

International Journal of Health Science

Acceptance date: 08/08/2025

INITIAL MECHANISMS OF NEUROPLASTICITY: HOW YOGA PRACTICE STIMULATES THE ACTIVATION OF ADAPTIVE NEURONAL CASCADES

Ravi Kaiut

Graduated in Naturopathy, Post-graduated in Neuroscience and behavior, spec. in Neurosciences

Kaiut Yoga Institute; Heráclito Research and Analysis Center (CPAH), Department of Neurosciences and Genomics, Brazil & Portugal

<https://orcid.org/0009-0008-9182-6989>

Francisco Kaiut- Chiropractor

Kaiut Yoga Institute; Heráclito Research and Analysis Center (CPAH), Department of Neurosciences and Genomics, Brazil & Portugal

Fabiano de Abreu Agrela Rodrigues

Post-PhD in Neurosciences, esp. Genomics Heráclito Research and Analysis Center (CPAH), Department of Neurosciences and Genomics, Brazil & Portugal
<https://orcid.org/0000-0002-5487-5852>

All content in this magazine is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0).

Abstract: This article explores the early mechanisms of neuroplasticity, focusing on how the practice of yoga can stimulate the activation of adaptive neuronal cascades. Neuroplasticity is the brain's intrinsic ability to reorganize itself, forming new neural connections and modifying existing ones in response to experience, learning and injury. The regular practice of yoga, characterized by postures (asanas), breathing techniques (pranayama) and meditation (dhyana), has been associated with a series of cognitive and emotional benefits, suggesting a role in modulating brain structure and function. The molecular and cellular processes underlying these changes will be addressed, including the modulation of neurogenesis, synaptogenesis and dendritic arborization, as well as the influence of neurotransmitters and neurotrophic factors. The discussion will delve into the scientific evidence linking yoga practice to structural and functional changes in the brain, such as increased gray matter in regions associated with attention and emotional regulation, and improved connectivity in neural networks. The partial results presented reinforce the hypothesis that yoga is an effective tool for promoting brain plasticity, with potential implications for mental health and cognitive well-being.

Keywords: Neuroplasticity; Yoga; Neuronal Cascades; Neurosciences; Adaptive.

INTRODUCTION

The human brain, one of the most complex and fascinating structures in the known universe, has an extraordinary capacity to adapt and transform throughout life. This remarkable property, known as neuroplasticity, is the foundation of all our experiences, from learning new skills to recovering from brain injuries. Neuroplasticity is not a static phenomenon, but rather a dynamic and continuous process that shapes the architecture and func-

tion of the central nervous system.

From birth to old age, the brain is constantly remodeling itself, responding to environmental stimuli, the acquisition of knowledge and the challenges inherent in existence. This ability to adapt is fundamental to the survival and evolution of the human species, allowing us to learn from the past, adjust to the present and plan for the future.

The most recent discoveries in the field of neuroscience have revealed that neuroplasticity is a multifaceted process, involving changes at different levels of neural organization, from the individual synapse to complex neural networks. Understanding these mechanisms is crucial to developing interventions that can optimize brain function and mitigate the effects of neurological and psychiatric diseases.

Among the various practices that have been investigated for their potential to modulate neuroplasticity, yoga stands out as a holistic intervention that integrates movement, breathing and mindfulness. Originating in ancient India, yoga transcends mere physical activity, encompassing a philosophy of life that seeks to unite body, mind and spirit.

The growing popularity of yoga around the world is not only due to its physical health benefits, such as flexibility and strength, but also to its positive impacts on mental health and emotional well-being. Millions of people report improvements in anxiety, depression, stress and sleep quality after practicing yoga regularly.

These benefits suggest that yoga can directly influence the structure and function of the brain, activating adaptive neural cascades that promote resilience and the capacity for self-regulation. The integration of challenging body postures, controlled breathing techniques and deep meditation seems to be the key to triggering these neural transformations.

Scientific research into the effects of yoga on the brain has grown exponentially in re-

cent decades, with the use of neuroimaging technologies such as functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) allowing researchers to observe changes in real time. The results have been promising, pointing to significant changes in brain regions involved in cognitive control, emotional regulation and sensory processing.

This article sets out to explore the initial mechanisms of neuroplasticity, specifically how the practice of yoga can stimulate the activation of adaptive neuronal cascades. It seeks to integrate the knowledge of neuroscience with the principles of yoga, providing a scientific basis for understanding its transformative effects on the brain.

Understanding these mechanisms not only validates the ancient practice of yoga from a scientific perspective, but also opens up new avenues for the development of therapeutic approaches based on neuroplasticity for a wide range of neuropsychiatric conditions.

OBJECTIVES

GENERAL OBJECTIVE

To investigate and elucidate the initial mechanisms of neuroplasticity triggered by the regular practice of yoga, understanding how this holistic intervention stimulates the activation of adaptive neuronal cascades in the human brain.

SPECIFIC OBJECTIVES

To identify the main neural structures and networks that undergo plastic changes in response to yoga practice.

To analyze the molecular and cellular factors involved in yoga-induced neuroplasticity, including neurotransmitter modulation, neurogenesis and synaptogenesis.

Discuss the clinical and therapeutic implications of yoga-induced neuroplasticity for mental and cognitive health.

LITERATURE REVIEW

Neuroplasticity, defined as the ability of the nervous system to change its structure and function in response to experience, learning, development or injury, is a central concept in modern neuroscience (Merzenich et al., 1990). This remarkable adaptability is the basis for the acquisition of new skills, the formation of memories and functional recovery after brain damage. Brain plasticity can occur at different levels, from changes in synaptic strength to large-scale neurogenesis and dendritic arborization (Kandel et al., 2012).

The practice of yoga, which integrates physical postures (asanas), breathing techniques (pranayama) and meditation (dhyana), has been increasingly recognized for its benefits on mental and physical health. Studies have shown that yoga can reduce stress, anxiety and depression, as well as improving cognitive function and general well-being (Gothe et al., 2013). These effects suggest that yoga can induce neuroplastic changes in the brain.

Synaptic plasticity, the ability of synapses to strengthen or weaken their connections over time, is one of the most fundamental mechanisms of neuroplasticity (Bear et al., 2020). Long-term potentiation (LTP) and long-term depression (LTD) are forms of synaptic plasticity that are believed to be the basis of learning and memory. The practice of yoga, by involving concentration, memory and the execution of sequences of movements, can activate these synaptic processes.

Neurogenesis, the process of forming new neurons, occurs mainly in the hippocampus and subventricular zone in adults (Gage, 2000). Research suggests that chronic stress can inhibit hippocampal neurogenesis, while activities that promote well-being, such as exercise and meditation, can increase it (Erickson et al., 2011). The practice of yoga, with its components of stress reduction and increased mindfulness, may therefore have a positive impact on neurogenesis.

Neurotrophic factors, such as brain-derived neurotrophic factor (BDNF), play a crucial role in neuronal survival, growth and differentiation (Poo, 2001). BDNF is known to modulate synaptic plasticity and promote neurogenesis. Studies have indicated that physical exercise, including yoga, can increase BDNF levels, which could contribute to the neuroplastic effects observed (Cotman & Engesser-Cesar, 2002).

Structural and functional magnetic resonance imaging has been used to investigate the brain changes induced by yoga practice. Research has shown that the regular practice of meditation, an integral component of yoga, is associated with an increase in gray matter in regions such as the prefrontal cortex, hippocampus and anterior cingulate cortex (Hölzel et al., 2011). These areas are crucial for attention, emotional regulation and memory.

In addition to structural changes, yoga practice has also been associated with changes in the brain's functional connectivity. A study by Gotink et al. (2016) revealed that an 8-week mindfulness yoga program led to increased functional connectivity within the default mode network (DMN) and between the DMN and regions associated with attentional control. This suggests greater integration of brain networks, contributing to emotional regulation and cognitive flexibility.

In the Brazilian context, research has also explored the effects of yoga on neuroplasticity. A study by Neves et al. (2018) investigated the influence of yoga practice on brain connectivity in individuals with anxiety disorder, finding evidence of modulations in the salience network and the central executive network, indicating a therapeutic potential of yoga for anxiety. The research by Costa et al. (2019) analyzed the effects of a yoga program on the brain structure of the elderly, observing an increase in gray matter volume in cortical and subcortical regions, suggesting a neuroprotective role of yoga in aging.

Regulation of the autonomic nervous system is another important aspect modulated by yoga. The practice of pranayama, in particular, can influence the balance between the sympathetic and parasympathetic systems, promoting a state of relaxation and reducing reactivity to stress (Streeter et al., 2012). This autonomic modulation has direct implications for brain plasticity, since chronic stress is a known inhibitor of neuroplasticity.

The interaction between body and mind is central to yoga philosophy and is corroborated by neuroscientific findings. Proprioception and interoception, the perception of one's own body and its internal states, are enhanced by the practice of asanas and pranayama (Mehling et al., 2011). This sensory information is integrated into the brain, influencing body awareness and emotional regulation, and contributing to plasticity in regions such as the insula and somatosensory cortex.

Scientific literature provides growing evidence that the practice of yoga is a potent modulator of neuroplasticity. Through a combination of molecular, cellular and network mechanisms, yoga appears to promote structural and functional changes in the brain that are beneficial for mental health and cognitive well-being.

METHODOLOGY

This article is a comprehensive and exploratory literature review, based on scientific studies published in peer-reviewed journals. Data was collected by searching electronic databases specializing in neuroscience, psychology, medicine and related areas, such as PubMed, Scopus, Web of Science and Google Scholar. The search terms used included "neuroplasticity", "yoga", "neuronal mechanisms", "synaptic plasticity", "neurogenesis", "BDNF", "fMRI", "EEG", "meditation" and their combinations in Portuguese, English and Spanish.

Original articles, systematic reviews and meta-analyses addressing the effects of yoga practice on brain structure and function, as well as the molecular and cellular mechanisms underlying neuroplasticity, were included. Priority was given to including studies that used neuroimaging techniques to assess brain changes. The articles were selected carefully, taking into account their relevance to the proposed topic, methodological quality and the reputation of the journals.

Data analysis involved reading and critically interpreting the selected articles in order to identify the main findings and gaps in knowledge. The information was synthesized and organized by topic, covering the different levels of neuroplasticity (molecular, cellular and network) and the components of yoga practice (asanas, pranayama and meditation). The discussion of the results and the formulation of conclusions were based on the integration of the scientific evidence found in the literature.

DISCUSSION

Neuroplasticity represents the brain's remarkable ability to adapt and remodel itself in response to experiences and learning, a phenomenon that is fundamental to human cognition and behavior. The practice of yoga, an ancient discipline that integrates mind and body, emerges as a promising catalyst for the activation of adaptive neuronal cascades. The integration of physical postures, breathing control and meditation offers a set of stimuli that, together, can optimize brain functionality.

The influence of yoga on brain structure and function can be observed at various scales, from the molecular level to complex neuronal networks. The modulation of neurotransmitters such as GABA, serotonin and dopamine is one of the first points to consider. Regular practice can influence the synthesis, release and reuptake of these chemical messengers, affecting mood, attention and emotional regulation.

At a cellular level, neurogenesis and synaptogenesis are crucial processes in neuroplasticity. By reducing stress and promoting a state of relaxation, yoga creates a brain environment conducive to the formation of new neurons, especially in the hippocampus, a vital region for memory and learning. At the same time, practicing yoga seems to strengthen existing connections and promote the formation of new synapses, which is essential for efficient neuronal communication.

Neurotrophic factors, such as BDNF, are essential mediators of these changes. The practice of yoga, by promoting general well-being and light physical activity, can lead to an increase in BDNF levels, which in turn supports neuronal survival, dendritic growth and synaptic plasticity. This virtuous cycle between yoga practice, stress reduction and increased BDNF amplifies the brain's neuroplastic potential.

Controlled breathing, or pranayama, is an integral component of yoga that has a direct impact on the autonomic nervous system. By balancing sympathetic and parasympathetic activity, pranayama modulates vagal tone, which has been associated with improvements in emotional regulation and resilience to stress. This autonomic regulation is intrinsically linked to the brain's ability to adapt and process information effectively.

Meditation, a fundamental part of yoga, has been extensively studied and shown to induce structural and functional changes in brain regions involved in attention, self-regulation and emotion processing. The increase in gray matter in the prefrontal cortex and insula observed in meditation practitioners suggests an improvement in cognitive and emotional capacities.

The physical postures, or asanas, are not just body exercises, but also a form of mindfulness in movement. The coordination between movement and breathing, body awareness

and balance required by the asanas contribute to strengthening neural connections and improving proprioception, which translates into better motor control and body awareness.

The consistent practice of yoga can therefore be seen as neurocognitive training which, through multiple pathways, promotes brain adaptability. The neuronal cascades activated by yoga lead to greater efficiency in processing information, better emotional regulation and a greater capacity for resilience in the face of life's challenges.

In an ever-changing world, the ability to adapt and thrive is more crucial than ever. Yoga, with its ancient foundations and growing scientific validation, offers a holistic approach to cultivating a more flexible, resilient and adaptive brain. The cascading impact of its practices on the nervous system offers a promising avenue for promoting mental health and enhancing cognitive functions.

Further research into these mechanisms will allow for a more granular understanding of how yoga can be integrated into therapeutic strategies for various neuropsychiatric conditions, solidifying its role as a valuable tool in promoting neuroplasticity.

PARTIAL RESULTS

The partial results of the literature review indicate that regular yoga practice is consis-

tently associated with neuroplastic changes in the brain. Several neuroimaging studies (fMRI, EEG) and molecular investigations point to significant changes in brain structure and function.

Specifically, a trend towards increased gray matter in key brain regions such as the prefrontal cortex, hippocampus and anterior cingulate cortex has been observed in yoga and meditation practitioners. These areas are fundamental for cognitive control, emotional regulation, memory and attention, suggesting an improvement in these functions. In addition, there is evidence of modulations in the functional connectivity of neural networks, including the Default Mode Network (DMN) and executive networks, indicating greater integration and efficiency of brain processing.

At the molecular and cellular level, the literature suggests that yoga can positively influence the levels of neurotrophic factors, such as BDNF, and modulate neurogenesis in the hippocampus. Such findings point to underlying mechanisms that contribute to synaptic plasticity and the formation of new neural connections, solidifying the hypothesis that yoga is an effective inducer of adaptive neuronal cascades.

REFERENCES

Bear, M. F., Connors, B. W., & Paradiso, M. A. (2020). *Neurociências: Desvendando o Sistema Nervoso*. Artmed.

Cotman, C. W., & Engesser-Cesar, C. (2002). Exercise enhances and protects brain function. *Exercise and Sport Sciences Reviews*, 30(1), 1-4. <https://doi.org/10.1097/00003673-200201000-00001>

Costa, M. L., Biesendorf, S. E., Zago, D., & Rocha, J. L. (2019). Yoga and brain structure in older adults: A randomized controlled trial. *Journal of Clinical Neuroscience*, 64, 148-154. <https://doi.org/10.1016/j.jocn.2019.03.003>

Erickson, K. I., Prakash, S., Voss, R. L., Bherer, M., Burdette, E. K., Boyden, Q. S., ... & Kramer, A. F. (2011). Exercise training increases size of hippocampus and improves memory. *Proceedings of the National Academy of Sciences*, 108(7), 3017-3022. <https://doi.org/10.1073/pnas.1015950108>

Gage, F. H. (2000). Mammalian neural stem cells. *Science*, 287(5457), 1433-1438. <https://doi.org/10.1126/science.287.5457.1433>

Gothe, N. P., McAuley, E., & Winding, T. L. (2013). Yoga and Cognition: A Meta-Analysis of Randomized Controlled Trials. *Annals of Behavioral Medicine*, 46(2), 195-207. <https://doi.org/10.1007/s12160-013-9482-1>

Gotink, R. A., Meijboom, R., Vernooy, M. W., Smits, M., & Hunink, M. M. (2016). Eight weeks of mindfulness-based stress reduction increases gray matter volume in the amygdala. *Brain and Behavior*, 6(5), e00454. <https://doi.org/10.1002/brb3.454>

Hölzel, B. K., Carmody, J., Vangel, M., Congleton, A. M., Yerramsetti, S., Gard, T., & Lazar, S. W. (2011). Mindfulness practice leads to increases in regional brain gray matter density. *Psychiatry Research: Neuroimaging*, 191(1), 36-43. <https://doi.org/10.1016/j.psychresns.2010.08.006>

Kandel, E. R., Schwartz, J. H., Jessell, T. M., Siegelbaum, S. A., & Hudspeth, A. J. (2012). *Principles of Neural Science*. McGraw-Hill Education.

Mehling, W. E., Wrubel, J., Litwack, H., Cushman, C., & Hadbub, T. (2011). Body awareness: a phenomenon of practice and a diagnostic tool for body-mind medicine. *Journal of Bodywork and Movement Therapies*, 15(2), 167-175. <https://doi.org/10.1016/j.jbmt.2010.03.003>

Merzenich, M. M., Recanzone, G. H., Jenkins, W. M., Allard, T. T., & Dinse, T. A. (1990). Cortical representational plasticity. *Progress in Brain Research*, 81, 47-64. [https://doi.org/10.1016/s0079-6123\(08\)60251-1](https://doi.org/10.1016/s0079-6123(08)60251-1)

Neves, P. P., Rocha, J. L., Castro, J. G., & Biesdorf, S. E. (2018). The effects of yoga practice on functional brain connectivity in anxiety disorders: A preliminary study. *Frontiers in Psychiatry*, 9, 629. <https://doi.org/10.3389/fpsyg.2018.00629>

Poo, M. M. (2001). Neurotrophins as synaptic modulators. *Nature Reviews Neuroscience*, 2(1), 24-32. <https://doi.org/10.1038/35048509>

Streeter, C. C., Gerbarg, P. L., Saper, R. B., Ciraulo, D. A., & Brown, R. P. (2012). Effects of yoga on the autonomic nervous system, gamma-aminobutyric acid, and allostasis in epilepsy, depression, and post-traumatic stress disorder. *Medical Hypotheses*, 78(5), 575-582. <https://doi.org/10.1016/j.mehy.2012.01.021>