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Este trabalho fornece algumas contribuições originais para o estudo  
geométrico de equações evolutivas que descrevem superfícies pseudo-esféricas 
(equaçõoes PEs). Por definição, uma equação PE para funções z = z(x, t) é 
equivalente às equações de estrutura dω1 = ω3 ∧ ω2, dω2 = ω1 ∧ ω3, dω3 = ω1 ∧ 
ω2 de uma variedade Riemanniana 2-dimensional com curvatura Gaussiana K = 
−1, com 1-formas ωi = 𝑓i1 dx + 𝑓i2 dt, i = 1, 2, 3, satisfazendo a condição de não-
degeneração ω1 ∧ ω2 ≠ 0 e com 𝑓ij funções suaves de x, t, z e suas derivadas 
com respeito a x e t. Usando a noção de representação a curvatura nula (RCN), 
pode-se dizer que toda equação PE admite uma RCN a valores em 𝖘𝖑 (2, ℝ).

A primeira contribuição deste trabalho diz respeito a uma classificação 
completa e explícita de equações PEs evolutivas de segunda ordem da forma zt 

= A(x, t, z) z2 + B (x, t, z, z1), com z = z (x, t) e zi =  , sob as hipóteses que 𝑓ij = 
𝑓ij (x, t, z1, z2 , z ) e 𝑓21 = η. De acordo com a  classificação dada, estas equações  
subdividem-se em três classes principais (chamadas de Tipos I-III) juntamente 
com os correspondentes sistemas de 1-formas {ω1, ω2, ω3} que,  em virtude da 
hipótese 𝑓21 = η, definem para cada tipo uma família a 1-parâmetro de RCNs 
associadas. Nesta classe de equações PEs encontram-se em particular algumas 
equações já conhecidas, dentre as quais as equações integráveis classificadas 
por Svinolupov e Sokolov, a equação de Boltzmann, e equações de reaçãao e 
difusçao como a equação de Murray. Ulteriores novos exemplos explicitos são 
também apresentados.

A segunda contribuição é relativa ao problema de existência de  imersões 
isométricas locais, no espaço Euclidiano 3-dimensional E3, para as  famílias de 
superfícies pseudo-esféricas descritas pelas equações PEs da classificação 
acima. O resultado principal obtido neste caso é que estas imersões existem 
somente para as equações do Tipo I, que possuem forma de lei de conservação, 
e isso levou à uma extensão natural deste resultado ao caso das equações 
evolutivas de ordem k da forma Dt (𝑓 (x, t, z)) = Dx (Ω(x, t, z, z1, ..., zk)). No 
âmbito da literatura existente sobre este problema, todos os resultados obtidos 
nesta parte do trabalho são novos; em particular além de equações de segunda 
ordem, como por exemplo as equações de Boltzmann, Murray e as equações 
de Svinolupo e Sokolov, entre os exemplos de equações PEs que admitem 
este tipo de imersão isométrica há também equações de ordem superior como 
as equações de Kuramoto-Sivashinsky, Sawada-Kotera, Kaup-Kupershmidt e 
inteiras hierarquias de equações integráveis como as de Burgers, mKdV e KdV.

Finalmente, nós consideramos o problema de construir famílias a  
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1-parâmetro não-triviais de RCNs para equações PEs. Este problema é de 
interesse especial para as aplicações da teoria das RCNs, por exemplo no 
cálculo de soluções exatas e hierarquias infinitas de leis de conservação, e 
tem sido resolvido no caso mais geral de RCNs a valores em 𝖌, com 𝖌 uma 
sub-álgebra de 𝖌𝖑 (𝑛, ℝ) ou 𝖌𝖑 (𝑛, ℂ), usando a teoria de simetrias clássicas de 
equações diferenciais.

Os resultados originais deste trabalho são exibidos nos Capítulos 2, 3 e 
4. Em particular, os resultados do Capítulo 4 tem sido recentemente publicados 
no artigo [15].

PALAVRAS-CHAVE: Equações que descrevem superfícies pseudo-
esféricas; equações integráveis; representações a curvatura nula; imersões 
isométricas; simetrias clássicas; geometria das equações diferenciais.



A
BS

RA
C

T
This work provides some original contributions to the geometric study of 

evolution equations which describe pseudospherical surfaces (PS equations). 
By definition, a PS equation for functions z = z(x, t) is equivalent to the structure 
equations dω1 = ω3 ∧ ω2, dω2 = ω1 ∧ ω3, dω3 = ω1 ∧ ω2 of a 2- dimensional 
Riemannian manifold with Gaussian curvature K = −1, and with 1-forms ωi = 𝑓i1 
dx + 𝑓i2 dt, i = 1, 2, 3, satisfying the non-degeneracy condition ω1 ∧ ω2 ≠ 0 with 
𝑓ij  smooth functions of x, t, z and derivatives of z with respect to x and t. Using 
the notion of zero-curvature representation (ZCR), one can say that every PS 
equation admits an 𝖘𝖑 (2, ℝ)-valued ZCR.

The first contribution of this work concerns a complete and explicit 
classification of second order evolution PS equations of the form zt = A(x, t, z) 
z2 + B (x, t, z, z1), with z = z (x, t) and , under the assumptions that 𝑓ij = 𝑓ij 
(x, t, z1, z2 , z ) e 𝑓21 = η. According to this classification, these PS equations are 
subdivided into three main classes (referred to as Types I-III) together with the 
corresponding systems of 1-forms {ω1, ω2, ω3} which, in view of the assumption 
𝑓21 = η, define for any such equation an associated 1-parameter family of ZCRs. 
Some already known equations are found to belong to this class of PS equations, 
like Svinolupov-Sokolov equations admitting higher weakly nonlinear symmetries, 
Boltzmann equation and reaction-diffusion equations like Murray equation. Other 
explicit examples are presented, as well.

As a second contribution we considered, for the families of pseudospherical 
surfaces described by above class of PS equations, the problem of existence of 
local isometric immersions into the 3-dimensional Euclidean space E3. We found 
that only Type I equations admit such a kind of immersion and, on the base of this 
result we also provided an extension to the case of k-th order evolution equations 
in the conservation law form Dt (𝑓 (x, t, z)) = Dx (Ω(x, t, z, z1, ..., zk)). The results 
and explicit examples discussed in this part of the work are new, when compared 
with the existing literature, in particular the examples include equations like 
Boltzmann, Murray and Svinolupov-Sokolov equations, as well as higher order 
equations like Kuramoto-Sivashinsky, Sawada-Kotera and Kaup-Kupershmidt 
equations and also full hierarchies of integrable equations like Burgers, mKdV 
and KdV.

Finally,  we considered the problem of constructing nontrivial 1-parameter 
families of ZCRs for PS equations. This problem is of special interest for the 
application of the theory of ZCRs, for instance in the calculation of exact solutions 
and infinite hierarchies of conservation laws, and has been solved in the more 
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general case of g-valued ZCRs, with g a Lie sub-algebra of 𝖌𝖑 (𝑛, ℝ) or 𝖌𝖑 (𝑛, ℂ), 
by using the theory of classical symmetries of differential equations.

The original results of this work are exposed in the Chapters 2, 3 and 4. In 
particular, the results of Chapter 4 have been recently reported in the paper [15].

KEYWORDS: Equations describing pseudospherical surfaces; integrable 
equations; zero-curvature representations; isometric immersions; classical 
symmetries; geometry of differential equations.
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1Introduction

IntroductionINTRODUCTION

Dierential equations which describe pseudospherical surfaces (PS equations) arise 
ubiquitously as suitable models in the description of nonlinear physical phenomena as well 
as in many problems of pure and applied mathematics. Geometrically these equations are 
characterized by the fact that their generic solutions provide metrics on open subsets of 
ℝ2, with Gaussian curvature K = -1. The rst well known example of such an equation is 
the sine-Gordon equation zxt = sin(z). This example was discovered by Edmond Bour [3], 
who realized that in terms of Darboux asymptotic coordinates the Gauss-Codazzi equations 
for pseudospherical surfaces contained in ℝ3 reduce to the sine-Gordon equation. Then, 
the discovery of Bäcklund transformations rst, and later the construction by Bianchi of the 
superposition formula for solutions of this equation, focused even more attention on the sine-
Gordon equation, that in the end it turned out to be an important model in the description 
of several nonlinear phenomena (see for example [31, 35, 59]). However, it was after the 
early observation [56] that "all the soliton equations in 1 + 1 dimensions that can be solved 
by the AKNS 2  2 inverse scattering method (for example, the sine-Gordon, KdV or modied 
KdV equations) ... describe pseudospherical surfaces", that the general study of these 
equations was initiated. In particular, it was with the fundamental paper [20] by S. S. Chern 
and K. Tenenblat that initiated a systematic study of these equations. The results of [20], 
together with the considerable eort addressed over the past few decades to the possible 
applications of inverse scattering method, gave a signicant contribution to the discovery of 
new integrable equations. For instance, Belinski-Zakharov system in General Relativity [8], 
the nonlinear Schrödinger type systems [19, 24, 27], the Rabelo's cubic equation [6, 46, 
47, 55], the Camassa-Holm, Degasperis-Procesi, Kaup{Kupershmidt and Sawada-Kotera 
equations [11, 14, 50, 51, 52, 53] are some important examples of PS equations which 
are integrable by inverse scattering method. All these facts prove the relevance of these 
equations and justify the general interest in their study and classication. This thesis provides 
some contributions to the geometric study of evolution PS equations.

From a geometric point of view, every PS equation Ɛ satisfies the following remarkable 
property: to any generic solution (see below) z = z(x, t) of Ɛ, dened on an open domain U 
⊂ ℝ2, it is associated a Riemannian metric dened almost everywhere on the domain U with 
Gaussian curvature K = -1. .  Indeed, by definition a differential equation Ɛ for a real function 
z = z(x, t) is a PS equation if it is equivalent to the structure equations dω1 = ω3 ∧ ω2, dω2 = 
ω1 ∧ ω3, dω3 = ω1 ∧ ω2 of a 2-dimensional Riemannian manifold whose Gaussian curvature 
K = −1, and with 1-forms ωi = 𝑓i1dx + 𝑓i2dt satisfying the non-degeneracy condition ω1 ∧ ω2 ≠ 
0 with 𝑓ij smooth functions of x, t, z and derivatives of z with respect to x and t. Notice that 
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according to the denition ω1 ∧ ω2 is generically nonzero on the solutions of a PS equation 
Ɛ. However, this condition does not guarantee the property that, for any solution z : U ⊂ ℝ2 
→ ℝ, the restriction (ω1 ∧ ω2)[z] of ω1 ∧ ω2 to z is everywhere nonzero on U. Relatively to a 
given system of 1-forms {ω1, ω2, ω3}, we will call generic a solution z : U ⊂ ℝ2 → ℝ such that 
(ω1 ∧ ω2)[z] is almost everywhere nonzero on U, i.e., it is everywhere nonzero except for a 
subset of U of measure zero. Thus, for any generic solution z : U ⊂ ℝ2 → ℝ of a PS equation 
Ɛ, the restriction I[z] of I = ω2 + ω2 to z defines almost everywhere a Riemannian metric 
I[z] on the domain U with Gaussian curvature K = −1. It is in this sense that one can say 
that a PS equation describes, or parametrizes, a family of non-immersed pseudospherical 
surfaces.

For instance, one may easily check that sine-Gordon equation zxt = sin(z) is equivalent 
to the above structure equations for the following system of 1-forms

with 𝑛 ∈ ℝ − {0}. In this case one has that 
Notice that, with respect to the system (0.0.1), sine-Gordon equation admits non-generic 
solutions. For instance, z = kπ, k ∈ Z, is a non-generic solution of sine-Gordon equation. PS 
equations can also be characterized in few alternative ways (see Section 1.2, of Chapter 
1). For instance, above structure equations are equivalent to the integrability condition of 
an auxiliary first order linear system, and this naturally leads to study some properties of 
PS equations by using the notion of zero-curvature representations (ZCRs), (see Sections 
1.2 and 1.5, of Chapter 1) which originates by the observation that some nonlinear partial 
differential equations (PDEs) can be interpreted as integrability conditions of an auxiliary 
linear system [54, 60]. Indeed, since the early applications of the inverse scattering method 
to the computation of soliton solutions of PS equations like KdV [1, 28], the notion of ZCR 
has been widely used in the study of PS equations as well as of most general nonlinear 
PDEs (see for instance [2, 8, 9, 26, 54, 65] and references therein).  In particular, it is typical 
for an integrable system of PDEs to admit a ZCR which depends on some real parameter 
η, usually referred to as the spectral parameter. An example of this is given by the sine-
Gordon example (see Section 1.2, of Chapter 1). The presence of such a parameter is 
crucial not only for the determination of exact solutions, via the inverse scattering method 
[1, 64] or the finite gap integration method [42], but also to guarantee other remarkable 
attributes of integrable equations like, for instance, parametric Bäcklund transformations 
and the existence of infinite hierarchies of conservation laws (see Section 1.6, of Chapter 
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1, and also [18, 20, 54, 56]). However, only nontrivial parameters are suitable for such 
applications of 1-parameter families of ZCRs. Hence the problem of deciding whether a 
parameter is trivial or not is particularly relevant in the theory of PS equations, as well as 
in the most general theory of ZCRs. This problem has been already studied in the paper 
[38], by identifying a cohomological obstruction to removability and providing an effective 
method for the elimination of trivial parameters. In Chapter 4, as discussed below, we 
consider another important problem which is that of constructing families of ZCRs (or linear 
problems) depending on nontrivial parameters.

In [20] Chern and Tenenblat obtained characterization results for evolution equations 
of the form zt = F (z, z1, ..., zk) (from now on we denote zi = ), under the  assumptions 
that 𝑓ij = 𝑓ij(z, z1, ..., zk) and 𝑓21 = η, where η is a parameter. . In the same paper the 
authors also considered a similar problem for equations of the form z1,t = F (z, z1, ..., zk). 
A noteworthy result of this study was an effective method for the explicit determination 
of entire new classes of differential equations that describe pseudospherical surfaces. 
Motivated by the results of [20], in a series of subsequent papers [30, 46, 47, 48], the same 
method was systematically implemented and new classes of pseudospherical equations 
were identified still with the basic assumption that 𝑓21 = η. Then in [18] the authors showed 
how the geometric properties of pseudospherical surfaces may provide infinite number of 
conservation laws when the functions 𝑓ij are analytic functions of the spectral parameter η.

In 1995, Kamran and Tenenblat [34] generalized the results of [20] by giving a 
complete characterization of evolution equations of type zt = F (z, z1, ..., zk) which describe 
pseudospherical surfaces, in terms of necessary and sufficient conditions that have to be 
satisfied by F and the functions 𝑓ij = 𝑓ij(z, z1, ..., zk) , with no further additional conditions. 
Another generalization of [20] came in 1998 by Reyes who considered in [49] evolution 
equations of the more general form zt = F (x, t, z, z1, ..., zk), allowing x, t to appear explicitly 
in the equation and assuming that 𝑓ij = 𝑓ij((x, t, z, z1, ..., zk) and 𝑓21 = η. Then, in a subsequent 
series of papers [50]-[52] Reyes also studied other aspects of such equations.

In 2002, differential systems describing pseudospherical surfaces or spherical 
surfaces (with constant positive curvature metrics) were studied by Ding-Tenenblat in [24]. 
Such systems include equations such as the nonlinear Schr¨odinger equation and the 
Heisenberg Ferromagnet model, and large new families of differential systems describing 
pseudospherical surfaces were obtained. In particular, these families have relations with 
those obtained by Fokas in [27].

Also we mention that a higher dimensional geometric generalization of the sine- 
Gordon equation, characterizing n-dimensional sub-manifolds of the Euclidean E2n−1 with 
constant sectional curvature K = −1, was considered in [62] and its intrinsic version as a 
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metric on open subsets of ℝ𝑛, with K = −1, was studied in [7], by applying inverse scattering 
method. Other differential n-dimensional systems that are the integrability condition of 
linear systems of PDEs can be found in the so called generating system (see [61] and its 
references).

The several characterization results obtained in [20, 34, 49] are extremely useful, 
either in checking if a given differential equation describes pseudospherical surfaces or in 
generating large families of such equations. For instance, as an application of [34], Gomes 
[29] and Catalano-Tenenblat [17] classified evolution equations of the form zt = z5 + G(z, z1, 
z2, z3, z4) and zt = z4 + G(z, z1, z2, z3), respectively, under the auxiliary assumptions that 𝑓21 
and 𝑓31 are linear combinations of 𝑓11. More recently, the same assumptions have been used 
by Silva and Tenenblat in [14] to give a classification of third order equations of the form zt = 
z2,t + λzz

3 + G(z, z1, z2), with λ ∈ ℝ.

The results of [14, 17, 29] permit the explicit description of huge classes of equations 
describing pseudospherical surfaces which, apart from the already known examples, 
represent a great amount of new equations whose physical relevance is highly expected. 
For example, some applications of equations classified by Rabelo and Tenenblat [6, 30, 46, 
47] have been recently discussed by Sakovich in a series of papers (see for instance [55]). 
Of course, the same should occur in the case of results obtained in [14, 17, 29].

In Chapter 2 we give a classification of PS equations of the form

with associated 1-forms

such that 𝑓ij = 𝑓ij(x, t, z, z1) and

The main result of this classification shows that these evolution equations fall into 
three classes, further referred to as types. In each type, differential equations and associated 
linear problems can be easily obtained by choosing some arbitrary differentiable functions. 
Examples of such equations are the already known Svinolupov-Sokolov equations admitting 
higher weakly nonlinear symmetries [43], Boltzman equation, Marvan equation [39] and 
reaction-diffusion equations like Murray equation. Many other examples are presented 
forward the end of Section 2.2 and in Section 2.5.

In Chapter 3 we study the problem of determining local isometric immersion of the 
families of pseudospherical surfaces described by the PS equations classified in Chapter 2, 
as well as for that described by some simple generalizations.
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From the classical theory of Monge-Ampère equations of the form 𝑓,xx 𝑓,tt − 𝑓xt
2  = 

K, it follows that surfaces of constant Gaussian curvature K always admit local isometric 
immersions in E3. However, due to Hilbert theorem, there exists no complete isometric 
immersion of bidimensional Riemannian metrics with Gaussian curvature K = −1 in E3. 
Hence, in particular, any given pseudospherical surface described by a PS equation Ɛ 
admits a local isometric immersion.

Hence, in view of the Bonnet theorem, to any generic solution z of Ɛ, it is associated 
a pair (I[z], II[z]) of first and second fundamental forms, which solves the Gauss-Codazzi 
equations and describes a local isometric immersion into E3 of the associated pseudospherical 
surface. However, the dependence of (I[z], II[z]) on z may be quite complicate and in general 
it is not guaranteed the existence of a pair (I, II) which satisfies Gauss-Codazzi equations 
and smoothly depends on the generic solutions z of Ɛ . In particular, the domain of the local 
immersion of the pseudospherical surface associated to a generic solution z is in general a 
subset of the domain of z, and by passing to generic solution z' these domains could change 
as well.

Nevertheless such a pair (I, II), which satisfies Gauss-Codazzi equations and 
smoothly depends on the solutions z, may still exist for some very special equations. An 
example is provided by the sine-Gordon equation with ω1, ω2 and ω3 given by (0.0.1): indeed 
in this case one has  and it is known (see for instance 
[61], Theorem 2.4) that Gauss-Codazzi equations are integrable and admit the second 
fundamental form II = ±2 sin(z) dx dt as an explicit solution. Hence one can always find 
local isometric immersions of pseudospherical surfaces corresponding to generic solutions 
of sine-Gordon equation.

Hence, in view of sine-Gordon example, it is natural to ask whether are there other 
PS equations which admit such a local isometric immersion for the described family of 
pseudospherical surfaces.

Recently this question has been investigated by T. Castro Silva, N. Kahouadji, 
N. Kamran and K. Tenenblat in the papers [13, 32, 33], under the assumption that the 
coefficients of the second fundamental form II depends on finitely many derivatives of z and 
does not explicitly depend on x and t. In [32, 33] they provided an answer in the case of k-th 
order evolution PS equations zt = F (z, z1, ..., zk) and second order hyperbolic PS equations 
z1,t = F (z, z1), by restricting the study to the classes of 1-forms {ω1, ω2, ω3} classified in [20] 
and [47]. Analogously, in [13] they provided an answer in the case of PS equations of the 
form zt − z2,t = λzz3 + G(z, z1, z2), λ ∈ ℝ, by restricting the study to the classes of 1-forms {ω1, 
ω2, ω3} classified in [14].
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The results of these papers prove that, in the class of PS equations, the property 
of admitting local isometric immersions of the type considered above is exceptional since 
it holds only for some special classes of PS equations. In particular it turns out that sine- 
Gordon equation occupies a particularly special place amongst all these PS equations. 
Indeed, in view of the second fundamental form II = ±2 sin(z) dx dt, for the sine-Gordon 
equation the restriction (I[z], II[z]) of the pair (I, II) to a given generic solution z, defined on 
a domain U ⊂ ℝ2, is still defined on the same domain U without additional requirements. 
On the contrary, for all the other examples identified in the papers [13, 32, 33] the second 
fundamental form is only defined on a strip contained in the domain of a considered generic 
solution. Moreover, on the immersed pseudospherical surface defined by any given generic 
solution z of sine-Gordon equation, the normal curvatures a, c and the geodesic torsion b 
in the directions e1 and e2 dual to ω1 and ω2 (see sub-Section 1.1 of Chapter 1) depend 
explicitly on the particular solution z: indeed one can prove that for the sine-Gordon equation 
a = ±2/tg(z), whereas b = ±1 and c = 0. On the contrary, for all the other examples identified 
in the papers [13, 32, 33] one has that a, b and c are independent of z, and only depend on 
x and t. Hence we can say that the local isometric immersions of pseudospherical surfaces 
described by sine-Gordon equation have the property of having “z-dependent” functions a, 
b and c.

The aim of Chapter 3 is that of continuing the investigations of papers [13, 32, 33] 
in the case of evolution PS equations classified in Chapter 2, and for a simple k-th order 
generalization of equations of Type I. Indeed, by first considering PS equations of the form 
zt = A(x, t, z)z2 + B(x, t, z, z1) with 𝑓21 = η classified in Chapter 2, we found that only Type I 
equations admit these kind of local isometric immersions. Then, on the base of this result, 
we found an extension to the case of k-th order evolution equations in conservation law 
form Dt (f (x, t, z)) = Dx (Ω (x, t, z, z1, . . . , zk)). As a result, we found that in the class of PS 
equations admitting local isometric immersions one also has second order equations like 
Boltzmann, Murray and Svinolupov-Sokolov equations, as well as higher order equa- tions 
like Kuramoto-Sivashinsky, Sawada-Kotera and Kaup-Kupershmidt equations and also full 
hierarchies of integrable equations like Burgers, mKdV and KdV, which were not covered by 
the results of previous papers [32, 33]. However, it is noteworthy to observe that the special 
character of sine-Gordon equation is still confirmed by these results: sine-Gordon equation 
is the unique known example of a PS equation where the pair (I, II) has “z-dependent” 
functions a, b and c (see Section 1.1).

Finally in Chapter 4 we discuss a method which uses the theory of classical 
symmetries of differential equations to construct nontrivial 1-parameter families of ZCRs, 
for 𝖌-valued ZCRs with 𝖌 a Lie sub-algebra of 𝖌𝖑 (𝑛, ℝ) or 𝖌𝖑 (𝑛, ℂ). The case of ZCRs of PS 
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equations corresponds to the special case 𝖌 = 𝖘𝖑 (2, ℝ).

While studying a differential equation, it is not unusual to know only a non-parametric 
ZCR or even a trivial 1-parameter family of ZCRs [21, 37, 54, 60]. Hence, the problem of 
constructing nontrivial 1-parameter families of ZCRs is of special interest for the application 
of the theory of ZCRs. In such cases one is naturally faced with the embedding problem of 
a given nonparametric ZCR into a nontrivial 1-parameter family of ZCRs.

Due to the importance of this problem, various attempts have been already made to 
provide any effective embedding method. Among these the symmetry method, first suggested 
in [37, 56] and further developed in the papers [22, 21, 36], is particularly representative.

In its original formulation, the symmetry method allows one to embed a given ZCR α 

into a 1-parameter family of ZCRs αλ of Ɛ, via the action on α of a 1-parameter group Aλ of 
projectable point symmetries of Ɛ. However, in general, a 1-parameter group Aλ may be not 
“good” in the sense that the induced embedding may result in a trivial 1-parameter family 
αλ. Hence, to solve this problem, the authors of [21] suggested to compare the symmetry 
algebras of Ɛ and its covering, and conjectured that “good” symmetry groups Aλ can be 
identified by a mismatch of these algebras. However, that conjecture remained unproved.

The aim of Chapter 4 is that of further developing the symmetry method, by taking 
into consideration the action of any kind of classical symmetry, and prove an infinitesimal 
criterion which is particularly effective in the identification of “good” inwfinitesimal classical 
symmetries, i.e., those symmetries which can be used to embed α into a nontrivial family αλ 
of ZCRs of Ɛ. According to that criterion we show that, relatively to α, one may distinguish 
classical infinitesimal symmetries of Ɛ into gauge-like symmetries and non gauge-like 
symmetries. The first type of symmetries form a Lie sub-algebra of the Lie algebra of 
symmetries of Ɛ and only produce trivial 1-parameter families of ZCRs. On the contrary, any 
1-parameter family αλ constructed with the flow of a non gauge-like symmetry is nontrivial. 
These results are illustrated with some examples in Section 4.3 and have been recently 
reported in the paper [15].

We note that Marvan also formulated in [40] an embedding method which is alternative 
to the symmetry method discussed in Chapter 4. Both methods may be considered 
completely algorithmic, however the symmetry method is computationally more simple than 
Marvan’s method, when a non gauge-like symmetry exists.
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PRELIMINARIES

CAPÍTULO 1

For the reader’s convenience we collect here some useful facts, and notations used 
throughout the thesis. The interested reader should refer to the general references [12, 20, 
34, 38, 41, 44, 45, 53, 61, 63] for further details.

In particular, in Section 1.1 we review some useful elements of classical theory of 
surfaces in terms of moving frame formalism. Then, in Sections 1.2 and 1.3 we collect the 
material on PS equations used in the Chapters 2 and 3. Finally, in Sections 1.4, 1.5 and 
1.6 we review the basic material on the geometric theory of differential equations and zero-
curvature representations (ZCRs) in the form which is used in the Chapter 4.

ELEMENTS OF SURFACES THEORY WITH MOVING FRAMES

In the 3-dimensional Euclidean space E3, with the canonical scalar product <, >, let r 
= r(x1, x2) be a local chart of a regular surface M. By naturally extending the scalar product to 
E3-valued 1-forms, the first and second fundamental forms of M are respectively defined by

with

denoting the unit normal to M and

The principal curvatures and principal directions of M are the eigenvalues and 
eigenvectors of the shape operator P defined as II(X, Y) = I(PX, Y), for any pair X, Y of 
vector fields tangent to M .

According to G. Darboux and E. Cartan the geometry of surfaces can be conve- 
niently described by using the formalism of moving frames on M, which in the context 
considered here are orthonormal frames {e1, e2, e3 = n} of vector fields with e1 and e2 tangent 
to M, and locally parametrized on the domain U ⊂ ℝ2 of the chart r. Indeed, since dr takes 
values in the tangent plane to M, one has that

with ω1 and ω2 dierential 1-forms dened on U. On the other hand, in view of < ei; ej > = δij , 
one has
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with differential 1-forms ωij defined on U and such that

Hence, in terms of these 1-forms the first and second fundamental forms read

where ωi(ej) = δij. In particular, this means that {ω1, ω2} is a coframe on M dual to the 
orthonormal frame {e1, e2}.

Equations (1.1.1-1.1.2) are the Gauss-Weingarten equations of classical theory of 
surfaces, in the form of a first order system, whose compatibility conditions can be easily 
obtained in view of d2 = 0. Indeed, from d2r = d2ei = 0 one easily gets the Cartan’s structure 
equations

and

It follows that, in view of (1.1.3), the connection 1-form ω12 is completely determined 
by

whereas, equation (1.1.4) entails that ω1 ∧ ω2 ∧ ω13 = ω1 ∧ ω2 ∧ ω23 = 0 and hence one can 
write ω13 and ω23 as

with a, b, c differentiable functions on U, whose geometric interpretation is as follows (see 
for instance [12]): functions a and c are the normal curvatures of M in the directions of e1 
and e2, respectively; b (resp., −b) is the geodesic torsion in the direction of e1 (resp., e2).

Therefore equations (1.1.5) reduce to
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with

being the Gaussian curvature of M in terms of its extrinsic geometry, and

This way one easily gets the Gauss and Codazzi equations of the classical theory 
of surfaces.

Equations (1.1.8-1.1.9) and (1.1.10) are the compatibility conditions of Gauss- 
Weingarten equations (1.1.2).

It follows that the 1-forms ω1, ω2 and the connection form

satisfy the equations

In particular, the structure equations (1.1.11) describe the intrinsic geometry of the 
surface M. Moreover, since in view of (1.1.6) the 1-form ω3 is completely determined by 
{e1, e2} and {ω1, ω2}, and hence it only depends on the intrinsic geometry of M, then the 
third equation of (1.1.11) provides a proof of Gauss’ teorema egregium, which states that 
K does not depend on the extrinsic geometry of M and is completely determined by first 
fundamental form I. The extrinsic geometry of M, on the other side, is described by the 
Gauss-Weingarten equations (1.1.1-1.1.2), provided that their compatibility conditions 
(1.1.10) and (1.1.9) are satisfied.

Finally we remember here the classical Bonnet theorem which states that given two 
symmetric bilinear forms I and II on U ⊂ ℝ2, which satisfy (1.1.8-1.1.9) and (1.1.10) and 
with I positive-definite, for every p ∈ U there exists a neighborhood V ⊂ U of p and a 
diffeomorphism r : V → r(V) ⊂ ℝ3 such that the regular surface r(V) ⊂ E3 has I and II as 
first and second fundamental forms, respectively, and r is unique up to isometries of E3. 
The mapping r is a local isometric immersion of the Riemannian manifold (U, I), and in the 
particular case when I is pseudospherical, i.e. when I is such that K = −1, it is also classically 
known that such a local isometric immersion of (U, I) in E3 always exists. Observe that, in 
the case of a pseudospherical surface, equations (1.1.11) reduce to the structure equations 
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of pseudospherical surfaces used throughout this work.

PS EQUATIONS

If (M, g) is a 2-dimensional Riemannian manifold and {ω1, ω2} is a coframe, dual to an 
orthonormal frame {e1, e2}, then  and ωi satisfy the structure equations: dω1 = 
ω3 ∧ ω2 and dω2 = ω1 ∧ ω3, where ω3 denotes the connection form defined as ω3(ei) = dωi(e1, 
e2). The Gaussian curvature of M is the function K such that dω3 = −Kω1 ∧ ω2.

We say that a k-th order differential equation Ɛ for a real-valued function z=z (x, t), 
describes pseudospherical surfaces, or that it is a PS equation, if it is equivalent to the 
structure equations of a surface with Gaussian curvature K = −1, i.e.,

where {ω1, ω2, ω3} are 1-forms

such that ω1 ∧ ω2 � 0 and fij are functions of x, t, z(x, t) and derivatives of z(x, t) with respect 
to x and t.

Notice that according to the definition ω1 ∧ ω2 is generically nonzero on the solutions 
of a PS equation Ɛ. However, this condition does not guarantee the property that, for any 
solution z : U ⊂ ℝ2 → ℝ, the restriction (ω1 ∧ ω2)[z] of ω1 ∧ ω2 to z is everywhere nonzero 
on U. Relatively to a given system of 1-forms {ω1, ω2, ω3}, we will call generic a solution z : 
U ⊂ ℝ2 → ℝ such that (ω1 ∧ ω2)[z] is almost everywhere nonzero on U, i.e., it is everywhere 
nonzero except for a subset of U of measure zero. Thus, for any generic solution z : U ⊂ ℝ2 
→ ℝ R of a PS equation Ɛ, the restriction I[z] of  to z defines almost everywhere 
a Riemannian metric I[z] on the domain U with Gaussian curvature K = −1. It is in this sense 
that one can say that a PS equation describes, or parametrizes, a family of non-immersed 
pseudospherical surfaces.

A classical example is the KdV equation zt = zxxx + 6zzx, which corresponds to

with η ∈ ℝ. Another classical example is the sine-Gordon equation zxt = sin (z), which 
corresponds to
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with η ∈ ℝ − {0}.

Another example is the nonlinear dispersive wave equation (Camassa-Holm)

which corresponds to

with η ∈ ℝ.

PS equations can also be characterized in few alternative ways. For instance, the 
system of equations (1.2.1) is equivalent to the integrability condition of the linear system

where vi = vi (x, t).

Another interpretation comes by the use of the 𝖘𝖑 (2, ℝ)-valued 1-form

with X and T being the 𝖘𝖑 (2, ℝ)-valued smooth functions (also known as Lax pair in matrix 
form)

Indeed, equations (1.2.1) are equivalent to

This means that, for any solution z = z (x, t) of Ɛ, defined on a domain U ⊂ ℝ2, Ω is a 
Maurer-Cartan form defining a flat connection on a trivial principal SL (2, ℝ)-bundle over U 
(see for instance [25, 58]).

Moreover, by using the notation V := (v1, v2)T , (1.2.3) can be written as the linear 
problem
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It is easy to show that equations (1.2.1) are equivalent to the integrability condi- tion 
of (1.2.6), namely

where Dt and Dx are the total derivative operators with respect to t and x, respectively. In 
the literature [23] 1-form Ω, and sometimes the pair (X, T) or even (1.2.7), is referred to as 
an 𝖘𝖑(2, ℝ)-valued zero-curvature representation for the equation Ɛ. Moreover, the linear 
system (1.2.3) or (1.2.6) is usually referred to as the linear problem associated to Ɛ .

Remark 1.2.1. It is noteworthy to remark that saying that an equation Ɛ admits an 
𝖘𝖑(2, ℝ)-valued zero-curvature representation is not equivalent to say that Ɛ is a PS equa- 
tion. Indeed, for Ɛ describing pseudospherical surfaces it is required that the functions 𝑓ij 
in (1.2.5) satisfy the non-degeneracy condition ω1 ∧ ω2 = (𝑓11𝑓22 − 𝑓12𝑓21) dx ∧ dt � 0, which 
guarantees that  is generically non-degenerated.

It is this linear problem that, in some cases, is used in the construction of explicit 
solutions of PS equations, by means of inverse scattering method [4, 5, 28]. In particular, 
when 𝑓21 = η, where η is a parameter and 𝑓11, 𝑓31 are independent of η, the linear problem 
(1.2.6) is the so called AKNS system [1].

We notice that, under the gauge transformation X → XS = S X S−1 + DxS S−1, T → TS 
= S T S−1 + DtS S−1, where S is an SL(2, ℝ)-valued smooth function, left hand side of (1.2.7) 
transforms to

and hence (1.2.7) is invariant. However, one should be aware of the fact that such a gauge 
transformation may not preserve the condition ω1 ∧ ω2 = (𝑓11𝑓22 − 𝑓12𝑓21) dx ∧ dt � 0.

For  instance, with 𝑓11 = eηxz = −𝑓31, 𝑓12 = eηx (zx + z2) = −𝑓32, 𝑓21 = η, 𝑓22  = 0, the pair 
X, T given by (1.2.5) defines an 𝖘𝖑(2, ℝ)-valued zero-curvature representation of Burgers 
equation zt = zxx + 2zzx, which transforms to

under the transformation given by 

Therefore under the transformation defined by S, 𝑓ij transforms as , 
for (i, j) � (2, 1), and  Hence , whereas 
Throughout this thesis, partial derivatives of z = z(x, t) of order i with respect to x will be 
denoted by zi, i.e.,



Preliminaries 14

Hence, an evolution equation of order k will be written in the form

It is noteworthy to remark that equations in conservation law forms are PS equations, 
as stated by the following easy to prove

Theorem 1.2.2. The k-th order evolution equations of the form

where 𝑓 = 𝑓 (x, t, z), Ω =  Ω (x, t, z, z1, ..., zk−1) are arbitrary differentiable functions, such that 
𝑓,z Ω,zk−1 � 0 on a nonempty open set, is a PS equation with associated 1-forms ωi = 𝑓i1 dx + 
𝑓i2 dt of one of the following two alternative types:

a.	              

where ϵ = ±1, g = g(t) is an arbitrary differentiable function and η2 + (g')2 � 0.

b.	            

where g = g(t) is an arbitrary differentiable function and η2 + (g')2 � 0.

Remark 1.2.3. The class of PS equations described by Theorem 1.2.2 may be 
thought as being a generalization to k-th order of the Type I class of PS equations obtained 
in Chapter 2.

FINITE-ORDER LOCAL ISOMETRIC IMMERSIONS OF SURFACES 
DESCRIBED BY PS EQUATIONS

In view of (1.2.2) and (1.1.7), the second fundamental forms of local isometric 
immersions of surfaces described by the solutions of a PS equation have the form

with
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and a, b, c differentiable functions of x, t, z and derivatives of z with respect to x and t. 
It follows that, using the total derivative operators Dx and Dt, the two Codazzi equations 
(1.1.10) and the Gauss equation (1.1.9) have the form

and

respectively.

In view of Bonnet theorem, the local isometric immersion of the pseudospherical 
surfaces described by the space of solutions of a PS equation exist if and only if there exist 
a solution {a, b, c} of (1.3.2-1.3.3). In this thesis we will restrict the problem of determining 
such a triple {a, b, c} in the case of PS equations described by Theorem 2.2.1, and also 
Theorem 1.2.2, under the assumption that the triple {a, b, c} is of finite-order, i.e., depends 
only on x, t, z and finitely many derivatives of z with respect to x and t. We will refer to local 
isometric immersions described by such a finite-order triple {a, b, c}, as finite-order local 
isometric immersions.

SYMMETRIES OF DIERENTIAL EQUATIONS

Let π : E → M be a fiber bundle, with dim M = n and dim E = n + m. For any k ∈ ℕ 

we denote by Jk(π) the manifold of k-th order jets of sections of π and by πk : Jk(π) → M the 
k-order jet bundle of sections of π. By definition, a point θ of Jk(π) is an equivalence class 

 of smooth sections s of π whose graphs at a ∈ M pass through the same point s(a), 
where they have the same contact up to order k. Hence, any section s of π together with 
its derivatives up to order k determines a section jk(s) of πk which is called the k-th order 
prolongation of s. For h > k we denote by  the natural projection of 
Jh(π) onto Jk(π), given by 

Denoting by {x1, ..., xn} local coordinates on M and by {z1, ..., zm} local fiber coordinates 
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of π, the induced natural coordinates on Jk(π) will be , where i ∈ {1, ..., n}, j ∈ {1, 
..., m} and σ = (σ1, ..., σn) is a multi-index of order |σ| = σ1+...+σn such that 0 ≤ |σ| ≤ k.  
By definition, if , then xi (θ) := xi (a) and  Throughout the 
thesis, C∞(M) will denote the algebra of smooth functions on M and ℱk(π) will denote the 
algebra of smooth functions on Jk(π).

The k-th order jet space Jk(π) is naturally equipped with the Cartan distribution Ck(π), 
which is spanned by tangent planes to graphs of k-th order jet prolongations of sections 
of π. In coordinates Ck(π) can be described either as the annihilator of the Pfaffian system 

 or as the distribution  
generated  by  the  vector  fields  with 
denoting the k-th order truncated total derivative operators, i.e.,

A k-th order system of differential equations Ɛ, for the sections of π, can be 
geometrically interpreted as a submanifold Ɛ ⊂ Jk(π) and its solutions are just sections s of 
π whose k-th prolongations jk(s) lie in Ɛ. Hence, solutions of Ɛ are sections of π whose k-th 
prolongations are integral manifolds of the induced Cartan distribution Ck(Ɛ) := Ck(π) ∩ T Ɛ 
over Ɛ.

Classical finite symmetries of a k-th order system Ɛ ⊂ Jk(π) are finite symmetries 
of Ck(π) which leave invariant the submanifold Ɛ. Classical infinitesimal symmetries of Ɛ 
are vector fields on Jk(π) which are infinitesimal symmetries of Ck(π) and are tangent to 
Ɛ. Hence, by definition, the flow of an infinitesimal symmetry of Ɛ is a 1-parameter local 
group of local diffeomorphisms which are finite symmetries of Ɛ. A finite symmetry 𝑓 is 
called projectable if 𝑓 ∗(C∞(M)) ⊂ C∞(M). Analogously, an infinitesimal symmetry X is called 
projectable if X(C∞(M)) ⊂ C∞(M).

The explicit description of innitesimal symmetries of Ck(π) is particularly simple. 
Indeed, if one writes , one can show that [44, 63]:

1.	 When m = 1, infinitesimal symmetries of Ck(π) are of the form

where � ∈ Ƒ(π).

2.	 When m > 1, infinitesimal symmetries of Ck(π) are of the form
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where a is any fixed integer in {1, ..., m} and � = (�1, ..., �m) is any smooth vector function 

on J1(π) such that for any j ∈ {1, ..., m} one has , for 

some smooth functions ξi and ηj.

The function � is called the generating function of the k-th order classical symmetry 
, since the symmetry is completely determined by �.

On the other hand, for any h > k, the symmetries  and  generated by � 
project one to the other under the action of the pushforward πh,k∗. Hence it is natural to 
say that  is the prolongation of  to Jh(π). In particular, any classical infinitesimal 
symmetry of Ck(π) is the prolongation of a first order symmetry. However, when m > 1 the 
generating function � = (�1, ..., �m) is always linear in the variables  ’s, hence  
always  projects to the vector field  In such a case 
one may call  the prolongation to Jk(π) of the vector field  on J0(π). Traditionally,  
classical infinitesimal symmetries which are prolongations of vector fields on J0(π) are called 
infinitesimal point symmetries. On the contrary, infinitesimal classical symmetries which are 
not point symmetries are traditionally called infinitesimal contact symmetries. Infinitesimal 
contact symmetries only exist when m = 1, since for m = dim π > 1 one only has infinitesimal 
point symmetries.

In practice, computing infinitesimal classical symmetries Ɛ ⊂ Jk(π) consists in the 
search of generating functions � such that  are tangent to Ɛ. This tangency condition 
returns a linear system of PDEs for the function �, which is usually overdeter- mined and 
hence can be algorithmically studied by taking into consideration the full set of compatibility 
conditions. The analysis of this kind of system is in general more feasible if one makes use 
of symbolic packages like those available in Maple.

The infinite jet space J∞(π) is the inverse limit of the sequence of surjections 
... . By definition, any θ ∈ J∞(π) is a sequence 

θ = {θr} of points θr ∈ Jr(π) such that πh,k(θh) = θk, for all h > k. Of course J∞(π) is not a finite 
dimensional manifold, nevertheless one may introduce a differential calculus on J∞(π) by 
making use of standard constructions of differential calculus over commutative algebras 
[63]. Indeed, by defining the exterior algebra Λ∗(π) of differential forms on J∞(π) as the direct  
limit of the sequences of embeddings  .... , one also 
defines the commutative algebra of smooth functions on J∞(π) as ℱ(π) := Λ0(π).  Since Λ∗  
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(Jk(π)) ⊂ Λ∗ (Jk+1(π)) ⊂ ... , Λ∗(π) is a filtered algebra and one may think of any h-form over 
J∞(π) as an h-form on some finite order jet space; this is true in particular for ℱ(π). It follows 
that the exterior differential d naturally extends to the exterior algebra Λ∗(π) and defines the 
de Rham complex of J∞(π).

Then, the ℱ(π)-module 𝒟(π) of vector fields on J∞(π) is by definition the module 
of all derivations of ℱ(π) which preserve the natural filtration ℱk(π) ⊂ ℱh(π) ⊂ ... of ℱ(π), 
i.e., any Z ∈ 𝒟(π) has an associated filtration degree l ∈ ℕ such that Z(ℱk(π)) ⊆ ℱk+l(π), 
∀k ∈ ℕ. Hence, in coordinates, a vector field Z can be identified with a formal series

, with  It follows that vector fields on J∞(π), contrary 
to the finite dimensional case, do not have in general an associated flow. However, any Z 
with zero filtration degree is the inverse limit of an inverse sequence {Z(k)} of vector fields 
on finite order jet spaces, hence one may define the flow of Z as being the inverse limit of 
a sequence of flows on finite order jet spaces. Moreover, one can define Lie derivative of 
functions, vector fields or forms on J∞(π) in a completely algebraic way. For instance, the Lie 
derivative of a function G ∈ ℱ(π) along a vector field Z ∈ 𝒟(π) is LZ(G) := Z(G), and the Lie 
derivative of Y ∈ 𝒟(π) along Z is LZY := [Z, Y]. Whereas, the Lie derivative of a form ω ∈ Λ∗(π) 
along Z is defined as LZω := iZ(dω) + d(iZω), where iZ denotes the inner product operation iZ 

: Λh(π) → Λh−1(π).

Also J∞(π) is naturally equipped with a Cartan distribution denoted by 𝒞(π) and defined 
as the inverse limit of the sequence of surjections 

 . In coordinates 𝒞(π) can be described either as the annihilator of the 
Pfaffian system , or as the distribution 
generated by the totality of vector fields , where 

denote the total derivative operators.

Given a k-th order equation (or system) Ɛ = {F = 0} ⊂ Jk(π), under regularity conditions 
one may consider the r-th order prolongation Ɛ(r) = {DµF = 0 : 0 ≤ |µ| ≤ r}. Equation Ɛ will be 
called formally integrable if, and only if, Ɛ(r) are submanifolds of Jk+r(π) and the maps πk+r+1,k+r 
: Ɛ(r+1) → Ɛ(r) are smooth fiber bundles, for any r ≥ 0.

By definition the infinite prolongation Ɛ(∞) = {DµF = 0 : 0 ≤ |µ| ≤ 0} of a formally 
integrable equation Ɛ is the inverse limit of the sequence of fiber bundles πk+r+1,k+r : Ɛ(r+1) → Ɛ(r). 
By restricting Λ∗(π) to Ɛ(∞) one gets the exterior algebra Λ∗(Ɛ) of differential forms on Ɛ(∞) and 
in particular the algebra ℱ(Ɛ) of smooth functions on Ɛ(∞). Moreover, since any prolongation 
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Ɛ(r) is naturally equipped with an induced Cartan distribution 𝒞k+r(Ɛ(r)), also Ɛ(∞) is naturally  
equipped with an induced Cartan distribution denoted by 𝒞(Ɛ) and defined as the inverse 
limit of the sequence of surjections  . Hence one may 
further extend the notion of symmetry for a system Ɛ: a vector field Z ∈ 𝒟(π) is a symmetry 
of Ɛ(∞) if, and only if, Z is a symmetry of 𝒞(π) which is tangent to EƐ(∞). These symmetries are 
called generalized symmetries of Ɛ, and we will refer to the restriction Z of a generalized  
symmetry Z to Ɛ(∞) as a restricted generalized symmetry.

Among the generalized symmetries of Ɛ one has the classical generalized symme- 
tries, which by definition are infinite prolongations of classical symmetries of Ɛ: recall that, 
given a classical symmetry Y� of Ck(π), its infinite prolongation  is

In this thesis we are mainly concerned with classical generalized symmetries, since 
these are the only generalized symmetries which always admit a flow. For further details on 
the theory of generalized symmetries see [44, 63].

HORIZONTAL FORMS WITH VALUES IN A LIE ALGEBRA AND ZCRS

Since 𝒞(π) is totally horizontal with respect to the mapping π∞ : J∞(π) → M , the 
tangent bundle 𝒯(π) on J∞(π) decomposes as 𝒯(π) = 𝒱(π) ⊕ 𝒞(π), where 𝒱(π) := Ker (π∞)∗. 
Dually one has , where  and 

 are the ℱ(π)-modules of horizontal and vertical 1-forms on J∞(π)
locally generated by {dxi} and the Cartan forms { }, respectively. More in general, by 
considering , the ℱ(π)-module of r-forms on 
J∞(π) decomposes as . By definition we set ℱ(π) = Λ(0,0)(π). 
Accordingly, the exterior differential splits into the sum d = dH + dV of the horizontal and vertical 
differentials dH : Λ(p,q)(π) → Λ(p+1,q)(π) and dV : Λ(p,q)(π) → Λ(p,q+1)(π), satisfying  
and  In coordinates, horizontal and vertical differentials can be easily 
computed, since they act as graded derivations on Λ∗(π) and for any function 𝑓 ∈ ℱ(π) they 
are such that .

Analogously, given a formally integrable equation Ɛ, since 𝒞(Ɛ) is totally horizontal  
with respect to the mapping , the  tangent bundle 𝒯(Ɛ) on Ɛ(∞) decomposes  
as 𝒯(Ɛ) = 𝒱(Ɛ) ⊕ 𝒞(Ɛ), where  is the vertical bundle on Ɛ(∞). Hence the 
ℱ(Ɛ)-modules Λ(1,0)(Ɛ) and Λ(0,1)(Ɛ) of horizontal and vertical 1-forms on Ɛ(∞), locally generated 
by {dxi} and the restricted Cartan forms , can be used to decompose the ℱ(Ɛ)-
module of r-forms on Ɛ(∞) as . By definition we set ℱ(Ɛ) = Λ(0,0)(Ɛ).  



Preliminaries 20

Accordingly, the restriction  splits into the sum  of the horizontal 
and vertical differentials  and 
, which satisfy  and  In coordinates, dH and dV can 
be  easily computed, since they act as graded derivations on Λ∗(Ɛ) and for any function 𝑓∈ 

ℱ(Ɛ) they are such that , with Di denoting the total  
derivatives restricted to Ɛ(∞). For ease of notation, we will denote Λ(p,0)(π) and Λ(p,0)(Ɛ) by Λp(π) 
and Λp(Ɛ ), respectively.

Given a Lie sub-algebra 𝖌 of 𝖌𝖑(𝑛, ℝ) (or 𝖌𝖑(𝑛, ℂ)), one may consider the exterior 
algebras 𝖌 ⊗ Λ∗(π) and 𝖌 ⊗ Λ∗(Ɛ) of g-valued forms on J∞(π) and Ɛ(∞), respectively. The 
graded algebra of g-valued horizontal forms on J∞(π) and Ɛ(∞), will be denoted by 𝖌 ⊗ Λ∗ 
(π) = �p 𝖌 ⊗ Λp(π) and 𝖌 ⊗ Λ∗ (Ɛ) = �p 𝖌 ⊗ Λp (Ɛ),  respectively. By definition, 𝖌-valued 
horizontal p-forms on J∞(π) (resp., Ɛ(∞)) are generated by 𝖌-valued p-forms Aω, with A 
𝖌-valued functions on J∞(π) (resp., Ɛ(∞)). Then, one may define a skew-symmetric product [ , 
] by linearly extending the product [A1ω1, A2ω2] := [A1, A2] ω1 ∧ ω2, between generators. One 
can check that [ , ] satisfies the following properties:

where r, s and t are the degrees of the 𝖌-valued horizontal forms ρ, σ and τ , respectively, 
on J∞(π) or Ɛ(∞). 

Analogously,  one may define an exterior product  ∧ on 𝖌 ⊗ Λ∗ (π), or 𝖌 ⊗ Λ∗ (Ɛ), by 
linearly extending the product A1ω1 ∧ A2ω2 = A1A2ω1 ∧ ω2.

In the forthcoming sections, for any pair of natural numbers (a, b), the natural 
projections Λ∗ (π) → Λ(a,b)(π) and 𝖌 ⊗ Λ∗ (π) → 𝖌 ⊗ Λ(a,b) (π) will be both denoted by π(a,b). 
Analogously, the projections Λ∗ (Ɛ) → Λ(a,b) (Ɛ) and 𝖌 ⊗ Λ∗ (Ɛ) → 𝖌 ⊗ Λ(a,b) (Ɛ) will be both 
denoted by π(a,b). Moreover, when an explicit reference to equation Ɛ is necessary, instead of 
π(a,b) and dH , we will use  and dH,Ɛ .

We will use the following

Definition 1.5.1. Let Ɛ be a formally integrable equation. A 𝖌-valued zero-curvature 
representation  ZCR) of Ɛ is a non-vanishing 1-form α ∈ 𝖌 ⊗ Λ1 (Ɛ) such that
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A 1-parameter family of 𝖌-valued ZCRs of Ɛ is a smooth map λ ↦ αλ defined on an 
open interval I ⊂ ℝ, such that αλ ∈ 𝖌 ⊗ Λ1 (Ɛ) is a 𝖌-valued ZCRs of Ɛ for any λ ∈ I.

Remark 1.5.2. We notice that (1.5.5) is written sometimes in the literature in the 
following equivalent form dH α − α ∧ α = 0.  We also notice that, since Ɛ(∞) ⊂ J∞(π), any 
element of 𝖌 ⊗ Λ1(Ɛ) can be identified with an element of 𝖌 ⊗ Λ1(π). Hence (1.5.5) can  
also be rewritten as  In  particular, when Ɛ  = {Fj = 0, j 
= 1, ..., h}, under regularity assumptions (i.e., if any prolongation Ɛ(∞), h ≥ 0, is totally non- 
degenerating [44]) (1.5.5) can also be rewritten in “characteristic” form 

, where  This shows that in general (1.5.5) may involve 
differential consequences of Ɛ and, in such a case, (1.5.5) is not equivalent to {Fj = 0, j = 1, 
..., h}.

GAUGE TRANSFORMATIONS, HORIZONTAL GAUGE COM- PLEX AND 
REMOVABILITY OF A PARAMETER FROM A ZCR

Let 𝖌 be the Lie algebra of a matrix Lie group G, and α be a 𝖌-valued ZCR of a 
formally integrable equation Ɛ. As already observed in the particular case 𝖌 = 𝖘𝖑(2, ℝ) of 
Section 1.2, one can check that also in general the 1-form  
is another 𝖌-valued ZCR of Ɛ, for any given G-valued smooth function S on Ɛ(∞). Hence a 
transformation α ↦ αS will be still referred to as a gauge transformation, and αS will be called 
gauge equivalent to α. It is easy to check that , for any pair of G-valued 
smooth functions S1, S2 on Ɛ(∞).

Of course, given a 𝖌-valued ZCR α, one may always embed α into a 1-parameter 
family of g-valued ZCRs  , with Mλ any G-valued smooth function on I × Ɛ(∞). 
However, in such a case, and the parameter λ can always 
be removed by means of a gauge transformation. Also, since for any λ0 ∈ I one has that 

, one may adopt the following.

Definition 1.6.1. Let λ ∈ ]a, b[ ⊂ ℝ and αλ be a 1-parameter family of 𝖌-valued ZCRs 
of Ɛ. The parameter λ is removable from αλ if for any λ0 ∈ ]a, b[ there exists a G-valued 
smooth function Sλ such that Sλ0 = 𝕀 (identity) and . When λ is not removable, αλ 
is called a nontrivial 1-parameter family of 𝖌-valued ZCRs of Ɛ. We will also use the following

Definition 1.6.2. Two 1-parameter families αλ and βη of 𝖌-valued ZCRs of Ɛ are 
called equivalent if there exists some reparametrization λ = 𝑓 (η), 𝑓'(η) � 0, such that αf(η) is 
gauge equivalent to βη.

In the paper [38], Marvan proved that the obstruction to removability of λ from a 
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1-parameter family of 𝖌-valued ZCR αλ is the first cohomology group  of the 
horizontal gauge complex :

where 

Indeed, in view of (1.5.5), the horizontal gauge differential  is such that  
and one has the following

Theorem 1.6.3. (Marvan) If αλ is a 1-parameter family of 𝖌-valued ZCRs for Ɛ, with 
λ ∈ ]a, b[, then  is a 1-cocycle with respect to  In 
particular, the parameter λ is removable if, and only if, there  exists  a  solution K ∈ 𝖌 ⊗ 
Λ0(Ɛ) of the equation

For any solution K of (1.6.1) and λ0 ∈]a, b[, the G-valued matrix Sλ such that 
 is the solution of the Cauchy problem

It is usually true that an integrable equation admits a 𝖌-valued ZCR, for some 
matrix Lie-algebra 𝖌. The cases when such a ZCR is embeddable into a 1-parameter 
family are considered the most important, since the presence of a parameter is crucial 
from many points of view. For instance, it is known [20, 56] that in the case of equations 
describing pseudospherical surfaces, the parameter may guarantee the existence of an 
infinite sequence of nontrivial (and possibly nonlocal) conservation laws, which is usually 
considered a remarkable attribute of integrable equations. Indeed, an equation (or system Ɛ 
of order k in two independent variables (x1, x2) is said to describe pseudospherical surfaces 
if there exists an 𝖘𝖑(2, ℝ)-valued form

with functions 𝑓ij satisfying the non-degeneracy condition

and such that the zero-curvature condition  is equivalent to 
Ɛ. As a consequence, on any Ɛ describing pseudospherical surfaces, the following system 
for ρ = ρ(x1, x2)
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is compatible and the 1-form

represents a nonlocal conservation law for Ɛ. This entails, when fij are analytic functions of a 
parameter λ, that ω can be expanded in a power series , where ωi are possibly 
nonlocal conservation laws for Ɛ. However, this expansion guarantees the existence of an 
infinite sequence of nontrivial conservation laws only when λ is not removable. Indeed, as 
observed in [38], when λ is removable from (1.6.2), one could check that , 
with 𝑓λ a function depending on λ and µ a 1-form independent of λ (the explicit formulas for 
𝑓λ and µ are too huge to be reported here).

More in general, the importance of nontrivial 1-parameter families of ZCRs is also 
clear from the fact that the non-removability of the parameter is crucial for the application 
of some integration techniques, such as the inverse scattering method. For instance, as 
observed in [20], the applications given by Ablowitz et al. in [1] of the inverse scattering 
method concern equations which describe pseudospherical surfaces with a family of ZCRs 
depending on a parameter λ such that

In the paper [16] we used Theorem 1.6.3 to investigate the removability of a 
parameter λ, from the ZCR (1.6.2) of an equation describing pseudospherical surfaces, 
when conditions (1.6.4) are satisfied. Interestingly we found that in the case of evolutive 
equations, (1.6.4) guarantees the non-removability of the parameter.
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SECOND ORDER EVOLUTION PS EQUATIONS

CAPÍTULO 2

In this chapter we give a complete and explicit classification of second order evolution 
PS equations of the form zt = A(x, t, z)z2 + B(x, t, z, z1), with z = z(x, t) and , under 
the assumptions that 𝑓ij = 𝑓ij (x, t, z, z1, z2) and f21 = η. According to this classification, 
the considered PS equations are subdivided into three main classes (referred to as Types 
I-III) together with the corresponding system of 1-forms {ω1, ω2, ω3}. Some already known 
equations are found to belong to the considered class of PS equations, like Svinolupov-
Sokolov equations admitting higher weakly nonlinear symmetries, Boltzmann equation and 
reaction-diffusion equations like Murray equation. Other explicit examples are presented, 
as well.

The chapter is organized as follows. In Section 2.1, we give a preliminary char- 
acterization which naturally led us to distinguish between the generic and special cases 
𝑓11,z � 0 and 𝑓11,z = 0, respectively. In Section 2.2 we state the main result of the chapter, 
Theorem 2.2.1, which classifies the differential equations into Types I-III and we summa- 
rize the classification scheme followed in the subsequent sections. Moreover, we give some 
simple examples from the classes of equations described in the main theorem.   Section 2.3 
is devoted to the complete analysis of the generic case 𝑓11,z � 0, which will lead to identify 
the following types: Type I (a); Type I (b); Type II (a); Type III (a); and Type III (b). Section 
2.4 is devoted to the complete analysis of the special 𝑓11,z = 0, which will lead to identify 
the following remaining types: Type II (b); Type III (c). Finally, in Section 2.5 we provide 
additional examples with the aim of illustrating further aspects of the given classification.

A CHARACTERIZATION OF PS EQUATIONS OF THE FORM zt = A(x, t, z) z2 + B 
(x, t, z, z1)

Necessary and sufficient conditions for equation (1.2.8) to describe pseudospher- 
ical surfaces are given by the following

Theorem 2.1.1. (See [53].) A differential equation of the form (1.2.8) is a PS equation 
with associated 1-forms ωi = 𝑓i1dx + 𝑓i2dt, 1 ≤ i ≤ 3, depending on (x, t, z, ..., zk) if, and only 
if, there exist functions fij satisfying the following conditions
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and such that

In order to obtain classification results of PS equations of the form (1.2.8) one has to 
obtain F and the functions 𝑓ij satisfying (2.1.1-2.1.4).

As a consequence of Theorem 2.1.1, the following theorem gives a characterization 
of the PS equations of the form

Theorem 2.1.2. A differential equation of the form (2.1.5) is a PS equation with asso- 
ciated 1-forms ωi = 𝑓i1dx + 𝑓i2dt, 1 ≤ i ≤ 3, depending on (x, t, z, z1, z2) if, and only if, the 
functions fij have the form

and in addition satisfy non-degeneracy conditions (2.1.1-2.1.2) and the system

where ψi2, i = 1, 2, 3, are differentiable functions

Proof. In view of Theorem 2.1.1, a differential equation of the form (2.1.5) is a PS 
equation with 1-forms ωi depending on (x, t, z, z1, z2) if, and only if, the functions 𝑓ij satisfy 
(2.1.1-2.1.4), with k = 2. Thus, equations (2.1.3) are equivalent to (2.1.6) and 𝑓i2 = 𝑓i2(x, t, z, 
z1), i = 1, 2, 3. On the other hand, under the condition F = Az2 + B, equations (2.1.4) rewrite as
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with

It follows that (2.1.9) is equivalent to the system formed by the equations Ri = 0, i = 
1, 2, 3, together with the following three equations

Then conditions (2.1.7) readily follows by integrating (2.1.10) with respect to 𝑓12, 𝑓22 
and 𝑓32, and by substituting (2.1.7) into the remaining three equations Ri = 0, i = 1, 2, 3, one 
finally gets equations (2.1.8).

In view of Theorem 2.1.2 one has the following

Proposition 2.1.3. Consider a second order PS equation of the form (2.1.5) with 
associated 1-forms ωi = 𝑓i1dx + 𝑓i2dt, 1 ≤ i ≤ 3, depending on (x, t, z, z1, z2). The function 𝑓11 
satisfies the condition 𝑓11,z � 0 if, and only if

with m2, m3 and h2, h3 differentiable functions. 

Proof. 𝑓11,z � 0, the first equation of (2.1.8) gives

Then, by substituting (2.1.12) into the remaining two equations of (2.1.8), one gets
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Therefore, in view of the independence of 𝑓11, 𝑓21, f31, ψ12, ψ22, ψ32 on z1, by deriving 
(2.1.13) twice with respect to z1, it is easily seen that

and (2.1.11) readily follow by an integration of the last two equations.

Conversely, if (2.1.11) holds, then non-degeneracy condition (2.1.2) entails that 
 and consequently that 𝑓11,z � 0.

On the other hand, by solving the third equation of (2.1.8) with respect to B and 
substituting in the remaining two equations, when 𝑓31,z � 0 the following analogue of 
Proposition 2.1.3 can be readily proved.

Proposition 2.1.4. Consider a second order PS equation of the form (2.1.5) with 
associated 1-forms ωi = 𝑓i1dx + 𝑓i2dt, 1 ≤ i ≤ 3, depending on (x, t, z, z1, z2). The function 𝑓31 

satisfies the condition 𝑓31,z � 0 if, and only if

with m1, m2 and h1, h2 differentiable functions.

Solving equations (2.1.8) in general is very complicated, however as proved in 
Sections 2.3 and 2.4 they can be explicitly solved under the assumption 𝑓21 = η. To this end, 
by taking advantage of the suitable form taken by 𝑓31, in view of Proposition 2.1.3, we will 
distinguish between the following two cases:

I.	 Generic case 𝑓11,z � 0, where

in view of Proposition 2.1.3;
II.	 Special case 𝑓11,z = 0.

The generic case will be treated in Section 2.3, whereas the special case will be 
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treated in Section 2.4.

MAIN THEOREM AND SIMPLE EXAMPLES

In this section we present our main classification result, which is Theorem 2.2.1, and 
illustrate some of its concrete applications by means of simple examples.

According to Theorem 2.2.1, a given second order differential equation of the form 
(2.1.5) is a PS equation with associated 1-forms (1.2.2) depending on (x, t, z, z1, z2) and 
satisfying

if it belongs to one of Types I-III classified by theorem. Once a given equation 
is recog- nized to belong to one of these types, Theorem 2.2.1 explicitly gives also the 
associated functions fij. It is noteworthy to observe the possibility to have, in some cases, 
multiple linear problems for the same given equation, which is an interesting feature of the 
given classification since it may provide pairs of non gauge-equivalent linear problems (see 
for instance Example 2.5.6).

The proof of Theorem 2.2.1 is based on the results of the subsequent Sections 
2.3 and 2.4, which are graphically illustrated in the diagrams below where the branches 
occurring in the generic case 𝑓11,z � 0 have been distinguished by means of the following 
functions of m and h (see (2.1.15)):
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According to the diagrams, the analysis of generic case in Section 2.3 leads to 
equations of Types I-III, with linear problems (a) and (b) for Type I, linear problem (a) for 
Type II and linear problems (a) and (b) for Type III. Whereas by analyzing the special case 
𝑓11,z = 0, one gets linear problems (b) and (c) for Type II and III, respectively.

Theorem 2.2.1. A PS equation

with associated 1-forms ωi = 𝑓i1dx + 𝑓i2dt, 1 ≤ i ≤ 3, depending on (x, t, z, z1, z2) and satisfying 
𝑓21 = η, belongs to one of the following types, where δ and G are as in (2.2.2).

Type I

where � = � (x, t, z), ψ = ψ (x, t, z), 𝑓 = 𝑓 (x, t, z) are arbitrary differentiable functions, with 
�𝑓,z � 0 on a nonempty open set, and the following two alternatives occur with g = g(t) an 
arbitrary differentiable function such that η2 + (g')2 � 0:

a.	 the functions 𝑓ij are

with ϵ = ±1;

b.	 the functions 𝑓ij are

Type II

where ϵ1, ϵ2 = ±1, g = g (x, t) and f  = f (x, t, z) are arbitrary differentiable functions with g𝑓,z 
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� 0 on a nonempty open set, and the following two alternatives occur:

a.	 ϵ2 = 1 and the functions 𝑓ij are

with

and m = m(x, t) is an arbitrary differentiable function such that δ = m,x+η (1 − m2) � 0 on a 
nonempty open set;

b.	 ϵ2 = −1, m = 0 (hence δ = η) and the functions 𝑓ij are

with

Type III

where ϵ2 = ±1, 𝑓 = 𝑓 (x, t, z) is an arbitrary differentiable function with 𝑓,z � 0 on a nonempty 
open set, and the following three alternatives occur:  

a.	 ϵ2 = 1, m = m(x, t) and g = g(x, t, z) are arbitrary differentiable functions such that 
−1 < m < 1, δg,z � 0 on a nonempty open set and the functions 𝑓ij are
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with h and q such that

b.	 ϵ2 = 1, m = m(x, t), q = q(x, t) and h = h(x, t) are arbitrary differentiable functions 
such that hβ � 0 on a nonempty open set and the functions 𝑓ij are

with

c.	 ϵ2 = −1, m = 0 (hence δ = η), h = h(x, t), q = q(x, t) are arbitrary differentiable 
functions and the functions 𝑓ij are

with

Here are some examples of equations described by the classification given in this 
chapter. Further examples will be found in Section 2.5.

Example 2.2.2. Burgers equation

is a particular instance of Type I (a), for  Hence, by using Theorem 
2.2.1, one gets that the associated 1-forms ωi = 𝑓i1dx + 𝑓i2dt are given by the functions
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where g = g (t) is an arbitrary differentiable function, ϵ = ±1 and η2 + (g')2 � 0.

Example 2.2.3. Potential Burgers equation

is a particular instance of Type I (b), for 𝑓 = � = ez and ψ = 0. Hence, by using Theorem 
2.2.1, one gets that the associated 1-forms ωi = 𝑓i1dx + 𝑓i2dt are given by the functions

where g = g (t) is an arbitrary differentiable function and η2 + (g')2 � 0.

Example 2.2.4. Equation

is a particular instance of Type II (a), for  
Hence, by using Theorem 2.2.1, one gets that the associated 1-forms ωi = 𝑓i1dx + 𝑓i2dt are 
given by the functions

Example 2.2.5. The equation

is a particular instance of Type III (b), for  
 Hence, by using Theorem 2.2.1, one gets that the 

associated 1-forms ωi = 𝑓i1dx + 𝑓i2dt are given by the functions
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ANALYSIS OF THE GENERIC CASE 𝒇11,Z � 0

The following theorem gives a characterization of PS equations of the form (2.1.5) 
with associated 1-forms (1.2.2) satisfying 𝑓21 = η and 𝑓11,z � 0.

Theorem 2.3.1. A differential equation of the form (2.1.5) is a PS equation with asso- 
ciated 1-forms (1.2.2) depending on (x, t, z, z1, z2) with 𝑓21 = η and 𝑓11,z � 0 if, and only if, B 
has the form

where

with 𝑓11 = 𝑓11 (x, t, z), 𝑓22 = 𝑓22 (x, t, z) and remaining 𝑓ij satisfy the non-degeneracy conditions 
(2.1.1-2.1.2) and have the form

with m = m (x, t),  h = h (x, t), ψ12 = ψ12 (x, t, z), ψ32 = ψ32 (x, t, z) differentiable functions 
satisfying the system

with δ given by (2.2.2).

Proof. The formulas (2.3.3) follow from (2.1.7) and second formula of (2.1.11). Hence, 
solving the first equation of (2.1.8) with respect to B, one gets (2.3.1) with φ1, φ2, φ3 given 
by (2.3.2). Thus, the remaining two equations of (2.1.8) reduce to
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Therefore in view of the independence of A, 𝑓11, 𝑓31, 𝑓22, ψ12 and ψ32 on z1, equations 
(2.3.4) follow from the derivation of (2.3.5) with respect to z1.

The rest of this section is devoted to the characterization of PS equations of the form 
(2.1.5) under the assumption (2.2.1) and with 𝑓11,z � 0. The analysis of this case naturally 
splits into two cases h = 0 and h � 0. In Subsection 2.3.1, we consider the case h = 0, 
whereas in Subsection 2.3.2 we treat the case h � 0.

Subcases with h = 0

According to the diagram of Section 2.2, the analysis of the case {𝑓11,z � 0, h = 0} 
naturally splits into further subcases which finally lead to distinguish the following types of 
equations: Type I (a) with {δ = 0, m = ±1}; Type I (b) with {δ = 0, m � ±1}; Type II (a) with δ � 
0. In this subsection we aim at giving a detailed analysis of these three subcases.

We start with the following auxiliary

Lemma 2.3.2. A differential equation of the form (2.1.5) is a PS equation with 
associated 1-forms (1.2.2) depending on (x, t, z, z1, z2) with 𝑓21 = η and {𝑓11,z � 0, h = 0} if, 
and only if, B has the form (2.3.1) where

with 𝑓11 = 𝑓11 (x, t, z), 𝑓22 = 𝑓22 (x, t) and remaining 𝑓ij satisfy non-degeneracy conditions 
(2.1.1-2.1.2) and have the form

with m = m (x, t), ψ12 = ψ12 (x, t, z), ψ32 = ψ32 (x, t, z), differentiable functions satisfying the 
system

Proof. Under the given assumptions, formulas (2.3.3) entail that (2.3.7) hold. 
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Moreover, the first equation of (2.3.4) implies that 𝑓22 = 𝑓22 (x, t). Thus, by deriving the 
second equation of (2.3.4) with respect to z, one obtains

and (2.3.8) readily follows from (2.3.4) and (2.3.9), as well as (2.3.6) follows from (2.3.2) and 
first equation of (2.3.8).

In the next two subsections we will solve (2.3.8) under the assumption that δ = 0, i.e., 
that m = m (x, t) satisfies the Riccati type equation

Therefore we will distinguish the degenerate cases m = ±1, from the general case 
where (2.3.10) has the solution m = −tanh (ηx + g (t)).

Type I (a)

Using Lemma 2.3.2 one gets the following

Theorem 2.3.3. In the case {𝑓11,z � 0, h = 0, δ = 0, m = ±1}, a differential equation of 
the form (2.1.5) is a PS equation with associated 1-forms (1.2.2) depending on (x, t, z, z1, 
z2) with 𝑓21 = η if, and only if, the differential equation has the form

where � = � (x, t, z), ψ = ψ (x, t, z) and 𝑓 = 𝑓 (x, t, z) are arbitrary functions, such that �𝑓,z � 0 
on a nonempty open set, and the functions 𝑓ij are

with ϵ = ±1 and g = g(t) arbitrary differentiable function such that η2 + (g')2 � 0.

Proof. Under the given assumptions, formulas (2.3.7-2.3.8) entail that 𝑓31 = ϵ𝑓11, ψ32 

= ϵψ12 and 𝑓22 = 𝑓22 (t). Thus, in view of (2.3.1) and (2.3.6), (2.1.5) takes the form

and, by introducing the functions

equation (2.3.13) reduces to (2.3.11). Moreover, in view of (2.3.7), the functions 𝑓ij are given 
by (2.3.12).



Second order evolution PS equations 36

Notice that, the non-degeneracy condition (2.1.1) holds in view of the fact that η2 + 
(g')2 � 0 on a nonempty open set.

The converse of the theorem is a straightforward computation.

Observe that equation (2.3.11) coincides with (2.2.3) and it is referred to as of Type I 
in our main classification result, Theorem 2.2.1.

Remark 2.3.4. It is noteworthy to remark that equation (2.3.11) can be written in the 
form

and by means of the point transformation {x = x, t = t, z = f (x, t, z)}, it reduces to

where z = σ (x, t, z) is inverse of z = f (x, t, z) and � = � (x, t, σ (x, t, z)), ψ = ψ (x, t, σ (x, t, z)).

Type I (b)

Using Lemma 2.3.2 one gets the following

Theorem 2.3.5. In the case {𝑓11,z � 0, h = 0, δ = 0, m /= ±1}, a differential equation of 
the form (2.1.5) is a PS equation with associated 1-forms (1.2.2) depending on (x, t, z, z1, 
z2) with 𝑓21 = η if, and only if, the differential equation has the form

where � = � (x, t, z), ψ = ψ (x, t, z) and 𝑓 = 𝑓 (x, t, z) are arbitrary functions, such that �𝑓,z 
� 0 on a nonempty open set, and the functions 𝑓ij are

with g = g(t) arbitrary differentiable function and η2 + (g')2 � 0.

Proof. Under the given assumptions, from (2.3.10) and (2.3.7-2.3.8) one gets

with m = −tanh (ηx + g (t)) and in addition 𝑓22 = g', since 𝑓11,z � 0. Thus, in view of (2.3.1) and 
(2.3.6), (2.1.5) takes the form

which in its turn reduces to (2.3.14), by introducing the functions
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Then, by taking into consideration (2.3.7), the functions 𝑓ij reduce to (2.3.15).

Notice that, the non-degeneracy condition (2.1.1) holds in view of the fact that η2 + 
(g')2 � 0 on a nonempty open set.

The converse of the theorem is a straightforward computation.

Observe that equation (2.3.14) coincides with (2.2.3) and it is referred to as of Type 
I in our main classification result, Theorem 2.2.1. In particular Remark 2.3.4 still applies to 
equation (2.3.14).

Type II (a)

Using Lemma 2.3.2 one gets the following

Theorem 2.3.6. In the case {𝑓11,z � 0; h = 0; δ � 0}, a dierential equation of the form 
(2.1.5) is a PS equation with associated 1-forms (1.2.2) depending on (x, t, z, z1, z2) with 𝑓21 
= η if, and only if, the dierential equation has the form

where ϵ1 = ±1,

and g = g (x, t), m = m (x, t), f = f (x, t, z) are arbitrary differentiable functions, such that g𝑓,z 
� 0 on a nonempty open set, and the functions 𝑓ij are

Proof. Under the given assumptions, from the second equation of (2.3.8) one gets A 
=  On the other hand, in view of (2.3.7) and the first equation of (2.3.8), the functions 
fij are such that

where 𝑓11 = 𝑓11 (x, t, z), 𝑓22 = 𝑓22 (x, t), 𝑓11 � 0 on a nonempty open set, m = m (x, t) and
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in view of the third equation of (2.3.8). Thus, by (2.3.1) and (2.3.6), (2.1.5) takes the form

and one gets (2.3.16) and (2.3.17-2.3.18), after introducing the dierentiable functions ψ(x, t, 
z), 𝑓 (x, t, z) and g(x, t) such that

with 

Notice that, the non-degeneracy condition (2.1.1) holds in view of the fact that g𝑓,z �  
0 on a nonempty open set.

The converse of the theorem is a straightforward computation.

Observe that equation (2.3.16) coincides with (2.2.6), where ϵ2 = 1 and ψ satisfies 
(2.2.8) and it is referred to as of Type II in our main classification result, Theorem 2.2.1.

Subcases with h � 0

When h � 0, in view of the system (2.3.4), one is naturally lead to distinguish the 
cases G = 0 and G � 0, where G = α + β𝑓11 and α, β are given by (2.2.2). Hence, as 
illustrated in diagram of Section 2.2, the analysis of the case {𝑓11,z � 0, h � 0} naturally leads 
to Type III (a) and Type III (b) equations, which correspond to G = 0 and G � 0, respectively. 
In this subsection we aim at giving a detailed analysis of these two subcases.

We start with the following auxiliary

Lemma 2.3.7. A differential equation of the form (2.1.5) is a PS equation with 
associated 1-forms (1.2.2) depending on (x, t, z, z1, z2) with 𝑓21 = η, 𝑓11,z � 0 and h � 0 if, 
and only if, 𝑓ij satisfy non-degeneracy conditions (2.1.1-2.1.2), equations (2.3.3) hold with

and m = m (x, t), q = q (x, t),  h = h (x, t), 𝑓22 = 𝑓22 (x, t, z), 𝑓11 = 𝑓11 (x, t, z), moreover B has 
the form (2.3.1) with φi given by (2.3.2) and in addition the following differential equation is 
satisfied
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where G = α + β𝑓11 and ; α, β are given by (2.2.2).

Proof. Under the given assumptions, equations (2.3.19) are equivalent to the first 
three equations of (2.3.4). Equation (2.3.20) readily follows from substituting (2.3.19) into 
the last equation of (2.3.4).

It is noteworthy to remark here that, if h = 0, then the condition β = 0 implies that α 
= 0. Indeed, β = 0 entails that  with ϵ1 = ±1 and −1 < m < 1.Then, using 
the obtained expression for h, one can easily check that βx = 2δα/h and hence that α = 0, 
because of β,x = 0 and δ � 0.

Type III (a)

Using Lemma 2.3.7 one gets the following

Theorem 2.3.8. In the case {𝑓11,z � 0, h � 0, G = 0}, a differential equation of the form 
(2.1.5) is a PS equation with associated 1-forms (1.2.2) depending on (x, t, z, z1, z2) with 𝑓21 
= η if, and only if, the differential equation has the form

where 𝑓 = 𝑓 (x, t, z), g = g (x, t, z), m = m (x, t) are arbitrary differentiable functions with δf,z 

g,z � 0 on a nonempty open set, h and q are given by

and the functions 𝑓ij have the form

Proof. Under the given assumptions, one has that G = 0 entails that α = 0, β = 0. 
Hence in view of (2.3.20) one has that
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Then by solving the second equation of (2.3.24) with respect to h one obtains that

with m taking its values in the open interval ]−1, 1[. Thus, by substituting (2.3.25) into the 
third equation of (2.3.24) one concludes that

and the first and fourth equations of (2.3.24) are automatically satisfied.

Now in view of (2.3.19), one gets

and using (2.3.1-2.3.2), (2.1.5) takes the form

where 𝑓11 = 𝑓11 (x, t, z) and 𝑓22 = 𝑓22 (x, t, z) are arbitrary differentiable functions. Moreover 
one has that

and by introducing the differentiable functions 𝑓 = 𝑓 (x, t, z), g = g(x, t, z) such that
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one finally gets (2.3.21) and (2.3.23).

Notice that the non-degeneracy condition (2.1.1) holds in view of the fact that 𝑓,zg,z  
� 0 on a nonempty open set.

The converse of the theorem is a straightforward computation.

Observe that equation (2.3.21) coincides with (2.2.11), where ϵ2 = 1 and h, m and q 
satisfy (2.2.13), and it is referred to as of Type III in our main classification result, Theorem 
2.2.1.

Type III (b)

Using Lemma 2.3.7 one gets the following

Theorem 2.3.9. In the case {𝑓11,z � 0, h � 0,  G � 0}, a differential equation of the form 
(2.1.5) is a PS equation with associated 1-forms (1.2.2) depending on (x, t, z, z1, z2) with 𝑓21 

= η if, and only if, the differential equation has the form

where

𝑓 = 𝑓 (x, t, z), m = m (x, t), h = h (x, t) and q = q (x, t) are arbitrary differentiable functions, 
with h𝑓,z � 0 on a nonempty open set, and the functions fij have the form

Proof. Under the given assumption, by rewriting (2.3.20) as

and using the expression of A, ψ12 and ψ32 provided by (2.3.19) in the formulas (2.3.1- 2.3.2) 
and (2.1.7), one gets that (2.1.5) takes the form
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where 𝑓11 = 𝑓11 (x, t, z), m = m (x, t), h = h(x, t), q = q(x, t) are arbitrary differentiable functions 
and the remaining 𝑓ij are such that

Finally (2.3.27) and (2.3.28) are easily obtained from (2.3.29) and (2.3.30) by 
introducing the new functions 𝑓 and g such that

Notice that the non-degeneracy condition (2.1.1) holds in view of the fact that 𝑓,zg,z � 
0 on a nonempty open set.

The converse of the theorem is a straightforward computation.

Observe that equation (2.3.27) coincides with (2.2.11), where ϵ2 = 1 and g satisfies 
(2.2.15), and it is referred to as of Type III in our main classification result, Theorem 2.2.1.

ANALYSIS OF THE SPECIAL CASE 𝒇11,Z = 0

The following theorem gives a characterization of PS equations of the form (2.1.5) 
with associated 1-forms (1.2.2) satisfying (2.2.1) and 𝑓11,z = 0.

Lemma 2.4.1. A differential equation of the form (2.1.5) is a PS equation with 
associated 1-forms (1.2.2) depending on (x, t, z, z1, z2) with 𝑓21 = η and 𝑓11,z = 0 if, and only 
if, B has the form

where

with 𝑓11 = 𝑓11 (x, t), 𝑓31 = 𝑓31 (x, t, z), 𝑓12 = 𝑓12 (x, t, z), 𝑓22 = 𝑓22 (x, t, z), 𝑓32 = A𝑓31,zz1 + ψ32 (x, 
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t, z) differentiable functions such that

and satisfying the system

Proof. Equations (2.4.1) and (2.4.2) follow by solving the third equation of (2.1.8) with 
respect to B. On the other hand the remaining two equations of (2.1.8) reduce to

and, in view of the independence of 𝑓11, 𝑓31, 𝑓12, 𝑓22, ψ32 with respect to z1, one readily gets 
equations (2.4.4). Finally, non-degeneracy conditions (2.4.3) are direct consequences of 
(2.1.1-2.1.2).

The following two subsections are devoted to the classification of PS equations of 
the form (2.1.5) under the assumption (2.2.1) with 𝑓11,z = 0. This is a special case, where the 
analysis noteworthy simplifies and one only finds the two further types of equations II (b) 
and III (c), as illustrated in diagram of Section 2.2.

Type II (b)

Using Lemma 2.4.1 one gets the following

Theorem 2.4.2. In the case 𝑓11 = 0, a differential equation of the form (2.1.5) is a PS 
equation with associated 1-forms (1.2.2) depending on (x, t, z, z1, z2) with 𝑓21 = η if, and only 
if, the differential equation has the form

where ϵ1 = ±1,

and g = g (x, t), 𝑓 = 𝑓 (x, t, z) are arbitrary differentiable functions, such that g𝑓,z � 0 on a 
nonempty open set, and the functions 𝑓ij have the form
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Proof. Under the given assumptions the system (2.4.4) reduces to

whereas conditions (2.4.3) become η𝑓12,x � 0 and 𝑓31,z � 0 respectively. Thus, (2.4.8) provide

and hence  Then in view of (2.4.1-2.4.2), (2.1.5)  takes 
the form

and by introducing the differentiable functions 𝑓 = 𝑓 (x, t, z) and g = g(x, t) such that

one finally gets (2.4.6) and (2.4.7).

Notice that, the functions 𝑓ij satisfy the non-degeneracy condition (2.1.1) in view of 
the fact that g𝑓,z � 0 on a nonempty open set.

The converse of the theorem is a straightforward computation.

Observe that equation (2.4.6) coincides with (2.2.6), where ϵ2 = −1, m = 0, δ = η 
and ψ satisfies (2.2.10) and it is referred to as of Type II in our main classification result, 
Theorem 2.2.1.

Type III (c)

Using Lemma 2.4.1 one gets the following

Theorem 2.4.3. In the case {𝑓11,z = 0, 𝑓11 � 0}, a differential equation of the form 
(2.1.5) is a PS equation with associated 1-forms (1.2.2) depending on (x, t, z, z1, z2) with 𝑓21 
= η if, and only if, the differential equation has the form
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where

and h = h (x, t), q = q (x, t), 𝑓 = 𝑓 (x, t, z) are arbitrary differentiable functions, such that 𝑓,z � 
0 on a nonempty open set, and the functions fij have the form

Proof. Under the given assumptions, the first and the two last equations of (2.4.4) 
provide

where q = q (x, t) is an arbitrary differentiable function. Then in view of Lemma 2.4.1 one 
gets

and by substituting (2.4.11) into the second equation of (2.4.4) one gets

Hence, in view of (2.4.1-2.4.2), (2.1.5) takes the form

Thus, by introducing the differentiable functions 𝑓 = 𝑓 (x, t, z) and g = g(x, t, z) such 
that
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one gets (2.4.9) and (2.4.10).

Notice that, the functions 𝑓ij satisfy the non-degeneracy condition (2.1.1), since

is nonzero in view of the fact that g,z � 0 on a nonempty open set.

The converse of the theorem is a straightforward computation.

Observe that equation (2.4.9) coincides with (2.2.11), where ϵ2 = −1, m = 0, δ = η 
and g satisfies (2.2.17), and it is referred to as of Type III in our main classification result, 
Theorem 2.2.1.

ADDITIONAL EXAMPLES

Here are some additional examples of equations obtained from the given classication.

Example 2.5.1. Equations classied by Theorem 2.2.1 include the nonlinear second 
order evolution equations admitting "higher weakly nonlinear symmetries", which have been 
classied by Svinolupov and Sokolov [43] and up to contact transformations can be written 
in one of the following forms:

with λ ∈ ℝ and k(x) an arbitrary differentiable function.

Indeed one can readily check what follows:

I.	 The first equation of (2.5.1) is an example of the Type I (a), as well as of Type 
I (b), with 𝑓 = z, � = 1, ψ = z2 +∫k dx. For instance, using formulas (2.3.12), 
one easily gets the corresponding 1-forms

with g = g (t) an arbitrary differentiable function, ϵ = ±1 and η2 + (g')2 � 0. It follows that this 
equation is the integrability condition of a triangular linear problem given by (1.2.6).

The first equation of (2.5.1) is also an example of the Type III (a) with 𝑓 = z − p, g = 
−z − p, m = 0, ϵ1 = −1. Using formulas (2.3.23), one easily gets the corresponding 1-forms
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where p = p (x) satisfies k = p'' − 2pp'.
II.	 The second equation of (2.5.1) is an example of the Type I (a), and Type I (b), 

with 𝑓 = z−1, � = −1, ψ = −λxz−1. Using formulas (2.3.12), one easily gets the 
corresponding 1-forms

with g = g (t) an arbitrary differentiable function, ϵ = ±1 and η2 + (g')2 � 0. It follows that this 
equation is the integrability condition of a triangular linear problem given by (1.2.6).

III.	 The third equation of (2.5.1) is an example of the Type I (a), and Type I (b), 
with  Using formulas (2.3.12), one 
easily gets the corresponding 1-forms

with g = g (t) an arbitrary differentiable function, ϵ = ±1 and η2 + (g')2 � 0. It follows that this 
equation is the integrability condition of a triangular linear problem given by (1.2.6).

IV.	 The fourth equation of (2.5.1) is an example of the Type I (a), and Type I (b), 
with . Using formulas (2.3.12), one 
easily gets the corresponding 1-forms

with g = g (t) an arbitrary differentiable function, ϵ = ±1 and η2 + (g')2 � 0. It follows that this 
equation is the integrability condition of a triangular linear problem given by (1.2.6).

Similar results have been obtained by Reyes in [49].

Remark 2.5.2. It is noteworthy to note that for all the linear problems of previous 
example the parameter η is always removable. Indeed η is removable from the linear 
problems described by Theorems 2.3.3 and 2.3.5 by means of the gauge transformation 
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defined by

In fact, under such a transformation, the 1-forms ωi of Theorem 2.3.3 are transformed 
to

whereas the 1-forms ωi of Theorem 2.3.5 are transformed to

Notice that, despite the analogy between (2.5.3) and (2.5.4), it may be checked that 
the corresponding zero-curvature representations are not gauge equivalent.

On the other hand one can easily check that by means of the gauge transformation 
defined by

η is removable also from the linear problem given by (2.5.2).

Example 2.5.3. Murray equation

is another example of Type I (a), and Type I (b), corresponding to the choice:

For instance, by using formulas (2.3.12), one easily gets the corresponding 1-forms
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with g = g (t) an arbitrary differentiable function, ϵ = ±1 and η2 + (g')2 � 0. It follows that this 
equation is the integrability condition of a triangular linear problem given by (1.2.6).

Example 2.5.4. Boltzman equation

is another example of Type I (a), and Type I (b), corresponding to the choice:

Using formulas (2.3.15), one easily gets the corresponding 1-forms

with g = g (t) an arbitrary differentiable function and η2 + (g')2 � 0. It follows that this equation 
is the integrability condition of the linear problem given by (1.2.6).

Example 2.5.5. The equation

is the “simplest” member, up to contact transformations, of the class of second order 
evolution equations described by Michal Marvan in [39]. It is another example of Type II (a) 
corresponding to the choice

which, in view of (2.3.18), also gives the corresponding 1-forms

One can check that in view of Theorem 6 of [39], (2.5.6) is up to contact transforma- 
tions the unique equation described by Theorem 2.2.1 which admits an irreducible zero- 
curvature representation. In particular, we notice that the irreducible zero-curvature 
representation obtained in [39] for (2.5.6) coincides with the one obtained from (1.2.6) and 
(2.5.8) by passing to new 1-forms ω1 ↦ ω2, ω2 ↦ ω1 and ω3 ↦ −ω3.
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Example 2.5.6. Burgers equation

can be embedded in Type I (a-b) with 𝑓 = z, � = 1, ψ = z2/2, as well as in Type III (a) with 𝑓 
= z/2, g = −z/2, m = 0, ϵ1 = −1. In particular the linear problem corresponding to Type III (a) 
coincides with the one already given by Chern and Tenenblat in [20].

These two linear problems of (2.5.9) provide of an example of a pair of linear problems 
which are non gauge equivalent. Indeed only the second linear problem admits non gauge-
like symmetries, as one can check by using the method discussed in Chapter 4. Hence, 
the two linear problems must be considered as being structurally different. In particular, as 
shown in Chapter 4, after removing the parameter η with the gauge transformation defined 
by (2.5.5), one can insert a non-removable parameter in the second linear problem by using 
the flow Aλ of the non gauge-like symmetry generated by  Indeed, in this way one 
get the following family of ZCRs of (2.5.9)

which depends on a non-removable parameter λ.

Example 2.5.7. Equation

is another example of Type III (a) corresponding to the choice

with η � 0. Hence equation (2.5.10) is the integrability condition of a linear  depending on a 
parameter η.

This parameter is removable by means of the gauge transformation defined by 
(2.5.5). However, by using the method discussed in Chapter 4, one can easily construct a 
linear problem depending on a non-removable parameter λ.

Indeed, the symmetry generated by  is non gauge-like 
for the given zero-curvature representation and its flow Aλ can be used to insert a non- 
removable parameter λ into it. Indeed, by preliminarily removing the parameter η through 
the gauge transformation defined by (2.5.5), one gets the following family of ZCRs of (2.5.10)
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which depends on a non-removable parameter λ.

Remark 2.5.8. In the context of equations describing pseudospherical surfaces the 
occurrence of differential substitutions that, like the celebrated Cole-Hopf transformation, 
map solutions of an already known integrable equation (e.g. a linear equation) to solutions 
of a new equation, is quite natural. Indeed, as already observed by Reyes (see for instance 
[53]) these substitutions can be often obtained from the following Riccati first order system 
for an auxiliary function Γ = Γ(x, t)

which is naturally defined by the 1-forms ωi = 𝑓i1dx + 𝑓i2dt of an equation describing 
pseudospherical surfaces. This fact is due to the remarkable property that the integrability 
of (2.5.12) is equivalent to the structure equations (1.2.1), and will be illustrated below by 
means of next three examples.

Example 2.5.9. Here we will use the Riccati first order system (2.5.12) to identify a 
dif- ferential substitution which “linearizes” the first equation of (2.5.1) (generalized Burgers 
equation).  To this end we observe that by using the linear problem of Type III (a) given in 
the Example 2.5.1, (2.5.12) takes the form

Hence, by assuming that Γ � 0, (2.5.12) can be rewritten as

We notice that (2.5.13) is well defined whatever is the value of η and in particular that 
it is defined also for η = 0.

When η = 0, if p = p(x) is such that p'' − 2pp' = k(x) then (2.5.13) provides the 
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differential substitution

which transforms the nonzero solutions of the linear equation

to solutions of the generalized Burgers equation

When p = 0 above transformation reduces to the celebrated Cole-Hopf transformation.

Example 2.5.10. Here we will use the Riccati first order system (2.5.12) to identify a 
differential substitution which “linearizes” equation (2.5.10). To this end we observe that by 
using the linear problem (2.5.11), (2.5.12) takes the following form

Hence, by assuming that Γ � 0, (2.5.12) can be rewritten as

Also in this case, the Riccati system is well defined also for the particular value η = 0 
by which it provides the differential substitution

transforming the nonzero solutions of the linear equation

to solutions of (2.5.10), i.e.,

Example 2.5.11. Another application of the method illustrated in the last two 
examples can be given by considering the following class of equations

where A1 = A1 (x, t) and A2 = A2 (x, t) are arbitrary differentiable functions, with A2 � 0.

Equations (2.5.15) are of Type III (a), as one can check by taking
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in the equation (2.2.11). As in the previous example, we will use the Riccati system (2.5.12) 
to show that the whole class (2.5.15) can be “linearized” by using a differential substitution.

Indeed, in view of (2.5.16), by using the corresponding 𝑓ij, the Riccati system (2.5.12) 
takes the following form

and assuming that Γ � 0 it can be rewritten as

Thus, since for η = 0 the system (2.5.17) reduces to

it follows that the non-vanishing solutions of the linear equation

are transformed by means of  to solutions of the nonlinear equations (2.5.15).

More in general, it is not difficult to prove that the class of equations

where A0 = A0 (x, t), A1 = A1(x, t) and A2 = A2 (x, t) � 0 are arbitrary differentiable functions, 
is the most general class of equations of the form zt = F (x, t, z, z1, z2) which can be 
“linearized”, in the above sense, to

by means of the “Cole-Hopf” differential substitution

Equations (2.5.15) are just obtained from (2.5.18) by choosing A0 = −A2,xx + A1,x.

Remark 2.5.12. According to the convention introduced by Calogero in [10], 
equations like Burgers and those considered in the Examples 2.5.9, 2.5.10 and 2.5.11 are 
called C-integrable. On the other hand, the type of equations considered by Svinolupov and 
Sokolov in [43] is sometimes referred to as symmetry-integrable. It is noteworthy to remark 
here that these two notions of integrability are not coincident. Indeed one has examples of 
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equations, like Burgers equation, which are both C-integrable and symmetry- integrable. 
However it is easy to find examples of equations which are integrable in a sense but not 
in the other. For instance, equation (2.5.10) is C-integrable but it is neither linearizable by 
contact transformations (Indeed Cole-Hopf transformation is not a contact transformation) 
nor equivalent to one of the four equations (2.5.1). Indeed, the algebra of classical 
symmetries of (2.5.10) is 3-dimensional and hence (2.5.10) cannot be contact equivalent to 
a linear equation. On the other hand, it can also be shown that none of the four equations 
(2.5.1) is contact equivalent to (2.5.10). Indeed

is the most general contact transformation which leave invariant the class of evolution 
equations

where zt, zx zxx are partial derivatives of z = z(x, t) and ai are arbitrary differentiable functions 
such that a3 � 0. Hence, under transformations (2.5.19), any equation of the form (2.5.20) 
is mapped to

In view of (2.5.21) it is not difficult to check that, by means of a contact transformation, 
none of the four equations (2.5.1) can be transformed to (2.5.10).
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FINITE-ORDER LOCAL ISOMETRIC IMMERSIONS 
OF PSEUDOSPHERICAL SURFACES DESCRIBED BY 
SECOND ORDER  EVOLUTION  PS  EQUATIONS  AND 
GENERALIZATIONS

CAPÍTULO 3

In this chapter we consider the problem of existence of local isometric immersions, 
into the 3-dimensional Euclidean space E3, for the families of pseudospherical surfaces 
described by PS equations classified in the Chapter 2. We will show that only Type I 
equations admit such a kind of immersion and, on the base of this result, we also provide 
an extension of the results to the case of k-th order evolution equations in the conservation 
law form Dt (f (x, t, z)) = Dx (Ω(x, t, z, z1, . . . , zk)). The  examples  discussed  in  the  end of 
this chapter include second order equations as Boltzmann, Murray and Svinolupov- Sokolov 
equations, as well as higher order equations like Kuramoto-Sivashinsky, Sawada- Kotera 
and Kaup-Kupershmidt equations, and also full hierarchies of integrable equations like 
Burgers, mKdV and KdV, which were not covered by the results of previous papers [32, 33].

The chapter is organized as follows. In Section 3.1 we state the Theorem 3.1.1 and 
Theorem 3.1.2, which are the main results of the chapter, and in Section 3.2 we give detailed 
proofs of these theorems. Finally, in Section 3.3 we illustrate these results by means of 
some examples.

MAIN RESULTS

The chapter is mainly concerned with the following question:

Do finite-order local isometric immersions exist for the family of pseudospherical 
surfaces described by the evolution second order PS equations of Theorem 2.2.1?

The answer to this question is provided by Theorem 3.1.1, which is the main result of 
the present chapter and is stated below. According to this theorem such an immersion only 
exists for equations of Type I.

Theorem 3.1.1. For second order PS equations classified by Theorem 2.2.1, there 
exists no finite-order local isometric immersions for the families of pseudospherical surfaces 
described by Types II and III, whereas for those described by Type I such an immersion 
exists if, and only if, there are constants γ, ζ ∈ ℝ, γ /= 0, ζ > 0, ζ2 − 4γ2 > 0 such that:

I.	 for Type I (a) the generic solutions z and associated 1-forms ωi = 𝑓i1dx + 𝑓i2dt, 
given by (2.2.4), are defined on a strip of ℝ2 of the form
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and the functions a, b, c appearing in (1.3.1) are given by

with ν = ±1;

II.	 for Type I (b) the generic solutions z and associated 1-forms ωi = 𝑓i1dx + 𝑓i2dt, 
given by (2.2.5), are defined on a strip of ℝ2 of the form

and the functions a, b, c appearing in (1.3.1) are given by

with ν = ±1.

On the other hand since Type I equations can be written in conservation law form, 
like the k-th order equations described by Theorem 1.2.2, the answer provided by Theorem 
3.1.1 naturally led us to the following second question.

Do finite-order local isometric immersions exist for the family of pseudospherical 
surfaces described by the evolution k-th order PS equations of Theorem 1.2.2?

The answer to this second question is provided by the following

Theorem 3.1.2. Finite-order local isometric immersions for the families of 
pseudospher- ical surfaces described by k-th order PS equations of Theorem 1.2.2 exist if, 
and only if, there are constants γ, ζ ∈ R, γ � 0, ζ > 0, ζ2 − 4γ2 > 0 such that:

I.	 for type (a) the generic solutions z and associated 1-forms ωi = 𝑓i1dx + 𝑓i2dt, 
given by (1.2.10), are defined on a strip of ℝ2 of the form
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and the functions a, b, c appearing in (1.3.1) are given by

with ν = ±1;

II.	 for type (b) the generic solutions z and associated 1-forms ωi = 𝑓i1dx + 𝑓i2dt, 
given by (1.2.11), are defined on a strip of ℝ2 of the form

and the functions a, b, c appearing in (1.3.1) are given by

with ν = ±1.

The proofs of Theorem 3.1.1 and the Theorem 3.1.2 are presented in Section 3.2.2 
and Section 3.2.3, respectively.

PROOFS OF THE MAIN RESULTS

Auxiliary lemmas

We begin with the following

Lemma 3.2.1. If zt = F (x, t, z, z1, ..., zk) is a k-th order PS equation with associated 
1-forms ωi = 𝑓i1dx + 𝑓i2dt, 1 ≤ i ≤ 3, depending on (x, t, z, z1, ..., zk) then

In particular if 𝑓11 = 𝑓11 (x, t) and 𝑓21 = η, then
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Proof. In view of Theorem 2.1.1 one has (3.2.1). On the other hand, by assuming that 
𝑓11 = 𝑓11 (x, t) and 𝑓21 = η, one can rewrite structure equations (1.2.1) as

Then (3.2.2) follows by deriving first two equations of (3.2.5) with respect to zk. On 
the other hand, equations (3.2.3) and (3.2.4) easily follow deriving the third equation of 
(3.2.5) with respect to zk and by the non-degeneracy condition (2.1.2).

The following lemma is an analogue of the main result of the paper [32] and will 
facilitate the proofs of Theorem 3.1.1 and Theorem 3.1.2, which are provided in Subsections 
3.2.2 and 3.2.3, respectively.

Lemma 3.2.2. Let zk = F (x, t, z, z1, ..., zk) be a k-th order PS equation with k ≥ 2 and 
associated 1-forms ωi = 𝑓i1dx + 𝑓i2dt, 1 ≤ i ≤ 3, depending on (x, t, z, z1, ..., zk) and satisfying 
𝑓21 = η. If there exists a finite-order local isometric immersion for the pseudospherical 
surfaces described by solutions z = z(x, t) of this PS equation, then the functions a, b and c, 
defined in (1.1.7), depend only on x and t.

Proof. If the coefficients of the second fundamental form (1.3.1) depend on finite-
order jet prolongations of solutions z, and the functions 𝑓ij only depend on (x, t, z, z1, ..., 
zk), then a, b and c may depend only on x, t, z, z1, ..., zl, where l is a fixed positive integer. 
Hence, (1.3.2) rewrites as

We will prove the lemma by distinguishing the two cases: η = 0 and η � 0.



Finite-order local isometric immersions of pseudospherical surfaces described by second order (...) 59

Case η = 0. In  this case, the non-degeneracy condition ω1 ∧ ω2 � 0 rewrites as 𝑓11𝑓22 
� 0. Hence, since zt = F is a k-th order equation, by deriving both equations of (3.2.6) with 
respect to zl+k, one obtains

and in view of Gauss equation (1.3.3) one has that

Thus when a � 0, in view of (3.2.8), c,zl = 0 and by successive differentiating equations 
(3.2.6) with respect to zi+k, for i = 0, ..., l − 1, one has that a,zi = b,zi = c,zi = 0.

On the contrary, when a = 0, then Gauss equation leads to b = ϵ = ±1 and (3.2.6) 
becomes

Hence, in (3.2.9), by substituting the expression of 𝑓11𝑓32 − 𝑓31𝑓12 obtained from the 
first equation into the second equation one gets

and in view of Lemma 3.2.1, by means of successive differentiations with respect to zi+1, for 
i = 0, ..., l, one gets that c,zi = 0.

Hence when η = 0, one has

Case η � 0. In view of (1.2.8), by deriving both equations of (3.2.6) with respect to 
zl+k, one obtains

and the derivative of the Gauss equation (1.3.3) with respect to zl returns

Now we will proceed by further distinguishing the two subcases:
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Subcase (i). In view of (3.2.10),

and by substituting (3.2.12) in (3.2.6) one readily gets the following analogous of (3.2.10) 
and (3.2.11):

and

Hence in view of  one also obtains that

Thus the desired result easily follows by observing that iterating above procedure 
one would get that

Subcase (ii). If  then by substituting  into 
the Gauss equation, one gets

where ν = ±1. Hence

and the following identities hold,

where Dx and Dt are the total derivative operators. Then, by using (3.2.18), equations (1.3.2) 
rewrite as
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where ∆12 := 𝑓11𝑓22 − η𝑓12 � 0 in view of the non-degeneracy condition ω1 ∧ ω2 � 0.

Now to prove that in the current subcase a, b, c do not depend on (z, z1, ..., zl) we 
analyze separately the cases l ≥ k, l = k − 1 and l ≤ k − 2.

When l ≥ k, by deriving (3.2.19) with respect to zi+1, i = k, ..., l, one gets that

∆12a,zi
 = 0. Therefore an argument similar to that used in the analysis of subcase (i), shows 

that

When l = k − 1, by deriving (3.2.19) with respect to zk, one gets that

which easily leads to a,zk−1
 = 0 and hence, in view of (3.2.10), to

Hence in view of (3.2.20) and (3.2.22) the jet-order of a, b and c cannot exceed k − 1. 
However we will prove now that a, b, c may only depend on (x, t). Indeed, when l ≤ k − 2, by 
deriving (3.2.19) with respect to zk, one gets that

which easily leads to ν𝑓11,zF,zk = 0 and hence to 𝑓11 = 𝑓11 (x, t), since zt = F is by assumption 
a k-th order equation. Therefore in such a case equations (3.2.19) reduce to
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and in view of Lemma 3.2.1, conditions (3.2.2), (3.2.3) and (3.2.4) must be satisfied. In 
particular, if l = k − 2, by deriving (3.2.23) with respect to zk−1 one has

where 𝑓11 � 0 in view of (3.2.4).  In particular, by comparing first and second equation of 
(3.2.24), one gets

where , since otherwise a − c = 0 and by (3.2.17) one would get 𝑓11 = 0. Then, 
by substituting (3.2.16-3.2.17) into (3.2.25) one obtains  which contradicts η 
� 0 and 𝑓11 � 0.

On the other hand, if l < k − 2 then by deriving (3.2.23) with respect to zk−1 and using 
(3.2.4), one gets the system

which in view of  immediately leads to b = 0 and a = c, which contradicts the 
Gauss equation (1.3.3).

Proof of Theorem 3.1.1

In the proof of Theorem 3.1.1 we will analyze separately equations of Type I and 
equations of Types II-III.

Existence of finite-order local isometric immersions for Type I equa- tions

To prove that equations of Type I admit finite-order local isometric immersions, we 
will distinguish between Type I (a) and Type I (b).
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Type I (a). In view of Lemma 3.2.2 and (2.2.4), equations (1.3.2) reduce to

Hence, in view of the independence of �, ψ, 𝑓, g and a, b, c on z1, (3.2.26) splits into 
the following two systems

and

In its turn, in view of 𝑓,z � 0 and the independence of g, a, b, c on z, the system 
(3.2.28) splits into the following system

Then, from the second equation of (3.2.27) and second equation of (3.2.29), one 
gets the expression of b given by (3.1.2). In particular the third equation of (3.2.29) is 
automatically satisfied.

On the other hand, in view of η2 + (g')2 � 0, from the first equations of (3.2.27) and 
(3.2.29) one has that a � 0 and from the Gauss equation one gets

Then in view of (3.2.30), first equations of (3.2.27) and (3.2.29) rewrite as
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and can be readily integrated in the form

by using the integrating factor e−2єηx. Thus (3.2.32) entails that

which is defined whenever ζe2є(ηx+g) − γ2e4є(ηx+g) − 1 > 0. Therefore ζ > 0 and

i.e., a is defined on the strip described by (3.1.1). Finally, by substituting above results in 
(3.2.30) one gets the expression of c given in (3.1.2), and one can readily check that also 
the fourth equation of (3.2.29) is satisfied.

A straightforward computation shows that also the converse of the theorem holds for 
current type.

Type I (b). The proof is similar to that of Type I (a). In this case instead of (3.2.26) 
one has the following system

by which one obtains, instead of (3.2.27) and (3.2.28), the following two systems

and
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Hence, instead of (3.2.29), in this case one gets the system

and the proof runs as that of Type I (a). In particular one gets the expression of b given 
in (3.1.4), as well as that . Moreover by integrating the following analogue of 
(3.2.31)

by means of the integrating factor e∫2η tanh(ηx+g) dx = −cosh2 (ηx + g), one gets

which is exactly the expression of a given (3.1.4) and is defined whenever

Therefore one has that ζ > 0 and

i.e., a is defined on the strip described by (3.1.3). By substituting above results for a and b 
into  one obtains the expression of c given in (3.1.3) and one can readily prove 
that all equations of (3.2.34) and (3.2.36) are satisfied.

A straightforward computation shows that also the converse of the theorem holds for 
the current type.

Non-existence of finite-order local isometric immersions for Type II and III equations

To prove that equations of Type II and Type III do not admit finite-order local isometric 
immersions, we will separately analyze Type II (a), Type II (b) and Type III (c), whereas Type 
III (a) and Type III (b) will be analyzed almost simultaneously.

Type II (a). In view of Lemma 3.2.2 and (2.2.7), equations (1.3.2) reduce to
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Hence, in view of the independence of δ, m, 𝑓 , g, ψ and a, b, c on z1, (3.2.39) splits 
into the following two systems

and

Then if η � 0, by deriving (3.2.41) twice with respect to z, one gets

which contradicts the Gauss equation (1.3.3).

On the other hand, if η = 0, then from (3.2.40) one gets a,x = b,x = 0 and (3.2.41) 
reduces to

Hence, by deriving the first equation of (3.2.42) with respect to z, one has that b = 
0 and a � 0, because of Gauss equation (1.3.3). Also, by deriving the Gauss equation with 
respect to x, one gets c,x = 0 and hence, in view of 𝑓,z � 0, from the second equation of 
(3.2.42) one concludes that a = c, which contradicts the Gauss equation.

Type II (b). In view of Lemma 3.2.2 and (2.2.9), equations (1.3.2) reduce to
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Hence, since 𝑓11 = 0, it follows that ω1 ∧ ω2 � 0 is equivalent to ϵ1η2g𝑓 � 0 and by 
deriving (3.2.43) with respect to z1, one concludes that

which contradicts the Gauss equation (1.3.3).

Type III (a-b). In view of Lemma 3.2.2 and (2.2.12-2.2.14), equations (1.3.2) reduce 
to

Hence, in view of the independence of h, m, q, 𝑓, g and a, b, c on z1, (3.2.44) splits 
into the following two systems

and
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where we have used the identity . Indeed a � 0, since otherwise (3.2.45) reduces 
to

where , and b = c = a = 0 contradicts Gauss equation. Therefore, 

by rewriting (3.2.46) as

and deriving (3.2.47) with respect to z one gets

and

In the case of Type III (a) one has that

and hence (3.2.48) entails that b = 0 and a2 + 1 = 0, which is a contradiction.

On the other hand, in the case of Type III (b) either m2 + δ2 � 0 or m = δ = 0, however 
in both cases equations (3.2.48) and (3.2.49) lead to a contradiction. Indeed, when m2 + δ2 
� 0, (3.2.48) entails that b = a2 + 1 = 0. On the other hand, in view of (2.2.2), when m = δ = 
0 one also has η = 0 and hence from the compatibility of (3.2.45) and (3.2.49) one obtains

where h,t − q,x � 0, otherwise by (2.2.15) one would get g = 0 and hence (2.2.11) would 
degenerate to a first-order equation. Thus, from (3.2.50) one has b = 0 and in view of h � 
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0, (3.2.49) and (3.2.45) one easily that q = a − c = 0, which contradicts the Gauss equation 
(1.3.3).

Type III (c). In view of Lemma 3.2.2 and (2.2.16), equations (1.3.2) reduce to

Hence, in view of the independence of h, m, q, f and g on z1, one readily gets that

where , and b = a - c = 0 which contradicts the Gauss equation 

(1.3.3).

Proof of Theorem 3.1.2

In the following proof of Theorem 3.1.2, we distinguish between the linear prob- lems 
(a) and (b) provided by (1.2.10) and (1.2.11).

a.	 In view of Lemma 3.2.2 and (1.2.10), equations (1.3.2) reduce to

where Ω,zk−1 
� 0. Hence, in view of the independence of 𝑓, g and a, b, c on zk−1, (3.2.52) splits 

into the following systems

and
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The rest of the proof runs as that of Theorem 3.1.1, in the case of Type I (a).

b.	 In view of Lemma 3.2.2 and (1.2.11), equations (1.3.2) reduce to

where Ω,zk−1 
� 0. Hence, in view of the independence of 𝑓, g and a, b, c on zk−1, (3.2.53) splits 

into the following systems

and

The rest of the proof runs as that of Theorem 3.1.1, in the case of Type I (b).

EXAMPLES

Example 3.3.1. Boltzman equation

is an example of Type I (a) and Type I (b).

For instance, by choosing 1-forms

equation (3.3.1) can be seen as a particular instance of Type I (a), described by (2.2.3), 
with ϵ = ±1, 𝑓 = � = z, ψ = 0 and g = g (t) an arbitrary differentiable function. In this case, 
equation (3.3.1) describes a family of pseudospherical surfaces with first fundamental form

and in view of Theorem 3.1.1, whenever the associated 1-forms ωi = 𝑓i1 dx + 𝑓i2 dt and 
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the generic solutions z of (3.3.1) are defined on a strip of the form (3.1.1), such a family 
of pseudospherical surfaces admits a finite-order local isometric immersion with second 
fundamental form given by

where

On the other hand, by choosing 1-forms

equation (3.3.1) can be seen as a particular instance of Type I (b), described by (2.2.3), with 
𝑓 = � = z, ψ = 0 and g = g (t) an arbitrary differentiable function. In this case, equation (3.3.1) 
describes a family of pseudospherical surfaces with first fundamental form

and in view of Theorem 3.1.1, whenever the associated 1-forms ωi = 𝑓i1 dx + 𝑓i2 dt and the 
generic solutions z are defined on a strip of the form (3.1.3), such a family of pseudospheri- 
cal surfaces admits a finite-order local isometric immersion with second fundamental form 
given by

where
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Example 3.3.2. Equation

is an equation of Type I (a) and Type I (b), as well as of Type III (a).

For instance, if in Type I one chooses 𝑓 = z, � = x, ψ = xz2+z, one can interpret 
(3.3.2) as a particular instance of Type I (a), with associated 1-forms

where ϵ = ±1 and g = g (t) is an arbitrary differentiable function. In this case, equation (3.3.2) 
describes a family of pseudospherical surfaces with first fundamental form I =  
given by (3.3.3), and in view of Theorem 3.1.1, whenever the associated 1-forms ωi = 𝑓i1 dx 
+ 𝑓i2 dt and the generic solutions z of (3.3.2) are defined on a strip of the form (3.1.1), such 
a family of pseudospherical surfaces admits a finite-order local isometric immersion. In such 
a case, the coefficients aij of the second fundamental form are given by (1.3.1) where a, b, 
c are given by (3.1.6).

On the other hand, if in Type III (a) one chooses 𝑓 = z, g = −xz, m = 0, h = −η and ϵ1 

= −1, one can interpret (3.3.2) as a particular instance of that type with associated 1-forms

where η /= 0. In this case, equation (3.3.2) describes pseudospherical surfaces with first 
fundamental form I =  given by (3.3.4), however in view of Theorem 3.1.1, such a 
family of pseudospherical surfaces does not admit any finite-order local isometric immersion.
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This proves that the existence of finite-order local isometric immersions depends on 
the particular choice of the associated linear problem.

Example 3.3.3. In view of Theorem 1.2.2, any evolution equation written in 
conservation law form is a PS equation. Hence, in view of Theorem 3.1.2, whenever the 
associated 1-forms ωi = 𝑓i1 dx + 𝑓i2 dt and the generic solutions z are defined on a strip of 
the form (3.1.5) or (3.1.7), there exists a local finite-order isometric immersion in E3 of the 
corresponding family of pseudospherical surfaces described by such a PS equation. In such 
a case, the coefficients aij of the second fundamental form are given by (1.3.1), where a, b, 
c are given by (3.1.6) or (3.1.8).

Examples of this type are provided by many well known evolution equations. Ex- 
amples of second order are for instance provided by Burgers equation, Murray equation 
and Svinolupov-Sokolov equations. Higher order examples are provided by Kuramoto- 
Sivashinsky equation (see also [17]), Sawada-Kotera equation and Kaup-Kupershmidt 
equation (see also [29]) as well as by hierarchies of evolution equations written in conser- 
vation law form like the following ones:

I.	 Burgers hierarchy

where a1 = z and 

II.	 mKdV hierarchy

where 

III.	 KdV hierarchy

where 

Theorem 3.1.2 proves that, whenever the associated 1-forms ωi and the solutions z 
are defined on a strip of the form (3.1.5) or (3.1.7), finite-order local isometric immersions for 
the described family of pseudospherical surfaces exist in all such cases.
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NONTRIVIAL 1-PARAMETER FAMILIES OF ZCRS OBTAINED 
VIA SYMMETRY ACTIONS

CAPÍTULO 4

In this chapter we consider the problem of constructing nontrivial 1-parameter 
families of ZCRs for PS equations.  This problem is of special interest for the application of 
the theory of ZCRs, for instance in the calculation of exact solutions and infinite hierarchies 
of conservation laws, and has been solved in the more general case of g-valued ZCRs, with 
g a Lie sub-algebra of 𝖌𝖑 (𝑛, ℝ) or 𝖌𝖑 (𝑛, ℂ), by using the theory of classical symmetries of 
differential equations and the cohomology defined by the horizontal gauge differential of a 
given ZCR. In particular we provide an infinitesimal criterion which permits to identify all 
infinitesimal classical symmetries of an equation Ɛ whose flow Aλ could be used to embed a 
given ZCR α of Ɛ into a nontrivial 1-parameter family αλ of zero-curvature representations of 
Ɛ. The results reported here have been recently published in the paper [15].

The chapter is organized as follows. In Section 4.1 we discuss the application of 
symmetries of an equation Ɛ in the construction of a 1-parameter family of ZCRs of Ɛ. In 
Section 4.2 we prove the main theorem which allows one to identify infinitesimal gauge-like 
symmetries as well as non gauge-like ones, for a given ZCR. In view of this

theorem, only infinitesimal symmetries which are non gauge-like, for a ZCR α, may 
be used to construct a nontrivial 1-parameter family αλ. Then we illustrate the results of this 
chapter by means of some examples in Section 4.3.

ACTION OF CONTINUOUS SYMMETRIES ON ZCRS

In this section we will show how the flows of infinitesimal classical symmetries 
of a differential equation Ɛ could be used to embed a given 𝖌-valued ZCR α of Ɛ into a 
1-parameter family αλ of ZCRs.

Since the flow of a classical infinitesimal symmetry of an equation Ɛ ⊂ Jk(π) is in 
particular a 1-parameter family of finite symmetries of 𝒞k(π), it will be useful to recall that finite 
symmetries of 𝒞k(π) can always be obtained by prolonging either a (local) diffeomorphism 
on J0(π) or a (local) diffeomorphism on J1(π). Indeed, in view of Backlund theorem [45, 63], 
finite symmetries of 𝒞k(π) are of two distinct types: when m > 1 classical finite symmetries 
are prolongations of (local) diffeomorphisms on J0(π) (also called point transformations); on 
the contrary when m = 1 there are classical finite symmetries which are not prolongations of 
point transformations, but are prolongations of (local) diffeomorphisms on J1(π) (also called 
contact transformations). In practice, a contact or point transformation can be prolonged to 
a finite symmetry of 𝒞k(π) on Jk(π) as follows.
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For ease of notation, denoting by z(h) the totality of coordinate , with j ∈ {1, ..., m} 
and 0 ≤ |σ| ≤ h, the prolongations

to Jk(π) of a contact transformation on J1(π)

can be computed by using for any fixed σ and j the following recurrence formula

where the  denote the (k + 1)-th order truncated total derivative operators

and ∆ is the nonsingular matrix

The same formula could be used to prolong a point transformation 
 on J0(π) to a (local) finite symmetry of 𝒞k(π) on Jk(π).

Now, since the infinite prolongation of a finite classical symmetry is a finite sym- 
metry of 𝒞(π), by considering 𝖌-valued forms, with 𝖌 a sub-algebra of 𝖌𝖑 (𝑛, ℝ), one has the 
following

Lemma 4.1.1. Let F be the infinite prolongation of a point or contact transformation. 
For any pair (a, b) of natural numbers, the following diagram commutes:

In particular, if F is the restriction to Ɛ(∞) of the infinite prolongation F of a point or 
contact transformation which maps a formally integrable equation Ɛ ⊂ Jk(π) to a formally 
integrable equation Y ⊂ Jk(π), then for any pair (a, b) of natural numbers the following 
diagram commutes:
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Proof. We only give a proof of the commutativity of the first diagram, since the 
commu- tativity of the second diagram is obtained by restricting on Ɛ(∞) and Y(∞).

Since d = dH + dV and F∗ commute, for any α ∈ 𝖌 ⊗ Λ(a,b)(π) one gets that F∗(dHα) 
+ F∗(dVα) = dH (F∗(α)) + dV (F∗(α)). On the other hand, since F is a symmetry of 𝒞(π), it 
is not difficult to see that, for any ρ ∈ Λ(p,q), all terms in the decomposition of F∗(ρ) on 

have at least vertical degrees q. Hence π(a+1,b) (F∗(dV α)) = π(a+1,b) (dV 

(F∗(α))) = 0, and one has that π(a+1,b) (F∗(dHα)) = π(a+1,b) (dH (F∗(α))). But, again in view of the 
fact that F is a symmetry of 𝒞(π), one has π(a+1,b) (dH (F∗(α))) = dH π(a,b) (F∗(α)) then π(a+1,b) 

(F∗(dHα)) = dH π(a,b) (F∗(α)) .

An analogous result holds for forms on J∞(π) and Ɛ(∞). We will adopt the following

Definition 4.1.2. Let F be the infinite prolongation of a point or contact transformation. 
By F# we denote the map

Analogously, if F is the restriction to Ɛ(∞) of the infinite prolongation F of a point or 
contact transformation which maps a formally integrable equation Ɛ ⊂ Jk(π) to a formally 
integrable equation Y ⊂ Jk(π), by F# we will denote the map

Notice that, if F is projectable (i.e., F∗(C∞(M)) ⊂ C∞(M)), then F# = F∗ and F# = F∗. Now 
we can prove the following 

Proposition 4.1.3. If F is the infinite prolongation of a point or contact transformation, 
which maps a formally integrable equation Ɛ ⊂ Jk(π) to a formally integrable equation Y ⊂ 
Jk(π), then

maps any ZCR β of Yto a ZCR α = F#(β) of Ɛ .

Proof. It is not difficult to show that, in view of the non degeneracy of (4.1.1), α is a non- 
vanishing g-valued horizontal form on Ɛ(∞). Hence, one has to prove that  = 
0. To this end, it suffices to observe that in view of Lemma 4.1.1
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Hence the claim follows by the fact that 

Corollary 4.1.4. If F is the restriction to Ɛ(∞) of a classical symmetry of a formally 
integrable equation Ɛ, then F#] maps any ZCR α of Ɛ to a ZCR F#(α). In particular, if Aλ is the 
flow of a restricted classical generalized symmetry of Ɛ , then αλ :=  is a 1-parameter 
family of ZCRs of Ɛ.

We close this section with the following examples illustrating the results of Proposition 
4.1.3 and Corollary 4.1.4.

Example 4.1.5. The sine-Gordon equation

defines a submanifold of J2(π), with π : ℝ2 × ℝ → ℝ2, (x, t, z) ↦ (x, t), and admits the following 
𝖘𝖑(2, ℝ)-valued ZCR

The algebra of classical symmetries of Ɛ is generated by the prolongations of vector 
fields

Symmetries Y1 and Y2 describe the obvious invariance of (4.1.2) under translations 
x ↦ x + c1 and t ↦ t + c2, c1, c2 ∈ ℝ. Hence their prolongations leave invariant the ZCR α 

and cannot be used to construct a 1-parameter family of 𝖘𝖑(2, ℝ)-valued ZCRs of (4.1.2). 
The same is not true for Y3, and according to Corollary 4.1.4 one could use the flow Aλ of 
the restriction to Ɛ(∞) of  to generate a 1-parameter family of 𝖘𝖑(2, ℝ)-valued ZCRs of 
(4.1.2). Indeed, since α only involves first-order jet-coordinates and Aλ induces the following 
first-order transformation

one readily gets that

which is the well known 1-parameter family of ZCRs for the sine-Gordon equation [56]. 
Using Theorem 1.6.3, one could check that λ is not removable, and hence that αλ is a 
nontrivial 1-parameter family of 𝖘𝖑(2, ℝ)-valued ZCRs. Using the Theorem 4.2.8 of next 
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section one could predict the non-removability of λ by the fact that the prolongation of Y3 is 
non gauge-like for α.

Remark 4.1.6. We notice that, in the current literature, classical symmetries of 
nonlinear differential equations admitting ZCRs are usually projectable. However, as shown 
by the following example, non-projectable symmetries also may occur and hence exploited 
in the embedding of a given nonparametric ZCR α into a 1-parameter family αλ of ZCRs.

Example 4.1.7.  In the previous example, Aλ is projectable and hence 
However, if one uses the non-projectable transformation F defined by the prolongation of 
the point transformation

equation (4.1.2) and ZCR (4.1.3) transform to

and

respectively, where F is the restriction of F to Ɛ(∞). Consequently, Y3 transforms to the non-
projectable field X3 := F∗(Y3) = ξ∂ξ + (v − τ ) ∂τ which generates a non-projectable classical 
symmetry of Y. Hence the flow Bλ of the restriction to Y(∞) of  is not projectable and 

 does not coincide with 

Since β only involves first-order jet-coordinates and Bλ induces the following first-
order transformation

one gets that
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Of course, since F transforms the flow of Y3 to the flow of X3, one has that F#(βλ) = αλ.

INNITESIMAL CRITERION FOR GAUGE-LIKE SYMMETRIES AND NONTRIVIAL 
1-PARAMETER FAMILIES OF ZCRS

In this section we will prove an infinitesimal version of Theorem 1.6.3 (see Theorem 
4.2.8 below), which will give a characterization of classical symmetries whose flows acts like 
gauge transformations for a ZCR α of Ɛ. We will call these symmetries gauge-like and prove 
that they form a sub-algebra of the Lie algebra of symmetries of Ɛ. Hence, is 
nontrivial if and only if Aλ is the flow of a restricted classical non gauge-like symmetry.

We begin by introducing the following

Definition 4.2.1. Let Z be a vector field on J∞(π) and ω ∈ 𝖌 ⊗ Λ(p,q)(π). By Z(ω) we 
denote the π(p,q)-projected Lie derivative

In particular, if Z is a generalized symmetry of Ɛ and Z its restriction to Ɛ(∞), for any 
ω ∈ 𝖌 ⊗ Λ(p,q)(Ɛ) we denote by Z(ω) the π(p,q)-projected Lie derivative

The following lemma gives an analogy of the standard commutation property between 
the Lie derivative and the exterior differential.

Lemma 4.2.2. If Z is a generalized symmetry of Ɛ and Z its restriction to Ɛ(∞), then 
Z(dH (ω)) = dH (Z(ω)) for any ω ∈ 𝖌 ⊗ Λ(a,b)(Ɛ).

Proof. Since LZ and d commute on 𝖌 ⊗ Λ∗(Ɛ) and Z is tangent to Ɛ(∞), one gets that 
 for any ω ∈ 𝖌 ⊗ Λ(a,b)(Ɛ). On the other hand, since 

, Lemma 4.1.1 allows one to rewrite

as
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Then, since Z is a symmetry of 𝒞(Ɛ), [dV, LZ](ω) cannot have horizontal degree greater 
than a and π(a+1,b) ◦ [dV, LZ] (ω) = 0.

It is not difficult to prove also the following two results

Lemma 4.2.3. If A, B are infinite prolongations of point or contact transformations, 
then B# ◦ A∗ = B# ◦ A#. In particular, if A and B are symmetries of Ɛ , then their restrictions  
A, B to Ɛ(∞) are such that B# ◦ A∗ = B# ◦ A#.

Lemma  4.2.4. If Z1, Z2 are generalized symmetries of Ɛ, then for any α ∈ 𝖌 ⊗ Λ1(Ɛ) 
their restrictions Z1 and Z2 to Ɛ(∞) are such that Z1 (LZ α) = Z1 Z2 (α).

Lemma 4.2.4 will be used in the proof of Proposition 4.2.10, whereas Lemma 4.2.3 
is needed in the proof of the following

Proposition  4.2.5. Let α ∈ 𝖌 ⊗ Λ1(Ɛ)  be a ZCR of E and Z be a classical symmetry 
of Ɛ. If Aλ is the flow of the restriction Z of Z to Ɛ(∞), i.e., , then the 1-parameter 
family of ZCRs  is such that

Proof. (i) By definition of Lie derivative  hence the claim follows 
by observing that 

(ii) In view of Lemma 4.2.3,  
hence

in view of (i).

Then one can also prove the following

Proposition 4.2.6. Let α ∈ 𝖌 ⊗ Λ1(Ɛ) be a ZCR of E. If Z is a restricted generalized 
symmetry of Ɛ, then Z(α) is a 1-cocycle with respect to ∂α, i.e.,

Proof. Since  and Z is a vector field on Ɛ(∞), one still has

identically on Ɛ(∞). Hence, by using Lemma 4.2.2 and formula (1.5.1), the derivative of
 returns
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Remark 4.2.7. If Z is the restriction to Ɛ(∞) of a classical symmetry Z of Ɛ with flow 
Aλ, one can prove Proposition 4.2.6 by using Proposition 4.2.5. Indeed, by considering 

 and differentiating the identity dαλ − αλ ∧ αλ = 0 at λ = 0, one gets

The following result, together with Proposition 4.2.6, provides a cohomological 
obstruction to the removability of λ from the 1-parameter family of ZCRs obtained by using 
the flow of a classical symmetry.

Theorem 4.2.8. Let α ∈ 𝖌 ⊗ Λ1(Ɛ) be a ZCR of Ɛ, Z a classical symmetry of Ɛ and Aλ 
the flow of its restriction Z to Ɛ(∞). Then the parameter λ in  is removable if, and only 
if, Z(α) is a coboundary with respect to ∂α, i.e.,

for some 𝖌-valued smooth function K on Ɛ(∞).

Proof. If the parameter λ is removable, then for λ0 = 0 there exists some G-valued 
function Sλ such that S0 = 𝕀 (identity) and

Hence, by differentiating with respect to λ

and further evaluating at λ0 = 0, by Proposition 4.2.5 one gets

On the other hand  entails that  and 
hence  Therefore, by choosing  (4.2.2) can be 
rewritten as Z(α) = (dH − [α, .] (K) = ∂α (K).

Conversely, assume that Z(α) = ∂α (K) and consider a solution Sλ of
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where  In a neighborhood I of λ0 = 0, Sλ defines the gauge  transformation
 which can be rewritten as  Then,  y 

defining

one readily gets

Of course z0 = 0, and it can be proved that zλ = 0, for any λ ∈ I. To this end, one may 
first consider the derivative of (4.2.4) with respect to λ

and, by using equation (4.2.3), rewrite it as

On the other hand, in view of Proposition 4.2.5, one has

Hence

and zλ must be the solution of the Cauchy problem

It follows, by the existence and uniqueness of solutions to such a Cauchy problem, 
that zλ must be identically zero. Then, since Sλ is invertible, by (4.2.5) one gets  
and hence that λ is removable .
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This theorem justifies the following

Definition 4.2.9. A generalized symmetry Z of Ɛ is called gauge-like for the ZCR α 
∈ 𝖌 ⊗ Λ1(Ɛ) if its restriction Z to Ɛ(∞) satisfies the condition Z(α) = ∂αK for some g-valued 
smooth function K on Ɛ(∞). If in addition Z is a classical symmetry, then Z will be called a 
classical gauge-like symmetry for α.

We have the following

Proposition 4.2.10. Let Z1 and Z2 be two gauge-like symmetries for the same ZCR α 
∈ 𝖌 ⊗ Λ1(Ɛ) of Ɛ. Then also [Z1, Z2] is gauge-like for α. In particular, if

then

with

Proof. First observe that  and  
Hence, in view of Lemma 4.2.4, one gets

and a direct computation gives

Then using again (4.2.6), and formulas (1.5.1, 1.5.2, 1.5.4), one readily gets that

Hence one gets the following

Corollary 4.2.11. Gauge-like symmetries, for the same ZCR α of Ɛ, form a Lie sub- 
algebra of the Lie algebra of generalized symmetries of Ɛ. In particular, classical gauge-like 
symmetries form a Lie sub algebra of the Lie algebra of classical symmetries.

Remark 4.2.12. It is worth to remark here that, in general, two non gauge-like 
symmetries Z1, Z2 lead to two nontrivial 1-parameter families of ZCRs  and  However, 
one should consider   and  as being two distinct 1-parameter families only if they are 
not equivalent, according to Definition 1.6.2.

We conclude this section by observing that the Lie algebra of gauge-like symme- 
tries for a ZCR α of Ɛ is invariantly associated to any equation equivalent to Ɛ, modulo some 
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contact transformation. Indeed one has the following

Proposition 4.2.13. If F is the infinite prolongation of a point or contact transformation 
which maps a formally integrable equation Ɛ ⊂ Jk(π) to a formally integrable equation Y ⊂ 

Jk(π), then the push-forward F∗ transforms the Lie algebra of gauge-like symmetries for a 
ZCR α of Ɛ to the Lie algebra of gauge-like symmetries for the ZCR β = (F −1)# (α) of Y.

Proof. Consequence of the formula (F −1)∗ (LZ α) = LF∗ (Z) (F −1)∗ (α), which holds for any 
restricted generalized symmetry Z of Ɛ, and  of  formulas  
and .

EXAMPLES

Here we illustrate some examples of how, starting from a given ZCR α of Ɛ, one may 
use the flow of an infinitesimal classical symmetry which is non gauge-like for α to construct 
a nontrivial 1-parameter family αλ of ZCRs of Ɛ.

Example 4.3.1. Burgers equation

is one of the better-known nonlinear differential equations. In the paper [20] it has been 
observed that (4.3.1) can be embedded into a huge class of pseudospherical equations. In 
particular, the 𝖘𝖑(2, ℝ)-valued ZCR of (4.3.1) found in that paper is

where η is a nonzero parameter. However, by using Theorem 1.6.3 one can see that η is 
removable through the gauge transformation defined by

Indeed, one has that

Here, by applying the results of Sections 4.1 and 4.2, we will show how use α to 
construct a nontrivial 1-parameter family of ZCRs of (4.3.1).

To this end, we first observe that the algebra of classical symmetries of (4.3.1) is 
5-dimensional and generated by the prolongations of vector fields
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In particular, the structure of the algebra of classical symmetries is

Then, using Theorem 4.2.8, one can check that Y1, Y2 and Y3 generate the algebra of 
gauge-like symmetries for α. On the contrary Y4 and Y5 are non gauge-like for α. Notice that 
the sub-algebra of gauge symmetries, with respect to α is not an ideal. For instance this is 
evident from the commutator [Y3, Y5] = 2Y5.

By way of illustration, we explicitly prove these properties for Y3 and Y5.

For  instance, denoting by Z the restriction of Y(∞) to the infinite prolongation

Ɛ(∞) of the Burgers equation. Equation (4.2.1) is equivalent to

where dH is the horizontal differential on Ɛ(∞) and  an 𝖘𝖑(2, ℝ)-valued 

function on Ɛ(∞). Then, it is not difficult to check that (4.3.2) is satisfied by  

and hence that Y3 is gauge-like for α.

On the other hand, denoting by Z the restriction of Y(∞ to Ɛ(∞), one can readily check 
that the resulting equation (4.2.1) does not admit any solution K. Indeed, assuming that 

 is an 𝖘𝖑(2, ℝ)-valued function on Ɛ(∞), then the coefficient of dx in the 

1-form Z(α) − dHK + [α, K] is

Now, it is straightforward to check that for (4.3.3) being identically zero it is necessary 
that the functions a, b, c depend only on (x, t). But, even in such a case (4.3.3) would never 
vanish due to its dependence on z. Hence Y5 is non gauge-like for α.

Hence, for instance, one may use the flow Aλ of the restricted symmetry  to 
construct a nontrivial 1-parameter family of ZCRs of (4.3.1).

Indeed, since α only involves first-order jet-coordinates and Aλ induces the following 
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first-order transformation

one gets the following nontrivial 1-parameter family of ZCRs of (4.3.1):

Another nontrivial 1-parameter family of ZCRs of (4.3.1) is

and arises from the non gauge-like symmetry generated by Y4. One can see that αλ and βη 
are not equivalent, in the sense of Definition 1.6.2.

Example 4.3.2. The well-known 1-parameter family of ZCRs [56] of KdV equation

can be obtained by the following nonparametric 𝖘𝖑(2, ℝ)-valued ZCR

with the use of a symmetry which is non gauge-like for α.

Indeed the algebra of classical symmetries of (4.3.4) is 4-dimensional and gener- 
ated by the prolongations of the vector fields

In particular, the structure of the algebra of classical symmetries is

Now, in view of Theorem 4.2.8, one can check that Y1 and Y3 generate the sub-
algebra of gauge-like symmetries for α. On the contrary Y2 and Y4 are non gauge-like for α.

By way of illustration, here we will explicitly prove that Y4 is non gauge-like.

For instance, denoting by Z the restriction of Y(∞) to the infinite prolongation Ɛ(∞) of the 
KdV equation, one can readily check that the resulting equation (4.2.1) does not admit any 
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solution K. Indeed, assuming that  is an 𝖘𝖑(2, ℝ)-valued function on Ɛ(∞), 

then the coefficient of dx in the 1-form Z(α) − dHK + [α, K] is

Now, it is straightforward to check that for (4.3.5) being identically zero it is necessary 
that the functions a, b, c depend only on (x, t). But, even in such a case (4.3.5) would never 
vanish due to its dependence on z. Hence Y4 is non gauge-like for α.

Hence, for instance, one may use the flow Aλ of the restricted symmetry  to 
construct a nontrivial 1-parameter family  of ZCRs of (4.3.4). To this end, 
since α only involves second-order jet-coordinates and Aλ induces the following second- 
order transformation

one gets that

Up to a gauge transformation αλ is equivalent to the already known 1-parameter 
family of ZCRs [56]

where η � 0. Indeed, if one chooses η = eλ and  then 

On the contrary, by using the non gauge-like symmetry generated by Y2, one would 
get another nontrivial 1-parameter family
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However αλ and βη are equivalent (according to Denition 1.6.2), since for η = 6 (1 - eλ) 

and  one has that (αλ)S = βη.

Example 4.3.3. The known 1-parameter family of ZCRs [19] of the Chen-Lee-Liu 
system

can be obtained by the following nonparametric 𝖘𝖑(2, ℝ)-valued ZCR

with the use of a symmetry which is non gauge-like for α. Indeed, the algebra of classical 
symmetries of (4.3.6) is 4-dimensional and generated by the prolongations of vector fields

In particular, the structure of the algebra of classical symmetries

Now, in view of Theorem 4.2.8, one can check that Y1, Y2 and Y3 generate the 
sub-algebra of gauge-like symmetries for α. On the contrary Y4 is non gauge-like for α. 
Hence, by using the flow Aλ of the restricted symmetry  one can construct a nontrivial 
1-parameter family  of ZCRs of (4.3.6). To this end, since α only involves 
first-order jet-coordinates and Aλ induces the following transformation

one gets that

The already known 1-parameter family  of ZCRs of (4.3.6) can be obtained in a similar 
way by using the flow Bλ of the restricted symmetry 

 On the other hand, since Bλ = Cλ ◦ A2λ with Cλ being the flow of the restricted λ 
symmetry  then 

Example 4.3.4. The known 1-parameter family of ZCRs [24, 64] of the DNSL− 

Schrödinger system
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can be obtained by the following nonparametric 𝖘𝖑(2, ℂ)-valued ZCR

with the use of a symmetry which is non gauge-like for α. Indeed, the algebra of classical 
symmetries of (4.3.7) is 4-dimensional and generated by the prolongations of vector fields

In particular, the structure of the algebra of classical symmetries is

Now, in view of Theorem 4.2.8, one can check that Y1, Y2 and Y4 generate the 
sub-algebra of gauge-like symmetries for α. On the contrary Y3 is non gauge-like for α. 
Hence, by using the flow Aλ of the restricted symmetry  one can construct a nontrivial 
1-parameter family  of ZCRs of (4.3.7). To this end, since α only involves 
first-order jet-coordinates and Aλ induces the following transformation

one gets

with η = eλ, which is the already known 1-parameter family of ZCRs given in [24, 64].

Example 4.3.5. The Sawada-Kotera equation [57]

admits the following nonparametric 𝖘𝖑(3, ℝ)-valued ZCR
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Here, by applying the results of Sections 4.1 and 4.2, we will show how use α to 
construct a nontrivial 1-parameter family of ZCRs of (4.3.8).

To this end, we first observe that the algebra of classical symmetries of (4.3.8) is 
3-dimensional and generated by the prolongations of vector fields

In particular, the structure of the algebra of classical symmetries is

Now, in view of Theorem 4.2.8, one can check that Y1 and Y2 generate the sub-algebra 
of infinitesimal symmetries which are gauge-like for α. On the contrary Y3 is non gauge-like 
for α. Hence, by using the flow Aλ of the restricted symmetry  one can construct a 
nontrivial 1-parameter family  of ZCRs of (4.3.8). To this end, since α only 
involves fourth-order jet-coordinates and Aλ induces the following transformation

one gets that
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where µ = eλ.
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