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ABSTRACT: In stochastic structural mechanics, it is possible to associate uncertainties
with material, geometric properties and external loading, whiles estimates response
may be present in fields of displacement, stress, strain, frequency, and phase
differences, among others. At work the stochastic formulation of elliptic differential
equations associated with the beam bending problem is present. The propagation
of uncertainty is explored from the perspective of the numerical methodology of
asymptotic complexity Neumann-Monte Carlo (NMC). The variational solution is
studied for the classical theory of Euler-Bernoulli and the higher order theories of
Timoshenko and Levinson-Bickford using from the stochastic version of Galerkin'’s
method. Numerical results present the expected value and variance of the stochastic
displacement field for the three beam theories. Comments are present for the cases
where the initial variability is associated with the modulus of elasticity and height
beams, not simultaneously and simultaneously.

KEYWORDS: Stochastic Structural Mechanics, Bending Beam Theory, Uncertainty
Quantification, Neumann-Monte Carlo methodology.

1. INTRODUCTION

One of the main concerns in dealing with the stochastic problem is to portray the
irregular disparity of the mechanical properties so that an adequate formulation can
be established. The model must represent the uncertainties of the random variables
in a way that the response contain relevantinformation about the stochastic process.
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The numerical results depend on the adopted model and, usually contain two
terms: the expected value and the variability of the responses. The mathematical
model identifies a set of relationships generally based on principles, conservation
laws, and physical magnitude metrics related through differential equations.

In this regard, the Galerkin method is used to obtain approximate numerical
solutions based on the lemma of Doob-Dynkin, Rao and Swift, 2006 ensure that to
obtain the space of the approximate numerical solutions for all the realizations of
the stochastic process displacement truncating a total system in the approximation
space. In this method, the coefficients of the equation system are to be determined
by minimizing the projection residue generated by the approximation function of
the problem. Therefore by replacing the numerical approximation of the sampling
function of the stochastic displacement process, a linear system of algebraic equations
is generated.

The application of the Neumann series in stochastic problems arises from the
works of Shinozuka, 1987 and Yamazaki et al. 1988. In these works, numerical results
are obtained to estimate the uncertainty in the stress and strain fields for the beam
bending problem. The Neumann-Monte Carlo methodology combines the Monte
Carlo simulation methods and the Neumann series, with the objective of obtaining
the results of the realizations of the stochastic process. The series acts to obtain the
approximation of the inverse of the matrix of random coefficients originated by the
system of equations of the variational formulation.

The theories of bending stationary or vibrational beams are of fundamental
importance in the solution of other structural elements, such as plates, frames, and
membranes. The classical deterministic theory of Euler-Bernoulli beam bending, in
terms of the elasticity equations, can be found in Reddy, 1984 taking into account
the partial differential equation of motion, the external loading, and the boundary
conditions.

In Timoshenko, 1921, and Timoshenko, 1922 the author adds the effect of
shear and develops the equation of motion from principles of equilibrium. An
asymptotic expansion procedure is presented in Goodie e Timoshenko, 1951, which
shows second-order effects on beam curvature. However, the formulation requires
the arbitrary insertion of the shear coefficient and the boundary conditions of the
numerical solution require the estimation of the curvature of the displacement field.

The theory presented by Levinson e Stephens, 1979 includes shear deformation
of the cross-section using a high-order approximation function that satisfies the
condition of free shear on the side surfaces. Bickford, 1981 presents a variational
formulation of the theory and develops the expressions of the primary and secondary
variables associated with the boundary conditions. Heyliger and Reddy, 1988
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derive equations of motion for a beam from Levinson’s kinematic assumptions and
Hamilton's principle. Karttunen and Hertezen, 2015 employ the principle of virtual
displacements with the addition of external virtual work on the lateral surfaces of
the beam and numerical examples are presented using the Finite Element method.
Stationary and dynamic solutions to the high-order beam bending problem can be
found in Reddy, 2010. Squarcio and Avila, 2022 apply the Neumann-Monte Carlo
methodology to the stationary beam bending problem based on the high-order
theory of Levinson-Bickford.

The layout of a reminder of this paper is as follows. The uncertainty propagation
analysis is presented for the Neumann-Monte Carlo (NMC) methodology. The
following section is a technical and pragmatic review of the stochastic problem of
elastic and stationary beam bending with numerical solutions obtained from three
theories: Euler-Bernoulli, Timoshenko e Levinson-Bickford. The numerical simulations
discuss the results for the statistical moments of the displacement field when the
uncertainty is associated with stiffness matrix. The results obtained by SSFEM, for
each of the beam theories, are compared.

2. STOCHASTIC FORMULATION OF ELLIPTIC
DIFFERENTIAL EQUATIONS

This section is presented the problem of random bending beam through random
stiffness coefficient or loading. The problem is formulated from the point of view
of Monte Carlo simulation-based methods on the Hilbert space with functions in
the domain b ¢ R"and random variables defined in (R, &, @) such that, ® € Q,
were Q the sample space, F o-algebra, and &P: F — R* a Probability with values
in [0,1] such that 2(A) 20 and () =1,YVA e F

Considering the problem of sample stochastic bending is presented, for the k-th
structural samples, a finite set of random variables £(@), respectively, for the stiffness
and loading coefficient. The uncertainty model is mapped by spatial functions
Q — R denoted by &y =E(&(®)) (Arnold, 1973). The family = {E(wk) El} R js
the set of random vectors, where I € (9-, F, 5‘), anon-empty set of indices and &
the parameter and state spaces, respectively.

In this space, the estimators, in general, are represented bv | ehesaue integrals,
and the inner product is defined in # x, that this, (hf(")»hj(x)) =| k(). hxdx, where
h is the orthogonal approximation functions, if and only if, (h.—(x),h,—(x)) =0.

From the point of view of stochastic mechanics, most systems involve a differential
equation with random coefficients. These coefficients represent the properties of
the problem under investigation. Thus, the stochastic differential equations are
written by,
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Au =f, (1)
where A is stochastic differential operator, u is a random response and f the
random loading.

Whereas A(vak) is positive definite and uniformly bounded in probability,
f(—r, Ek) bounded and withfinite variance then, for the set of n structural samples
{A(.,Ek)} and {f(-:Ek)}k , the initial hypotheses are:

k=1 =

H1):3 AA€ R+:P(Eke Q/A(x,E,) € [A, K],Vx c (0,1)) =1,

(H2):A(..E,) e H}(0l), Vke {1,..., n},
(H3):f(..8,) € L*(0), Vke {1,..., n}.

Another way of writing the stochastic differential equation, Eq. (1), considering
the randomness in the differential operator is given by,

(L) + 0, @)u(x, 0) = f(x, w), ()

where L(x) is the deterministic differential operator Il(x, @) is the differential
operator with coefficients obtained for the zero mean random process.

The solution of Eq. (2) is proposed considering the result with deterministicand
random behavior (Ghanem and Spanos, 1991), such that,

U (x, ) = (x) + a(x, w), 3)

where it;(x) is the expected value of the linear differential operator and @(x, @)
is the random process with zero mean. It is observed that itx(x) and & (x, @) in the
same covariance function.

2.1. Spectral Stochastic Finite Element Method

In the deterministic numerical method, a finite element of coordinates X; e x_j
, the local mean or mean value i is used, with interpolation functions P and P,
whose weighted average is given by Pu(x;) + P (x,) . The stochastic process u(x, @)
is defined by the arguments of a set of orthogonal functions g(x) from a linear or

non-linear functional, in the probability space S#, that s,

u(x,w) = Ig(x)dgo(w), (4)
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whose covariance function is C(x;, x,) = jg(xl)g(xz)(dgﬂl(w)ds?’z(w)).

To obtain the inner product of the orthogonal functions in discrete form, the
random vector sets 5.‘(['3'&) is rewritten such that,

(5;(%),5;(%)) = [ &) - & )d P = By @) (5)

HxQ

Furthermore, for numerical solution, the Fredholm equation is written as
| et mue)r = 1u(x). ©)
D

where ¥i(®) is a complete set of functions defined in Hilbert space H and 4 are
eigenvalues.

The Kernel eigenfunctions C(xl,xz) are obtained from,

N
_ (%)
w(x) = Zod" h(x). .
where d.(k) is a set of coefficients associated with the functions Wf(x) for the kth

i
realization of the stochastic process.

Substituting the approximate solution into the differential equation, we have
the error, or residuals given by,

N
ey = Z di(k)J C(xl,xz)w(xz)dxg - Alp(xl}. 8)
i=0 b

In Galerkin's method, the weight functions are selected and it is imposed that
the weighted average of the residue in relation to the weight functions is equal to
zero. In mathematical terms_the error is made orthogonal to the weight functions,
such that, (EN,hj(I)) =0,j=1,...,N.

The solution of the linear system, is obtained solving for D and ﬁ'k and, replacing
in Eq. (10) get the eigenfunctions, W ().

CD = ABD ).
where C; =[ [ C o1, x2)h (x,)dxahy(x,)dx,d x,, By =[ hh)dx, D, =d")
DD D

and A;; = ;4

i
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The columns of the matrix become the eigenvectors computed at the respective
nodal point of the induced mesh, and the ij element of the matrix C becomes the
weighted correlation between the process at nodes i and j. Cand B are symmetric,
positive definite.

2.2. System of Linear Algebraic Equations

However, it should be noted that the mean and the covariance are inadequate
to fully define a second-order general stochastic field. For the kth realization
of the stochastic process u = u(x,mk) and defined by the random variables,
E(@) = {‘:i(wk) } , the random response is given by,

u(x,Ek(m)) = u(x,él(mk), ...,fn{a}k) ) (10)

Then the numerical approximation of the realization of the stochastic process
has the following form:

Uy (X, (@) = 1 (Ey(@)) .y (x) = U(E(w)) . D(x) (1),

where H,—’S are the coefficients to be determined by minimizing the residual and
®(x) are functions sets y;(x).

Substituting the numerical approximation of the sampling function in the
Abstract Variational Problem, obtained from the stochastic version of the Lax-
Milgram Lemma (Babuska et al., 2005), a system of linear algebraic equations is
generated, that is,

(KU)(E(w)) =F = U(E(w)) =H(E,(@)) .F (12),

where K(Ex(@)) , is the matrix of random coefficients, F = [f;, ...,f,,,‘]r ,is
the force vector, n(Ew) = [ry(E@)] = (K(Ek(m)))’1 . and displacement vector,
U(Ew) = [“1(5k(‘*’))> “m(Ek(ﬁ’))]l'

mxm

The k-th response vector is given by,

n

u(E@)) = Zhij(Ek(m))ﬁ (13).

=

Of Egs (11) and (12) the numerical approximation to the sampling function of
the stochastic process of the response is given by,
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m m

e @) = D0 Y (y(Z@)) )i = F . (H(E@) )20 (1),

i=1 j=1

For the k-th realization, it is necessary to obtain the solution of the linear system
expressed in Eq. (14). Given the conditions of the hypotheses (H1-H3), an alternative
to reduce the computational effort is the use of the Neumann series. To obtain the
variance, the Neumann series can be applied intrusively or non-intrusively, with
considerable gain in computational processing time.

2.3. The Neumann Series

The Neumann series is a convergent series as long as the adopted variation
around the expected value is small. (spectral radius less than 1). In this case, the
matrix of random coefficients admits the following decomposition:

where Ko{Ek(a’)) is the matrix composed by the expected value of the coefficients
and AK(E*(Q)) is the uncertainty represented by its statistical moments.

To approximate the inverse of the matrix of random coefficients it is written
in the form:

K(E,(@)) = Kﬂ[l - P(Ek(m))], (16)

where I € M,(R) is the identity matrix and P(E,(w)) is the argument of the series.

The matrix P(Ek(a))) is a linear operator, continuous with normed space, such
that PY =1 Substituting Eq. (16) in Eq. (12), the approximate random response of
the inverse of the stochastic coefficient matrix is such that,

-1
U(x,B@) = (I-P(E@)) U, (17)

where U0=(K0)_IF.

In particular if [P <1 the matrix I-P)lem L(R) is approximated by,
- P)( )= ZP where q is the order adopted for expanding the series. Substituting

this property |n Eq. (17) the system of algebraic equations is rewritten as:
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q
U(x, Ey@)) = ) P"(Ey@)) U, (18)

n=0

The first-order or linear approximation for the Neumann expansion has reached
an appropriate accuracy. The application of SSFEM and NMC to obtain responses in
the form of statistical moments is widely used in elliptic differential equations that
represent the beam bending problem.

3. STOCHASTIC FORMULATION FOR BEAM BENDING THEORIES

This section presents a variational problem for a stationary beam based on the
theories of Euler-Bernoulli, Timoshenko and Levinson-Bickford. It is a synthesis to
obtain the bilinear form and consequently the random response.

3.1. Euler-Bernoulli Stochastic Beam Bending

The classical Euler-Bernoulli theory is applied to prismatic beams with
longitudinal length as the predominant dimension. The beam is made of material
with homogeneous density, isotropic, linearly elastic, obeying Hooke’s law. The
material prgnprﬁm are represented by the estimator of the expected value of Young's
modulus, Hg(x,ay)- The beam is assumed to be symmetric about the vertical axis
and remains so after bending. This kinematic hypothesis consists of assuming that
the sections remain flat, undisturbed and orthogonal to the longitudinal axis of the
beam. The beam geometry is represented by the estimator of the expected value of

the moment of inertia, naE{x, wy) - The shear stresses are very small in relation to the
normal stresses and can be ignored, and the effects of the mass moment of inertia
are neglected for small vertical displacements w(x, fﬂk) and angular displacements
#(x, ;) remains constant.

The stationary beam differential equation is obtained from equilibrium
conditions, with homogeneous boundary conditions and complying with the Lax-
Milgram lemma. Observing hypotheses (H1)-(H3), the problem can be expressed
as follows:

Find w(x, mk),q.‘;(x, a)k) (S (0,1) X (Q,.?, 5“), such that,

dx? dx

2 2,
J—(Kd—z)(x, w) = q(x, @), (19)
w(0,m) = w(!,m) = 0,4(0,0) = gﬁ(!,m) =0,

where K = El is the bending stiffness.
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For the solution using the deterministic Finite Element Method, a beam element
consisting of two nodes is considered. The degrees of freedom are associated with
the transverse displacement w(x, ék) and angular displacement qﬁ{x, ék}. The goal
becomes to interpolate the deflection at any point on the element in terms of the
local degrees of freedom, Wi, @1, W5 e @. As the beam element has four nodal
values the approximate functions are a generalization of Hermite cubics. Thus the
stiffness matrix of the beam element is given by,

12 6L -12 6L
e EI 6L 412 —6L 2I2
. _EI _ (20)
[ (‘x:!ék)] L3 (x’ék] —-12 —-6L 12 -6L
6L 202 —6L 4I?

And the loading vector of the element,
€ _ L g.L L g.L f
G(X, 51;) = Q(-xaék) T 1 3 "1 (21).

The assembly of a global stiffness matrix and a global displacement vector
must combine information from all elements. From the values generated by the
approximation polynomial at the nodes of each element, interpolation functions
are used to obtain the approximate solution.

3.2. Timoshenko Stochastic Beam Bending

The assumption that the cross section remains flat and normal to the neutral axis
means neglecting the shear strain. Timoshenko’s theory of beam bending considers
that, although the cross section remains flat, additional rotation also occurs due to
shear and the section does not remain normal to the neutral axis. As the relationship
between beam length and height increases, shear stresses in the height direction
become important and can no longer be neglected.

The strong formulation of the stochastic problem for Timoshenko's stationary
beam bending problem obtained from equilibrium principles is expressed by:
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Find w(x, mk) and ¢(x, cok) € Lz(ﬂ, F, P;Hz), such that,

% kxAG(% - qﬁ) (x, mk) + q(x, mk) =0,
< (22)
| () s mk)] +kAG(2 ) (x.0) =0,

w(0,m) = w(!,m) = 0,0(0,w) = qb(l,m) =0,Vxe (0,!) ew€ (L, F,P),

.

where G{I, GJ;() is the transverse modulus of elasticity, A (x, a);;) is the cross-sectional
area and kx is the shear factor.

Draw k; = EI and k.= k,AG the bilinear forms are obtained, in a system
of equations. The model adopts an element with two nodes and four degrees
of freedom. Integration is performed using Gaussian quadrature approximation
polynomials. The Jacobian is associated with the Lagrange interpolation functions.
With this expedient the stiffness matrix of the element, given by:

H 4+ kGhl —E 1k Gn I _LF
“E ik Ghl E +kGnl KSR kGR
[ ¢ ! © 2 2
K = ) (23)
_ kGhi koGhl koGh k Ghl
2 2 4 4
_ kcGhl k Ghl k Ghl k,Ghl
| 2 2 4 4 |
And the force vector becomes:
1
a={af & 4 4}, (24)
where,
ow o
i=-K(—-¢ )& , = —K;:—(x
a ( - ¢»)() 4 = K~ ()

x=0 x=0

e o fOW e _p 99
g = K( — a!a)(x) 4= —K——)

x=h

x=h
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For different linear interpolation functions of vertical and angular displacement
shear numerical locking can occur. An exposition of these elements is presented in
Tiwari and Hyer, 2002. To avoid this occurrence, an alternative is to use higher order
beam theories, e.g., the Levinson-Bickford.

3.3. Levinson-Bickford Stochastic Beam Bending

The Levinson-Bickford beam theory stands out for the relationship between
the cross-sectional deformation and the mass moment of inertia. The high-order
stationary beam bending problem, for the k-th realization of the random process,
is expressed by the following differential equation:

Find w(x,,) and ¢(x,,) € L( (@ F,P)x H"(0]) ), such that,
2 2
2 [e(0+22)| o0 - Z]p(s25 - 162 )| ) = a0
4

~o(32+9) (mo) - £|p(1625 - 6822 ) (m)| =0,
w(0,w) = w(l,m) = 0,4(0,w) = gb(l,m) =0,vx e (0,!) ew € (Q,F,P),

(25)

where @ = (£(@0)) = ~=GA(&(®1) ) and 8 =x(&(@0)) = = E1(&(@,) )

It is verified in Karttunen and Hertezen, 2015 that the stiffness matrix of the
element is expressed by,

rom) 12 6L —12 6L
e El(x,0) |6L (4+®)L2 —6L (2—D)L?

_ 26
[K(x’“’*)] (+®L |-12 —6L 12 —6L : (26)

6L 2-®)}2 —-6L 4+ DIL?
And loading by,

12

W =2{i -Lio-5) 1 L(e-3)). @)

2
where, @ = w

variable.

, the functional associated with the position and the random

The similarity between the stiffness matrix and the loading vector for the
Levinson-Bickford beam element and the Euler-Bernoulli beam element is observed
when @ = 0. The similarity between the stiffness matrix and the loading vector
for the Levinson-Bickford beam element and the Timoshenko beam element is

observed when k. = %
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4. NUMERICAL RESULTS

In this section the stochastic beam bending problem is presented for the
fixed boundary condition as shown in Figure 1 and statistical results are obtained
for the transverse and angular displacement field. Are performed n_=30.000

samples of the stochastic response process, {u(x, E(ék))} ,¥x €D . The problem
k=1

is discussed for a beam of rectangular cross section defined in the domain
D={xeR|0<x<L}, widthb=5cm and uniformly distributed loading g(x) =1
KN/m. Initially, the relationship between the length L and the height of the beam
his discussed and, for subsequent analyzes, the height assumes the expected value
HPh =15.24 cm. The beam is made of isotropic material, linearly elastic, obeying
Hooke's law with an expected value of the Young modulus Pe = 205x10° PA.
The Neumann series is used with first order approximation and the domain is
discretized with 100 finite elements of equal length.

q(x)

| [ [ [ ]

L ]

Figure 1. Fixed beam

M ,0\2
Expected value estimators (»“u) andvariance (0}) of the stochastic displacement
process are given, respectively, by the following expressions:

ho= ni”g u(x,E(gk)), Vx € D, 28)

ng 2
Bilx) = (nsl_ I)E (u(x,E(fk)) —,u,,(x)) , Yx eD. (29)
Since Monte Carlo simulation is involved, the convergence of the solution is
studied to verify that the number of simulations is appropriate for the reference
accuracy. The behavior of the estimator of the expected value and the variance
of the vertical displacement field, in relation to the number of realizations of the
stochastic process n_is obtained by fixing x = %1, and coefficient of variation 6,= 1/10.
Convergence is analyzed for the uncertainty associated with the stiffness matrix.
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Figure 2 and Figure 3 show the convergence of expected value and variance,
respectively, with the number of realizations of the stochastic process, for the beam
bending problem based on the Euler-Bernoulli theory.

-0.066 —
-0.0665 |
-0.067

-0.0675

-0.068

-0.0685

#W(IIZ)[mmJ

-0.069

-0.0695 -

-0.07 -

_0.0705 | 1 I L ]
0 0.5 1 15 2 25 3

number of samples x10*

Figure 2. Convergence of the expected value of the vertical displacement field.

x107

0.2 L | | | | | |

0 0.5 1 1.5 2 2.5 3
n. amostras x10*

Figure 3. Convergence of displacement field variance.
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In both figures, verify that for n > 1.000, the estimators stabilize for an adequate
resolution adopted in the work.

CAPITULO 8

A preliminary result for the section evaluates the expected value of the vertical
displacement as a function of the geometric properties of the beam and verifying
the differences between the beam theories. The boundary condition considered for
a beam fixed at both ends. Thus, Figure 4, Figure 5 and Figure 6 show the graph of 123




the estimator of the expected value of the vertical displacement for the different
beam theories, and considering the beam length varying between L=0.25, 0.5 and
1 m, respectively with coefficient of variation 6. = 1/10, using NMC methodology.

0 =10
--—-Euler-Bernoulli
—Timoshenko
ol - - ‘Levinson-Bickford
il
z
E3
A4
_5 1 1 L L I
0 0.05 0.1 0.15 0.2 0.25
x [m]
Figure 4. Expected value of vertical displacement for L=0.25 m.
-8
0 X 10
--—-Euler-Bernoulli
—Timoshenko
-1 - - ‘Levinson-Bickford
2
E)
23
=
4+
5
_6 L 1 Il L L L L 1 Il I}
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
X [m]

Figure 5. Expected value of angular displacement for L=0.5m.
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%107

-—--Euler-Bernoulli
— Timoshenko
- - ‘Levinson-Bickford

0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 6. Expected value of angular displacement for L= 1m.

Itis verified that, with the increase of the beam length (L) the difference between
the beam theories becomes more accentuated. In this case, the Euler-Bernoulli and
Levinson-Bickford theories remain close to each other, with a distancing of the
vertical displacement for Timoshenko's theory.

Figure 7 shows the graph of the variance estimator of the vertical displacement,
with §=1/10, for the three beam theories using the length L= 1m. This length was
chosen because it presents the smallest difference between the expected value of
the beam theories, allowing evaluate the effect of the deviations of each of the
stochastic processes.

-18
33(]0

0.5

uler-Bernoulli

Sl - - -Levinson-Bickford

omet ™ I | 1 L L

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 1
X [m]

Figure 7. Vertical displacement variance.
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Figure 8 shows the graph of the angular displacement variance estimator, with
6 =1/10, for the three beam theories using the length L = 1m. It is observed that,
in relation to the variance estimator, the results obtained for the Euler-Bernoulli
and Levinson-Bickford theories differ considerably from those obtained for the
Timoshenko theory.

Sk -23
2A5><]0 = " 1.6”0
{ -==Euler-Bernoulli
Levinson-Bickford \
i . 1.4
20 f f
i ] § 1%
: i ; i
i p / }
: i ! i 1
— 150 4 : H —
& i { ; ! &
H i i
£ | } { ] £ 08
oS 1 f 1 o e
S ! ‘_; ‘tq { t )
i L { { 0.6
{ 4 j |
! i 4 i
i i 4 !
{ ‘;l ; ! 0.4
! 1
05 | \ | \
] 1
| v [ 02
i \ / \
i \ ) \
/ N/ A
0¥ Sz Y 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
x [m] X [m]

Figure 8. Angular displacement variance.

Table 1 presents the processing times for each beam theory and different
uncertainty quantification methodologies.

Table 1. Processing time (seg)

Methodology Euler-Bernoulli Levinson-Bickford Timoshenko
SMC 1,472 1,783 12,792
NMC 0,040 0,055 1,472

SSFEM 0,448 0,960 6,303

The computational times are close for the Euler-Bernoulli and Levinson-Bickford
theories, but significantly higher for the Timoshenko theory. Similarly, the time is
considerably longer when using the pure Monte Carlo simulation in relation to
the Neumann-Monte Carlo methodology and the Spectral Finite Element method.
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5. CONCLUSION

In this work, results are obtained for the quantification of the uncertainty of the
stochastic bending problem of an elastic and stationary beam by Euler-Bernoulli,
Timoshenko and Levinson-Bickford. The proposed object consists of applying the
Spectral Finite Element Method and the Neumann series as a numerical strategy to
obtain the approximate solution of the system of linear equations resulting from
the variational procedure. The weak formulation of the problem is obtained from
the sampling Galerkin method.

Inthe numerical simulations, initially, the convergence of the expected value is
verified as a function of the number of simulations. For samples, the estimator of
expected value and variance does not present a sensitive or significant difference
between theories. Then it is confirmed that, when the length and cross-section ratio
is increased, the shear effect becomes more pronounced for Timoshenko's theory.

It turns out that the variance estimator is considerably larger for the Levinson-
Bickford and Euler-Bernoulli theory. The interpretation of this result is associated
with the uncertainty model adopted, that is, by trigonometric series. Regarding
estimator error estimates the expected value is less than 1% for all beam theories.
The Levinson-Bickford beam solution presents the greatest difference between the
results, while the processing time is relatively higher when using the pure Monte
Carlo simulation.

BIBLIOGRAPHIC REFERENCES

Arnold, L.: Stochastic Differential Equations: Theory and Applications. Wiley Interscience,
New York (1973).

Babuska, I., Tempone, R., Zouraris, G.E.: Solving elliptic boundary value problems with
uncertainty coefficients by the Finite Element method: The stochastic formulation. Computer
Methods in Applied Mechanics and Engineering, 194(12-16), 1251-1294 (2005).

Bickford, W.B.: A consistent higher order beam theory. Developments in Theoretical and
Applied Mechanics, 11, 137 (1981).

Ghanem, R.G, Spanos, P.D.: Stochastic Finite Elements: A Spectral Approach. Springer-Verlag,
New York (1991).

Goodier, J.N., Timoshenko S.P.: Theory of Elasticity. McGraw-Hill Book Company, New York
(1951).

UNCERTAINTY QUANTIFICATION IN BEAM BENDING THEORIES BY STOCHASTIC SPECTRAL FINITE ELEMENT METHOD

©
o
=
>
=
[
<
¥}

127




Heyliger, P.R., Reddy, J.N.: A higher order beam finite element for bending and vibration
problems, Journal of Sound and Vibration, 126(2), 309-326 (1988).

Karttunen, A., Von Hertzen, R.: Variational formulation of the static Levinson beam theory.
Mechanical Research Communications, 66, 15-19, (2015).

Levinson, M., Stephens N.G.: A second order beam theory. Journal of Sound and Vibration,
67(3),293-305 (1979).

Rao M.M., Swift, R.J.: Probability Theory with Applications, Mathematics and Its Applications.
Springer Verlag, New York (2006).

Reddy, J.N.: An Introduction to the Finite Element Method. Mc-Graw-Hill Book Company,
New York (1984).

Reddy, J.N.: Nonlocal nonlinear formulations for bending of classical and shear deformation
theories of beams and plates. International Journal of Engineering Science, 48(11), 1507-
1518 (2010).

Shinozuka, M.: Structural response variability. Journal of Engineering Mechanics, ASCE,
113(6), 825-842, (1987).

Squarcio, R.IM.F,, Avila, C.R.S.J.: Uncertainty quantification via A-Neumann methodology of
the stochastic bending problem of the Levinson-Bickford beam. Acta Mechanica, 233, 12-16
(2022).

Timoshenko S.P.: On the correction for shear of the differential equation for transverse
vibrations of prismatic bars. Philosophical Magazine, 41, 744-746 (1921).

Timoshenko S.P.: On the transverse vibration of bars of uniform cross-section. Philosophical
Magazine, 43, 125-131 (1922).

Tiwari N., Hyer M\W.: Secondary buckling of compression-loaded composite plates, AIAA
journal, 40(10), 2120-2126, (2002).

Yamazaki, F., Shinozuka, M., Dasgupta, G.: Neumann expansion for stochastic Finite Element
analysis. Journal of Engineering Mechanics, 114(8), (1988).

UNCERTAINTY QUANTIFICATION IN BEAM BENDING THEORIES BY STOCHASTIC SPECTRAL FINITE ELEMENT METHOD

©
o
=
>
=
[
<
¥}

128






