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ABSTRACT: In stochastic structural mechanics, it is possible to associate uncertainties 
with material, geometric properties and external loading, whiles estimates response 
may be present in fields of displacement, stress, strain, frequency, and phase 
differences, among others. At work the stochastic formulation of elliptic differential 
equations associated with the beam bending problem is present. The propagation 
of uncertainty is explored from the perspective of the numerical methodology of 
asymptotic complexity Neumann-Monte Carlo (NMC). The variational solution is 
studied for the classical theory of Euler-Bernoulli and the higher order theories of 
Timoshenko and Levinson-Bickford using from the stochastic version of Galerkin’s 
method. Numerical results present the expected value and variance of the stochastic 
displacement field for the three beam theories. Comments are present for the cases 
where the initial variability is associated with the modulus of elasticity and height 
beams, not simultaneously and simultaneously.

KEYWORDS: Stochastic Structural Mechanics, Bending Beam Theory, Uncertainty 
Quantification, Neumann-Monte Carlo methodology.

1. INTRODUCTION
One of the main concerns in dealing with the stochastic problem is to portray the 

irregular disparity of the mechanical properties so that an adequate formulation can 
be established. The model must represent the uncertainties of the random variables 
in a way that the response contain relevant information about the stochastic process.
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The numerical results depend on the adopted model and, usually contain two 
terms: the expected value and the variability of the responses. The mathematical 
model identifies a set of relationships generally based on principles, conservation 
laws, and physical magnitude metrics related through differential equations.

In this regard, the Galerkin method is used to obtain approximate numerical 
solutions based on the lemma of Doob-Dynkin, Rao and Swift, 2006 ensure that to 
obtain the space of the approximate numerical solutions for all the realizations of 
the stochastic process displacement truncating a total system in the approximation 
space. In this method, the coefficients of the equation system are to be determined 
by minimizing the projection residue generated by the approximation function of 
the problem. Therefore by replacing the numerical approximation of the sampling 
function of the stochastic displacement process, a linear system of algebraic equations 
is generated.

The application of the Neumann series in stochastic problems arises from the 
works of Shinozuka, 1987 and Yamazaki et al. 1988. In these works, numerical results 
are obtained to estimate the uncertainty in the stress and strain fields for the beam 
bending problem. The Neumann-Monte Carlo methodology combines the Monte 
Carlo simulation methods and the Neumann series, with the objective of obtaining 
the results of the realizations of the stochastic process. The series acts to obtain the 
approximation of the inverse of the matrix of random coefficients originated by the 
system of equations of the variational formulation.

The theories of bending stationary or vibrational beams are of fundamental 
importance in the solution of other structural elements, such as plates, frames, and 
membranes. The classical deterministic theory of Euler-Bernoulli beam bending, in 
terms of the elasticity equations, can be found in Reddy, 1984 taking into account 
the partial differential equation of motion, the external loading, and the boundary 
conditions.

In Timoshenko, 1921, and Timoshenko, 1922 the author adds the effect of 
shear and develops the equation of motion from principles of equilibrium. An 
asymptotic expansion procedure is presented in Goodie e Timoshenko, 1951, which 
shows second-order effects on beam curvature. However, the formulation requires 
the arbitrary insertion of the shear coefficient and the boundary conditions of the 
numerical solution require the estimation of the curvature of the displacement field.

The theory presented by Levinson e Stephens, 1979 includes shear deformation 
of the cross-section using a high-order approximation function that satisfies the 
condition of free shear on the side surfaces. Bickford, 1981 presents a variational 
formulation of the theory and develops the expressions of the primary and secondary 
variables associated with the boundary conditions. Heyliger and Reddy, 1988 
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derive equations of motion for a beam from Levinson’s kinematic assumptions and 
Hamilton’s principle. Karttunen and Hertezen, 2015 employ the principle of virtual 
displacements with the addition of external virtual work on the lateral surfaces of 
the beam and numerical examples are presented using the Finite Element method. 
Stationary and dynamic solutions to the high-order beam bending problem can be 
found in Reddy, 2010. Squarcio and Ávila, 2022 apply the Neumann-Monte Carlo 
methodology to the stationary beam bending problem based on the high-order 
theory of Levinson-Bickford.

The layout of a reminder of this paper is as follows. The uncertainty propagation 
analysis is presented for the Neumann-Monte Carlo (NMC) methodology. The 
following section is a technical and pragmatic review of the stochastic problem of 
elastic and stationary beam bending with numerical solutions obtained from three 
theories: Euler-Bernoulli, Timoshenko e Levinson-Bickford. The numerical simulations 
discuss the results for the statistical moments of the displacement field when the 
uncertainty is associated with stiffness matrix. The results obtained by SSFEM, for 
each of the beam theories, are compared.

2. STOCHASTIC FORMULATION OF ELLIPTIC 
DIFFERENTIAL EQUATIONS
This section is presented the problem of random bending beam through random 

stiffness coefficient or loading. The problem is formulated from the point of view 
of Monte Carlo simulation-based methods on the Hilbert space with functions in 
the domain D ⊂ ℝn and random variables defined in ( )  such that, , 
were  the sample space,  σ-álgebra, and  a Probability with values 
in [0,1] such that  and .

Considering the problem of sample stochastic bending is presented, for the k-th 
structural samples, a finite set of random variables , respectively, for the stiffness  
and loading coefficient. The uncertainty model is mapped by spatial functions 

 denoted by  (Arnold, 1973). The family  is 
the set of random vectors, where , a non-empty set of indices and  
the parameter and state spaces, respectively.

In this space, the estimators, in general, are represented by Lebesgue integrals, 
and the inner product is defined in , that this, , where 

 is the orthogonal approximation functions, if and only if, .

From the point of view of stochastic mechanics, most systems involve a differential 
equation with random coefficients. These coefficients represent the properties of 
the problem under investigation. Thus, the stochastic differential equations are 
written by,
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	 (1)

where  is stochastic differential operator,  is a random response and  the 
random loading.

Whereas  is positive definite and uniformly bounded in probability,  
 bounded and with finite variance then, for the set of n structural samples  

 and  the initial hypotheses are:

Another way of writing the stochastic differential equation, Eq. (1), considering 
the randomness in the differential operator is given by,

	 			   (2)

where  is the deterministic differential operator  is the differential 
operator with coefficients obtained for the zero mean random process. 

The solution of Eq. (2) is proposed considering the result with deterministic and 
random behavior (Ghanem and Spanos, 1991), such that, 

				    (3)

where  is the expected value of the linear differential operator and  
is the random process with zero mean. It is observed that  and  in the 
same covariance function.

2.1. Spectral Stochastic Finite Element Method
In the deterministic numerical method, a finite element of coordinates  e 

, the local mean or mean value  is used, with interpolation functions P1 and P2, 
whose weighted average is given by  . The stochastic process  
is defined by the arguments of a set of orthogonal functions  from a linear or 
non-linear functional, in the probability space , that is,

					     (4)
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whose covariance function is .

To obtain the inner product of the orthogonal functions in discrete form, the 
random vector sets  is rewritten such that,

		  (5)

Furthermore, for numerical solution, the Fredholm equation is written as

			   (6),

where  is a complete set of functions defined in Hilbert space H and  are 
eigenvalues.

The Kernel eigenfunctions  are obtained from,

	
					     (7),

where  is a set of coefficients associated with the functions  for the kth 
realization of the stochastic process.

Substituting the approximate solution into the differential equation, we have 
the error, or residuals given by,

		  (8)

In Galerkin’s method, the weight functions are selected and it is imposed that 
the weighted average of the residue in relation to the weight functions is equal to 
zero. In mathematical terms, the error is made orthogonal to the weight functions, 
such that, .

The solution of the linear system, is obtained solving for D and  and, replacing 
in Eq. (10) get the eigenfunctions, :

CD = ABD							       (9),

where  

and 
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The columns of the matrix  become the eigenvectors computed at the respective 
nodal point of the induced mesh, and the ijth element of the matrix C becomes the 
weighted correlation between the process at nodes i and j. C and B are symmetric, 
positive definite.

2.2. System of Linear Algebraic Equations
However, it should be noted that the mean and the covariance are inadequate 

to fully define a second-order general stochastic field. For the kth realization 
of the stochastic process   and defined by the random variables,                                 

, the random response is given by,

	
		  (10)

Then the numerical approximation of the realization of the stochastic process 
has the following form:

	 (11),

where  are the coefficients to be determined by minimizing the residual and 
 are functions sets .

Substituting the numerical approximation of the sampling function in the 
Abstract Variational Problem, obtained from the stochastic version of the Lax-
Milgram Lemma (Babuska et al., 2005), a system of linear algebraic equations is 
generated, that is,

		 (12),

where , is the matrix of random coefficients,  , is 
the force vector, , and displacement vector, 

.

The k-th response vector is given by,

				    (13).

Of Eqs (11) and (12) the numerical approximation to the sampling function of 
the stochastic process of the response is given by,
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	 (14).

For the k-th realization, it is necessary to obtain the solution of the linear system 
expressed in Eq. (14). Given the conditions of the hypotheses (H1-H3), an alternative 
to reduce the computational effort is the use of the Neumann series. To obtain the 
variance, the Neumann series can be applied intrusively or non-intrusively, with 
considerable gain in computational processing time.

2.3. The Neumann Series
The Neumann series is a convergent series as long as the adopted variation 

around the expected value is small. (spectral radius less than 1). In this case, the 
matrix of random coefficients admits the following decomposition:

	 	 	 (15)

where  is the matrix composed by the expected value of the coefficients 
and  is the uncertainty represented by its statistical moments.

To approximate the inverse of the matrix of random coefficients it is written 
in the form:

	 			   (16)

where  is the identity matrix and  is the argument of the series. 

The matrix  is a linear operator, continuous with normed space, such 
that . Substituting Eq. (16) in Eq. (12), the approximate random response of 
the inverse of the stochastic coefficient matrix is such that,

	
			   (17)

where .

In particular, if  the matrix  is approximated by, 

, where q is the order adopted for expanding the series. Substituting 

this property in Eq. (17) the system of algebraic equations is rewritten as:
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			   (18)

The first-order or linear approximation for the Neumann expansion has reached 
an appropriate accuracy. The application of SSFEM and NMC to obtain responses in 
the form of statistical moments is widely used in elliptic differential equations that 
represent the beam bending problem.

3. STOCHASTIC FORMULATION FOR BEAM BENDING THEORIES
This section presents a variational problem for a stationary beam based on the 

theories of Euler-Bernoulli, Timoshenko and Levinson-Bickford. It is a synthesis to 
obtain the bilinear form and consequently the random response. 

3.1. Euler-Bernoulli Stochastic Beam Bending
The classical Euler-Bernoulli theory is applied to prismatic beams with 

longitudinal length as the predominant dimension. The beam is made of material 
with homogeneous density, isotropic, linearly elastic, obeying Hooke’s law. The 
material properties are represented by the estimator of the expected value of Young’s 
modulus, . The beam is assumed to be symmetric about the vertical axis 
and remains so after bending. This kinematic hypothesis consists of assuming that 
the sections remain flat, undisturbed and orthogonal to the longitudinal axis of the 
beam. The beam geometry is represented by the estimator of the expected value of 

the moment of inertia, . The shear stresses are very small in relation to the 
normal stresses and can be ignored, and the effects of the mass moment of inertia 
are neglected for small vertical displacements  and angular displacements  

 remains constant.

The stationary beam differential equation is obtained from equilibrium 
conditions, with homogeneous boundary conditions and complying with the Lax-
Milgram lemma. Observing hypotheses (H1)-(H3), the problem can be expressed 
as follows:

	 (19)

where K = EI is the bending stiffness.
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For the solution using the deterministic Finite Element Method, a beam element 
consisting of two nodes is considered. The degrees of freedom are associated with 
the transverse displacement  and angular displacement . The goal 
becomes to interpolate the deflection at any point on the element in terms of the 
local degrees of freedom,  e . As the beam element has four nodal 
values the approximate functions are a generalization of Hermite cubics. Thus the 
stiffness matrix of the beam element  is given by, 

	

	 (20)

And the loading vector of the element,

	 (21).

The assembly of a global stiffness matrix and a global displacement vector 
must combine information from all elements. From the values generated by the 
approximation polynomial at the nodes of each element, interpolation functions 
are used to obtain the approximate solution.

3.2. Timoshenko Stochastic Beam Bending
The assumption that the cross section remains flat and normal to the neutral axis 

means neglecting the shear strain. Timoshenko’s theory of beam bending considers 
that, although the cross section remains flat, additional rotation also occurs due to 
shear and the section does not remain normal to the neutral axis. As the relationship 
between beam length and height increases, shear stresses in the height direction 
become important and can no longer be neglected.

The strong formulation of the stochastic problem for Timoshenko’s stationary 
beam bending problem obtained from equilibrium principles is expressed by:
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	 (22)

where  is the transverse modulus of elasticity,  is the cross-sectional 
area and  is the shear factor.

Draw  and  the bilinear forms are obtained, in a system 
of equations. The model adopts an element with two nodes and four degrees 
of freedom. Integration is performed using Gaussian quadrature approximation 
polynomials. The Jacobian is associated with the Lagrange interpolation functions. 
With this expedient the stiffness matrix of the element, given by:

	 (23)

And the force vector becomes:

	 (24)

where,
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For different linear interpolation functions of vertical and angular displacement 
shear numerical locking can occur. An exposition of these elements is presented in 
Tiwari and Hyer, 2002. To avoid this occurrence, an alternative is to use higher order 
beam theories, e.g., the Levinson-Bickford.

3.3. Levinson-Bickford Stochastic Beam Bending
The Levinson-Bickford beam theory stands out for the relationship between 

the cross-sectional deformation and the mass moment of inertia. The high-order 
stationary beam bending problem, for the k-th realization of the random process, 
is expressed by the following differential equation:

	
(25)

where   and  .

It is verified in Karttunen and Hertezen, 2015 that the stiffness matrix of the 
element is expressed by,

	 (26)

And loading by,

	
		  (27)

where, , the functional associated with the position and the random 
variable.

The similarity between the stiffness matrix and the loading vector for the 
Levinson-Bickford beam element and the Euler-Bernoulli beam element is observed 
when . The similarity between the stiffness matrix and the loading vector 
for the Levinson-Bickford beam element and the Timoshenko beam element is 
observed when .
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4. NUMERICAL RESULTS
In this section the stochastic beam bending problem is presented for the 

fixed boundary condition as shown in Figure 1 and statistical results are obtained 
for the transverse and angular displacement field. Are performed ns = 30.000 

samples of the stochastic response process, 
 
. The problem                        

is discussed for  a beam of rectangular cross section defined in the domain 
, width b = 5 cm and uniformly distributed loading  = 1 

KN/m. Initially, the relationship between the length L and the height of the beam 
h is discussed and, for subsequent analyzes, the height assumes the expected value 

 = 15.24 cm. The beam is made of isotropic material, linearly elastic, obeying 
Hooke’s law with an expected value of the Young modulus  = 205x109 PA. 
The Neumann series is used with first order approximation and the domain is 
discretized with 100 finite elements of equal length.

Figure 1. Fixed beam

Expected value estimators  and variance  of the stochastic displacement 
process are given, respectively, by the following expressions:

				    (28)

		  (29)

Since Monte Carlo simulation is involved, the convergence of the solution is 
studied to verify that the number of simulations is appropriate for the reference 
accuracy. The behavior of the estimator of the expected value and the variance 
of the vertical displacement field, in relation to the number of realizations of the 
stochastic process ns is obtained by fixing , and coefficient of variation δE = 1/10. 
Convergence is analyzed for the uncertainty associated with the stiffness matrix.
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Figure 2 and Figure 3 show the convergence of expected value and variance, 
respectively, with the number of realizations of the stochastic process, for the beam 
bending problem based on the Euler-Bernoulli theory.

Figure 2. Convergence of the expected value of the vertical displacement field.

Figure 3. Convergence of displacement field variance.

In both figures, verify that for ns ≥ 1.000, the estimators stabilize for an adequate 
resolution adopted in the work.

A preliminary result for the section evaluates the expected value of the vertical 
displacement as a function of the geometric properties of the beam and verifying 
the differences between the beam theories. The boundary condition considered for 
a beam fixed at both ends. Thus, Figure 4, Figure 5 and Figure 6 show the graph of 
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the estimator of the expected value of the vertical displacement for the different 
beam theories, and considering the beam length varying between L = 0.25, 0.5 and 
1 m, respectively with coefficient of variation δE = 1/10, using NMC methodology.

Figure 4. Expected value of vertical displacement for L = 0.25 m.

Figure 5. Expected value of angular displacement for L = 0.5 m.
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Figure 6. Expected value of angular displacement for L = 1m.

It is verified that, with the increase of the beam length (L) the difference between 
the beam theories becomes more accentuated. In this case, the Euler-Bernoulli and 
Levinson-Bickford theories remain close to each other, with a distancing of the 
vertical displacement for Timoshenko’s theory. 

Figure 7 shows the graph of the variance estimator of the vertical displacement, 
with δ = 1/10, for the three beam theories using the length L = 1m. This length was 
chosen because it presents the smallest difference between the expected value of 
the beam theories, allowing evaluate the effect of the deviations of each of the 
stochastic processes.

Figure 7. Vertical displacement variance.
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Figure 8 shows the graph of the angular displacement variance estimator, with 
δ = 1/10, for the three beam theories using the length L = 1m. It is observed that, 
in relation to the variance estimator, the results obtained for the Euler-Bernoulli 
and Levinson-Bickford theories differ considerably from those obtained for the 
Timoshenko theory.

Figure 8. Angular displacement variance.

Table 1 presents the processing times for each beam theory and different 
uncertainty quantification methodologies.

Table 1. Processing time (seg)

Methodology Euler-Bernoulli Levinson-Bickford Timoshenko

SMC 1,472 1,783 12,792

NMC 0,040 0,055 1,472

SSFEM 0,448 0,960 6,803

The computational times are close for the Euler-Bernoulli and Levinson-Bickford 
theories, but significantly higher for the Timoshenko theory. Similarly, the time is 
considerably longer when using the pure Monte Carlo simulation in relation to 
the Neumann-Monte Carlo methodology and the Spectral Finite Element method.
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5. CONCLUSION
In this work, results are obtained for the quantification of the uncertainty of the 

stochastic bending problem of an elastic and stationary beam by Euler-Bernoulli, 
Timoshenko and Levinson-Bickford. The proposed object consists of applying the 
Spectral Finite Element Method and the Neumann series as a numerical strategy to 
obtain the approximate solution of the system of linear equations resulting from 
the variational procedure. The weak formulation of the problem is obtained from 
the sampling Galerkin method.

In the numerical simulations, initially, the convergence of the expected value is 
verified as a function of the number of simulations. For  samples, the estimator of 
expected value and variance does not present a sensitive or significant difference 
between theories. Then it is confirmed that, when the length and cross-section ratio 
is increased, the shear effect becomes more pronounced for Timoshenko’s theory.

It turns out that the variance estimator is considerably larger for the Levinson-
Bickford and Euler-Bernoulli theory. The interpretation of this result is associated 
with the uncertainty model adopted, that is, by trigonometric series. Regarding 
estimator error estimates the expected value is less than 1% for all beam theories. 
The Levinson-Bickford beam solution presents the greatest difference between the 
results, while the processing time is relatively higher when using the pure Monte 
Carlo simulation.
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