cm[variables],m[variables], pch=19)

selection of training and testing samples based on MLM

perc = 0.7 # 70% for training

ntrain1 = ceiling(perc * dim_class1[1]) # number of training samples class 1
ntrain2 = ceiling(perc * dim_class2[1]) # number of training samples class 2

datam_ga1 = datam_ga[1:dim_class1[1],] # scores class 1
datam_ga2 = datam_ga[(dim_class1[1]+ 1): dim_data[1],] # scores class 2

sel1 = kenStone(datam_ga1, k = ntrain1) # KS class 1
sel2 = kenStone(datam_ga2, k = ntrain2) # KS class 2

train1 = datam_ga1[sel1$model,] # training class 1
train2 = datam_ga2[sel2$model,] # training class 2
train = rbind(train1,train2) # joining training matrices

group1train = matrix(group1[sel1$model]) # class 1 training labels
group2train = matrix(group2[sel2$model]) # class 2 training labels
group_train = rbind(group1train,group2train) # training labels

test1 = datam_ga1[sel1$test,] # test class 1
test2 = datam_ga2[sel2$test,] # test class 2
test = rbind(test1,test2) # joining test matrices

Higher order multivariate classification 149

group1test = matrix(group1[sel1$test]) # class 1 test labels
group2test = matrix(group2[sel2$test]) # class 2 test labels
group_test = rbind(group1test,group2test) # test labels

dim_train1 = dim(train1) # class 1 training dimension
dim_train2 = dim(train2) # class 2 training dimension
dim_test1 = dim(test1) # test dimension of class 1
dim_test2 = dim(test2) # class 2 test dimension

prob = 0.2 # MLM mutation probability = 20%

p1 = ceiling(prob * dim_test1[1])
p2 = ceiling(prob * dim_test2[1])

t1 = 1:dim_train1[1]
t2 = 1:dim_train2[1]

v1 = 1:dim_test1[1]
v2 = 1:dim_test2[1]

train1_sub = sample(x=t1, size=p1)
train2_sub = sample(x=t2, size=p2)

test1_sub = sample(x=v1, size=p1)
test2_sub = sample(x=v2, size=p2)

train1_new = rbind(train1[-train1_sub,],test1[test1_sub,])
train2_new = rbind(train2[-train2_sub,],test2[test2_sub,])

test1_new = rbind(test1[-test1_sub,],train1[train1_sub,])
test2_new = rbind(test2[-test2_sub,],train2[train2_sub,])

train = rbind(train1_new,train2_new)
test = rbind(test1_new,test2_new)

LDA model

model_lda = lda(train,group_train) # model without cross-validation
model_lda_cv = lda(train,group_train,CV=TRUE) # model with leave-one-out cross-
validation

prediction of training and testing samples

pred_train = predict(model_lda, train) # training
pred_test = predict(model_lda, test) # test

figures of merit

Higher order multivariate classification 150

training

dim_train1 = dim(train1)
dim_train2 = dim(train2)

ac_train = mean(pred_train$class == group_train) # accuracy
spec_train = mean(pred_train$class[1:dim_train1[1]]==group1train) # specificity
sens_train = mean(pred_train$class[(dim_train1[1] + 1):(dim_train1[1]+dim_
train2[1])]==group2train) # sensitivity

cross-validation

ac_cv = mean(model_lda_cv$class == group_train) # accuracy
spec_cv = mean(model_lda_cv$class[1:dim_train1[1]]==group1train) # specificity
sens_cv = mean(model_lda_cv$class[(dim_train1[1] + 1):(dim_train1[1]+dim_
train2[1])]==group2train) # sensitivity

test

dim_test1 = dim(test1)
dim_test2 = dim(test2)

ac_test = mean(pred_test$class == group_test) # accuracy
spec_test = mean(pred_test$class[1:dim_test1[1]]==group1test) # specificity
sens_test = mean(pred_test$class[(dim_test1[1]+ 1):(dim_test1[1]+dim_
test2[1])]==group2test) # sensitivity

print("=========== Training =============")
cat("Accuracy:")
ac_train
cat("Sensitivity:")
sens_train
cat("Specificity:")
spec_train

print("=========== Cross-validation =============")
cat("Accuracy:")
ac_cv
cat("Sensitivity:")
sens_cv
cat("Specificity:")
spec_cv

print("=========== Test =============")
cat("Accuracy:")
ac_test
cat("Sensitivity:")
sens_test
cat("Specificity:")
spec_test

Higher order multivariate classification 151

viewing posterior probabilities - training

dev.new()
matplot(pred_train$posterior[1:dim_train1[1],1],pch
=19,col="blue",xlab="Samples", ylab ="LD1", main ="Posterior Probability -
Training") # training class 1
points(pred_train$posterior[(dim_train1[1]+ 1):(dim_train1[1]+dim_
train2[1]),1],pch=19,col="red",xlab="Samples", ylab ="LD1", main ="Posterior
Probability - Training") # training class 2

visualizing posterior probabilities - cross validation

dev.new()
matplot(model_lda_cv$posterior[1:dim_train1[1],1],pch
=19,col="blue",xlab="Samples", ylab ="LD1", main ="Posterior Probability - Cross-
Validation") # class 1 cross-validation
points(pred_train$posterior[(dim_train1[1]+ 1):(dim_train1[1]+dim_
train2[1]),1],pch=19,col="red",xlab="Samples", ylab ="LD1", main ="Posterior
Probability - Cross-validation") # cross-validation class 2

viewing posterior probabilities - test

dev.new()
matplot(pred_test$posterior[1:dim_test1[1],1],pch=19,col="blue",xlab="Samples",
ylab ="LD1", main=" Posterior Probability - Test") # test class 1
points(pred_train$posterior[(dim_test1[1]+ 1):(dim_test1[1]+dim_
test2[1]),1],pch=19,col="red",xlab="Samples", ylab ="LD1", main="Posterior
Probability - Test") # test class 2

4.8 TUCKER3–LDA
In 1966, the psychometrician Ledyard R. Tucker developed a multidimensional

data processing method currently known as Tucker 1, Tucker 2 and Tucker 3 [7]. Tucker 1
consists of unfolding the data array of dimensions I x J x K into a matrix of dimensions I x
JK, or in other words, the individual application of a PCA in the three forms of unfolding, as
shown in Figure 4.2 . However, this splitting can be carried out in the other two directions
(J x KI or KxIJ). As can be seen, Tucker's proposal is to ignore a trilinear structure (the
instrumental response can be represented by the product of three independent vectors) of
the data by decomposing them in a Bilinear method .

Higher order multivariate classification 152

Figure 4.2: Unfolding a three-dimensional data array into a matrix.

The Tucker 3 model, for example, can be represented by the following matrix
equation:

 Eq. 12

Where the matrices A (I x D) , B (J x E) and C (K x F) have dimensions containing the
weights ("loadings") of the model relative to the three dimensions of the data, respectively;
the matrix G (D x EF) corresponds to the central matrix ("core matrix") and the elements of
the tensor G indicate the importance of each interaction between the factor responses; the
tensor E (I x J x K) contains the model errors and the symbol "⊗" represents the Kronecker
product [8]. D, E and F indicate the number of factors in the three dimensions of the data,
respectively. It is important to highlight that the Tucker 3 model accepts that the number
of decomposed factors is different in each dimension. Figure 4.3 represents the data
decomposition carried out by the Tucker 3 method:

Figure 4.3: Graphical representation of the Tucker3 model.

Higher order multivariate classification 153

In equation 4.13 we present the Tucker-3 equation for a single element of the data
cube:

 Eq. 13

Where: xijk is equivalent to an element of the data cube X; aip, bjq, ckr and gprq are the
values corresponding to xij in matrices A, B and C obtained for modes I, J, K; ejik is related
to the approximated error for the value of xijk.

Therefore, when we encounter 2nd order chemical data and we want to apply the
LDA algorithm, there is a need for a prior data decomposition step. A viable alternative is to
use the scores from the Turkey method as an input variable in the LDA algorithm, creating
a new classifier, called Turkey3-LDA.

Example 8: In this example, we present the Turkey3-LDA algorithm using KS to build
2nd order multivariate classification models on normal vs. patients with colorectal cancer
(CRC), obtained by molecular fluorescence spectrometry in blood plasma. The data can
be obtained here: https://ucphchemometrics.com/datasets/ . The Turkey3-LDA algorithm in
this example needs the following R packages: multiway, ThreeWay, R.matlab, plot3D, plotly,
prospectr, MASS and caret .

R Script
Loading Packages

install.packages("multiway")
library(multiway)

install.packages("ThreeWay")
library(ThreeWay)

install.packages("R.matlab")
library(R.matlab)

install.packages("plot3D")
library(plot3D)

install.packages("plotly")
library(plotly)

install.packages("prospectr")
install.packages("MASS")
install.packages("caret")

library(prospectr)
library(MASS)
library(caret)

https://ucphchemometrics.com/datasets/

Higher order multivariate classification 154

Loading Data – Establish the working directory containing the CRC.mat data
In RStudio, go to Session > Set Working Directory > Choose Directory

data <- readMat("CRC.mat")

X <- data$Xcomb
Y <- data$Y
nmEX <- data$nmEX
nmEM <- data$nmEM

Visualizing the data

matrix dimensions

mydim = dim(X) # samples x emission x excitation
mydim

average matrix of each class (1 = normal, 2 = cancer)

X1 = data$Xnormal
X2 = data$Xcancer

X1m = colMeans (X1)
X2m = colMeans (X2)

dev.new()
filled.contour(X1m,color.palette = terrain.colors,main = "Class 1 - Normal")

dev.new()
filled.contour(X2m,color.palette = terrain.colors,main = "Class 2 - Cancer")

dev.new()
matplot(t(nmEM), X1m, type="l", xlab = "Emission wavelength (nm)", ylab =
"Intensity", main = "Class 1 - Normal")

dev.new()
matplot(t(nmEX), t(X1m), type ="l", xlab ="Excitation Wavelength (nm)", ylab
="Intensity", main = "Class 1 - Normal")

dev.new()
matplot(t(nmEM), X2m, type="l", xlab ="Emission wavelength (nm)", ylab
="Intensity", main ="Class 2 - Cancer")

dev.new()
matplot(t(nmEX), t(X2m), type ="l", xlab ="Excitation Wavelength (nm)", ylab
="Intensity", main ="Class 2 - Cancer")

######## TUCKER3 model #########

Higher order multivariate classification 155

nf = 3 # define number of factors

Xr = matrix(X, nrow = mydim[1])

model = T3func(Xr, mydim[1], mydim[2], mydim[3], nf, nf, nf, 0, 1e-6)

R2 Adjustment

model$fp # Increase the number of factors to better adjust R2

plot tucker3 scores 1 x 2

dev.new ()
matplot(model$A[Y==1,1], model$A[Y==1,2], pch="o", col="blue", xlab="Factor 1",
ylab="Factor 2", main="Scores (o: normal, x: cancer)")
points(model$A[Y==2,1], model$A[Y==2,2], pch="x", col="red", xlab="Factor 1",
ylab="Factor 2", main="Scores (o: normal, x: cancer)")

plot tucker3 loadings - emission

dev.new ()
matplot(t(nmEM), model$B, type ="l", xlab = "Emission Wavelength (nm)", ylab =
"Intensity")

plot tucker3 loadings – excitation

dev.new()
matplot(t(nmEX), model$C, type ="l", xlab = "Excitation Wavelength (nm)", ylab =
"Intensity")

######### selection of training and testing samples based on KS

perc = 0.7 # 70% for training

dim_class1 = dim(X1)
dim_class2 = dim(X2)
dim_data = dim(X)

ntrain1 = ceiling(perc * dim_class1[1]) # number of training samples class 1
ntrain2 = ceiling(perc * dim_class2[1]) # number of training samples class 2

scores_X1 = model$A[1:dim_class1[1],] # scores class 1
scores_X2 = model$A[(dim_class1[1]+ 1): dim_data[1],] # scores class 2

sel1 = kenStone(scores_X1, k = ntrain1) # KS class 1
sel2 = kenStone(scores_X2, k = ntrain2) # KS class 2

train1 = scores_X1[sel1$model,] # training class 1
train2 = scores_X2[sel2$model,] # training class 2
train = rbind(train1,train2) # joining training matrices

Higher order multivariate classification 156

group1 = rep(1,dim_class1[1]) # class 1
group2 = rep(2,dim_class2[1]) # class 2

group1train = matrix(group1[sel1$model]) # class 1 training labels
group2train = matrix(group2[sel2$model]) # class 2 training labels
group_train = rbind(group1train,group2train) # training labels

test1 = scores_X1[sel1$test,] # test class 1
test2 = scores_X1[sel2$test,] # test class 2
test = rbind (test1,test2) # joining test matrices

group1test = matrix(group1[sel1$test]) # class 1 test labels
group2test = matrix(group2[sel2$test]) # class 2 test labels
group_test = rbind(group1test,group2test) # test labels

LDA model

model_lda = lda(train,group_train) # model without cross-validation
model_lda_cv = lda(train,group_train,CV=TRUE) # model with leave-one-out cross-
validation

prediction of training and testing samples

pred_train = predict(model_lda, train) # training
pred_test = predict(model_lda, test) # test

figures of merit

training

dim_train1 = dim(train1)
dim_train2 = dim(train2)

ac_train = mean(pred_train$class == group_train) # accuracy
spec_train = mean(pred_train$class[1:dim_train1[1]]==group1train) # specificity
sens_train = mean(pred_train$class[(dim_train1[1] + 1):(dim_train1[1]+dim_
train2[1])]==group2train) # sensitivity

cross-validation

ac_cv = mean(model_lda_cv$class == group_train) # accuracy
spec_cv = mean(model_lda_cv$class[1:dim_train1[1]]==group1train) # specificity
sens_cv = mean(model_lda_cv$class[(dim_train1[1] + 1):(dim_train1[1]+dim_
train2[1])]==group2train) # sensitivity

test

dim_test1 = dim(test1)
dim_test2 = dim(test2)

Higher order multivariate classification 157

ac_test = mean(pred_test$class == group_test) # accuracy
spec_test = mean(pred_test$class[1:dim_test1[1]]==group1test) # specificity
sens_test = mean(pred_test$class[(dim_test1[1]+ 1):(dim_test1[1]+dim_
test2[1])]==group2test) # sensitivity

print("=========== Training =============")
cat("Accuracy:")
ac_train
cat("Sensitivity:")
sens_train
cat("Specificity:")
spec_train

print("=========== Cross-validation =============")
cat("Accuracy:")
ac_cv
cat("Sensitivity:")
sens_cv
cat("Specificity:")
spec_cv

print("=========== Test =============")
cat("Accuracy:")
ac_test
cat("Sensitivity:")
sens_test
cat("Specificity:")
spec_test

viewing posterior probabilities - training

dev.new()
matplot(pred_train$posterior[1:dim_train1[1],1],pch =19,col="blue",xlab="Samples",
ylab ="LD1", main ="Posterior Probability - Training") # training class 1
points(pred_train$posterior[(dim_train1[1]+ 1):(dim_train1[1]+dim_
train2[1]),1],pch=19,col="red",xlab="Samples", ylab ="LD1", main ="Posterior
Probability - Training") # training class 2

visualizing posterior probabilities - cross validation

dev.new()
matplot(model_lda_cv$posterior[1:dim_train1[1],1],pch
=19,col="blue",xlab="Samples", ylab ="LD1", main ="Posterior Probability - Cross-
Validation") # class 1 cross-validation
points(pred_train$posterior[(dim_train1[1]+ 1):(dim_train1[1]+dim_
train2[1]),1],pch=19,col="red",xlab="Samples", ylab ="LD1", main ="Posterior
Probability - Cross-validation") # cross-validation class 2

viewing posterior probabilities - test

Higher order multivariate classification 158

dev.new()
matplot(pred_test$posterior[1:dim_test1[1],1],pch=19,col="blue",xlab="Samples",
ylab ="LD1", main=" Posterior Probability - Test") # test class 1
points(pred_train$posterior[(dim_test1[1]+ 1):(dim_test1[1]+dim_
test2[1]),1],pch=19,col="red",xlab="Samples", ylab ="LD1", main="Posterior
Probability - Test") # test class 2

Example 9: Here, the Turkey3-LDA algorithm is described using the MLM algorithm
for sample selection in 2nd order multivariate classification models on normal vs. patients with
colorectal cancer (CRC), obtained by molecular fluorescence spectrometry in blood plasma.
Data can be obtained here: https://ucphchemometrics.com/datasets/ . The Turkey3-LDA
algorithm in this example needs the following R packages: multiway, ThreeWay, R.matlab,
plot3D, plotly, prospectr, MASS and caret .

R Script
Loading Packages

install.packages("multiway")
library(multiway)

install.packages("ThreeWay")
library(ThreeWay)

install.packages("R.matlab")
library(R.matlab)

install.packages("plot3D")
library(plot3D)

install.packages("plotly")
library(plotly)

install.packages("prospectr")
install.packages("MASS")
install.packages("caret")

library(prospectr)
library(MASS)
library(caret)

Loading Data – Establish the working directory containing the CRC.mat data
In RStudio, go to Session > Set Working Directory > Choose Directory

data <- readMat("CRC.mat")

https://ucphchemometrics.com/datasets/

Higher order multivariate classification 159

X <- data$Xcomb
Y <- data$Y
nmEX <- data$nmEX
nmEM <- data$nmEM

Visualizing the data

matrix dimensions

mydim = dim(X) # samples x emission x excitation
mydim

average matrix of each class (1 = normal, 2 = cancer)

X1 = data$Xnormal
X2 = data$Xcancer

X1m = colMeans (X1)
X2m = colMeans (X2)

dev.new()
filled.contour(X1m,color.palette = terrain.colors,main = "Class 1 - Normal")

dev.new()
filled.contour(X2m,color.palette = terrain.colors,main = "Class 2 - Cancer")

dev.new()
matplot(t(nmEM), X1m, type="l", xlab = "Emission wavelength (nm)", ylab = "Intensity",
main = "Class 1 - Normal")

dev.new()
matplot(t(nmEX), t(X1m), type ="l", xlab ="Excitation Wavelength (nm)", ylab
="Intensity", main = "Class 1 - Normal")

dev.new()
matplot(t(nmEM), X2m, type="l", xlab ="Emission wavelength (nm)", ylab ="Intensity",
main ="Class 2 - Cancer")

dev.new()
matplot(t(nmEX), t(X2m), type ="l", xlab ="Excitation Wavelength (nm)", ylab
="Intensity", main ="Class 2 - Cancer")

######## TUCKER3 model #########

nf = 3 # define number of factors

Xr = matrix(X, nrow = mydim[1])

model = T3func(Xr, mydim[1], mydim[2], mydim[3], nf, nf, nf, 0, 1e-6)

Higher order multivariate classification 160

R2 Adjustment

model$fp # Increase the number of factors to better adjust R2

plot tucker3 scores 1 x 2

dev.new ()
matplot(model$A[Y==1,1], model$A[Y==1,2], pch="o", col="blue", xlab="Factor 1",
ylab="Factor 2", main="Scores (o: normal, x: cancer)")
points(model$A[Y==2,1], model$A[Y==2,2], pch="x", col="red", xlab="Factor 1",
ylab="Factor 2", main="Scores (o: normal, x: cancer)")

plot tucker3 loadings - emission

dev.new ()
matplot(t(nmEM), model$B, type ="l", xlab = "Emission Wavelength (nm)", ylab =
"Intensity")

plot tucker3 loadings – excitation

dev.new()
matplot(t(nmEX), model$C, type ="l", xlab = "Excitation Wavelength (nm)", ylab =
"Intensity")

######### training and testing samples selection based on MLM

perc = 0.7 # 70% for training

dim_class1 = dim(X1)
dim_class2 = dim(X2)
dim_data = dim(X)

ntrain1 = ceiling(perc * dim_class1[1]) # number of training samples class 1
ntrain2 = ceiling(perc * dim_class2[1]) # number of training samples class 2

scores_X1 = model$A[1:dim_class1[1],] # scores class 1
scores_X2 = model$A[(dim_class1[1]+ 1): dim_data[1],] # scores class 2

sel1 = kenStone(scores_X1, k = ntrain1) # KS class 1
sel2 = kenStone(scores_X2, k = ntrain2) # KS class 2

train1 = scores_X1[sel1$model,] # training class 1
train2 = scores_X2[sel2$model,] # training class 2
train = rbind(train1,train2) # joining training matrices

group1 = rep(1,dim_class1[1]) # class 1
group2 = rep(2,dim_class2[1]) # class 2

Higher order multivariate classification 161

group1train = matrix(group1[sel1$model]) # class 1 training labels
group2train = matrix(group2[sel2$model]) # class 2 training labels
group_train = rbind(group1train,group2train) # training labels

test1 = scores_X1[sel1$test,] # test class 1
test2 = scores_X1[sel2$test,] # test class 2
test = rbind (test1,test2) # joining test matrices

group1test = matrix(group1[sel1$test]) # class 1 test labels
group2test = matrix(group2[sel2$test]) # class 2 test labels
group_test = rbind(group1test,group2test) # test labels

dim_train1 = dim(train1) # class 1 training dimension
dim_train2 = dim(train2) # class 2 training dimension
dim_test1 = dim(test1) # test dimension of class 1
dim_test2 = dim(test2) # class 2 test dimension

prob = 0.2 # MLM mutation probability = 20%

p1 = ceiling(prob * dim_test1[1])
p2 = ceiling(prob * dim_test2[1])

t1 = 1:dim_train1[1]
t2 = 1:dim_train2[1]

v1 = 1:dim_test1[1]
v2 = 1:dim_test2[1]

train1_sub = sample(x=t1, size=p1)
train2_sub = sample(x=t2, size=p2)

test1_sub = sample(x=v1, size=p1)
test2_sub = sample(x=v2, size=p2)

train1_new = rbind(train1[-train1_sub,],test1[test1_sub,])
train2_new = rbind(train2[-train2_sub,],test2[test2_sub,])

test1_new = rbind(test1[-test1_sub,],train1[train1_sub,])
test2_new = rbind(test2[-test2_sub,],train2[train2_sub,])

train = rbind(train1_new,train2_new)
test = rbind(test1_new,test2_new)

LDA model

model_lda = lda(train,group_train) # model without cross-validation
model_lda_cv = lda(train,group_train,CV=TRUE) # model with leave-one-out cross-
validation

prediction of training and testing samples

pred_train = predict(model_lda, train) # training
pred_test = predict(model_lda, test) # test

Higher order multivariate classification 162

figures of merit

training

dim_train1 = dim(train1)
dim_train2 = dim(train2)

ac_train = mean(pred_train$class == group_train) # accuracy
spec_train = mean(pred_train$class[1:dim_train1[1]]==group1train) # specificity
sens_train = mean(pred_train$class[(dim_train1[1] + 1):(dim_train1[1]+dim_
train2[1])]==group2train) # sensitivity

cross-validation

ac_cv = mean(model_lda_cv$class == group_train) # accuracy
spec_cv = mean(model_lda_cv$class[1:dim_train1[1]]==group1train) # specificity
sens_cv = mean(model_lda_cv$class[(dim_train1[1] + 1):(dim_train1[1]+dim_
train2[1])]==group2train) # sensitivity

test

dim_test1 = dim(test1)
dim_test2 = dim(test2)

ac_test = mean(pred_test$class == group_test) # accuracy
spec_test = mean(pred_test$class[1:dim_test1[1]]==group1test) # specificity
sens_test = mean(pred_test$class[(dim_test1[1]+ 1):(dim_test1[1]+dim_
test2[1])]==group2test) # sensitivity

print("=========== Training =============")
cat("Accuracy:")
ac_train
cat("Sensitivity:")
sens_train
cat("Specificity:")
spec_train

print("=========== Cross-validation =============")
cat("Accuracy:")
ac_cv
cat("Sensitivity:")
sens_cv
cat("Specificity:")
spec_cv

print("=========== Test =============")
cat("Accuracy:")
ac_test
cat("Sensitivity:")
sens_test
cat("Specificity:")
spec_test

Higher order multivariate classification 163

viewing posterior probabilities - training

dev.new()
matplot(pred_train$posterior[1:dim_train1[1],1],pch =19,col="blue",xlab="Samples",
ylab ="LD1", main ="Posterior Probability - Training") # training class 1
points(pred_train$posterior[(dim_train1[1]+ 1):(dim_train1[1]+dim_
train2[1]),1],pch=19,col="red",xlab="Samples", ylab ="LD1", main ="Posterior
Probability - Training") # training class 2

visualizing posterior probabilities - cross validation

dev.new()
matplot(model_lda_cv$posterior[1:dim_train1[1],1],pch
=19,col="blue",xlab="Samples", ylab ="LD1", main ="Posterior Probability - Cross-
Validation") # class 1 cross-validation
points(pred_train$posterior[(dim_train1[1]+ 1):(dim_train1[1]+dim_
train2[1]),1],pch=19,col="red",xlab="Samples", ylab ="LD1", main ="Posterior
Probability - Cross-validation") # cross-validation class 2

viewing posterior probabilities - test

dev.new()
matplot(pred_test$posterior[1:dim_test1[1],1],pch=19,col="blue",xlab="Samples",
ylab ="LD1", main=" Posterior Probability - Test") # test class 1
points(pred_train$posterior[(dim_test1[1]+ 1):(dim_test1[1]+dim_
test2[1]),1],pch=19,col="red",xlab="Samples", ylab ="LD1", main="Posterior
Probability - Test") # test class 2

4.9 PARAFAC–LDA
PARAFAC ("PARAllel Factor analysis") consists of a trilinear method of higher order

data decomposition proposed by Professor Rasmus Bro in 1998 [9]. From a mathematical
point of view, PARAFAC can be considered as a generalization of PCA, or as a restricted
case of the Tucker-3 method. The PARAFAC model is formed by two weight matrices (B
and C) and one of scores (A), in a mathematical representation very similar to the Tucker-3
method, as we can see in equation 4.14:

Eq. 14

Where A, B and C have dimensions I x F, J x F and K x F, respectively; |⊗| is the
Khatri-Rao operator and E is the residue tensor with the same dimensions as X. In the
PARAFAC model, the tensor G appears, which is a hyperidentity whose value is 1 when
d=l=h and zero for all other positions. Figure 4.4 presents a graphical representation of 2nd
order data with PARAFAC:

Higher order multivariate classification 164

Figure 4.3: Graphical representation of the PARAFAC model through the decomposition of a three-
dimensional data array into F triads of weight vectors.

Therefore, analogously to Turkey-3, we will apply the LDA algorithm after obtaining
the scores from the PARAFAC method as an input variable, creating a new classifier, called
PARAFAC-LDA.

Example 10 : In this example, we present the PARAFAC-LDA algorithm using KS
to build 2nd order multivariate classification models on normal vs. patients with colorectal
cancer (CRC), obtained by molecular fluorescence spectrometry in blood plasma. The
data can be obtained here: https://ucphchemometrics.com/datasets/ . The PARAFAC-LDA
algorithm in this example needs the following R packages: multiway, ThreeWay, R.matlab,
plot3D, plotly, prospectr, MASS, caret.

R Script
Loading Packages

install.packages("multiway")
library(multiway)

install.packages("ThreeWay")
library(ThreeWay)

install.packages("R.matlab")
library(R.matlab)

install.packages("plot3D")
library(plot3D)

install.packages("plotly")
library(plotly)

https://ucphchemometrics.com/datasets/

Higher order multivariate classification 165

install.packages("prospectr")
install.packages("MASS")
install.packages("caret")

library(prospectr)
library(MASS)
library(caret)

Loading Data – Establish the working directory containing the CRC.mat data
In RStudio, go to Session > Set Working Directory > Choose Directory

data <- readMat("CRC.mat")

X <- data$Xcomb
Y <- data$Y
nmEX <- data$nmEX
nmEM <- data$nmEM

Visualizing the data

matrix dimensions

mydim = dim(X) # samples x emission x excitation
mydim

average matrix of each class (1 = normal, 2 = cancer)

X1 = data$Xnormal
X2 = data$Xcancer

X1m = colMeans (X1)
X2m = colMeans (X2)

dev.new()
filled.contour(X1m,color.palette = terrain.colors,main = "Class 1 - Normal")

dev.new()
filled.contour(X2m,color.palette = terrain.colors,main = "Class 2 - Cancer")

dev.new()
matplot(t(nmEM), X1m, type="l", xlab = "Emission wavelength (nm)", ylab = "Intensity",
main = "Class 1 - Normal")

dev.new()
matplot(t(nmEX), t(X1m), type ="l", xlab ="Excitation Wavelength (nm)", ylab
="Intensity", main = "Class 1 - Normal")

dev.new()
matplot(t(nmEM), X2m, type="l", xlab ="Emission wavelength (nm)", ylab ="Intensity",
main ="Class 2 - Cancer")

Higher order multivariate classification 166

dev.new()
matplot(t(nmEX), t(X2m), type ="l", xlab ="Excitation Wavelength (nm)", ylab
="Intensity", main ="Class 2 - Cancer")

######## PARAFAC Model #########

nf = 3 # define number of factors

model = parafac(X,nfac=nf,nstart=1,maxit=500,ctol=10^-4,parallel=FALSE,cl=NULL,ou
tput=c("best","all"))

R2 Adjustment

model$Rsq # Increase the number of factors to better adjust R2

plot parafac scores 1 x 2

dev.new ()
matplot(model$A[Y==1,1], model$A[Y==1,2], pch="o", col="blue", xlab="Factor 1",
ylab="Factor 2", main="Scores (o: normal, x: cancer)")
points(model$A[Y==2,1], model$A[Y==2,2], pch="x", col="red", xlab="Factor 1",
ylab="Factor 2", main="Scores (o: normal, x: cancer)")

plot parafac loadings - emission

dev.new ()
matplot(t(nmEM), model$B, type ="l", xlab = "Emission Wavelength (nm)", ylab =
"Intensity")

plot parafac loadings – excitation

dev.new()
matplot(t(nmEX), model$C, type ="l", xlab = "Excitation Wavelength (nm)", ylab =
"Intensity")

######### selection of training and testing samples based on KS

perc = 0.7 # 70% for training

dim_class1 = dim(X1)
dim_class2 = dim(X2)
dim_data = dim(X)

ntrain1 = ceiling(perc * dim_class1[1]) # number of training samples class 1
ntrain2 = ceiling(perc * dim_class2[1]) # number of training samples class 2

scores_X1 = model$A[1:dim_class1[1],] # scores class 1
scores_X2 = model$A[(dim_class1[1]+ 1): dim_data[1],] # scores class 2

Higher order multivariate classification 167

sel1 = kenStone(scores_X1, k = ntrain1) # KS class 1
sel2 = kenStone(scores_X2, k = ntrain2) # KS class 2

train1 = scores_X1[sel1$model,] # training class 1
train2 = scores_X2[sel2$model,] # training class 2
train = rbind(train1,train2) # joining training matrices

group1 = rep(1,dim_class1[1]) # class 1
group2 = rep(2,dim_class2[1]) # class 2

group1train = matrix(group1[sel1$model]) # class 1 training labels
group2train = matrix(group2[sel2$model]) # class 2 training labels
group_train = rbind(group1train,group2train) # training labels

test1 = scores_X1[sel1$test,] # test class 1
test2 = scores_X1[sel2$test,] # test class 2
test = rbind (test1,test2) # joining test matrices

group1test = matrix(group1[sel1$test]) # class 1 test labels
group2test = matrix(group2[sel2$test]) # class 2 test labels
group_test = rbind(group1test,group2test) # test labels

LDA model

model_lda = lda(train,group_train) # model without cross-validation
model_lda_cv = lda(train,group_train,CV=TRUE) # model with leave-one-out cross-
validation

prediction of training and testing samples

pred_train = predict(model_lda, train) # training
pred_test = predict(model_lda, test) # test

figures of merit

training

dim_train1 = dim(train1)
dim_train2 = dim(train2)

ac_train = mean(pred_train$class == group_train) # accuracy
spec_train = mean(pred_train$class[1:dim_train1[1]]==group1train) # specificity
sens_train = mean(pred_train$class[(dim_train1[1] + 1):(dim_train1[1]+dim_
train2[1])]==group2train) # sensitivity

cross-validation

ac_cv = mean(model_lda_cv$class == group_train) # accuracy
spec_cv = mean(model_lda_cv$class[1:dim_train1[1]]==group1train) # specificity
sens_cv = mean(model_lda_cv$class[(dim_train1[1] + 1):(dim_train1[1]+dim_
train2[1])]==group2train) # sensitivity

Higher order multivariate classification 168

test

dim_test1 = dim(test1)
dim_test2 = dim(test2)

ac_test = mean(pred_test$class == group_test) # accuracy
spec_test = mean(pred_test$class[1:dim_test1[1]]==group1test) # specificity
sens_test = mean(pred_test$class[(dim_test1[1]+ 1):(dim_test1[1]+dim_
test2[1])]==group2test) # sensitivity

print("=========== Training =============")
cat("Accuracy:")
ac_train
cat("Sensitivity:")
sens_train
cat("Specificity:")
spec_train

print("=========== Cross-validation =============")
cat("Accuracy:")
ac_cv
cat("Sensitivity:")
sens_cv
cat("Specificity:")
spec_cv

print("=========== Test =============")
cat("Accuracy:")
ac_test
cat("Sensitivity:")
sens_test
cat("Specificity:")
spec_test

viewing posterior probabilities - training

dev.new()
matplot(pred_train$posterior[1:dim_train1[1],1],pch =19,col="blue",xlab="Samples",
ylab ="LD1", main ="Posterior Probability - Training") # training class 1
points(pred_train$posterior[(dim_train1[1]+ 1):(dim_train1[1]+dim_
train2[1]),1],pch=19,col="red",xlab="Samples", ylab ="LD1", main ="Posterior
Probability - Training") # training class 2

visualizing posterior probabilities - cross validation

dev.new()
matplot(model_lda_cv$posterior[1:dim_train1[1],1],pch
=19,col="blue",xlab="Samples", ylab ="LD1", main ="Posterior Probability - Cross-
Validation") # class 1 cross-validation
points(pred_train$posterior[(dim_train1[1]+ 1):(dim_train1[1]+dim_
train2[1]),1],pch=19,col="red",xlab="Samples", ylab ="LD1", main ="Posterior
Probability - Cross-validation") # cross-validation class 2

Higher order multivariate classification 169

viewing posterior probabilities - test

dev.new()
matplot(pred_test$posterior[1:dim_test1[1],1],pch=19,col="blue",xlab="Samples",
ylab ="LD1", main=" Posterior Probability - Test") # test class 1
points(pred_train$posterior[(dim_test1[1]+ 1):(dim_test1[1]+dim_
test2[1]),1],pch=19,col="red",xlab="Samples", ylab ="LD1", main="Posterior
Probability - Test") # test class 2

Example 11: Here, the PARAFAC-LDA algorithm is described using the MLM
algorithm for sample selection in 2nd order multivariate classification models on normal vs.
patients with colorectal cancer (CRC), obtained by molecular fluorescence spectrometry
in blood plasma. Data can be obtained here: https://ucphchemometrics.com/datasets/ .
The PARAFAC-LDA algorithm in this example needs the following R packages: multiway,
ThreeWay, R.matlab, plot3D, plotly, prospectr, MASS and caret .

R Script
Loading Packages

install.packages("multiway")
library(multiway)

install.packages("ThreeWay")
library(ThreeWay)

install.packages("R.matlab")
library(R.matlab)

install.packages("plot3D")
library(plot3D)

install.packages("plotly")
library(plotly)

install.packages("prospectr")
install.packages("MASS")
install.packages("caret")

library(prospectr)
library(MASS)
library(caret)

Loading Data – Establish the working directory containing the CRC.mat data
In RStudio, go to Session > Set Working Directory > Choose Directory

data <- readMat("CRC.mat")

https://ucphchemometrics.com/datasets/

Higher order multivariate classification 170

X <- data$Xcomb
Y <- data$Y
nmEX <- data$nmEX
nmEM <- data$nmEM

Visualizing the data

matrix dimensions

mydim = dim(X) # samples x emission x excitation
mydim

average matrix of each class (1 = normal, 2 = cancer)

X1 = data$Xnormal
X2 = data$Xcancer

X1m = colMeans (X1)
X2m = colMeans (X2)

dev.new()
filled.contour(X1m,color.palette = terrain.colors,main = "Class 1 - Normal")

dev.new()
filled.contour(X2m,color.palette = terrain.colors,main = "Class 2 - Cancer")

dev.new()
matplot(t(nmEM), X1m, type="l", xlab = "Emission wavelength (nm)", ylab = "Intensity",
main = "Class 1 - Normal")

dev.new()
matplot(t(nmEX), t(X1m), type ="l", xlab ="Excitation Wavelength (nm)", ylab
="Intensity", main = "Class 1 - Normal")

dev.new()
matplot(t(nmEM), X2m, type="l", xlab ="Emission wavelength (nm)", ylab ="Intensity",
main ="Class 2 - Cancer")

dev.new()
matplot(t(nmEX), t(X2m), type ="l", xlab ="Excitation Wavelength (nm)", ylab
="Intensity", main ="Class 2 - Cancer")

######## PARAFAC Model #########

nf = 3 # define number of factors

model = parafac(X,nfac=nf,nstart=1,maxit=500,ctol=10^-4,parallel=FALSE,cl=NULL,ou
tput=c("best","all"))

Higher order multivariate classification 171

R2 Adjustment

model$Rsq # Increase the number of factors to better adjust R2

plot parafac scores 1 x 2

dev.new ()
matplot(model$A[Y==1,1], model$A[Y==1,2], pch="o", col="blue", xlab="Factor 1",
ylab="Factor 2", main="Scores (o: normal, x: cancer)")
points(model$A[Y==2,1], model$A[Y==2,2], pch="x", col="red", xlab="Factor 1",
ylab="Factor 2", main="Scores (o: normal, x: cancer)")

plot parafac loadings - emission

dev.new ()
matplot(t(nmEM), model$B, type ="l", xlab = "Emission Wavelength (nm)", ylab =
"Intensity")

plot parafac loadings – excitation

dev.new()
matplot(t(nmEX), model$C, type ="l", xlab = "Excitation Wavelength (nm)", ylab =
"Intensity")

######### training and testing samples selection based on MLM

perc = 0.7 # 70% for training

dim_class1 = dim(X1)
dim_class2 = dim(X2)
dim_data = dim(X)

ntrain1 = ceiling(perc * dim_class1[1]) # number of training samples class 1
ntrain2 = ceiling(perc * dim_class2[1]) # number of training samples class 2

scores_X1 = model$A[1:dim_class1[1],] # scores class 1
scores_X2 = model$A[(dim_class1[1]+ 1): dim_data[1],] # scores class 2

sel1 = kenStone(scores_X1, k = ntrain1) # KS class 1
sel2 = kenStone(scores_X2, k = ntrain2) # KS class 2

train1 = scores_X1[sel1$model,] # training class 1
train2 = scores_X2[sel2$model,] # training class 2
train = rbind(train1,train2) # joining training matrices

group1 = rep(1,dim_class1[1]) # class 1
group2 = rep(2,dim_class2[1]) # class 2

group1train = matrix(group1[sel1$model]) # class 1 training labels
group2train = matrix(group2[sel2$model]) # class 2 training labels
group_train = rbind(group1train,group2train) # training labels

Higher order multivariate classification 172

test1 = scores_X1[sel1$test,] # test class 1
test2 = scores_X1[sel2$test,] # test class 2
test = rbind (test1,test2) # joining test matrices

group1test = matrix(group1[sel1$test]) # class 1 test labels
group2test = matrix(group2[sel2$test]) # class 2 test labels
group_test = rbind(group1test,group2test) # test labels

dim_train1 = dim(train1) # class 1 training dimension
dim_train2 = dim(train2) # class 2 training dimension
dim_test1 = dim(test1) # test dimension of class 1
dim_test2 = dim(test2) # class 2 test dimension

prob = 0.2 # MLM mutation probability = 20%

p1 = ceiling(prob * dim_test1[1])
p2 = ceiling(prob * dim_test2[1])

t1 = 1:dim_train1[1]
t2 = 1:dim_train2[1]

v1 = 1:dim_test1[1]
v2 = 1:dim_test2[1]

train1_sub = sample(x=t1, size=p1)
train2_sub = sample(x=t2, size=p2)

test1_sub = sample(x=v1, size=p1)
test2_sub = sample(x=v2, size=p2)

train1_new = rbind(train1[-train1_sub,],test1[test1_sub,])
train2_new = rbind(train2[-train2_sub,],test2[test2_sub,])

test1_new = rbind(test1[-test1_sub,],train1[train1_sub,])
test2_new = rbind(test2[-test2_sub,],train2[train2_sub,])

train = rbind(train1_new,train2_new)
test = rbind(test1_new,test2_new)

LDA model

model_lda = lda(train,group_train) # model without cross-validation
model_lda_cv = lda(train,group_train,CV=TRUE) # model with leave-one-out cross-
validation

prediction of training and testing samples

pred_train = predict(model_lda, train) # training
pred_test = predict(model_lda, test) # test

figures of merit

Higher order multivariate classification 173

training

dim_train1 = dim(train1)
dim_train2 = dim(train2)

ac_train = mean(pred_train$class == group_train) # accuracy
spec_train = mean(pred_train$class[1:dim_train1[1]]==group1train) # specificity
sens_train = mean(pred_train$class[(dim_train1[1] + 1):(dim_train1[1]+dim_
train2[1])]==group2train) # sensitivity

cross-validation

ac_cv = mean(model_lda_cv$class == group_train) # accuracy
spec_cv = mean(model_lda_cv$class[1:dim_train1[1]]==group1train) # specificity
sens_cv = mean(model_lda_cv$class[(dim_train1[1] + 1):(dim_train1[1]+dim_
train2[1])]==group2train) # sensitivity

test

dim_test1 = dim(test1)
dim_test2 = dim(test2)

ac_test = mean(pred_test$class == group_test) # accuracy
spec_test = mean(pred_test$class[1:dim_test1[1]]==group1test) # specificity
sens_test = mean(pred_test$class[(dim_test1[1]+ 1):(dim_test1[1]+dim_
test2[1])]==group2test) # sensitivity

print("=========== Training =============")
cat("Accuracy:")
ac_train
cat("Sensitivity:")
sens_train
cat("Specificity:")
spec_train

print("=========== Cross-validation =============")
cat("Accuracy:")
ac_cv
cat("Sensitivity:")
sens_cv
cat("Specificity:")
spec_cv

print("=========== Test =============")
cat("Accuracy:")
ac_test
cat("Sensitivity:")
sens_test
cat("Specificity:")
spec_test

viewing posterior probabilities - training

Higher order multivariate classification 174

dev.new()
matplot(pred_train$posterior[1:dim_train1[1],1],pch =19,col="blue",xlab="Samples",
ylab ="LD1", main ="Posterior Probability - Training") # training class 1
points(pred_train$posterior[(dim_train1[1]+ 1):(dim_train1[1]+dim_
train2[1]),1],pch=19,col="red",xlab="Samples", ylab ="LD1", main ="Posterior
Probability - Training") # training class 2

visualizing posterior probabilities - cross validation

dev.new()
matplot(model_lda_cv$posterior[1:dim_train1[1],1],pch
=19,col="blue",xlab="Samples", ylab ="LD1", main ="Posterior Probability - Cross-
Validation") # class 1 cross-validation
points(pred_train$posterior[(dim_train1[1]+ 1):(dim_train1[1]+dim_
train2[1]),1],pch=19,col="red",xlab="Samples", ylab ="LD1", main ="Posterior
Probability - Cross-validation") # cross-validation class 2

viewing posterior probabilities - test

dev.new()
matplot(pred_test$posterior[1:dim_test1[1],1],pch=19,col="blue",xlab="Samples",
ylab ="LD1", main=" Posterior Probability - Test") # test class 1
points(pred_train$posterior[(dim_test1[1]+ 1):(dim_test1[1]+dim_
test2[1]),1],pch=19,col="red",xlab="Samples", ylab ="LD1", main="Posterior
Probability - Test") # test class 2

PROPOSED EXERCISES
01 – Propose the application of the PCA-LDA algorithm using some sample selection

method (KS or MLM) through a script in the R language on an experimental data set,
presenting your hypotheses and conclusions.

02 – Propose the application of the SPA-LDA algorithm using some sample selection
method (KS or MLM) through a script in the R language on an experimental data set,
presenting your hypotheses and conclusions.

03 – Propose the application of the GA-LDA algorithm using some sample selection
method (KS or MLM) through an R script on an experimental data set, presenting your
hypotheses and conclusions.

04 – Build multivariate classification models for the PCA-QDA, SPA-QDA and GA-
QDA algorithms using an R script from a data set and present your conclusions.

05 – Perform a comparison between the performance of PCA-LDA and PCA-QDA
models using an R script for a given data set. Choose a sample selection method.

06 – Perform a comparison between the performance of SPA-LDA and SPA-QDA
models using an R script for a given data set. Choose a sample selection method.

07 – Perform a comparison between the performance of GA-LDA and GA-QDA
models using an R script for a given data set. Choose a sample selection method.

Higher order multivariate classification 175

08 – Build 2nd order multivariate classification models based on the Turkey3-LDA
algorithm with both KS and MLM for a given dataset and present your main results.

09 – Build 2nd order multivariate classification models based on the PARAFAC-LDA
algorithm with both KS and MLM for a given dataset and present your main results.

10 – Implement the QDA algorithm in the Turkey3 and PARAFAC algorithms and,
based on previous exercises that used LDA models, present a comparison of results using
QDA.

REFERENCES
1 – Scandar , GM; Olivieri, A.C. (2014). Practical three way calibration. Elsevier.

2 – Kennard, R.; Stone, L. (1969). Computer Aided Design of Experiments. Technometrics , 11(1): 137–
148.

3 – Morais, CLM; Lima, KMG; Martin, F. (2018). A computational protocol for sample selection in biological-
derived infrared spectroscopy datasets using Morais-Lima-Martin (MLM) algorithms. Protocol Exchange.

4 – Araújo, MCU; Saldanha, TCB; Galvão, RKH; Yoneyama , T.; Charm, HC; Visani , V., (2001). The
successive projections algorithm for variable selection in spectroscopic multicomponent analysis,
Chemometrics and Intelligent Laboratory Systems, 57: 65 – 73.

5 – Pontes, MJC; Galvão, RKH; Araújo, MCU; Moreira, PNT; Neto, ODP; Jose, GE; Saldanha, TCBS
(2005). The successive projections algorithm for spectral variable selection in classification problems.
Chemometrics and Intelligent Laboratory Systems. 78:11-18.

6 – Holland, JH (1975). Adaptation in natural and artificial systems. The University of Michigan Press,
Ann Arbor, MI.

7 – Tucker, L. R. (1966). Some mathematical notes on three-mode factor analysis. Psychometrika, 31,
279-311.

8 – Graham, A.; Kronecker Products and Matrix Calculus with Applications, Wiley: New York, 1981.

9 – Bro, R.; (1998). Multi-way Analysis in Food Industry: Models, Algorithms, and Applications. Doctoral
Thesis, University of Amsterdam, Netherlands.

176Higher order multivariate calibration

HiGHER ORDER MULTivARiATE CALibRATiON

CHAPTER 5

"Model building is the art of selecting those aspects of a process that
are relevant to the question being asked. As with any art, this selection
is guided by taste, elegance, and metaphor; it is a matter of induction,
rather than deduction. High science depends on this art. " John
Henry Holland (1929-2015)

CHAPTER IDEA
Calibration is, in general, an experimental procedure that builds a mathematical model

between the values indicated by a given measuring instrument and the values represented
by a reference standard or property of interest. Prediction is a process that uses the model
built in the calibration or training stage to predict the property of interest of a sample based
on instrumental information. The general process of a calibration basically consists of the
modeling (training) stage, which establishes a mathematical relationship between the
instrumental variables and the response in the calibration set; and, the validation stage,
which seeks to optimize the relationship to find a better description of the analyte(s) of
interest.

In this chapter, you will learn about the advantages of multivariate calibration (1st and
2nd order) over univariate models (0th order) and several examples guided by algorithms in
the R language on real or simulated data sets. Furthermore, some multivariate calibration
algorithms coupled to variable selection algorithms will be presented.

Upon completing the chapter, you should be able to:
a) Build and evaluate figures of merit for univariate calibration models (0th order)
using R scripts;
b) Build and evaluate figures of merit for higher order calibration models (1st and 2nd
order) using R scripts;
c) Couple variable selection algorithms with multivariate calibration and evaluate
their performances;
d) Understand the sample and variable selection algorithms used in higher order
multivariate calibration models;
e) Investigate the stages for building multivariate calibration models when applied
to variable selection algorithms and evaluate their performances (figures of merit);
f) Build new scripts in the R language for decision making using 1st and 2nd order
multivariate calibration;
g) Propose new applications in chemistry or related areas of multivariate calibration
techniques.

https://www.azquotes.com/quote/97013
https://www.azquotes.com/quote/97013
https://www.azquotes.com/quote/97013
https://www.azquotes.com/quote/97013
https://www.azquotes.com/quote/97013

Higher order multivariate calibration 177

5.1 Univariate Calibration
Basically, calibration consists of a mathematical operation that determines the

functional relationship between values measured by some instrument and a property of
interest, such as concentration. The calibration process also includes the selection of the
adjustment method between the instrumental signal and the property of interest (linear,
quadratic, cubic), the estimation of model parameters and the errors associated with these
estimates, as well as the validation of the model.

In most cases, calibration for quantitative analysis is determined by a linear
mathematical relationship between y (instrumental response) and x (analyte concentration)
as follows:

Eq. 1

Where F is the linear calibration function.
In 0th order, or univariate calibration , the mathematical model is obtained using only

a single value of the experimental measurement per sample, without the need to consider
other components and interfering factors. y is a scalar quantity. However, its application has
a prerequisite: the absence of interferences to the analyte which could cause deviations
between its relationship with the property of interest.

5.2 Calibration by Least Squares – univariate model
The Method of Least Squares (MLS), or Ordinary Least Squares (OLS), is a

mathematical optimization technique that seeks to find the best fit for a set of data by
trying to minimize the sum of squares of the differences between the estimated value and
the observed data. The pioneering work of the least squares method is attributed to the
mathematician Carl Friedrich Gauss in 1795, but the first clear and concise explanation was
published in 1805 by Adrien-Marie Legendre [1].

Minimizing the error of experimental measurements related to unknown true values is
known in the literature as "the least squares problem". Here, we present a solution through a
theorem to minimize this error: Let Y ∈ Mnx1 (ℜ) and Y ∈ Mnxm (ℜ) be matrices whose columns
form a linearly independent set, with m ≤ n. Then, there is a singular matrix Â, such that:

 Eq. 2

 Eq. 3

Higher order multivariate calibration 178

Another way to understand the least squares method is to write a linear empirical
model or calibration function:

Eq. 4

where ŷ is the estimated response, b0 and b1 are the regression coefficients and ε is
the random error of the system.

In practice, equation 4 is obtained using calibration samples or certified reference
materials, standards containing one or several components, or synthetic standard materials,
that is, samples with known concentrations and high precision and accuracy.

Thus, the sum of the total residuals of this model is given by:

 Eq. 5

where: Eq. 6

so: Eq. 7

If we calculate the partial derivative of the sum of residues as a function of b0 and b1,

we obtain the values of the regression coefficients, as shown in the table below:

Higher order multivariate calibration 179

Replacing the values in equations above for b0 and b1, we have:

 Eq. 8

Figure 5.1 presents different least squares models that can be calculated after
minimizing the sum of residuals.

Figure 5.1: Different least squares adjustments. , , Ȃy, Ȃx are the estimates of By, Bx, Ay and Ax.

Higher order multivariate calibration 180

If there is homoscedasticity (constant error variance) and normal distribution, we can
also estimate the parameters Bx and Ax using least squares (Gaussian algorithm):

Eq. 9

Eq. 10

Where m is the total number of calibration experiments used to construct the
calibration function, using the following sums:

 Eq. 11

 Eq. 12

 Eq. 13

Another parameter in the least squares method consists of the Pearson's r or
Pearson correlation coefficient, which measures the degree and direction (positive or
negative) of the correlation between two variables, according to the equation:

Eq. 14

Typically, the value r only takes values between -1 and 1. If r = 1, we have a perfect
correlation between the two variables. If r = -1, we have a perfect negative correction
between the two variables. If r= 0 the two variables do not depend linearly on each other.

When properly applying calibration models, it is necessary to test whether the
conditions of these models are adequate. Usually, some tests are carried out such as: i)
linearity and, ii) homoscedasticity.

Linearity is obtained by observing the model residuals, which must be random, as
shown in Figure 5.2a. If the errors present systematic deviations, Figure 5.2b, the indication
of an inadequate linear model is evident. Linearity can also be assessed by observing the
model parameters (regression coefficient, intercept and correlation coefficient). As we know

Higher order multivariate calibration 181

in analysis of variance (ANOVA), there is an assumption in which errors must have a constant
variance, that is, they must be homoscedastic. If the variances are not homogeneous, we
assume the case of heteroscedasticity. With a visual inspection of the residuals graph, as
can be seen in Figure 5.2c, we can see that the variance is not constant.

Figure 5.2: Common plots for residual deviations of calibration models.

After constructing an analytical method, the method must be validated to ensure the
results obtained through it have the required efficiency under the conditions in which it will
be applied. Normally, this efficiency of the model (analytical validation) is carried out through
the determination of several parameters that characterize the efficiency of the method, which
are called figures of merit. In addition to the parameters discussed in univariate calibration
models (linearity and homoscedasticity), we can find other figures of merit in higher order
calibration, such as:

i) Analytical sensitivity

 Eq. 15

ii) Limit of detection (LD)

 Eq. 16

iii) Limit of quantification (LQ)

 Eq. 17

Higher order multivariate calibration 182

Where Sa is the sensitivity of the property of interest; Si it is the sensitivity of an
interferer; s is the standard deviation; and, S is the slope or angular coefficient of the
analytical curve.

iv) Accuracy – basically, it consists on the difference between the value estimated by
the model (here, multivariate) and the reference value. In multivariate calibration, we can
write it as the square root of the mean squared error of prediction (RMSEP)

 Eq. 18

where lv represents the number of samples in the validation set, yi and ŷi correspond
to the reference values and those predicted by the model, respectively.

v) Precision – consists of the degree of agreement between the results of a series of
measurements for the same sample. In multivariate calibration, we can calculate precision
from the equation below:

precisão

 Eq. 19

where, n represents the number of samples and m the number of replicates.
vi) Sensitivity – is the fraction of the signal responsible for adding a concentration unit

to the property of interest. In multivariate calibration models, we can write the sensitivity as:

SÊN =
 Eq. 20

Where bk corresponds to the vector of regression coefficients.
vii) Analytical sensitivity – it is the ratio between the sensitivity and the standard

deviation of the reference signal (dx):

 Eq. 21

viii) Limit of detection (LD) and quantification (LQ) – these parameters express
the smallest quantities of the species of interest that can be detected and determined
quantitatively, respectively. In multivariate calibration, these parameters are calculated
according to the following equations:

 Eq. 22

 Eq. 23

Higher order multivariate calibration 183

where dx is the standard deviation of the reference method, bk is the vector of
regression coefficients of the PLS model for species k, SÊN corresponds to the analytical
sensitivity.

Below, two examples of univariate calibration models will be presented, as well as
some figures of merit for evaluating the constructed models.

Example 1: In the example we will describe the construction and validation of a
univariate regression model using the AER, ggplot2, caret, lmtest and olsrr packages.

R Script
install.packages("AER")
library(AER)

Data
ensure reproducibility after training and val partition
set.seed (9)
data("USConsump1993", package = "AER")
plot(USConsump1993, plot.type = "single", col =1:2)

Transforming data into data.frame = spreadsheet to facilitate formatting
consumption = data.frame(USConsump1993)

########################
Univariate Linear Regression

Training

Number of training data (70%)
tr = round(0.70* nrow (consumption))

defining training dataset lines
training = sample(nrow (consumption), tr , replace = F)

separating training dataset
consumption.tr = consumption[training,]

simple linear regression model
lm1 = lm (formula = expenditure ~ income, data = consumption.tr)
summary (lm1)
confint (lm1)

plotting
plot (expenditure ~ income, data = consumption.tr, col = "indianred", pch = 20, cex
= 1.5)
abline (lm1, col = "palegreen", lwd = 2)
grid (lwd = 2)

Higher order multivariate calibration 184

library(ggplot2)
ggplot (data = consumption.tr, aes (x = income, y = expenditure)) +
 geom_point (color = 'indianred', lwd = 2)+
 geom_smooth (method = "lm", formula = y ~ x, col = "palegreen")+
 ggtitle ("Consumption vs income (training data)") +
 xlab ("income") +
 ylab ("consumption") + theme_bw ()

Test
Test data
consumption.te = consumption[-training,]

test data prediction
res.test = predict(lm1,newdata = data.frame (income = consumption.te$income))

Chart
plot(expenditure ~ income, data = consumption.te , col = "slateblue", pch = 20, cex
= 1.5)
abline(lm1, col = "khaki4", lwd = 2)
grid(lwd = 2)

ggplot() +
 geom_point(aes(x = consumption.te$income, y = consumption.te$expenditure),
 color = 'slateblue', lwd = 2) +
 geom_smooth(method = "lm", formula = y ~ x,
 aes(x = consumption.tr$income, y = consumption.tr$expenditure), col
= "khaki4") +
 ggtitle ("consumption vs income (test data)") +
 xlab("income") +
 ylab("consumption") + theme_bw()

Model 1 performance with test data

test1 = data.frame(obs = consumption.te [,2], pred = res.test)
library(caret)
defaultSummary(test1)

R2(consumption.te [,2], res.test)
RMSE(consumption.te [,2], res.test)
MAE(consumption.te [,2], res.test) # average of absolute deviations

Model suitability
residuals graph
par(mfrow = c(2,2))
plot(lm1)

Normality test
shapiro.test(residuals(lm1))

Higher order multivariate calibration 185

Test for autocorrelation of residuals (they must be uncorrelated)
library(lmtest)
dwtest(lm1)

Homoscedasticity test
install.packages("olsrr")
library(olsrr)
ols_test_breusch_pagan(lm1)

Example 2: The example we will describe here consists of the construction, validation
and comparison of univariate regression models using different degrees of the polynomial
through the MASS, ggplot2, caret, lmtest and olsrr packages.

R Script
library(MASS)

set.seed (9)
rehab = wtloss
? wtloss

################### 0th order model (simple) ####################### ##
training

Number of training data (70%)
tr = round(0.70* nrow (rehab))

defining training dataset lines
training = sample(nrow (rehab), tr, replace = F)

separating training dataset
rehab.training = rehab[training,]

simple linear regression model
lm1 = lm(Weight ~ Days , rehab.training)
summary (lm1)
confint (lm1)

plotting the training
plot(Weight ~ Days, rehab.training, col = "navy", pch = 20, cex = 1.5)
abline(lm1, col = "seagreen", lwd = 2)
grid(lwd = 2)

library(ggplot2)
ggplot(rehab.training, aes(x = Days, y = Weight)) +
 geom_point(color = 'orange', lwd = 2)+
 geom_smooth(method = "lm", formula = y ~ x, col = "seagreen")+
 ggtitle("Weight vs Days (training data)") +
 xlab("Days") +
 ylab("Weight") + theme_bw()

Higher order multivariate calibration 186

Test
Test data
rehab.test = rehab[-training,]

test data prediction
res.test = predict(lm1,newdata = data.frame(Days = rehab.test[,1]))
rehab.test[,2]
res.test

Plot

plot(Weight ~ Days, rehab.test, col = "orangered", pch = 20, cex = 1.5)
abline(lm1, col = "gold3", lwd = 2)
grid(lwd = 2)

ggplot() +
 geom_point(aes(x = rehab.test$Days, y = rehab.test$Weight),
 color = 'orangered', lwd = 2) +
 geom_smooth(method = "lm", formula = y ~ x,
 aes(x = rehab.training$Days, y = rehab.training$Weight)) +
 ggtitle ("Weight vs days (test data)") +
 xlab("days") +
 ylab("weight") + theme_bw()

Model 1 performance with test data

test1 = data.frame(obs = rehab.test[,2], pred = res.test)
library(caret)
defaultSummary(test1)

Model adequacy
residuals graph
par(mfrow = c(2,2))
plot(lm1)

Normality test
shapiro.test(residuals(lm1))

Test for autocorrelation of residuals (they must be uncorrelated)
library(lmtest)
dwtest(lm1)

Homoscedasticity test
install.packages("olsrr")
library(olsrr)
ols_test_breusch_pagan(lm1)

Higher order multivariate calibration 187

################### 0th order model (polynomial) ##########
polynomial regression model (2nd degree)
lm2 = lm(Weight ~ poly (Days, 2, raw = T), rehab.training)
summary (lm2)
confint (lm2) # confidence interval for coefficients

plotting the training data

par(mfrow = c(1,1))
plot(Weight ~ Days, rehab.training, col = "deepskyblue3", pch = 20, cex = 1.5,
 main = "Weight vs Days (training data)")
x1 = seq(0,250, by = 0.1)
lines(x1,predict(lm2, newdata = data.frame (Days = x1)), col = "mediumvioletred",
lwd = 2)
grid(lwd = 2)

library(ggplot2)
ggplot(rehab.training, aes(x = Days, y = Weight)) +
 geom_point(color = 'deepskyblue3', lwd = 2)+
 geom_smooth(method = "lm", formula = y ~ x + I(x^2), col = "mediumvioletred")+
 ggtitle("Weight vs Days (training data)") +
 xlab("Days") +
 ylab("Weight") + theme_bw()

Test

prediction with test data

res.test2 = predict(lm2, newdata = data.frame(Days = rehab.test[,1]))
rehab.test[,2]
res.test2

lm2 model performance with test data
test2 = data.frame(obs = rehab.test[,2], pred = res.test2)
defaultSummary(test2)

Plot with test data

plot(Weight ~ Days, rehab.test, col = "red", pch = 20, cex = 1.5,
 main = "Weight vs Days (test data)")
x1 = seq(0,250, by = 0.1)
lines(x1,predict(lm2, newdata = data.frame (Days = x1)), col = "sandybrown", lwd
= 2)
grid(lwd = 2)

Higher order multivariate calibration 188

ggplot() +
 geom_point(aes(x=rehab.test$Days, y = rehab.test$Weight),
 color = 'red', lwd = 2) +
 geom_smooth(method = "lm", formula = y ~ x + I(x^2),
 aes(x = rehab.training$Days, y = rehab.training$Weight), col =
'sandybrown') +
 ggtitle("Weight vs Days (test data)") +
 xlab("Days") +
 ylab("Weight") + theme_bw()

Model suitability

residuals graph
par(mfrow = c(2,2))
plot(lm2)

Normality test
shapiro.test(residuals(lm2))

Test for autocorrelation of residuals (they must be uncorrelated)
dwtest(lm2)

Homoscedasticity test
ols_test_breusch_pagan(lm2)

################### 0th order model (polynomial) ######################## ##
polynomial regression model (3rd degree)
Training

lm3 = lm(Weight ~ poly(Days, 3, raw = T), rehab.training)
summary(lm3)
confint(lm3)

Prediction for test data
res.test3 = predict(lm3, newdata = data.frame (Days = rehab.test[,1]))

lm3 model performance with test data
test3 = data.frame(obs = rehab.test[,2], pred = res.test3)
defaultSummary(test3)

################### 0th order model (polynomial) ######################## ##
polynomial regression model (5th degree)
Training

lm5 = lm (Weight ~ poly(Days, 5, raw = T), rehab.training)
summary (lm5)
confint (lm5)

Higher order multivariate calibration 189

Prediction for test data
res.test5 = predict(lm5, newdata = data.frame (Days = rehab.test[,1]))

lm3 model performance with test data
test5 = data.frame(obs = rehab.test[,2], pred = res.test5)
defaultSummary(test5)

Choosing the best model

Plotting model training and testing errors

RMSE_training = c(RMSE(rehab.training [,2], fitted.values(lm1)),
 RMSE(rehab.training [,2], fitted.values(lm2)),
 RMSE(rehab.training [,2], fitted.values(lm3)),
 RMSE(rehab.training [,2], fitted.values(lm5))

)

RMSE_test = c(RMSE(rehab.test[,2], res.test),
 RMSE(rehab.test[,2], res.test2),
 RMSE(rehab.test[,2], res.test3),
 RMSE(rehab.test[,2], res.test5)
)

order = rep(c(1:3,5),2)
set = c(rep("training", 4), rep("test",4))
rmse = c(RMSE_training,RMSE_test)

select = data.frame(order,set,rmse)

ggplot (select,aes(x = order , y = rmse, group = set)) +
 geom_point(aes(col = set, shape = set), size = 3) +
 geom_line(aes(col=set, linetype =set)) + theme_bw ()

Cross-validation

vc_lm1 = train(Weight ~ Days, rehab, method = "lm",
 trControl = trainControl(method = "CV", number = 10))

vc_lm2 = train(Weight ~ Days + I(Days^2), rehab, method = "lm",
 trControl = trainControl (method = "CV", number = 10))

vc_lm3 = train(Weight ~ Days + I(Days^2) + I(Days^3), rehab, method = "lm",
 trControl = trainControl (method = "CV", number = 10))

vc_lm5 = train(Weight ~ Days + I(Days^2) + I(Days^3) + I(Days^4) + I(Days^5), rehab,
method = "lm",
 trControl = trainControl (method = "CV", number = 10))

Higher order multivariate calibration 190

summary(resamples(list(
 model1 = vc_lm1,
 model2 = vc_lm2,
 model3 = vc_lm3,
 model5 = vc_lm5
)))

5.3 Multiple Linear Regression (MLR)
Multiple linear regression (MLR), an extension of simple linear regression, is a

simpler multivariate calibration technique that aims to establish a mathematical relationship
between x (instrumental response) and y (parameter of interest) through the matrix equation,
for situations of n > m:

Y = Xb + e Eq. 24

where y corresponds to the vector of the parameter to be determined, X is the matrix
of instrumental variables, b is the vector of regression coefficients, and e is the vector of
residuals. The MLR technique assumes that concentration is a function of the instrumental
responses, and we call it indirect or inverse calibration.

This equation can be represented graphically through Figure 5.3 below:

Figure 5.3: Graphical representation of the MLR technique.

In MLR, the regression coefficients b can be estimated by several methods, one of
the most used of which is the least squares method, as shown in the equation below:

b = (X T X) -1 X T y Eq. 25

 The analysis of equation (25) above points to the main limitations of the MLR
technique: i) the inverse of XTX may not exist; ii) all information (significant variance)

Higher order multivariate calibration 191

contained in matrix X is used in building the model, regardless of whether it is relevant or
not; and, iii) the number of independent variables cannot be greater than the number of
calibration samples used in the analysis. When the problem of the inverse of XTX is due to
matrix rank deficiency, the solution will not exist and this problem is known as collinearity.

However, the MLR technique, when XTX has a possible solution, is interesting for
well-established systems. This happens when there are no collinearities in the X matrix,
no interferences or interaction between the analytes, when the response is linear and with
low instrumental noise. A possible solution for the MLR in systems with a great number of
instrumental responses for a smaller quantity of samples is the use of variable selection
algorithms, which will be discussed throughout this chapter.

Example 3: The example we will describe here consists of the construction, validation
and comparison of MLR multivariate regression models using the Stat2Data, ggplot2, caret,
rsm, lmtest and olsrr packages.

R Script
install.packages("Stat2Data")
library(Stat2Data)

data("ThreeCars2017")

pairs(ThreeCars2017) #scatter diagram

pairs(ThreeCars2017,
 col = viridis :: viridis(3)[ThreeCars2017$CarType],
 pch = c(15:17)[ThreeCars2017$CarType])

pairs(ThreeCars2017[,1:4],
 col = viridis :: viridis (3)[ThreeCars2017$CarType],
 pch = c(15:17)[ThreeCars2017$CarType])

######### Model 1 ##############################
Training
set.seed (11)

Number of training samples (80%)
tr = round(0.8* nrow (ThreeCars2017))

defining training dataset rows
training = sample(nrow (ThreeCars2017), tr, replace = F)

separating the training dataset
cars.training = ThreeCars2017[training,]

Higher order multivariate calibration 192

Model 1
model1 = lm (Price ~ Mileage, cars.training)
summary(model1)

Preview
plot (Price ~ Mileage , cars.training , col = "palegreen2", pch = 20, cex = 1.5,
 main = "Price vs Mileage (training data)")
abline (model1, col = "steelblue", lwd = 2)
grid (lwd = 2)

library(ggplot2)
ggplot (cars.training , aes (x = Mileage, y = Price)) +
 geom_point (color = "palegreen", lwd = 2)+
 geom_smooth (method = "lm", formula = y ~ x)+
 ggtitle ("Price vs Mileage (training data)") +
 xlab ("Mileage") +
 ylab ("Price") + theme_bw ()

Test
Test data
cars.test = ThreeCars2017[-training,]

prediction with test data
res.test1 = predict(model1, newdata = data.frame (Mileage = cars.test$Mileage))

Model 1 performance with test data
test1 = data.frame (obs = cars.test$Price , pred = res.test1)
library(caret)
defaultSummary (test1)

Preview
plot(Price ~ Mileage, cars.test, col = "mediumorchid", pch = 20, cex = 1.5,
 main = "Price vs Mileage (test data)")
abline (model1, col = "olivedrab3", lwd = 2)
grid(lwd = 2)

library(ggplot2)
ggplot () +
 geom_point (aes(x = cars.test$Mileage , y = cars.test$Price),
 color = "mediumorchid", lwd = 2) +
 geom_smooth (method = "lm", formula = y ~ x,
 aes(x = cars.training$Mileage , y = cars.training$Price), col =
"olivedrab3") +
 ggtitle ("Price vs Mileage (test data)") +
 xlab ("Mileage") +
 ylab ("Price") + theme_bw ()

Higher order multivariate calibration 193

######## Model 2 (considering 2 regressor variables)
model2 = lm (Price ~ Mileage + Age, cars.training)
summary(model2)

Preview
install.packages("rsm")
library(rsm)
persp(model2, Age ~ Mileage, col = rainbow(50), contours = "colors", theta = 50,
phi = 30)

contour(model2, Age ~ Mileage, image = TRUE)

#####
xs = seq (min(cars.training$Mileage), max(cars.training$Mileage), length = 20)
ys = seq (min(cars.training$Age), max(cars.training$Age), length = 20)
xys = expand.grid (xs,ys)
colnames (xys) = c("Mileage", "Age")
zs = matrix(predict(model2, xys), nrow = length(xs))

n.cols = 100
palette = colorRampPalette (c("lightseagreen", "mediumvioletred"))(n.cols)
zfacet = zs[-1,-1] + zs[-1, -20] + zs[-20, -1] + zs[-20, -20]
facetcol = cut(zfacet , n.cols)

pl = persp (x = xs , y = ys , z = zs, theta = 50, phi = 30, ticktype = 'detailed',
 xlab = "Mileage", ylab = "Age", zlab = "Price", col = palette [facetcol])

with (cars.training , points(trans3d(Mileage, Age, Price, pl), pch = 20, col =
"orangered"))

Test
Prediction with test data
res.test2 = predict(model2, newdata = data.frame (cars.test [c(2,4)]))

Model 2 performance with test data
test2 = data.frame (obs = cars.test$Price , pred = res.test2)
defaultSummary (test2)

Model 3
model3 = lm (Price ~ Mileage*Age, cars.training)
summary(model3)

Preview
persp (model3, Age ~ Mileage, col = rainbow(50), contours = "colors")
contour(model3, Age ~ Mileage, image = TRUE)

Higher order multivariate calibration 194

Test
Prediction with test data

res.test3 = predict(model3, newdata = data.frame(cars.test [c(2,4)]))

Model 3 performance with test data
test3 = data.frame (obs = cars.test$Price , pred = res.test3)
defaultSummary (test3)

######################## Model 4 ################
Model 4
model4 = lm (Price ~ Mileage*Age + I(Mileage^2) + I(Age^2), cars.training)
summary(model4)

Preview
persp(model4, Age ~ Mileage, col = rainbow(50), contours = "colors", theta = 60,
phi = 30,)
contour(model4, Age ~ Mileage, image = TRUE)

Prediction with test data

res.test4 = predict (model4, newdata = data.frame (cars.test [c(2,4)]))

Model 3 performance with test data
test4 = data.frame (obs = cars.test$Price , pred = res.test4)
defaultSummary (test4)

############################## Model 5 ################# #####################
Model 5
model5 = lm (Price ~ Mileage*Age + I(Mileage^2) + I(Age^2) + CarType , cars.training
)
summary(model5)

Preview
persp(model5, Age ~ Mileage, col = rainbow(50), contours = "colors", theta = 60,
phi = 30)
contour(model5, Age ~ Mileage, image = TRUE)

Prediction with test data
res.test5 = predict (model5, newdata = data.frame (cars.test [c(1,2,4)]))

Model 3 performance with test data
test5 = data.frame (obs = cars.test$Price , pred = res.test5)
defaultSummary (test5)

###################### Model 6 #########################
Model 6
model6 = step(model5, trace = 1, direction = "backward")
tests whether it is worth removing a coefficient or not to improve the model
summary (model6)

Higher order multivariate calibration 195

Prediction with test data
res.test6 = predict(model6, newdata = data.frame (cars.test [c(1,2,4)]))

Model 3 performance with test data
test6 = data.frame (obs = cars.test$Price , pred = res.test6)
defaultSummary (test6)

####################### Choosing the best model ####################### #######
Plotting training and testing error of the best model

rmse_training = c(RMSE(cars.training$Price , fitted.values (model1)),
 RMSE(cars.training$Price , fitted.values (model2)),
 RMSE(cars.training$Price , fitted.values (model3)),
 RMSE(cars.training$Price , fitted.values (model4)),
 RMSE(cars.training$Price , fitted.values (model5)),
 RMSE(cars.training$Price , fitted.values (model6))
)

rmse_test = c(RMSE(cars.test$Price , res.test1),
 RMSE(cars.test$Price , res.test2),
 RMSE(cars.test$Price , res.test3),
 RMSE(cars.test$Price , res.test4),
 RMSE(cars.test$Price , res.test5),
 RMSE(cars.test$Price , res.test6)
)

model = rep(1:6,2)
set = c(rep("training",6), rep("test",6))
rmse = c(rmse_training,rmse_test)

select = data.frame (model, set, rmse)

ggplot (select, aes (x = model , y = rmse , group = set)) +
 geom_point (aes (col = set, shape = set), size = 3) +
 geom_line (aes (col=set, linetype =set)) + theme_bw ()

Cross-validation

vc_lm6 = train(Price ~ Mileage*Age + I(Mileage^2) + I(Age^2) + CarType , ThreeCars2017,
method = "lm",
 trControl = trainControl (method = "cv", number = 10))
vc_lm6

Suitability model 6
par(mfrow = c(2,2))
plot(model6)

Higher order multivariate calibration 196

shapiro.test(residuals(model6))
install.packages ("lmtest")
library(lmtest)
dwtest(model6)
install.packages("olsrr")
library(olsrr)
ols_test_breusch_pagan(model6)

5.4 MLR – SPA
As discussed previously, the MLR algorithm is one of the simplest multivariate

calibration techniques. In MLR, the analysis can be described by a linear relationship
between the independent variables X and a dependent variable Y, as described in Eq.
25. It was also mentioned that this algorithm does not need to know the concentration
for all species spectroscopy active in the samples belonging to the calibration set, i.e.,
unknown chemical species, interferences and baseline effects; since these when present,
can be modeled. However, an important problem in MLR calibration is that the matrix (XTX)
may not be invertible or promote the propagation of errors when there is strong correlation
or multicollinearity between the variables. This happens when the number of variables is
greater than the number of samples.

As we normally obtain a large number of instrumental responses and a smaller
number of samples, this problem of inverting the XTX matrix tends to continue, except when
we use variable selection algorithms to get around these restrictions. The SPA variable
selection algorithm selects subsets of variables with minimally redundant content, from
a succession of projections comprising the instrumental variables column, to correct
collinearity problems, which is interesting for the MLR algorithm.

Example 4 : The following example consists of an application of the MLR-SPA
multivariate regression algorithm to mid-infrared spectra in plasma samples with different
synthetic (spiked) concentrations of dengue virus. The packages used in the script are
R.matlab, prospectr, MASS, lintools, ggplot2,Stat2Data and Metrics.

R Script
Loading packages

install.packages ("R.matlab")
library(R.matlab)

install.packages("prospectr")
install.packages("MASS")
install.packages("lintools")

Higher order multivariate calibration 197

library(prospectr)
library(MASS)
library(ggplot2)
library(lintools)

install.packages("Stat2Data")
library(Stat2Data)

install.packages("Metrics")
library(Metrics)

Loading data

Navigate in RStudio to the directory with the dataset to work with
Session > Set Working Directory > Choose Directory
data <- readMat("data_reg.mat")

x = data$data # spectra
y = data$concentration # concentration
cm = data$cm # wave number
cmt = t(cm)

data plot

dev.new()
matplot(t(cm),t(x), type ='l', xlab ="Wavenumber (cm-1)", ylab ="Absorbance")

SPA for variable selection

PCA Model

x_scal = scale(x) # mean centering
dim_x = dim(x) # dimension of the data array

x.svd = svd (x_scal) # SVD
x.scores = x.svd$u %*% diag (x.svd$d) # scores
x.loadings = x.svd$v # loadings

SPA model

nvar = 22 # number of variables to select

xm = data.matrix (x, rownames.force =NA) # converting data to matrix

m = colMeans (x) # average of spectra

model_spa = project (x= x.loadings [,1], A= xm , b=y, neq =0) # spa model

Higher order multivariate calibration 198

xabs = abs (model_spa$x) # leaving positive values for the SPA response vector

temp = sort.int(xabs , decreasing=TRUE, index.return =TRUE)
variables = temp$ix [1:nvar] # identifying selected variables

dev.new () # plot of selected variables
matplot (cmt,m,xlab ="Wave number (cm-1)", type ="l", ylab ="Absorbance", main
="Average spectrum with selected variables")
points(cm[variables],m[variables], pch =19)

xm_spa = xm [, variables] # absorbances for the selected variables
xm_spa_df = data.frame (xm_spa)

Division into Calibration and Prediction

perc = 0.7 # 70% for calibration and 30% for testing

size = 1:dim_x[1]

ntrain = ceiling (perc * dim_x [1]) # number of calibration samples

sel = sample(size, ntrain) # sample selection

xcal = xm_spa [sel ,] # calibration
ycal = matrix (y[sel]) # concentration calibration

xpred = xm_spa [- sel ,] # prediction
ypred = matrix (y[- sel]) # concentration prediction

MLR Model

xcal_df = data.frame (xcal)
xpred_df = data.frame (xpred)

model_mlr = lm (ycal ~ xcal , xcal_df) # MLR model

coef = model_mlr$coefficients # regression coefficients

ycal_calc = cbind (rowMeans (xcal), xcal) %*% matrix (coef) # predicted
concentration calibration
ypred_calc = cbind (rowMeans (xpred), xpred) %*% matrix (coef) # predicted
concentration prediction

Plot measured vs.predicted concentration

dev.new ()
plot (ycal,ycal_calc,pch ='o', col ="blue", xlab ="Measured Concentration (mg/L)",
ylab ="Predicted Concentration (mg/L)", main ="Calibration")
lines(ycal,ycal,col ='red')

Higher order multivariate calibration 199

dev.new ()
plot (ypred,ypred_calc,pch =15,col="red", xlab = "Measured Concentration (mg/L)",
ylab = "Predicted Concentration (mg/L)", main = "Predicted")
lines(ypred,ypred,col ='red')

dev.new ()
plot (ycal,ycal_calc,pch ='o', col ="blue", xlab ="Measured Concentration (mg/L)",
ylab ="Predicted Concentration (mg/L)", main ="Calibration (blue) and Prediction
(red)")
points(ypred,ypred_calc,pch =15,col="red")
lines(y,y,col ="red")

Figures of merit

Calibration

MAPEC = mean(abs ((ycal-ycal_calc)/ ycal))*100
R2cal = cor(ycal,ycal_calc)^2
RMSEC = rmse(ycal,ycal_calc)

Prediction

MAPEP = mean(abs((ypred-ypred_calc)/ ypred))*100
R2pred = cor(ypred,ypred_calc)^2
RMSEP = rmse(ypred,ypred_calc)

print("=========== Calibration =============")
print("Mean absolute error percentage (MAPE) (%):")
MAPEC
print("R2cal:")
R2cal
print("RMSEC (mg/L):")
RMSEC

print("=========== Test =============")
print("Mean absolute error percentage (MAPE) (%):")
MAPEP
print("R2pred:")
R2pred
print("RMSEP (mg/L):")
RMSEP

5.5 Principal Component Regression (PCR)
Principal component regression (PCR) is a multivariate regression technique used

when there are many independent variables or multicollinearities (when two or more
independent variables in a regression model are highly correlated), experimental noise or
lack of linearity.

Higher order multivariate calibration 200

We can divide the PCR technique into two phases: description of the block of
independent variables (matrix X), being orthogonal to each other, therefore there is no
correlation between them.

This first step of the PCR technique can be represented graphically in Figure 5.4
below:

Figure 5.4: Graphical representation of the PCR technique

The second stage of the PCR technique consists of using the MLR technique to
establish a mathematical relationship between the matrix of T scores (the new block of
independent variables) and the block of dependent variables (matrix Y). Thus the MLR
equation can be written:

Y = TB + E Eq. 26

and the solution for the regression coefficients is:

B = (TTT)-1TT Y Eq. 27

Note that inverting TTT will not cause problems due to the mutual orthogonality of the
scores, correcting the collinearity problem. However, it is important to highlight that a crucial
step in the PCR technique is choosing the number of principal components due to the risk of
loss of information. Another issue is that PCR ignores all the information contained in the Y
matrix in the initial step. The data from the Y matrix are only used in the second step, when
the number of components has already been determined.

Example 5: The following example consists of a practical script for multivariate
regression algorithms (MLR and PCR) using the Ecdat, corrplot, car, caret and pls packages.

Higher order multivariate calibration 201

R Script
install.packages("hdrcde")
library(hdrcde)

install.packages("DEoptimR")
library(DEoptimR)

install.packages("Ecfun")
library(Ecfun)

install.packages("Ecdat")
library(Ecdat)

#data
data = ManufCost

? ManufCost

data = data.frame (ManufCost)

data = na.omit (data)

Correlation
library (corrplot)

r = cor(data)
round(r,2)

preview
corrplot :: corrplot (r,method = "color",
 type = "upper",
 order= "hclust",
 addCoef.col = "black", tl.srt = 45,
 diag = FALSE)

pairs (data, col = "mediumseagreen")

####
Training and Testing Data

set.seed (33)

Separating training and testing data
tr = round(0.8* nrow (data))
training = sample(nrow (data), tr , replace = F)

data.training = data[training,]
data.test = data[-training,]

Higher order multivariate calibration 202

#########################

Visualizing correlation and principal components between two variables

par(mfrow = c(1,1))
plotting two correlated variables
plot(scale(sl)~scale(pl), asp = 1, data, pch = 20, cex = 1.5, col = "mediumseagreen")

separating such variables
d = data[,c(3,7)]

correlation matrix of such variables
cm = cor(d)
cm

#eigenvalues of cm
e = eigen(cm)

Slopes of the principal components
s1 = e$vectors [1,1]/ e$vectors [2,1] # PC1
s2 = e$vectors [1,2]/ e$vectors [2,2] # PC2

Principal axes
abline (a=0, b=s1, col = "blue", lwd = 2)
abline (a=0, b=s2, col = "lightblue", lwd = 2)

Multiple Linear Regression (MLR)
Complete model - Training
lm1 = lm (cost ~., data.training)
library("car")
vif (lm1) # variance inflation factor due to multicollinearity
confint (lm1)

Test
pred.lm1 = predict(lm1, newdata = data.test)

metrics
library("caret")
test.lm = data.frame (data.test$cost , pred.lm1)
colnames (test.lm) = c("obs", "pred")
defaultSummary (test.lm)

#####################
PCR
install.packages("pls")
library(pls)

Higher order multivariate calibration 203

PCR model training
pcr1 = pcr(cost ~., ncomp = 8, data = data.training , validation = "LOO", scale = T)
summary(pcr1)

#cross validation
ncomp.onesigma = selectNcomp (pcr1, method = "onesigma", plot = TRUE)
ncomp.permut = selectNcomp (pcr1, method = "randomization", plot = TRUE)

preview
plot(RMSEP(pcr1), legendpos = "topright")

plot(pcr1,ncomp = 6, line = TRUE)

plot(pcr1,plottype = "scores", comps = 1:2)

plot(pcr1, "loadings", comps = 1:2, legendpos = "bottomright")
abline (h = 0, col = " lightblue ")

#model test
pred.pcr1 = predict(pcr1, ncomp = 2, newdata = data.test)

#metrics
test.pcr = data.frame (data.test$cost , pred.pcr1)
colnames (test.pcr) = c("obs", "pred")
defaultSummary (test.pcr)

5.6 Partial least squares (PLS) regression
The PLS technique was proposed by H. Wold in 1982 [2]. Unlike the PCR algorithm,

PLS estimates scores both in the matrix of independent variables (matrix X) and in the
dependent variables (matrix Y). However, the PLS algorithm has two main stages in its
development. The first consists of simultaneously decomposing the matrices X and Y into a
sum of "h" latent variables, as we can see in the following equations:

X = TPT + E = S thpT
h + E Eq. 28

Y = UQT + F = S uhqT
h + F Eq. 29

where T and U are the score matrices of matrices X and Y, respectively. P and Q
are the loading matrices of matrices X and Y, respectively; and E and F are the residuals.

A representation of this first step of the PLS algorithm is shown in Figure 5.5 below:

Higher order multivariate calibration 204

Figure 5.5: Graphical representation of the 1st stage of the PLS algorithm.

The second step of the PLS algorithm consists of calculating the linear correlation
between the scores in matrix Y and the scores in matrix X, as described in the following
equation:

uh = bh th Eq. 30

for "h" latent variables, in which the values of bh are grouped in the diagonal matrix
B that contains the regression coefficients between the scores matrix U of Y and the scores
matrix T of X.

A geometric illustration of the PLS algorithm in this second stage is shown in Figure
5.6 below:

Figure 5.6 : Geometric representation of the PLS model using one latent variable modeling each block
(X and Y).

Higher order multivariate calibration 205

An example of algorithm for calculating the PLS regression is the NIPALS algorithm
[3], which presents two main steps: i) obtaining the orthogonal projector of the columns
of matrix X (instrumental variables), in the subspace generated by the columns of matrix
Y (parameter of interest), and find the inverse projector; ii) calculate the corresponding
directions in the spaces generated by the Y and X columns to reduce the information in the
reducer matrix.

We can see here that the PLS algorithm's main objective is to maintain a compromise
between the ability of the principal components to describe the samples in individual spaces
(obtaining the scores of the matrices X and Y) and maximizing the correlation between t
and u.

It is also worth mentioning that in the process of searching for the best number of
latent variables in the PLS algorithm, the cross-validation process is necessary. In cross-
validation, the RMSEP of the prediction samples is calculated. Another important information
is the differentiation between PLS1 and PLS2. In PLS1, the regression is performed for one
dependent variable at a time (the Y matrix is a column vector), while in PLS2 all dependent
variables are calculated simultaneously.

Example 6: The following example consists of an application of the PLS multivariate
regression algorithm through the pls, Ecdat and caret packages.

R Script
install.packages("Ecdat")
library(Ecdat)
library(caret)
install.packages("pls")
library(pls)

#data
data = ManufCost
? ManufCost
data = data.frame (ManufCost)
data = na.omit (data)

Training and Testing Data
set.seed (33)
Separating training and testing data
tr = round(0.8* nrow (data))
training = sample(nrow (data), tr , replace = F)
data.training = data[training,]
data.test = data[-training,]

#####
Visualizing correlation and principal components between two variables

Higher order multivariate calibration 206

par(mfrow = c(1,1))
plotting two correlated variables
plot(scale(sl)~scale(pl), asp = 1, data, pch = 20, cex = 1.5, col = "mediumseagreen")

separating such variables
d = data[,c(3,7)]

correlation matrix of such variables
cm = cor(d)
cm

#eigenvalues of cm
e = eigen (cm)

Slopes of the principal components
s1 = e$vectors [1,1]/ e$vectors [2,1] # PC1
s2 = e$vectors [1,2]/ e$vectors [2,2] # PC2

Principal axes
abline (a=0, b=s1, col = "blue", lwd = 2)
abline (a=0, b=s2, col = "lightblue", lwd = 2)

PLS
PLS training model
pls1 = plsr (cost ~., ncomp = 8, data = data.training , validation = "LOO", scale
= T)
summary(pls1)

#cross validation
ncomp.onesigma = selectNcomp (pls1, method = "onesigma", plot = TRUE)
ncomp.permut = selectNcomp (pls1, method = "randomization", plot = TRUE)

preview
plot(RMSEP(pls1), legendpos = "topright")

plot(pls1, ncomp = 6, line = TRUE)

plot(pls1,plottype = "scores", comps = 1:5)

plot(pls1, "loadings", comps = 1:2, legendpos = "bottomright")
abline (h = 0, col = "orange")

#model test
pred.pls1 = predict (pls1,ncomp = 2, newdata = data.test)

#metrics
test.pls = data.frame (data.test$cost , pred.pls1)
colnames (test.pls) = c("obs", "pred")
defaultSummary (test.pls)

Higher order multivariate calibration 207

5.6 PARAFAC
The PARAFAC algorithm, already described in the previous chapter, is also used as a 2nd order

calibration algorithm and suitable for processing data with a trilinear structure, expressed through the

following equation:

 Eq. 31

where F is the number of factors or components of the model; a¸ b and c are vectors; and, ⊗

is the external product.

For its validity, the equation 31 above assumes: i) the analytical signals of each source of

variation contribute additively to the analytical signal of the sample; ii) the magnitudes of the signals are

proportional to the concentration of the analyte to be calibrated; ii) the analytical signals of each analyte

are common in all samples.

In addition to these assumptions, some aspects must be taken into account when applying the

PARAFAC algorithm for multivariate calibration purposes: i) the agreement of the data structure; ii) the

algorithm initialization method, the restrictions imposed on the model and the convergence criterion;

iii) the number of factors or components; iv) identify the profiles estimated by the model in each factor

with the species of interest and the interference present; v) construction and validation of the regression

model to estimate the concentration of the species of interest.

Thus, the PARAFAC algorithm exemplifies a decomposition of a three-way tensor into three

weight matrices A , B and C, called modes A, B and C. Normally, equation 31 is solved by alternating

least squares (ALS), in which the ALS algorithm iteratively estimates two modes to estimate the third

until some convergence criterion is reached or the previously defined number of iterations is reached.

However, several methods can be used to obtain these profiles, such as singular value decomposition

(SVD) or direct trilinear decomposition (DTLD).

Once an initial estimate of, for example, B and C has been obtained, an initial estimate of A can

be obtained by least squares as follows:

 Eq. 32

where "+" indicates the Moore-Penrose pseudo-inverse of the matrix X.

For example, in excitation-emission matrices obtained by fluorescence spectroscopy, mode

A, B and C would be, respectively, the analytical concentration of the pure components, excitation

spectra of the pure components and emission spectra of the pure components. Thus, mode A, which

corresponds to the concentrations of pure components, is used in the construction of calibration models

by linear regression.
As we have discussed in the previous chapter, one of the challenges of the PARAFAC algorithm

is determining the number of components. Depending on the complexity of the system, the choice of the
number of components can be made based on prior knowledge of the number of species responsible

Higher order multivariate calibration 208

for the measured instrumental signal. Generally, core consistency testing (CORCONDIA) is typically
employed when choosing the number of components. CORCONDIA values close to 100% indicate
trilinear consistency and values below 100% indicate a deficiency in trilinearity or trilinear inconsistency
(values close to 0). However, in systems with species in equilibrium, the use of core consistency does
not lead to the correct number of components.

Finally, the regression model for PARAFAC, after the considerations previously described, can
be calculated through a least squares regression between the columns of A related to the concentration
of the species of interest (a) and the vector with the reference concentrations (y) of the calibration
samples, according to the equation below:

 Eq. 33

Where, w are the regression coefficients between the weights a and the concentrations y.
The interesting fact about the equation 33 above is that to determine a sample of unknown

composition we have a data cube formed by Ic calibration samples (known concentration of the species
of interest) and a sample of unknown composition that may contain interferents present or not in the
calibration samples. This consequence of 2nd order calibration models is known as the second order
advantage. Thus, the concentration of the composition of an unknown sample is obtained according to
equation 34, if the signal of interest is only in one column of A :

 Eq. 34

Example 7: The following example consists of an application of the PARAFAC multivariate
regression algorithm in the analysis of fluorescence data (excitation-emission matrix) obtained in
plasma samples with different synthetic concentrations (spiked) of a fluorescent standard. This script in
R language uses the multiway, threeway, R.matlab, plot3D, plotly, prospectr, MASS, Stat2Data, Metrics
and lintools packages.

R Script
Loading Packages

install.packages ("multiway")
library(multiway)

install.packages ("ThreeWay")
library(ThreeWay)

install.packages ("R.matlab")
library(R.matlab)

install.packages ("plot3D")
library(plot3D)

Higher order multivariate calibration 209

install.packages ("plotly")
library(plotly)

install.packages ("prospectr")
install.packages ("MASS")
install.packages ("caret")

library(prospectr)
library(MASS)
library(caret)

install.packages ("Stat2Data")
library(Stat2Data)

install.packages ("Metrics")
library(Metrics)

install.packages ("lintools")
library(lintools)

Loading Data

Navigate in RStudio to the directory with the dataset to work with
Session > Set Working Directory > Choose Directory

data <- readMat ("data_reg_parafac.mat")

x <- data$data
y <- data$concentration
nmEX <- data$nmEX
nmEM <- data$nmEM

Visualizing the data

matrix dimensions

mydim = dim (x) # samples x emission x excitation
mydim

average matrix

xm = colMeans (x)

dev.new ()
filled.contour (xm, color.palette = terrain.colors)

dev.new ()
matplot (t(nmEM), xm,type ="l", xlab ="Emission Wavelength (nm)", ylab ="Intensity")

Higher order multivariate calibration 210

dev.new ()
matplot (t(nmEX),t(xm), type ="l", xlab ="Excitation Wavelength (nm)", ylab
="Intensity")

######## PARAFAC model #########

nf = 3 # define number of factors

model = parafac (x,nfac = nf,nstart =1,maxit=500,ctol=10^-4,parallel=FALSE, cl=
NULL,output =c("best","all"))

R2 Adjustment

model$Rsq # Increase the number of factors to better adjust R2

plot Parafac scores 1 x 2

dev.new ()
matplot (model$A [,1], model$A [,2], pch ="o", col ="blue", xlab ="Factor
1",ylab="Factor 2",main="PARAFAC Scores")

plot parafac loadings - emission

dev.new ()
matplot (t(nmEM), model$B,type ="l", xlab ="Emission Wavelength (nm)", ylab
="Intensity")

plot parafac loadings - excitation

dev.new ()
matplot (t(nmEX), model$C,type ="l", xlab ="Excitation Wavelength (nm)", ylab
="Intensity")

Division into Calibration and Prediction

perc = 0.7 # 70% for calibration and 30% for testing

A = model$A # PARAFAC Scores

dim_x = dim (x)
size = 1:dim_x[1]

ntrain = ceiling (perc * dim_x [1]) # number of calibration samples

sel = sample(size, ntrain) # sample selection

xcal = A[sel ,] # calibration
ycal = matrix (y[sel]) # concentration calibration

Higher order multivariate calibration 211

xpred = A[- sel ,] # prediction
ypred = matrix (y[- sel]) # concentration prediction

Regression model

xcal_df = data.frame (xcal)
xpred_df = data.frame (xpred)

model_mlr = lm (ycal ~ xcal , xcal_df) # MLR model

coef = model_mlr$coefficients # regression coefficients

ycal_calc = xcal [,1] * coef [2] + xcal [,2] * coef [3] + coef [1] # predicted
concentration calibration
ypred_calc = xpred [,1] * coef [2] + xpred [,2] * coef [3] + coef [1] # predicted
concentration prediction

Plot measured concentration vs. prediction

dev.new ()
plot (ycal,ycal_calc,pch ='o', col ="blue", xlab ="Measured Concentration (mg/L)",
ylab ="Predicted Concentration (mg/L)", main ="Calibration")
lines(ycal,ycal,col ='red')

dev.new ()
plot (ypred,ypred_calc,pch =15,col="red", xlab = "Measured Concentration (mg/L)",
ylab = "Predicted Concentration (mg/L)", main = "Predicted")
lines(ypred,ypred,col ='red')

dev.new ()
plot (ycal,ycal_calc,pch ='o', col ="blue", xlab ="Measured Concentration (mg/L)",
ylab ="Predicted Concentration (mg/L)", main ="Calibration (blue) and Prediction
(red)")
points(ypred,ypred_calc,pch =15,col="red")
lines(y,y,col ="red")

Figures of merit

Calibration

MAPEC = mean(abs ((ycal-ycal_calc)/ ycal))*100
R2cal = cor(ycal,ycal_calc)^2
RMSEC = rmse(ycal,ycal_calc)

Prediction

MAPEP = mean(abs((ypred-ypred_calc)/ ypred))*100
R2pred = cor (ypred,ypred_calc)^2
RMSEP = rmse (ypred,ypred_calc)

Higher order multivariate calibration 212

print("=========== Calibration =============")
print("Mean absolute error percentage (MAPE) (%):")
MAPEC
print("R2cal:")
R2cal
print("RMSEC (mg/L):")
RMSEC

print("=========== Test =============")
print("Mean absolute error percentage (MAPE) (%):")
MAPEP
print("R2pred:")
R2pred
print("RMSEP (mg/L):")
RMSEP

5.7 MCR-ALS
As discussed in the previous chapter, the MCR-ALS algorithm is the alternating least

squares multivariate curve resolution algorithm whose main purpose is to deconvolve curves
in bilinear data. In other words, it reassembles the original data matrix through individual
contributions from a given number of recovered profiles plus a random noise. However,
MCR can be viewed as a signal resolution method that can also be used for quantitative
purposes.

The following equation describes the decomposition of a data matrix into a bilinear
model that makes it possible to estimate concentration and spectral profiles individually,
maintaining the best data variance:

D = CST + E Eq. 35

Where D corresponds to the instrumental matrix (j x k), C corresponds to the
relative concentration matrix (j x i), S corresponds to the pure spectra matrix (i x k), and E
corresponds to the residuals matrix (j x k).

In the iterative resolution of equation 35 described above, it is necessary to estimate
the number of components present in the mixture that produces the analytical signal; in other
words, we must estimate the rank of the data matrix. The number of components is normally
estimated based on knowledge of the investigated system or from the decomposition
results, using, for example, the singular value decomposition (SVD) algorithm. In the SVD
algorithm, the number of species is approximated by the number of singular values, and
above the singular value we have the estimate of the instrumental noise level of the data.

Unlike PARAFAC, which uses a trilinear decomposition and requires the presence of
at least two different samples to form a data cube, MCR is based on bilinear decomposition

Higher order multivariate calibration 213

of data and can be applied to more than one data matrix simultaneously, as well as a single
sample (resolution or deconvolution of signals). Here we have one of the major limitations
of the MCR-ALS algorithm: the problem of freedom of rotation or ambiguity, that is, the
existence of more than one set of profiles that present the same fit to the data. In PARAFAC,
as it is based on a trilinear decomposition, this ambiguity problem is absent.

However, ambiguity minimization in MCR-ALS models is achieved through some
restrictions, such as:

i) Non-negativity - the calculated profiles cannot be negative. This restriction can be
applied to both concentrations and analytical signal;

ii) Unimodality – requires that the calculated profiles have only one maximum. This
restriction can also be imposed on matrices C or ST.

iii) Closure – the sum of relative concentrations remains constant during the
optimization process. This restriction is only applied to the concentration profile.

iv) Trilinearity – consists of subjecting the spectral and concentration profiles to non-
variation between one sample and another, establishing a unique response.

Here we list some mathematical operations used in the MCR-ALS calibration models:
i) Determination of the number of components (n).

ii) Construction of the initial S or Ck concentration spectrum profile matrix.

iii) Selection of restrictions to be applied.

iv) Optimization of initial estimates (ALS) in each iteration.

v) Reproduction of the initial matrix Dk in each iteration from S and Ck.

vi) Repeat steps iv and v until the convergence criterion is satisfied.

vii) Determination of the matrix of concentration profiles and spectra.

viii) Construction of the least squares regression model between the concentration
profile of the species of interest from step vii and the vector with the reference
concentrations of the calibration samples. A pseudo-univariate regression is therefore
performed based on the recovered concentration profiles, their area or norm, and the
analytical concentration of the sample of interest.

The MCR-ALS algorithm is successfully used on 2nd order data through data
matrices augmented by rows and/or columns, as can be seen in Figure 5.7:

Higher order multivariate calibration 214

Figure 5.7: Bilinear model of the augmented MCR: (a) by rows, (b) by columns, and (c) by rows and
columns simultaneously.

In higher order calibration models, quantification using MCR-ALS presents several
advantages over conventional calibration. Here, we will list the advantages in order of
importance:

I. Neither knowledge nor the inclusion of interferers in the calibration model is
necessary, thus achieving the so-called 2nd order advantage;

II. Possibility of using a smaller number of calibration samples as the regression
is performed based on the relative concentration profile recovered by MCR-
ALS as a function of known concentration values;

III. Figures of merit in the validation stage can be calculated in a similar way to
univariate calibration as the model takes a very simple mathematical form
(pseudo-univariate).

Example 8: The following example consists of an application of the MCR-
ALS multivariate regression algorithm applied to mid-infrared spectra (2 replicates per
experiment) in plasma samples with different synthetic (spiked) concentrations of dengue
virus. The packages used in the script are R.matlab, prospectr, MASS, lintools, ggplot2,
lintools, Stat2Data, Metrics and ALS.

Higher order multivariate calibration 215

R Script
Loading packages

install.packages ("R.matlab")
library(R.matlab)

install.packages ("prospectr")
install.packages ("MASS")
install.packages ("lintools")

library(prospectr)
library(MASS)
library(ggplot2)
library(lintools)

install.packages ("Stat2Data")
library(Stat2Data)

install.packages ("Metrics")
library(Metrics)

install.packages ("ALS")
library (ALS)

Loading data

Navigate in RStudio to the directory with the dataset to work with
Session > Set Working Directory > Choose Directory

data <- readMat ("data_reg_mcr.mat")

x1 = data$data1 # spectra replicate 1
x2 = data$data2 # spectra replicate 2
y1 = data$concentration1 # replicate concentration 1
y2 = data$concentration2 # concentration replicate 2
cm = data$cm # wave number
cmt = t(cm)
xm = (x1+x2)/2 # average spectra
ym = (y1+y2)/2 # average concentration

data plot

dev.new ()
matplot (t(cm),t(xm), type ='l', xlab ="Wavenumber (cm-1)", ylab ="Absorbance")

MCR-ALS

dimS = dim (x1) # matrix dimensions

Higher order multivariate calibration 216

ncomp = 2 # number of components (component 1=sample, component 2=waste)

mcr <- als (CList=list(y1,y2), S=matrix(1,nrow= dimS [2], ncol=ncomp),
PsiList=list(x1,x2), normS=0)

MCR-ALS with non-negativity in concentration (nonnegC=TRUE) and normalization
(normS =0)

mcr <- als (CList=list(y1,y2), S=matrix(1,nrow=dimS [2], ncol=ncomp),
PsiList=list(x1,x2), nonnegC=TRUE, normS=0)

Plot of recovered components (component 1= sample, component 2 = waste)

plotS (mcr$S,cm)

comparing the spectrum of component 1 with the original spectrum

matchFactor (colMeans (xm), mcr$S [,1])

Copt (concentration) values

matplot (ym, mcr$CList [[1]], pch="o", col="blue", xlab="Measured concentration
(mg/L)", ylab="Copt1") #component 1
matplot (ym,ym,type="l",col="red",add=TRUE)

Copt1=matrix (mcr$CList [[1]][,1]) # Copt of component 1

print("R2:")
print(cor(ym [,1],Copt1)^2) # R2 value between Copt and real concentration

Division into Calibration and prediction

perc=0.7 # 70% for calibration and 30% for prediction

dim_xm=dim (xm)

size=1:dim_xm[1]

ntrain=ceiling (perc*dim_xm [1]) # number of calibration samples

sel=sample(size, ntrain) # Sample selection

xcal=Copt1[sel,] # calibration
ycal = matrix (ym [sel,1]) # concentration calibration

xpred = Copt1[-sel,] # prediction
ypred = matrix (ym [-sel,1]) # concentration prediction

Higher order multivariate calibration 217

Regression model

xcal_df = data.frame (xcal)
xpred_df = data.frame (xpred)

model_mlr = lm (ycal~xcal , xcal_df) # MLR model

coef = model_mlr$coefficients # regression coefficients

ycal_calc = xcal * coef [2] + coef [1] # predicted concentration calibration
ypred_calc = xpred * coef [2] + coef [1] # predicted concentration prediction

Plot measured concentration vs. Prediction

y = ym [.1] # real concentration

dev.new ()
plot (ycal,ycal_calc,pch='o', col="blue", xlab="Measured Concentration (mg/L)",
ylab="Predicted Concentration (mg/L)", main="Calibration")
lines(ycal,ycal,col="red")

dev.new ()
plot (ypred,ypred_calc,pch=15,col="red", xlab="Measured Concentration (mg/L)",
ylab="Predicted Concentration (mg/L)", main="Predicted")
lines(ypred,ypred,col='red')

dev.new ()
plot (ycal,ycal_calc,pch='o', col="blue", xlab="Measured Concentration (mg/L)",
ylab="Predicted Concentration (mg/L)", main="Calibration (blue) and prediction
(red)")
points(ypred,ypred_calc,pch=15,col="red")
lines(y,y,col="red")

Figures of merit

Calibration

MAPEC = mean (abs((ycal-ycal_calc)/ycal))*100
R2cal = cor(ycal,ycal_calc)^2
RMSEC = rmse (ycal,ycal_calc)

Prediction

MAPEP=mean(abs((ypred-ypred_calc)/ypred))*100
R2pred=cor(ypred,ypred_calc)^2
RMSEP=rmse(ypred,ypred_calc)

Higher order multivariate calibration 218

print("=========== Calibration =============")
print("Mean absolute error percentage (MAPE) (%):")
MAPEC
print("R2cal:")
R2cal
print("RMSEC (mg/L):")
RMSEC

print("=========== Test =============")
print("Mean absolute error percentage (MAPE) (%):")
MAPEP
print("R2pred:")
R2pred
print("RMSEP (mg/L):")
RMSEP

5.8 UPLS/RBL
The PLS algorithm must be the first-order calibration model most used and described

in the literature. The Unfolded Partial Least Squares (UPLS) algorithm is an extended
version of partial least squares (PLS) regression, proposed by Wold and Bro [4,5], used
for processing multilinear data by unfolding the data matrix into vectors. However, unlike
PARAFAC and MCR-ALS, this algorithm cannot obtain the second-order advantage when
interferents are present in the test sample but not present in the calibration set. To overcome
this limitation and achieve second-order data analysis, a mathematical procedure called
residual bilinearization (RBL) [4] was developed, which can model the residuals of the test
sample as a sum of the bilinear contributions of unexpected components. Therefore, the
function of RBL is to model the residuals and present results from test samples free of
interferences, adjusting the values of the score matrix with the information of the interferent
modeled separately by the RBL step.

In the first calibration step of the UPLS-RBL algorithm, a data tensor with dimensions
(i x j x k) is unfolded into a two-dimensional matrix (i × jk), where i corresponds to the
number of samples, j is the dimension corresponding to the excitation spectra, and k is the
dimension of the emission spectra, in the case of molecular fluorescence data. With all the
calibration data unfolded, a new matrix is constructed by arranging them adjacent to each
other for the application of UPLS regression, as represented in Figure 5.8 below:

Higher order multivariate calibration 219

Unfolding

Unfolding

Figure 5.8: Representation to show the breakdown of a sample into a vector (a) and a set of samples
into vectors (b) for building a UPLS model.

Initially, the UPLS-RBL algorithm unfolds the calibration data matrix (Xcal), and a PLS
model is built in the traditional way together with a cross-validation step to define the number
of latent variables. The weight (P) and scores (t) matrices, originating from the unfolded
matrix, are estimated iteratively by maximizing the variance of X cal and its covariance with
the response vector ycal. Then, with the calculated t values, a regression model is calculated
between the nominal concentration vector ycal and t to estimate the regression vectors v that
minimizes the error ey, as shown in the following equation:

 Eq. 36

If there is a UPLS residue in the test sample greater than the calibration one, we have
the presence of some uncalibrated constituent in the residue or the presence of interferents
in the sample. If this occurs, an RBL post-calibration step is necessary to remove the
contribution of this interference from the test sample's score value.

In the RBL step, the UPLS residue vector is reassembled into a matrix with the
original dimensions, and an SVD is performed on the reassembled test sample residuals
matrix (EP). When the test sample noise approaches the calibration value, we have the
correct value of the amount of RBL needed to be used in the calibration model. Equation
37 shows the equation of the test sample of a classic PLS plus the contribution of the
interferent found in the RBL step plus the unfolded RBL residue (eu).

 Eq. 37

Where xu represents the test sample; represents the analyte signal; BGCT
represents the interference signal; and, eu represents the random error after the RBL step.

Higher order multivariate calibration 220

After convergence, the values obtained for tu are used to estimate the sample
concentration by the relationship expressed in Eq. 36. Therefore, the RBL step calculates
and removes the interference contribution, represented as BGCT of the noise after UPLS
modeling. Finally, after separating the interferent from the noise, the scores used to estimate
the analyte concentration are corrected and can be used for quantification.

Example 9: The following example consists of an application of the UPLS multivariate
regression algorithm in the analysis of fluorescence data (excitation-emission matrix)
obtained in plasma samples with different synthetic concentrations (spiked) of a fluorescent
standard. This script in R language uses the R.matlab, pls, Stat2Data and Metrics packages.

R Script
Loading packages

install.packages ("R.matlab")
library(R.matlab)

install.packages ("pls")
library(pls)

install.packages ("Stat2Data")
library(Stat2Data)

install.packages ("Metrics")
library (Metrics)

Loading Data

Navigate in RStudio to the directory with the dataset to work with
Session > Set Working Directory > Choose Directory

data <- readMat ("data_reg_parafac.mat")

x <- data$data
y <- data$concentration
nmEX <- data$nmEX
nmEM <- data$nmEM

Visualizing the data

matrix dimensions

mydim = dim (x) # samples x emission x excitation
mydim

Higher order multivariate calibration 221

average matrix

xm = colMeans (x)

dev.new ()
filled.contour (xm,color.palette = terrain.colors)

dev.new ()
matplot (t(nmEM), xm,type="l", xlab="Emission Wavelength (nm)", ylab="Intensity")

dev.new ()
matplot (t(nmEX),t(xm), type="l", xlab="Excitation Wavelength (nm)",
ylab="Intensity")

Division into Calibration and Prediction

Xr=matrix (x,nrow = mydim [1])
perc=0.7 # 70% for calibration and 30% for testing

dim_x = dim (x)
size = 1:dim_x[1]

ntrain = ceiling (perc * dim_x [1]) # number of calibration samples

sel = sample(size, ntrain) # KS

xcal = Xr [sel ,] # calibration
ycal = matrix (y[sel]) # concentration calibration

xpred = Xr [-sel,] # prediction
ypred = matrix (y[-sel]) # concentration prediction

UPLS Model

xcal_df = data.frame (xcal)
xpred_df = data.frame (xpred)

model_pls = plsr (ycal~xcal, data=xcal_df, validation="CV")

Determine number of components

validationplot (model_pls)

validationplot (model_pls,val.type="MSEP")

validationplot (model_pls,val.type="R2")

ncomp = 2 # number of selected components

Higher order multivariate calibration 222

Prediction

ycal_calc <- predict(model_pls, xcal, ncomp=ncomp)
ypred_calc <- predict(model_pls, xpred, ncomp=ncomp)

ycal_calc = ycal_calc [,1,1]
ypred_calc = ypred_calc [,1,1]

Plot measured concentration vs. Prediction

dev.new ()
plot (ycal,ycal_calc,pch ='o', col="blue", xlab="Measured Concentration (mg/L)",
ylab="Predicted Concentration (mg/L)", main ="Calibration")
lines(ycal,ycal,col='red')

dev.new ()
plot (ypred,ypred_calc,pch=15,col="red", xlab="Measured Concentration (mg/L)",
ylab="Predicted Concentration (mg/L)", main="Predicted")
lines(ypred,ypred,col='red')

dev.new ()
plot (ycal,ycal_calc,pch='o', col="blue", xlab="Measured Concentration (mg/L)",
ylab="Predicted Concentration (mg/L)", main="Calibration (blue) and prediction
(red)")
points(ypred,ypred_calc,pch=15,col="red")
lines(y,y,col="red")

Figures of merit

Calibration

MAPEC = mean (abs((ycal-ycal_calc)/ycal))*100
R2cal = cor(ycal,ycal_calc)^2
RMSEC = rmse (ycal,ycal_calc)

Prediction

MAPEP = mean(abs((ypred-ypred_calc)/ypred))*100
R2pred = cor (ypred,ypred_calc)^2
RMSEP = rmse (ypred,ypred_calc)

print("=========== Calibration =============")
print("Mean absolute error percentage (MAPE) (%):")
MAPEC
print("R2cal:")
R2cal
print("RMSEC (mg/L):")
RMSEC

Higher order multivariate calibration 223

print("=========== Test =============")
print("Mean absolute error percentage (MAPE) (%):")
MAPEP
print("R2pred:")
R2pred
print("RMSEP (mg/L):")
RMSEP

5.9 N-PLS
The N-way Partial Least Squares (N-PLS) algorithm, proposed by Bro [5], is also an

extension of the PLS model. Basically, the N-PLS algorithm decomposes three-dimensional
arrays X (ixjxk) (independent data cubic matrix) and the vector of reference concentrations
Y (ix 1) (or physicochemical property) in a set of triads, to find the maximum covariance
between the scores of X and Y.

The construction of N-PLS models, analogous to traditional PLS, is carried out in
two stages: calibration and prediction. Each triad is equal to a latent variable as in the PLS
model, and in the calibration stage the arrangement X is decomposed into scores (tn) and
weights (wj and wk), as exemplified in Figure 5.9 below:

Figure 5.9: Schematic representation of the N-PLS algorithm.

In Figure 5.9, X is the cubic matrix of independent data, T(I,F) is the score matrix and
the matrices wj

(J,F) and wk
(K,F) are weight matrices containing information about the variables.

The arrangement E (i x j x k) represents the part not explained by the model (residuals) and
F represents the number of latent variables. The matrix Y is also decomposed into scores
and weights, represented by Figure 5.9, where Y is the matrix containing the property of
interest, U is the matrix containing the scores of Y, Q is the matrix containing the loadings
of Y, and F is the matrix of residues of Y that, as in the arrangement X, cannot be explained
by the model.

The decomposition of the three-dimensional array X can be represented by the
following equation:

Higher order multivariate calibration 224

 Eq. 38

Where the symbol "|⊗|" represents the Khatri-Rao product, an operator used in
higher order matrices.

For the concentration vector or physicochemical parameter of interest (y), the
decomposition is written by the equation below:

 Eq. 39

where T is a scores matrix, whose columns consist of the individual score vectors of
each component and b are the regression coefficients.

Finally, the predicted concentration of samples with unknown concentrations (y*),
can be estimated from new scores (T*) according to the following equation:

 Eq. 40

Some considerations deserve to be highlighted in the N-PLS models. Despite the
simplicity of the calibration models and the simplicity in interpreting the results, in addition
to the lower sensitivity to noise, the 2nd order advantage will only be achieved with the
application of the RBL algorithm. In the original work, Bro [5] compares and suggests that
N-PLS is superior to UPLS because it uses data in its original form (without performing
unfolding).

Example 10: The following example consists of an application of the N-PLS
multivariate regression algorithm in the analysis of fluorescence data (excitation-emission
matrix) obtained in plasma samples with different synthetic (spiked) concentrations of a
fluorescent standard. This script in R language uses the R.matlab, pls, Stat2Data, Metrics
and sNPLS packages.

Higher order multivariate calibration 225

R Script
Loading packages

install.packages ("R.matlab")
library(R.matlab)

install.packages ("pls")
library(pls)

install.packages ("Stat2Data")
library(Stat2Data)

install.packages ("Metrics")
library(Metrics)

install.packages ("sNPLS")
library (sNPLS)

Loading Data

Navigate in RStudio to the directory with the dataset to work with
Session > Set Working Directory > Choose Directory

data <- readMat ("data_reg_parafac.mat")

x <- data$data
y <- data$concentration
nmEX <- data$nmEX
nmEM <- data$nmEM

Visualizing the data

matrix dimensions

mydim = dim (x) # samples x emission x excitation
mydim

average matrix

xm = colMeans (x)

dev.new ()
filled.contour (xm,color.palette=terrain.colors)

dev.new ()
matplot (t(nmEM), xm,type="l", xlab="Emission Wavelength (nm)", ylab="Intensity")

dev.new ()
matplot (t(nmEX),t(xm), type="l", xlab="Excitation Wavelength (nm)",
ylab="Intensity")

Higher order multivariate calibration 226

Division into Calibration and Forecast

perc = 0.7 # 70% for calibration and 30% for testing

dim_x = dim (x)
size = 1:dim_x[1]

ntrain = ceiling (perc*dim_x [1]) # number of calibration samples

sel = sample(size, ntrain) # sample selection

xcal = x[sel ,,] # calibration
ycal = matrix (y[sel]) # concentration calibration

xpred = x[-sel,,] # prediction
ypred = matrix (y[-sel]) # concentration prediction

nPLS Model

cv = cv_snpls(xcal,ycal,ncomp=1:3,keepJ=1:2,keepK=1:2,sample=10,parallel=FALSE) #
cross-validation - takes a long time

ncomp = 2 # set number of components

model_npls = sNPLS (xcal,ycal,ncomp=ncomp, keepJ=rep(2,ncomp), keepK=rep(1,ncomp))
nPLS model

Prediction

ycal_calc=predict(model_npls, xcal)
ypred_calc = predict(model_npls, xpred)

Plot measured concentration vs. Prediction

dev.new ()
plot (ycal,ycal_calc,pch='o', col="blue", xlab="Measured Concentration (mg/L)",
ylab="Predicted Concentration (mg/L)", main="Calibration")
lines(ycal,ycal,col='red')

dev.new ()
plot (ypred,ypred_calc,pch=15,col="red", xlab="Measured Concentration (mg/L)",
ylab="Predicted Concentration (mg/L)", main="Predicted")
lines(ypred,ypred,col='red')

dev.new ()
plot (ycal,ycal_calc,pch='o', col="blue", xlab="Measured Concentration (mg/L)",
ylab="Predicted Concentration (mg/L)", main="Calibration (blue) and Prediction
(red)")
points(ypred,ypred_calc,pch =15,col="red")
lines(y,y,col="red")

Higher order multivariate calibration 227

Figures of merit

Calibration

MAPEC = mean (abs((ycal-ycal_calc)/ycal))*100
R2cal = cor(ycal,ycal_calc)^2
RMSEC = rmse (ycal,ycal_calc)

Prediction

MAPEP = mean(abs((ypred-ypred_calc)/ypred))*100
R2pred = cor(ypred,ypred_calc)^2
RMSEP = rmse (ypred,ypred_calc)

print("=========== Calibration =============")
print("Mean absolute error percentage (MAPE) (%):")
MAPEC
print("R2cal:")
R2cal
print("RMSEC (mg/L):")
RMSEC

print("=========== Test =============")
print("Mean absolute error percentage (MAPE) (%):")
MAPEP
print("R2pred:")
R2pred
print("RMSEP (mg/L):")
RMSEP

PROPOSED EXERCISES
01 – Compare the performance of a univariate calibration model with several

polynomial degrees in a data set through a script in the R language, presenting the models'
performance, error and conclusions.

02 – Propose an application of the MLR algorithm on a data set with more than one
independent variable and, using a script in the R language, present your results, graphs
and conclusions.

03 – From the previous exercise, use the MLR-SPA algorithm through a script in the
R language and compare the results of the calibration models with and without the variable
selection algorithm.

04 – Build multivariate calibration models for the PCR and PLS algorithms on a given
1st order data set using an R script and present your results, figures of merit for both models
and your main conclusions.

Higher order multivariate calibration 228

05 – Apply the PARAFAC algorithm to a 2nd order data set (molecular fluorescence
in excitation-emission mode or chromatography, for example) using R language and present
your results and conclusions.

06 – Apply the MCR-ALS algorithm to a 2nd order data set (molecular fluorescence
in excitation-emission mode or chromatography, for example) using R language and present
your results and conclusions.

07 – Apply the UPLS algorithm to a 2nd order data set (molecular fluorescence in
excitation-emission mode or chromatography, for example) using R language and present
your results and conclusions.

08 – Apply the N-PLS algorithm to a 2nd order data set (molecular fluorescence in
excitation-emission mode or chromatography, for example) using R language and present
your results and conclusions.

09 – Using a 2nd order data set, perform a comparison between the calibration
models (PARAFAC, MCR-ALS, UPLS and N-PLS), presenting their results, figures of merit
and main conclusions.

REFERENCES
1 – Legendre, AM (1805). Nouvelles Méthodes pour la Détermination des Orbites des Comètes , Firmin
Didot, Paris; second edition Courcier, Paris.

2 – Hold, H. (1982). Systems under Indirect Observation. North-Holland, Amsterdam, 1982.

3 – Vandeginste , BGM; Sielhorst , C.; Gerritsen, M.; (1988). The NIPALS algorithm for the calculation of
the principal components of a matrix.Trends Anal. Chem. 7, 286-287.

4 – Wold , S.; Geladi , P.; Esbensem , K.; Öhman, J. (1987). Multi-way main components and PLS-
analysis. J. Chemom . 1, 41.

5 – Bro, R. (1996). Multiway calibration. Multilinear PLS. J. Chemom . 10, 47

4 – Olivieri, AC, and Escandar , GM (2000). Practical Three-Way Calibration. Elsevier.

229Digital images

DiGiTAL iMAGES

CHAPTER 6

"A picture is worth a thousand words." Confucius (552 BC - 489 BC)

CHAPTER IDEA
A digital image can be interpreted as a representation of a scene through a set

of discrete elements of finite size, known as pixels, organized in a two-dimensional
arrangement. Commonly, the acquisition of digital images occurs through electronic devices
(photo cameras, webcams, drones, for example) in a process known as optoelectronic
transduction, which involves a reduction in the dimensionality of the scene through a sensor
(Charge Coupled Device, for example).

In this chapter you will find a theoretical foundation of digital images, color models and
some chemometric studies using digital images in classification and multivariate calibration
models. Examples guided by multivariate algorithms in the R language using digital images
will be found throughout the chapter, as well as details of the models developed.

Upon completing the chapter, you should be able to:
a) Understand the stages of acquiring and importing digital images, their pre-
processing and construction of calibration and multivariate classification models
using scripts in the R language;

b) Employ algorithms of unsupervised analysis on digital images using R scripts;

c) Build and validate multivariate classification models using digital images with R
scripts;

d) Build and validate multivariate calibration models using digital images with R
scripts;

e) Compare models based on variable selection for classification and calibration of
digital images;

f) Propose new applications in chemistry or related areas using digital images in one
of the areas of Chemometrics.

Digital images 230

6.1 Digital Imaging: an overview
An image to be processed on a computer must be in digital format, and this is

represented by a two-dimensional matrix of M x N pixels. The word pixel is an abbreviation of
"Picture element ", which means "image element". Thus, the pixel is the smallest element of
a digital image and each pixel location in a monochrome image (normally 8 bits) corresponds
to the gray level ranging from black (0) to white (255), thus being able to contain 256 levels
of gray colors. Figure 6.1 presents a monochrome image and its representation in a digital
image in the form of a data matrix.

Column (n)

Row
(m)

Grayscale

(black)

(white)

Figure 6.1: Representation of a digital image in the form of an M x N pixel matrix.

Mathematically, as shown in equation 1, we can consider a pixel as a vector formed
by three monochromatic images in which the components represent the intensities of the
RGB model [1] (red (R), green (G) and blue (B)), which corresponds to the primary colors.

f(x,y) = fR(x,y) + fG(x,y) + fB(x,y) Eq. 1

The main purpose of the RGB color model is for the detection, representation
and exhibition of images in electronic systems such as televisions and computers. The
frequency distribution of the values which a pixel contains in the image is called a histogram.
It shows how many times a varying color value (0-255) can appear in the image. To illustrate
this concept, Figure 6.2 presents a color digital image and the histograms referring to the
frequency distribution of all possible values of a pixel in the red, green, blue and gray levels.

Digital images 231

green

blue

red

fr
eq

ue
nc

y
fr
eq

ue
nc

y
fr
eq

ue
nc

y
fr
eq

ue
nc

y

Figure 6.2: Histograms in the red, green, blue and gray channels resulting from a color digital image.

We can represent the RGB model by a cube on the R, G and B axes, which takes
on 256 color levels or values from 0-255. Each color channel is made up of a set of 8 bits
resulting in an image with 16.7 million different colors. As shown in Figure 6.3, the edges of
the cube have the primary colors of the RGB model and the faces in the planes GB, BR, RG
have the secondary colors (cyan, magenta and yellow), formed from the combination of two
primary colors. Black corresponds to the origin of the cube, white corresponds to the vertex
furthest from the origin, and gray corresponds to the diagonal between these two points.

Digital images 232

Blue

Green

Red Yellow

Cian

Magenta

Black

White

Figure 6.3: RGB color model

In other words, zero intensity for each component gives the darkest color (without
light, considered black) and the total intensity of each one results in white. When the
intensities of all components are the same, the result is a shade of gray, darker or lighter,
depending on the intensity. When the intensities are different, the result is a colorful hue,
more or less saturated, depending on the difference between the strongest and weakest
intensities of the primary colors used [2].

Another color model, based on polar coordinates, represented by an inverted six-
sided pyramid, frequently used in computer graphics is called HSV, as shown in Figure 6.4.

Branco

Verde

Ciano

Azul Magenta

Amarelo

Vermelho

Preto
0, 0

240°

120°
0°

S
H

V

V

S

Blue Magenta

Red
Cian

Green Yellow

White

Black

Figure 6.4: HSV color model
This model describes three fundamental attributes: hue (H), saturation (S) and value

Digital images 233

(V). In this model, hue (H) is the dominant wavelength of the color (defines the tone of an
area) and is measured in angles, arranged around the central axis, ranging from 0 o to 360 o

(red corresponds to 0 o , green corresponds to 120º and blue to 240º). The secondary colors
are in opposite positions (180º) on the graduated circle. Saturation (S) is the purity of color,
in the sense of the amount of white light mixed with hue. In other words, saturation is given
by the distance from the central axis to the edges, and can vary from 0 (completely white
color) to 1 (pure color). Finally, the value (V), also known as luminance, is the brightness
of the color and corresponds to the height of the pyramid, and can vary from 0 (black) to 1
(white) along the V axis of the pyramid, where the gray scale is located [3].

Next, several examples based on R scripts will be presented with the use of digital
images in unsupervised and supervised analysis as well as in calibration and multivariate
classification. Steps such as selecting the area on the figure, obtaining the histograms and
arranging the data matrices for chemometric analysis (exploratory analysis, classification
and multivariate regression) will be detailed throughout these examples.

6.2 RGB to HSV and Grayscale Conversion
Example 1: The example we will describe here consists of converting an RGB image

to HSV and grayscale using the imager package in R.

R Script
Loading packages

install.packages("imager")
library(imager)
library(purrr)

Loading image

Navigate to the directory containing the image for testing
In RStudio, go in Session > Set Working Directory > Choose Directory...

im_rgb = load.image("bird.jpg")

viewing image

plot (im_rgb)

converting to HSV
RGBtoHSV (im_rgb) %>% imsplit ("c") %>%
 modify_at (2,~ . / 2) %>% imappend ("c") %>%
 HSVtoRGB %>% plot(rescale=FALSE)

converting to grayscale
grayscale (im_rgb) %>% plot (colourscale = gray, rescale = FALSE)

Digital images 234

6.3 Exploratory Analysis
Example 2: The example we will describe here consists of the exploratory analysis

(PCA, HCA and K-means) of RGB images obtained from ELISA plates containing albumin
and creatinine concentrations using the imager, ggplot2, dplyr, prospectr, MASS, plot3D,
plotly and factoextra packages.

R Script
Loading packages

install.packages("imager")
library(imager)
library(ggplot2)
library(dplyr)
library(prospectr)
library(MASS)

install.packages("plot3D")
library(plot3D)

install.packages("plotly")
library(plotly)

install.packages("factoextra")
library(factoextra)

establishing the working directory

Navigate to the directory containing the images for testing
In RStudio, go in Session > Set Working Directory > Choose Directory...

loading images

im1 = load.image ("creatinine/im1.png")
im2 = load.image ("creatinine/im2.png")
im3 = load.image ("creatinine/im3.png")
im4 = load.image ("creatinine/im4.png")
im5 = load.image ("creatinine/im5.png")
im6 = load.image ("creatinine/im6.png")
im7 = load.image ("creatinine/im7.png")
im8 = load.image ("creatinine/im8.png")

generating histograms

im1df <- as.data.frame (im1)
im2df <- as.data.frame (im2)
im3df <- as.data.frame (im3)
im4df <- as.data.frame (im4)
im5df <- as.data.frame (im5)
im6df <- as.data.frame (im6)
im7df <- as.data.frame (im7)
im8df <- as.data.frame (im8)

Digital images 235

plotting histograms for each image - image 1

bdf <- mutate(im1df,channel=factor(cc,labels =c('R','G','B')))
ggplot(bdf,aes (value,col=channel))+geom_histogram(bins=30)+facet_wrap(~ channel)

image 2

bdf <- mutate(im2df,channel=factor(cc,labels =c('R','G','B')))
ggplot(bdf,aes (value,col=channel))+geom_histogram(bins=30)+facet_wrap(~ channel)

image 3

bdf <- mutate(im3df,channel=factor(cc,labels =c('R','G','B')))
ggplot(bdf,aes (value,col=channel))+geom_histogram(bins=30)+facet_wrap(~ channel)

image 4

bdf <- mutate(im4df,channel=factor(cc,labels =c('R','G','B')))
ggplot(bdf,aes (value,col=channel))+geom_histogram(bins=30)+facet_wrap(~ channel)

image 5

bdf <- mutate(im5df,channel=factor(cc,labels =c('R','G','B')))
ggplot(bdf,aes (value,col=channel))+geom_histogram(bins=30)+facet_wrap(~ channel)

image 6

bdf <- mutate(im6df,channel=factor(cc,labels =c('R','G','B')))
ggplot(bdf,aes (value,col=channel))+geom_histogram(bins=30)+facet_wrap(~ channel)

image 7

bdf <- mutate(im7df,channel=factor(cc,labels =c('R','G','B')))
ggplot(bdf,aes (value,col=channel))+geom_histogram(bins=30)+facet_wrap(~ channel)

figure 8

bdf <- mutate(im8df,channel=factor(cc,labels =c('R','G','B')))
ggplot(bdf,aes (value,col=channel))+geom_histogram(bins=30)+facet_wrap(~ channel)

extracting all image pixels to a vector

im1v <- matrix (im1)
im2v <- matrix (im2)
im3v <- matrix (im3)
im4v <- matrix (im4)
im5v <- matrix (im5)
im6v <- matrix (im6)
im7v <- matrix (im7)
im8v <- matrix (im8)

Digital images 236

joining all images

data = rbind(t(im1v),t(im2v),t(im3v),t(im4v),t(im5v),t(im6v),t(im7v),t(im8v))

dim_data = dim (data)

performing PCA

scaling data

data_scal = scale (data, center=TRUE, scale =FALSE)

PCA Model

data.svd = svd (data_scal) # SVD
data.scores = data.svd$u %*% diag (data.svd$d) # scores
data.loadings = data.svd$v # loadings

PCA Variances

data.vars = data.svd$d^2 / (nrow (data)-1) # variance per PC
data.totalvar = sum(data.vars) # total variance
data.relvars = data.vars / data.totalvar # cumulative variance
variances = 100 * round(data.relvars , digits = 3) # cumulative variance in %
variances [1:10] # variance in % in the first 10 PCs

Choose the number of PCs

par(mfrow = c(2,2))
barplot (data.vars [1:10], main="Variance", names.arg = paste("PC", 1:10))
barplot (log(data.vars [1:10]), main="Log(variance)", names.arg = paste("PC",
1:10))
barplot (data.relvars [1:10], main="Relative Variances", names.arg = paste("PC",
1:10))
barplot (cumsum (100* data.relvars [1:10]), main="Cumulative variances (%)", names.
arg = paste("PC", 1:10), ylim = c(0,100))

npc = 2 # number of PCs chosen to run the PCA

scores = data.scores [1:dim_data[1],1:npc] # PCA scores up to the chosen number of
PC
loadings = data.loadings [1:dim_data[2], 1:npc] # PCA loadings up to the chosen PC
number

concentration vector in mg/ dL

y <- c(0.03125,0.0625,0.125,0.25,0.5,1,2,4)
ys <- c("1","2","3","4","5","6","7","8")

Digital images 237

plotting PCA scores PC1 x PC2

dev.new ()
plot(data.scores [,1],data.scores[,2],pch=ys,xlab='PC1',ylab='PC2',main='PCA
scores - numbers for each image')

plotting PCA loadings PC1 & PC2

dev.new ()
matplot(data.loadings
[,1],type="l",col="blue",xlab="Pixels",ylab='Loadings',main='PCA loadings')
lines(data.loadings
[,2],type="l",col="red",xlab="Pixels",ylab='Loadings',main='PCA loadings')

repeating PCA to compare creatinine images vs. albumin

creatinine_data = data # saving creatinine data

Loading albumin images

im1 = load.image ("albumin/im1.png")
im2 = load.image ("albumin/im2.png")
im3 = load.image ("albumin/im3.png")
im4 = load.image ("albumin/im4.png")
im5 = load.image ("albumin/im5.png")
im6 = load.image ("albumin/im6.png")
im7 = load.image ("albumin/im7.png")
im8 = load.image ("albumin/im8.png")

extracting all image pixels to a vector

im1v <- matrix (im1)
im2v <- matrix (im2)
im3v <- matrix (im3)
im4v <- matrix (im4)
im5v <- matrix (im5)
im6v <- matrix (im6)
im7v <- matrix (im7)
im8v <- matrix (im8)

joining all albumin images

albumin_data =
rbind(t(im1v),t(im2v),t(im3v),t(im4v),t(im5v),t(im6v),t(im7v),t(im8v))

joining the images of creatinine and albumin

data = rbind (creatinine_data , albumin_data)

Digital images 238

group1 = rep(1,8) # class 1 - creatinine
group2 = rep(2,8) # class 2 - albumin
group12 = rbind (matrix (group1), matrix (group2))

dim_data = dim (data)

performing PCA

scaling data

data_scal = scale (data, center=TRUE, scale =FALSE)

PCA Model

data.svd = svd (data_scal) # SVD
data.scores = data.svd$u %*% diag (data.svd$d) # scores
data.loadings = data.svd$v # loadings

PCA Variances

data.vars = data.svd$d^2 / (nrow (data)-1) # variance per PC
data.totalvar = sum(data.vars) # total variance
data.relvars = data.vars / data.totalvar # cumulative variance
variances = 100 * round(data.relvars , digits = 3) # cumulative variance in %
variances [1:10] # variance in % in the first 10 PCs

Choose the number of PCs

par(mfrow = c(2,2))
barplot (data.vars [1:10], main=" Variance ", names.arg = paste("PC", 1:10))
barplot (log(data.vars [1:10]), main="Log(variance)", names.arg = paste("PC",
1:10))
barplot (data.relvars [1:10], main="Relative Variance", names.arg = paste("PC",
1:10))
barplot (cumsum (100* data.relvars [1:10]), main="Cumulative variance (%)", names.
arg = paste("PC", 1:10), ylim = c(0,100))

npc = 2 # number of PCs chosen to run the PCA

scores = data.scores [1:dim_data[1],1:npc] # PCA scores up to the chosen number
of PC
loadings = data.loadings [1:dim_data[2], 1:npc] # PCA loadings up to the chosen
PC number

plotting PCA scores PC1 x PC2

col =
c("blue","blue","blue","blue","blue","blue","blue","blue","red","red","red","red
","red","red","red","red","red")
dev.new ()
plot(data.scores[,1],data.
scores[,2],pch=19,col=col,xlab='PC1',ylab='PC2',main='PCA scores - blue =
creatinine , red = albumin ')

Digital images 239

plotting PCA loadings PC1 & PC2

dev.new ()
matplot(data.loadings
[,1],type="l",col="blue",xlab="Pixels",ylab='Loadings',main='PCA loadings')
lines(data.loadings
[,2],type="l",col="red",xlab="Pixels",ylab='Loadings',main='PCA loadings')

#################################### HCA model ###########
#############################

clusters <- hclust(dist(data_scal),method ="average")

viewing dendrogram

plot(clusters,xlab ="Samples (1-8: creatinine, 9-16: albumin)", ylab ="Distance",
main =" HCA dendrogram, numbers = sample index ")

samples are grouped into 2 clusters - high concentration (on the left) and low
concentration (on the right)

#################################### K-Means model #########
###############################

set.seed (123)
km.res <- kmeans(data_scal,2,nstart =1)

viewing results

kmeans_out = km.res$cluster

plot(kmeans_out,pch =19,xlab="Samples (1-8: creatinine , 9-16: albumin)", ylab ="
Response K- Means",main ="K-Means")
points(c(1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2))

Classification rate to differentiate albumin x creatinine

ac = sum(kmeans_out==group12,na.rm=T)/ nrow(group12) * 100
ac

Classification rate to differentiate low and high concentrations

groupConc = c(2,2,2,1,1,1,1,1,2,2,2,1,1,1,1,1)
ac = sum(kmeans_out==groupConc,na.rm=T)/ nrow (group12) * 100
ac

K-Means is distinguishing lows vs. high concentrations

Digital images 240

6.4 Multivariate classification
Example 3: The example we will describe here consists of multivariate classification

using three algorithms (PCA-LDA, SPA-LDA and GA-LDA) on RGB images obtained from
ELISA plates containing albumin and creatinine concentrations using the imager, ggplot2,
dplyr, prospectr, MASS, plot3D, plotly and factoextra packages.

Script
Loading packages

install.packages("imager")
library(imager)
library(ggplot2)
library(dplyr)
library(prospectr)
library(MASS)

install.packages("plot3D")
library(plot3D)

install.packages("plotly")
library(plotly)

install.packages("factoextra")
library(factoextra)

install.packages("lintools")
library(lintools)

install.packages("caret")
install.packages("GA")

library(caret)
library(GA)

establishing the working directory

Navigate to the directory containing the images for testing
In RStudio, go in Session > Set Working Directory > Choose Directory...

loading images - creatinine

im1 = load.image ("creatinine/im1.png")
im2 = load.image ("creatinine/im2.png")
im3 = load.image ("creatinine/im3.png")
im4 = load.image ("creatinine/im4.png")
im5 = load.image ("creatinine/im5.png")
im6 = load.image ("creatinine/im6.png")
im7 = load.image ("creatinine/im7.png")
im8 = load.image ("creatinine/im8.png")

Digital images 241

extracting all image pixels to a vector

im1v <- matrix (im1)
im2v <- matrix (im2)
im3v <- matrix (im3)
im4v <- matrix (im4)
im5v <- matrix (im5)
im6v <- matrix (im6)
im7v <- matrix (im7)
im8v <- matrix (im8)

joining all images

creatinine_data =
rbind(t(im1v),t(im2v),t(im3v),t(im4v),t(im5v),t(im6v),t(im7v),t(im8v))

Loading albumin images

im1 = load.image ("albumin/im1.png")
im2 = load.image ("albumin/im2.png")
im3 = load.image ("albumin/im3.png")
im4 = load.image ("albumin/im4.png")
im5 = load.image ("albumin/im5.png")
im6 = load.image ("albumin/im6.png")
im7 = load.image ("albumin/im7.png")
im8 = load.image ("albumin/im8.png")

extracting all image pixels to a vector

im1v <- matrix (im1)
im2v <- matrix (im2)
im3v <- matrix (im3)
im4v <- matrix (im4)
im5v <- matrix (im5)
im6v <- matrix (im6)
im7v <- matrix (im7)
im8v <- matrix (im8)

joining all albumin images

albumin_data =
rbind(t(im1v),t(im2v),t(im3v),t(im4v),t(im5v),t(im6v),t(im7v),t(im8v))

joining the images of creatinine and albumin

data = rbind (creatinine_data , albumin_data)

Digital images 242

group1 = rep(1,8) # class 1 - creatinine
group2 = rep(2,8) # class 2 - albumin
group12 = rbind (matrix (group1), matrix (group2))

dim_data = dim (data)
dim_class1 = 8
dim_class2 = 8

#################################### PCA-LDA ####################################

scaling the data

data_scal = scale (data, center=TRUE, scale =FALSE)
dim_data = dim(data) # dimension of the data array

PCA Model

data.svd = svd (data_scal) # SVD
data.scores = data.svd$u %*% diag (data.svd$d) # scores
data.loadings = data.svd$v # loadings

PCA Variances

data.vars = data.svd$d^2 / (nrow (data)-1) # variance per PC
data.totalvar = sum(data.vars) # total variance
data.relvars = data.vars / data.totalvar # cumulative variance
variances = 100 * round(data.relvars , digits = 3) # cumulative variance in %
variances [1:10] # variance in % in the first 10 PCs

Choose the number of PCs

par(mfrow = c(2,2))
barplot (data.vars [1:10], main="Variance", names.arg = paste("PC", 1:10))
barplot (log(data.vars [1:10]), main="Log(variance)", names.arg = paste("PC",
1:10))
barplot (data.relvars [1:10], main="Relative variance", names.arg = paste("PC",
1:10))
barplot (cumsum (100* data.relvars [1:10]), main="Cumulative variance (%)", names.
arg = paste("PC", 1:10), ylim = c(0,100))

npc = 2 # number of PCs chosen to run the PCA

scores = data.scores [1:dim_data[1],1:npc] # PCA scores up to the chosen number
of PC
loadings = data.loadings [1:dim_data[2], 1:npc] # PCA loadings up to the chosen
PC number

Digital images 243

selection of training and testing samples based on KS

perc = 0.7 # 70% for training and 30% for testing

ntrain1 = ceiling (perc * dim_class1[1]) # number of training samples class 1
ntrain2 = ceiling (perc * dim_class2[1]) # number of training samples class 2

scores1 = scores[1:8,1:npc] # scores class 1
scores2 = scores[(8+1): dim_data[1],1:npc] # scores class 2

sel1 = kenStone (scores1, k = ntrain1) # KS class 1
sel2 = kenStone (scores2, k = ntrain2) # KS class 2

train1 = scores1[sel1$model,1:npc] # training class 1
train2 = scores2[sel2$model,1:npc] # training class 2
train = rbind (train1,train2) # joining training matrices

group1train = matrix (group1[sel1$model]) # class 1 training labels
group2train = matrix (group2[sel2$model]) # class 2 training labels
group_train = rbind (group1train,group2train) # training labels

test1 = scores1[sel1$test, 1:npc] # test class 1
test2 = scores2[sel2$test, 1:npc] # test class 2
test = rbind (test1,test2) # joining test matrices

group1test = matrix (group1[sel1$test]) # class 1 test labels
group2test = matrix (group2[sel2$test]) # class 2 test labels
group_test = rbind (group1test,group2test) # test labels

LDA Model

model_lda = lda (train,group_train) # model without cross-validation
model_lda_cv = lda (train,group_train , CV=TRUE) # model with cross-validation
leave-one-out

prediction of training and testing samples

pred_train = predict(model_lda, train) # training
pred_test = predict(model_lda, test) # test

figures of merit

training

dim_train1 = dim(train1)
dim_train2 = dim(train2)

ac_train = mean(pred_train$class == group_train) # accuracy
spec_train = mean(pred_train$class[1:dim_train1[1]]==group1train) # specificity
sens_train = mean(pred_train$class[(dim_train1[1]+ 1):(dim_train1[1]+dim_
train2[1])]==group2train) # sensitivity

Digital images 244

cross-validation

ac_cv = mean (model_lda_cv$class == group_train) # accuracy
spec_cv = mean (model_lda_cv$class[1:dim_train1[1]]==group1train) # specificity
sens_cv = mean(model_lda_cv$class[(dim_train1[1]+ 1):(dim_train1[1]+dim_
train2[1])]==group2train) # sensitivity

test

dim_test1 = dim(test1)
dim_test2 = dim(test2)

ac_test = mean(pred_test$class == group_test) # accuracy
spec_test = mean(pred_test$class[1:dim_test1[1]]==group1test) # specificity
sens_test = mean(pred_test$class[(dim_test1[1]+ 1):(dim_test1[1]+dim_
test2[1])]==group2test) # sensitivity

print("=========== Training =============")
cat ("Accuracy:")
ac_train
cat ("Sensitivity:")
sens_train
cat ("Specificity:")
spec_train

print("=========== Cross-validation =============")
cat ("Accuracy:")
ac_cv
cat ("Sensitivity:")
sens_cv
cat ("Specificity:")
spec_cv

print("=========== Test =============")
cat("Accuracy:")
ac_test
cat ("Sensitivity:")
sens_test
cat ("Specificity:")
spec_test

plotting PCA scores PC1 x PC2

col =
c("blue","blue","blue","blue","blue","blue","blue","blue","red","red","red","red",
"red","red","red","red","red")
dev.new ()
plot(data.scores[,1],data.
scores[,2],pch=19,col=col,xlab='PC1',ylab='PC2',main='PCA scores - blue =
creatinine, red = albumin ')

Digital images 245

plotting PCA loadings PC1 & PC2

dev.new ()
matplot(data.
loadings[,1],type="l",col="blue",xlab="Pixels",ylab='Loadings',main='PCA
loadings')
lines(data.loadings[,2],type="l",col="red",xlab="Pixels",ylab='Loadings',main='PCA
loadings')

viewing posterior probabilities - training

col =
c("blue","blue","blue","blue","blue","blue","red","red","red","red","red","red",
"red")
dev.new()
plot(pred_train$posterior,pch =19,col= col,xlab ="LD1", ylab ="LD2", main="
Training - blue = creatinine , red = albumin ")

visualizing posterior probabilities - cross-validation

col =
c("blue","blue","blue","blue","blue","blue","red","red","red","red","red","red",
"red")
dev.new ()
plot(model_lda_cv$posterior,pch =19,col= col,xlab ="LD1", ylab ="LD2", main
="Cross Validation - blue = creatinine, red = albumin")

viewing posterior probabilities - test

col = c("blue","blue","red","red")
dev.new ()
plot(pred_test$posterior,pch=19,col= col,xlab ="LD1", ylab ="LD2", main="Test -
blue = creatinine , red = albumin ")

#################################### SPA-LDA ##################################

SPA model

nvar = 8 # number of variables to select

datam = data.matrix(data, rownames.force=NA) # converting data to matrix

m = colMeans (data) # average of the spectra

spa_model = project (x= data.loadings [,1], A= datam , b=group12, neq =0) # spa
model

Digital images 246

x = abs (model_spa$x) # leaving positive values for the SPA response vector

temp = sort.int(x, decreasing=TRUE, index.return =TRUE)
variables = temp$ix [1:nvar] # identifying selected variables

dev.new () # plot of selected variables
matplot(m,xlab="Pixels",type="l",ylab="Intensity",main="Average spectrum with
selected variables")
points(variables,m [variables], pch =19,col=" red ")

datam_spa = datam [, variables] # absorbances for the selected variables

selection of training and testing samples based on KS

perc = 0.7 # 70% for training and 30% for testing

ntrain1 = ceiling (perc * dim_class1[1]) # number of training samples class 1
ntrain2 = ceiling (perc * dim_class2[1]) # number of training samples class 2

datam_spa1 = datam_spa [1:dim_class1[1],] # scores class 1
datam_spa2 = datam_spa [(dim_class1[1]+ 1): dim_data[1],] # scores class 2

sel1 = kenStone (datam_spa1, k = ntrain1) # KS class 1
sel2 = kenStone (datam_spa2, k = ntrain2) # KS class 2

train1 = datam_spa1[sel1$model,] # training class 1
train2 = datam_spa2[sel2$model,] # training class 2
train = rbind (train1,train2) # joining training matrices

group1train = matrix (group1[sel1$model]) # class 1 training labels
group2train = matrix (group2[sel2$model]) # class 2 training labels
group_train = rbind (group1train,group2train) # training labels

test1 = datam_spa1[sel1$test,] # test class 1
test2 = datam_spa2[sel2$test,] # test class 2
test = rbind (test1,test2) # joining test matrices

group1test = matrix (group1[sel1$test]) # class 1 test labels
group2test = matrix (group2[sel2$test]) # class 2 test labels
group_test = rbind (group1test,group2test) # test labels

LDA Model

model_lda = lda (train,group_train) # model without cross-validation
model_lda_cv = lda (train,group_train , CV=TRUE) # model with cross-validation
leave-one-out

prediction of training and testing samples

Digital images 247

pred_train = predict(model_lda, train) # training
pred_test = predict(model_lda, test) # test

figures of merit

training

dim_train1 = dim(train1)
dim_train2 = dim(train2)

ac_train = mean(pred_train$class == group_train) # accuracy
spec_train = mean(pred_train$class[1:dim_train1[1]]==group1train) # specificity
sens_train = mean(pred_train$class[(dim_train1[1]+ 1):(dim_train1[1]+dim_
train2[1])]==group2train) # sensitivity

cross-validation

ac_cv = mean (model_lda_cv$class == group_train) # accuracy
spec_cv = mean (model_lda_cv$class[1:dim_train1[1]]==group1train) # specificity
sens_cv = mean(model_lda_cv$class[(dim_train1[1]+ 1):(dim_train1[1]+dim_
train2[1])]==group2train) # sensitivity

test

dim_test1 = dim(test1)
dim_test2 = dim(test2)

ac_test = mean(pred_test$class == group_test) # accuracy
spec_test = mean(pred_test$class[1:dim_test1[1]]==group1test) # specificity
sens_test = mean(pred_test$class[(dim_test1[1]+ 1):(dim_test1[1]+dim_
test2[1])]==group2test) # sensitivity

print("=========== Training =============")
cat ("Accuracy:")
ac_train
cat ("Sensitivity:")
sens_train
cat ("Specificity:")
spec_train

print("=========== Cross-validation =============")
cat ("Accuracy:")
ac_cv
cat ("Sensitivity:")
sens_cv
cat ("Specificity:")
spec_cv

Digital images 248

print("=========== Test =============")
cat("Accuracy:")
ac_test
cat ("Sensitivity:")
sens_test
cat ("Specificity:")
spec_test

viewing posterior probabilities - training

col =
c("blue","blue","blue","blue","blue","blue","red","red","red","red","red","red",
"red")
dev.new()
plot(pred_train$posterior,pch =19,col= col,xlab ="LD1", ylab ="LD2", main="
Training - blue = creatinine , red = albumin ")

visualizing posterior probabilities - cross-validation

col =
c("blue","blue","blue","blue","blue","blue","red","red","red","red","red","red",
"red")
dev.new ()
plot(model_lda_cv$posterior,pch =19,col= col,xlab ="LD1", ylab ="LD2", main
="Cross Validation - blue = creatinine, red = albumin")

viewing posterior probabilities - test

col = c("blue","blue","red","red")
dev.new ()
plot(pred_test$posterior,pch=19,col= col,xlab ="LD1", ylab ="LD2", main="Test -
blue = creatinine , red = albumin ")

#################################### GA-LDA ########## ########################

GA algorithm

datam = data.matrix (data, rownames.force =NA) # converting data to matrix
datam_m = colMeans (datam)
ind = datam_m != 1
datam_ga = datam[, ind ==TRUE]
datam = datam_ga

Function to Establish Population

myInit <- function(k){

Digital images 249

 function(GA){
 m <- matrix(0, ncol = GA@nBits, nrow = GA@popSize)

 for(i in seq_len(GA@popSize))
 m[i, sample(GA@nBits, k)] <- 1

 m
 }
}

Function for Crossover

myCrossover <- function(GA, parents){

 parents <- GA@population[parents,] %>%
 apply(1, function(x) which(x == 1)) %>%
 t()

 parents_diff <- list("vector", 2)
 parents_diff[[1]] <- setdiff(parents[2,], parents[1,])
 parents_diff[[2]] <- setdiff(parents[1,], parents[2,])

 children_ind <- list("vector", 2)
 for(i in 1:2){
 k <- length(parents_diff[[i]])
 change_k <- sample(k, sample(ceiling(k/2), 1))
 children_ind[[i]] <- if(length(change_k) > 0){
 c(parents[i, -change_k], parents_diff[[i]][change_k])
 } else {
 parents[i,]
 }
 }

 children <- matrix(0, nrow = 2, ncol = GA@nBits)
 for(i in 1:2)
 children[i, children_ind[[i]]] <- 1

 list(children = children, fitness = c(NA, NA))
}

Mutation Function

myMutation <- function(GA, parent){

 ind <- which(GA@population[parent,] == 1)
 n_change <- sample(3, 1)
 ind[sample(length(ind), n_change)] <- sample(setdiff(seq_len(GA@nBits), ind),
n_change)
 parent <- integer(GA@nBits)
 parent[ind] <- 1

Digital images 250

 parent
}

Adjustment Function

f <- function(x, values){

 ind <- which(x == 1)
 y <- values[ind]
 y <- ifelse(y %% 2 != 0, y, 0)
 y <- y[1:10]
 return(sum(y))
}

GA Model

GA_model = ga(type="binary", fitness=f, values= datam, nBits = ncol (datam),
population= myInit (nrow (datam)), crossover = myCrossover , mutation= myMutation
, run=200, pmutation =0.1 , maxiter =1000, popSize = nrow (datam))

selected variables

ind = which (GA_model@solution[1,] == 1)
if (length (ind) > 8){
 indmax = 8 # maximum number of variables selected
 ind = ind [1:indmax]
}

array with selected variables

datam_ga = datam [, ind]
m = colMeans (datam)
variables = ind

dev.new () # plot of selected variables
matplot(m,xlab="Pixels",type="l",ylab="Intensity",main="Average spectrum with
selected variables")
points(variables,m [variables], pch =19,col="red")

selection of training and testing samples based on KS

perc = 0.7 # 70% for training and 30% for testing

ntrain1 = ceiling (perc * dim_class1[1]) # number of training samples class 1
ntrain2 = ceiling (perc * dim_class2[1]) # number of training samples class 2

datam_ga1 = datam_ga [1:dim_class1[1],] # scores class 1
datam_ga2 = datam_ga [(dim_class1[1]+ 1): dim_data[1],] # scores class 2

sel1 = kenStone (datam_ga1, k = ntrain1) # KS class 1
sel2 = kenStone (datam_ga2, k = ntrain2) # KS class 2

Digital images 251

train1 = datam_ga1[sel1$model,] # training class 1
train2 = datam_ga2[sel2$model,] # training class 2
train = rbind (train1,train2) # joining training matrices

group1train = matrix (group1[sel1$model]) # class 1 training labels
group2train = matrix (group2[sel2$model]) # class 2 training labels
group_train = rbind (group1train,group2train) # training labels

test1 = datam_ga1[sel1$test,] # test class 1
test2 = datam_ga2[sel2$test,] # test class 2
test = rbind (test1,test2) # joining test matrices

group1test = matrix (group1[sel1$test]) # class 1 test labels
group2test = matrix (group2[sel2$test]) # class 2 test labels
group_test = rbind (group1test,group2test) # test labels

LDA Model

model_lda = lda (train,group_train) # model without cross-validation
model_lda_cv = lda (train,group_train , CV=TRUE) # model with cross-validation
leave-one-out

prediction of training and testing samples

pred_train = predict(model_lda, train) # training
pred_test = predict(model_lda, test) # test

figures of merit

training

dim_train1 = dim(train1)
dim_train2 = dim(train2)

ac_train = mean(pred_train$class == group_train) # accuracy
spec_train = mean(pred_train$class[1:dim_train1[1]]==group1train) # specificity
sens_train = mean(pred_train$class[(dim_train1[1]+ 1):(dim_train1[1]+dim_
train2[1])]==group2train) # sensitivity

cross-validation

ac_cv = mean (model_lda_cv$class == group_train) # accuracy
spec_cv = mean (model_lda_cv$class[1:dim_train1[1]]==group1train) # specificity
sens_cv = mean(model_lda_cv$class[(dim_train1[1]+ 1):(dim_train1[1]+dim_
train2[1])]==group2train) # sensitivity

test

Digital images 252

dim_test1 = dim(test1)
dim_test2 = dim(test2)

ac_test = mean(pred_test$class == group_test) # accuracy
spec_test = mean(pred_test$class[1:dim_test1[1]]==group1test) # specificity
sens_test = mean(pred_test$class[(dim_test1[1]+ 1):(dim_test1[1]+dim_
test2[1])]==group2test) # sensitivity

print("=========== Training =============")
cat ("Accuracy:")
ac_train
cat ("Sensitivity:")
sens_train
cat ("Specificity:")
spec_train

print("=========== Cross-validation =============")
cat ("Accuracy:")
ac_cv
cat ("Sensitivity:")
sens_cv
cat ("Specificity:")
spec_cv

print("=========== Test =============")
cat("Accuracy:")
ac_test
cat ("Sensitivity:")
sens_test
cat ("Specificity:")
spec_test

viewing posterior probabilities - training

col =
c("blue","blue","blue","blue","blue","blue","red","red","red","red","red","red",
"red")
dev.new()
plot(pred_train$posterior,pch =19,col= col,xlab ="LD1", ylab ="LD2", main="
Training - blue = creatinine , red = albumin ")

visualizing posterior probabilities - cross-validation

col =
c("blue","blue","blue","blue","blue","blue","red","red","red","red","red","red",
"red")
dev.new ()
plot(model_lda_cv$posterior,pch =19,col= col,xlab ="LD1", ylab ="LD2", main
="Cross Validation - blue = creatinine, red = albumin")

Digital images 253

viewing posterior probabilities - test

col = c("blue","blue","red","red")
dev.new ()
plot(pred_test$posterior,pch=19,col= col,xlab ="LD1", ylab ="LD2", main="Test -
blue = creatinine , red = albumin ")

6.5 Multivariate Regression
Example 4: The example we will describe here consists of multivariate regression

(MLR, PCR and PLS) of RGB images obtained from ELISA plates containing albumin and
creatinine concentrations using the imager, ggplot2, dplyr, prospectr, MASS, plot3D, plotly,
factoextra, Stat2Data, Metrics and PLS packages.

Script
Loading Packages

install.packages("imager")
library(imager)
library(ggplot2)
library(dplyr)
library(prospectr)
library(MASS)

install.packages("plot3D")
library(plot3D)

install.packages("plotly")
library(plotly)

install.packages("factoextra")
library(factoextra)

install.packages("Stat2Data")
library(Stat2Data)

install.packages("Metrics")
library(Metrics)

install.packages("pls")
library(pls)

establishing the working directory

Navigate to the directory containing the images for testing
In RStudio, go in Session > Set Working Directory > Choose Directory...

Digital images 254

loading images

im1 = load.image ("creatinine/im1.png")
im2 = load.image ("creatinine/im2.png")
im3 = load.image ("creatinine/im3.png")
im4 = load.image ("creatinine/im4.png")
im5 = load.image ("creatinine/im5.png")
im6 = load.image ("creatinine/im6.png")
im7 = load.image ("creatinine/im7.png")
im8 = load.image ("creatinine/im8.png")

extracting all image pixels to a vector

im1v <- matrix (im1)
im2v <- matrix (im2)
im3v <- matrix (im3)
im4v <- matrix (im4)
im5v <- matrix (im5)
im6v <- matrix (im6)
im7v <- matrix (im7)
im8v <- matrix (im8)

joining all images

data = rbind(t(im1v),t(im2v),t(im3v),t(im4v),t(im5v),t(im6v),t(im7v),t(im8v))
dim_data = dim(data)

concentration vector in mg/ dL

y <- c(0.03125,0.0625,0.125,0.25,0.5,1,2,4)

####################### MLR Model ######################

RGB intensities

im1_RGB = cbind (mean(mean(R(im1))),mean(mean(G(im1))),mean(mean(B(im1))))
im2_RGB = cbind (mean(mean(R(im2))),mean(mean(G(im2))),mean(mean(B(im2))))
im3_RGB = cbind (mean(mean(R(im3))),mean(mean(G(im3))),mean(mean(B(im3))))
im4_RGB = cbind (mean(mean(R(im4))),mean(mean(G(im4))),mean(mean(B(im4))))
im5_RGB = cbind (mean(mean(R(im5))),mean(mean(G(im5))),mean(mean(B(im5))))
im6_RGB = cbind (mean(mean(R(im6))),mean(mean(G(im6))),mean(mean(B(im6))))
im7_RGB = cbind (mean(mean(R(im7))),mean(mean(G(im7))),mean(mean(B(im7))))
im8_RGB = cbind (mean(mean(R(im8))),mean(mean(G(im8))),mean(mean(B(im8))))

RGB absorbances

Digital images 255

im1abs = -log10(im1_RGB/1)
im2abs = -log10(im2_RGB/1)
im3abs = -log10(im3_RGB/1)
im4abs = -log10(im4_RGB/1)
im5abs = -log10(im5_RGB/1)
im6abs = -log10(im6_RGB/1)
im7abs = -log10(im7_RGB/1)
im8abs = -log10(im8_RGB/1)

x = rbind (im1abs,im2abs,im3abs,im4abs,im5abs,im6abs,im7abs,im8abs)
dim_x = dim (x)

Division into Calibration and Prediction

perc = 0.7 # 70% for calibration and 30% for testing

size = 1:dim_x [1]

ntrain = ceiling (perc * dim_x [1]) # number of calibration samples

sel = sample(size, ntrain) # sample selection

xcal = x[sel ,] # calibration
ycal = matrix (y[sel]) # concentration calibration

xpred = x[- sel ,] # prediction
ypred = matrix (y[- sel]) # concentration prediction

MLR Model

xcal_df = data.frame (xcal)
xpred_df = data.frame (xpred)

model_mlr = lm (ycal ~ xcal , xcal_df) # MLR model

coef = model_mlr$coefficients # regression coefficients

ycal_calc = xcal %*% coef [2:4] + coef [1] # predicted concentration calibration
ypred_calc = xpred %*% coef [2:4] + coef [1] # predicted concentration prediction

Plot measured concentration vs. predicted

dev.new ()
plot (ycal,ycal_calc,pch='o',col ="blue", xlab ="Measured concentration (mg/dL)",
ylab ="Predicted concentration (mg/dL)", main ="Calibration")
lines(ycal,ycal,col="red")

Digital images 256

dev.new ()
plot (ypred,ypred_calc,pch=15,col="red", xlab = "Measured concentration (mg/dL)",
ylab = "Predicted concentration (mg/dL)", main = "Prediction")
lines(ypred,ypred ,col ="red")

dev.new ()
plot (ycal,ycal_calc,pch='o', col="blue", xlab ="Measured concentration (mg/dL)",
ylab ="Predicted concentration (mg/dL)", main ="Calibration (blue) and Prediction
(red)")
points(ypred,ypred_calc,pch =15,col="red")
lines(y,y ,col="red")

Figures of merit

Calibration

MAPEC = mean (abs((ycal-ycal_calc)/ycal))*100
R2cal = cor (ycal,ycal_calc)^2
RMSEC = rmse (ycal,ycal_calc)

Prediction

MAPEP = mean(abs((ypred-ypred_calc)/ypred))* 100
R2pred = cor(ypred,ypred_calc)^2
RMSEP = rmse(ypred,ypred_calc)

print("=========== Calibration =============")
print("Mean Absolute Error Percentage (MAPE) (%):")
MAPEC
print("R2cal:")
R2cal
print("RMSEC (mg/dL):")
RMSEC

print("=========== Test =============")
print("Mean Absolute Error Percentage (MAPE) (%):")
MAPEP
print("R2pred:")
R2pred
print("RMSEP (mg/dL):")
RMSEP

####################### PCR Model ######################

scaling the data

data_scal = scale(data, center=TRUE, scale =FALSE)
dim_data = dim (data) # dimension of the data array

Digital images 257

PCA Model

data.svd = svd (data_scal) # SVD
data.scores = data.svd$u %*% diag (data.svd$d) # scores
data.loadings = data.svd$v # loadings

PCA Variances

data.vars = data.svd$d^2 / (nrow (data)-1) # variance per PC
data.totalvar = sum(data.vars) # total variance
data.relvars = data.vars / data.totalvar # cumulative variance
variances = 100 * round(data.relvars , digits = 3) # cumulative variance in %
variances [1:10] # variance in % in the first 10 PCs

Choose the number of PCs

par(mfrow = c(2,2))
barplot (data.vars [1:10], main="Variance", names.arg = paste("PC", 1:10))
barplot (log(data.vars [1:10]), main="Log(variance)", names.arg = paste("PC",
1:10))
barplot (data.relvars [1:10], main="Relative variance", names.arg = paste("PC",
1:10))
barplot (cumsum (100* data.relvars [1:10]), main="Cumulative variance (%)", names.
arg = paste("PC", 1:10), ylim = c(0,100))

npc = 3 # number of PCs chosen to run the PCA

scores = data.scores[1:dim_data[1],1:npc] # PCA scores up to the chosen number of PC
loadings = data.loadings[1:dim_data[2], 1:npc] # PCA loadings up to the chosen PC
number

Linear Regression on PCA Scores

x = scores
dim_x = dim (x)

Division into Calibration and Prediction

perc = 0.7 # 70% for calibration and 30% for testing

size = 1:dim_x[1]

ntrain = ceiling(perc * dim_x [1]) # number of calibration samples

sel = sample(size, ntrain) # sample selection

xcal = x[sel ,] # calibration
ycal = matrix (y[sel]) # concentration calibration

Digital images 258

xpred = x[- sel ,] # prediction
ypred = matrix (y[- sel]) # concentration prediction

PCR model

xcal_df = data.frame(xcal)
xpred_df = data.frame(xpred)

modelo_mlr = lm(ycal ~ xcal, xcal_df) # MLR model

coef = modelo_mlr$coefficients # regression coefficients

ycal_calc = xcal %*% coef[2:4] + coef[1] # predicted concentration - calibration
ypred_calc = xpred %*% coef[2:4] + coef[1] # predicted concentration - prediction

Plot measured concentration vs. Prediction

dev.new ()
plot (ycal,ycal_calc,pch ='o', col ="blue", xlab ="Measured concentration (mg/dL)",
ylab ="Predicted concentration (mg/dL)", main ="Calibration")
lines(ycal,ycal,col="red")

dev.new ()
plot (ypred,ypred_calc,pch =15,col="red", xlab = "Measured concentration (mg/dL)",
ylab = "Predicted concentration (mg/dL)", main = "Prediction")
lines(ypred,ypred,col ="red")

dev.new ()
plot (ycal,ycal_calc,pch ='o', col ="blue", xlab ="Measured concentration (mg/dL)",
ylab ="Predicted concentration (mg/dL)", main ="Calibration (blue) and Prediction
(red)")
points(ypred,ypred_calc,pch =15,col="red")
lines(y,y,col ="red")

Figures of merit

Calibration

MAPEC = mean (abs((ycal-ycal_calc)/ycal))*100
R2cal = cor (ycal,ycal_calc)^2
RMSEC = rmse (ycal,ycal_calc)

Prediction

MAPEP = mean(abs((ypred-ypred_calc)/ypred))* 100
R2pred = cor(ypred,ypred_calc)^2
RMSEP = rmse(ypred,ypred_calc)

Digital images 259

print("=========== Calibration =============")
print("Mean Absolute Error Percentage (MAPE) (%):")
MAPEC
print("R2cal:")
R2cal
print("RMSEC (mg/dL):")
RMSEC

print("=========== Test =============")
print("Mean Absolute Error Percentage (MAPE) (%):")
MAPEP
print("R2pred:")
R2pred
print("RMSEP (mg/dL):")
RMSEP

####################### PLS Model ######################

Division into Calibration and Prediction

mydim = dim (data)
Xr = data
perc = 0.7 # 70% for calibration and 30% for testing

dim_x = dim (x)
size = 1:dim_x[1]

ntrain = ceiling (perc * dim_x [1]) # number of calibration samples

sel = sample(size, ntrain) # KS

xcal = Xr [sel ,] # calibration
ycal = matrix (y[sel]) # concentration-calibration

xpred = Xr [- sel ,] # prediction
ypred = matrix (y[- sel]) # concentration-prediction

PLS Model

xcal_df = data.frame (xcal)
xpred_df = data.frame (xpred)

model_pls = plsr (ycal ~ xcal , data = xcal_df)

Determine number of components

validationplot (model_pls)
validationplot (model_pls,val.type = "MSEP")
validationplot (model_pls,val.type = "R2")

Digital images 260

ncomp = 2 # number of selected components

prediction

ycal_calc <- predict(model_pls, xcal, ncomp = ncomp)
ypred_calc <- predict(model_pls, xpred, ncomp = ncomp)

ycal_calc = ycal_calc [,1,1]
ypred_calc = ypred_calc [,1,1]

Plot measured concentration vs. prediction

dev.new ()
plot (ycal,ycal_calc,pch ='o', col ="blue", xlab ="Measured concentration (mg/dL)",
ylab ="Predicted concentration (mg/dL)", main ="Calibration")
lines(ycal,ycal,col ="red")

dev.new ()
plot (ypred,ypred_calc,pch =15,col="red", xlab = "Measured concentration (mg/dL)",
ylab = "Predicted concentration (mg/dL)", main = "Prediction")
lines(ypred,ypred,col ="red")

dev.new ()
plot (ycal,ycal_calc,pch ='o', col ="blue", xlab ="Measured concentration (mg/dL)",
ylab ="Predicted concentration (mg/dL)", main ="Calibration (blue) and Prediction
(red)")
points(ypred,ypred_calc,pch=15,col="red")
lines(y,y,col ="red")

Figures of merit

Calibration

MAPEC = mean (abs((ycal-ycal_calc)/ycal))*100
R2cal = cor (ycal,ycal_calc)^2
RMSEC = rmse (ycal,ycal_calc)

Prediction

MAPEP = mean(abs((ypred-ypred_calc)/ypred))* 100
R2pred = cor(ypred,ypred_calc)^2
RMSEP = rmse(ypred,ypred_calc)

print("=========== Calibration =============")
print("Mean Absolute Error Percentage (MAPE) (%):")
MAPEC
print("R2cal:")
R2cal
print("RMSEC (mg/dL):")
RMSEC

Digital images 261

print("=========== Test =============")
print("Mean Absolute Error Percentage (MAPE) (%):")
MAPEP
print("R2pred:")
R2pred
print("RMSEP (mg/dL):")
RMSEP

PROPOSED EXERCISES
01 – Using a digital image dataset available in repositories or through images

collected with some equipment (cell phone, scanner), perform an exploratory analysis using
the main algorithms in the R language (PCA, HCA and K- means). Present your results and
main conclusions.

02 – Using a digital image dataset available in repositories or through images
collected with some equipment (cell phone, scanner), perform a multivariate classification
using algorithms in the R language (PCA-LDA, SPA-LDA and GA-LDA). Present your results
and main conclusions.

03 – From the previous exercise, write multivariate classification scripts in R (PCA-
QDA, SPA-QDA and GA-QDA) for a given dataset (simulated or experimental). Finally,
present your results and conclusions when compared to the multivariate classification
models used in the LDA function.

04 – Using a digital image dataset available in repositories or through images
collected with some equipment (cell phone, scanner), perform a multivariate regression
using algorithms in the R language (MLR, PCR and PLS). Present your results and main
conclusions.

REFERENCES
1 – Solomon , C.; Breckon , T. (2011). Fundamentals of Digital Image Processing – A Practical Approach
with Examples in Matlab . 1st Edition. USA, John Wiley & Sons Ltd.

2 – Plataniotis , KN; Venetsanopoulos, A. N. (2000). Color Image Processing and Applications. Berlin;
Heidelberg; New York; Barcelona; Hong Kong; London; Milano; Paris; Singapore; Tokyo: Springer.

3 – Gonzalez, RC; Woods, RE Digital image processing. 1st Ed. São Paulo: Editora Blucher , 2000.

262Appendix A

APPENDix A

A1 – LOADING SPECTRAL DATA USING R
Example A1: Loading raw data (.csv format) of near-infrared (NIR) spectroscopy

in R software using the data.table package. Data extracted from: https://doi.org/10.1016/j.
dib.2020.106647

R Script
install.packages("data.table")
library (data.table)

loading data .csv

data = fread ("dataset/spectra_standard_cells.csv")

visualize data

View (data)

extracting the spectra

d = dim (data) # data dimensions

nm = data[1,4:d[2]] # wavelength = 1st row of table from column 4

x = data[2:16,4:d[2]] # spectrum = rows 2-16 and columns 4 to the end of the table

plotting spectra

matplot (t(nm),t(x), type ="l", xlab ="Wavelength (nm)", ylab ="Absorbance")

https://doi.org/10.1016/j.dib.2020.106647
https://doi.org/10.1016/j.dib.2020.106647

Appendix A 263

A2 – PREPROCESSING SPECTRAL DATA IN R
Example A2: Applying different preprocessing to near-infrared (NIR) spectroscopy

data using data.table, pracma , pls and hyperSpec packages. Data extracted from: https://
doi.org/10.1016/j.dib.2020.106647

R Script
packages

library(data.table)

Smoothing Savitzkt-Golay

install.packages("pracma")
library(pracma)

#MSC

install.packages("pls")
library(pls)

Baseline correction

install.packages("hyperSpec")
library(hyperSpec)

loading data. csv

data = fread("dataset/spectra_standard_cells.csv")

visualize data

View (data)

extracting the spectra

d = dim (data) # data dimensions

nm = data[1,4:d[2]] # wavelength = 1st row of table from column 4

x = data[2:16,4:d[2]] # spectrum = rows 2-16 and columns 4 to the end of the table

x_dm = data.matrix (x) # converting spectra to numeric format

plotting spectra

matplot (t(nm), t(x), type ="l", xlab ="Wavelength (nm)", ylab ="Absorbance", main
="Raw data")

https://doi.org/10.1016/j.dib.2020.106647
https://doi.org/10.1016/j.dib.2020.106647

Appendix A 264

==================== Pre-processing ====================

######### Savitzky-Golay smoothing #########

w = 7 # window size (must be an odd number)
ord = 2 # filter order (example: 2 = 2nd order polynomial)
der = 0 # order of the derivative (0 = no derivative, 1 = 1st derivative, 2 = 2nd
derivative)

smoothing across all spectra

x_sg = matrix (, nrow = dim (x)[1], ncol = dim (x)[2])
for (i in 1:dim(x)[1]){
 x_sg [i ,] = savgol (x_dm [i ,], w, ord , der)
}

x_sg [,1:w] = x_dm [,1:w]
x_sg [,(dim(x)[2]-w):dim(x)[2]] = x_dm [,(dim(x)[2]-w):dim(x)[2]]

plotting pre -processed data

matplot (t(nm),t(x_sg), type ="l", xlab ="Wavelength (nm)", ylab ="Absorbance",
main ="Smoothed data - Savitzky-Golay ")

######### smoothing by moving window #########

w = 7 # window size (must be an odd number)

smoothing function

SmoothFast <-function(Spectra,windowsize){
 Mat<-matrix(0,length((windowsize+1):(ncol(Spectra)-windowsize)),2*windowsize+1)
 for(j in 1:nrow(Mat)){Mat[j,]<- seq (j,j+2*windowsize,1)}
 newspectra <-matrix(0,nrow(Spectra),
 length((windowsize+1):(ncol (Spectra)- windowsize)))
 for(i in 1:nrow(Mat)){ newspectra [, i]<-apply(Spectra[,Mat[i ,]],1,mean)}
 fronttail <- newspectra [,1]
 endtail <- newspectra [, ncol (newspectra)]
 for(k in 1:(windowsize-1)){fronttail<-data.frame(fronttail,newspectra[,1])
 endtail <- data.frame (endtail, newspectra [, ncol (newspectra)])}
 newspectra <- data.frame (fronttail,newspectra,endtail)
 return (newspectra)}

applying the smoothing function

x_sw = SmoothFast (x_dm,windowsize =w)

Appendix A 265

plotting preprocessed data

matplot (t(nm),t(x_sw), type ="l", xlab ="Wavelength (nm)", ylab ="Absorbance",
main ="Smoothed data - Moving Window")

######### SNV (Standard Normal Variate) #########

SNV function

SNV<-function(spectra){
 spectra<- as.matrix (spectra)
 spectrat <-t(spectra)
 spectrat_snv <-scale(spectrat,center = TRUE,scale =TRUE)
 spectra_snv <-t(spectrat_snv)
 return (spectra_snv)}

applying SNV

x_snv = SNV(x_dm)

plotting preprocessed data

matplot (t(nm),t(x_snv), type ="l", xlab ="Wavelength (nm)", ylab ="Absorbance",
main ="SNV")

######### MSC (Multiplicative Scatter Correction) #########

applying MSC

x_msc = msc (x_dm)

plotting preprocessed data

matplot (t(nm),t(x_msc), type ="l", xlab ="Wavelength (nm)", ylab ="Absorbance",
main ="MSC")

######### Baseline correction #########

pseudo-image object

x_im = new("hyperSpec", spc = x_dm , wavelength = as.numeric (nm))

applying baseline correction

pord = 2 # order of the baseline adjustment polynomial function

baseline = spc.fit.poly.below (fit.to = x_im , poly.order = pord)

x_base = x_im@data$spc - baseline@data$spc

plotting preprocessed data

Appendix A 266

matplot (t(nm),t(x_base), type ="l", xlab ="Wavelength (nm)", ylab ="Absorbance",
main ="Baseline Correction")

######### 1st derivative #########

w = 7 # window size (must be an odd number)
ord = 2 # filter order (example: 2 = 2nd order polynomial)
der = 1 # order of derivative (0 = no derivative, 1 = 1st derivative, 2 = 2nd
derivative)

SG filter across all spectra

x_1d = matrix (, nrow = dim (x)[1], ncol = dim (x)[2])
for (i in 1:dim(x)[1]){
 x_1d[i ,] = savgol (x_dm [i ,], w, ord , der)
}

x_1d = x_1d[,w:(dim(x)[2]-w)]
nm_dm = data.matrix (nm)
nm_1d = nm_dm [,w:(dim(x)[2]-w)]

plotting preprocessed data

matplot (nm_1d,t(x_1d), type ="l", xlab ="Wavelength (nm)", ylab ="Absorbance",
main ="1st derivative Savitzky-Golay ")

######### 2nd derivative #########

w = 7 # window size (must be an odd number)
ord = 2 # filter order (example: 2 = 2nd order polynomial)
der = 2 # order of the derivative (0 = no derivative, 1 = 1st derivative, 2 = 2nd
derivative)

SG filter across all spectrums

x_2d = matrix (, nrow = dim (x)[1], ncol = dim (x)[2])
for (i in 1:dim(x)[1]){
 x_2d[i ,] = savgol (x_dm [i ,], w, ord , der)
}

x_2d = x_2d[,w:(dim(x)[2]-w)]
nm_dm = data.matrix (nm)
nm_2d = nm_dm [,w:(dim(x)[2]-w)]

plotting preprocessed data

matplot (nm_2d,t(x_2d), type ="l", xlab ="Wavelength (nm)", ylab ="Absorbance",
main ="2nd derivative Savitzky-Golay ")

Appendix A 267

A3 – LOADING MOLECULAR FLUORESCENCE DATA: EXCITATION-EMISSION
MATRIX (EEM)

Example A3: Loading raw molecular fluorescence data (excitation-emission matrix
– EEM). Data extracted from: https://doi.org/10.3390/data8050081

R Script
loading data

sample 1

data <- read.csv("dataset\\Raw_data\\Aging Step 0\\Fluorescence\\20210512_0752_
AS0_Q1K2V1U0.csv",header=FALSE, sep =",")

visualize data

View (data)

comments:
columns V1 to V50 are the excitation wavelengths
for each excitation wavelength there is an emission wavelength and the associated
intensity
the emission wavelength values are constant, only the intensity varies

extracting the excitation-emission matrix

dim_data = dim (data) # data dimension

excitation wavelength

nm_ex = data[seq (1, dim_data[2], 2)] # extracting each 2nd column of data from
column 1
nm_ex = nm_ex[1,] # extracting only the 1st row

emission wavelength

nm_em = data[3:253,1] # extracting rows 3 to 253 from the 1st column

intensities

eem = data[seq(2, dim_data[2], 2)] # extracting each 2nd column of data from column
2
eem = eem [3:253,1:length(eem)] # extracting rows between 3 and 253 to match with
emission
eem = data.matrix(eem) # converting to numeric values

comments:
in the matrix, each row corresponds to an emission wavelength and each column to
an excitation wavelength

https://doi.org/10.3390/data8050081

Appendix A 268

viewing the eem matrix

filled.contour(eem,color.palette = terrain.colors,main ="Sample 1")

comments:

each sample must be loaded individually or through a loop
the eem matrices of each sample can be organized into a 3D tensor using the
command:
Example

sample 2

data2 <- read.csv("dataset\\Raw_data\\Aging Step 0\\Fluorescence\\20210512_0915_
AS0_X0S0V2W2.csv",header=FALSE, sep =",")

dim_data2 = dim (data2)

eem2 - intensities

eem2 = data2[seq(2, dim_data2[2], 2)]# extracting each 2nd column of data from
column 2
eem2 = eem2[3:253,1:length(eem2)] # extracting rows between 3 and 253 to match with
emission
eem2 = data.matrix(eem2) # converting to numeric values

filled.contour(eem2,color.palette = terrain.colors,main = "Sample 2")

3D tensor

tensor = array (c(eem,eem2), c(dim(eem)[1], dim(eem2)[2], 2)) # for 2 samples

dim(tensor) # dimensions of the 3D tensor

############ EEM and eemR PACKAGES ############

EEM data in other formats (other devices) can be loaded using the EEM or eemR
packages

Examples:

EEM PACKAGE: https://cran.r-project.org/web/packages/EEM/vignettes/vignette.html

loading packages

install.packages ("EEM")
library (EEM)

Appendix A 269

loading sample

data = readEEM('filename') # data in .csv or .txt

viewing the sample

drawEEM(data, n=1)

eemR PACKAGE: https://cran.r-project.org/web/packages/eemR/eemR.pdf

loading packages

install.packages ("eemR")
library (eemR)

loading sample

data = eem_read ('filename', recursive = FALSE, import_function ="cary") # Cary
equipment data
data = eem_read ('filename', recursive = FALSE, import_function ="aqualog") #
Aqualog equipment data
data = eem_read ('filename', recursive = FALSE, import_function ="shimadzu") #
Shimadzu equipment data
data = eem_read ('filename', recursive = FALSE, import_function = "fluoromax4") #
Fluoromax equipment data

eemR packages perform pre-processing on loaded data through specific routines - see
tutorials in the links
EEM: https://cran.r-project.org/web/packages/EEM/vignettes/vignette.html
eemR: https://cran.r-project.org/web/packages/eemR/eemR.pdf

