
Engenharias e soluções: Ciência e tecnologia para o desenvolvimento humano Capítulo 17 249

Data de aceite: 05/03/2025

CAPÍTULO 17

AN API MANAGEMENT SOFTWARE QUALITY
METAMODEL BASED ON SQUARE AND GQM

Data de submissão: 03/03/2025

Eder dos Santos
Instituto de Tecnología Aplicada,

Universidad Nacional de la Patagonia
Austral, Argentina

CIT Santa Cruz, CONICET, Argentina

Sandra Casas
Instituto de Tecnología Aplicada,

Universidad Nacional de la Patagonia
Austral, Argentina

CIT Santa Cruz, CONICET, Argentina

ABSTRACT: With the widespread adoption
of API in modern software ecosystems, the
need for robust API management practices
has become increasingly apparent.
However, challenges persist in establishing
a comprehensive framework for software
product quality. To address this, this work
introduces API-MQM, a tailored metamodel
that leverages the ISO/IEC 25010 standard
as a reference framework and employs the
Goal-Question-Metric (GQM) paradigm.
The design method adhered to Model-
Driven Architecture (MDA) principles
and emphasized the identification of API
management capabilities as core quality
requirements. To validate the proposal, both
theoretical and empirical methods were

conducted. The findings underscore the
novelty and consistency of the proposed
approach and outline directions for future
research in the field.
KEYWORDS: API Management, Quality
metamodel, Quality model, Software
Engineering, Software Quality

1 | 	INTRODUCTION
In recent years, the distribution

models for information systems have
shifted towards Everything as a Service
(XaaS) [1] paradigms, where organizations
provide their digital assets to customers as
services [2]. These services are commonly
supported by APIs that adhere to REST
(Representational State Transfer) principles
[3]. As a result, APIs have experienced
significant global proliferation. According to
the Postman annual survey [4], 1.29 billion
API requests were generated in 2023 by
more than 25 million users worldwide.

The emergence of the API Economy
scenario has placed additional pressure
on developing, deploying, and maintaining
information systems. Since APIs have

Engenharias e soluções: Ciência e tecnologia para o desenvolvimento humano Capítulo 17 250

become a critical component [5], organizations need to proactively address the risks of
failure by enhancing their API management capabilities [6] [7]. This involves the effective
management of their APIs through specialized software products, commonly referred to as
API Management Platforms.

API Management Platforms offer fundamental functionalities to create, analyze,
and manage APIs in a secure and scalable ecosystem, serving as the core of digital
integration strategies. These platforms are equipped with features such as API access
control, comprehensive documentation, and monitoring and usage analytics. As a result,
they streamline API management processes [7] [8] [9].

API management activities present numerous challenges within both internal [6]
[10] and decentralized [11] software ecosystems. To address these challenges, many
software quality models define a set of quality attributes or characteristics, establishing
the groundwork for evaluating the quality of software elements. This evaluation is pivotal
in providing actionable solutions that can be readily embraced by industry professionals to
enhance the quality of software ecosystems. From a metamodel-driven standpoint, models
are developed based on metamodels.

To our knowledge, despite the proliferation of software quality metamodels in
current literature, a notable gap exists in the exploration of API management software
quality metamodels. This void motivated the development of this work. We propose an API
management-specific software quality metamodel designed to address quality evaluation
from conceptual, operational, and quantitative perspectives. Grounded in the ISO 25000
standards series (particularly the ISO/IEC 25010:2023, ISO/IEC 25023:2016, and ISO/IEC
25040:2011 standards [12] [13] [14]), our metamodel provides a structured framework for
defining quality characteristics. To facilitate the specification of measures, we also employ
the Goal-Question-Metric (GQM) [15] approach. Additionally, the proposed metamodel
encompasses API management capabilities, thereby organizing API management activities
within a cohesive framework.

This paper is structured as follows. In section 2, we discuss the frameworks we
adopted and provide a brief overview of the metamodel design along with its associated
challenges. Section 3 then introduces a three-step methodology for constructing a general
software quality metamodel, based on the principles of Model Driven Architecture and concept
factoring. In section 4, we present the designed metamodel and provide a comprehensive
breakdown of the findings. Section 5 details both the theoretical and empirical validation
of the metamodel. Finally, in section 6, we offer a succinct discussion that analyzes the
proposed metamodel from different perspectives and provides insights into future research.

Engenharias e soluções: Ciência e tecnologia para o desenvolvimento humano Capítulo 17 251

2 | 	RELATED WORK

2.1	 The ISO 25000 standards series
As APIs are used across an increasingly wide range of application areas, the

development or selection of high-quality API management software products becomes
paramount. Therefore, thorough specification, measurement, and evaluation are pivotal to
ensure adequate quality.

The SQuaRE series is structured into several divisions. Within the scope of this
paper, the relevant divisions are outlined as follows:

•	 The Quality Model Division (2501n) provides models for system and software
product quality, quality in use, and data quality. The general software product
quality model [12] encompasses nine primary quality characteristics, namely:
functional suitability, performance efficiency, compatibility, interaction capability,
reliability, security, maintainability, flexibility, and safety.

•	 The Quality Measurement Division (2502n) includes a system and software pro-
duct quality measurement reference model, definitions of quality measures, and
practical guidance for their implementation. The framework for quality measure-
ment is illustrated in [13].

•	 The Quality Evaluation Division (2504n) offers requirements, recommendations,
and guidelines for system and software product evaluation. An overview of the
evaluation process is presented in [14].

2.2	 The GQM approach
Quality definition, measurement, and evaluation must be accurate and meaningful

to provide valuable insights according to the needs of users and organizations. In this
context, the Goal Question Metric (GQM) paradigm [15] is widely used for defining metrics.
GQM enables the identification of relevant data collection criteria and the establishment of
interpretive mechanisms, creating a goal-oriented framework for software measurement.

The GQM approach operates at three hierarchical levels: conceptual (goals),
operational (questions), and quantitative (metrics). Goals define the focus of the research
endeavor and the reason for its study. Questions characterize specific aspects of the
measurement object with respect to a selected quality concern. Metrics comprise a collection
of measurements that can be used to address the formulated questions, drawn from both
subjective and objective collected data.

Engenharias e soluções: Ciência e tecnologia para o desenvolvimento humano Capítulo 17 252

2.3	 API management capabilities
Based on recent literature, API Management quality requirements are delineated

and distilled primarily as practices and capabilities [7] [8] [16]. Practices are defined as any
activities explicitly aimed at improving, fostering, and overseeing API usage, while capabilities
are defined as the capacity to accomplish specific goals related to API Management by
executing two or more interconnected practices.

API management capabilities are categorized across diverse schemes. For instance,
the classification proposed by [7] includes the following capability groupings: i. Developer
Enablement for APIs (API Discovery, Developer and App Onboarding, Collaboration and
Community, Developer Enablement Administration); ii. Secure, Reliable and Flexible
Communications (Authentication and Authorization, Threat Detection, Data Privacy,
Traffic Management, Interface Translation, Service Orchestration and routing); iii. API Life
cycle Management (API Publication, Version Management, Change Notification, Issue
Management); iv. API Auditing, Logging and Analytics (Activity Logging, User Auditing,
Business Value Reporting, Contract Management, Advanced Analytics, Service-Level
Monitoring).

Recent research has focused on characterizing quality aspects related to API
management capabilities and activities as quality requirements, using the ISO/IEC 25010
standard series as a reference model. From the practitioners’ perspective, functional
suitability, security, reliability, and performance efficiency are critical factors that align
closely with user needs and the intended functionality of API management platforms [17]. It
was also identified in the scientific current research [18].

2.4	 Software quality metamodels
To establish a comprehensive quality model, several authors recommend overcoming

ambiguity and completeness issues by defining a formal quality metamodel. As suggested
by [19], a quality metamodel can be described as a flexible and user-friendly collection of
constructs and rules designed to facilitate the construction of quality models on a formal
basis. The overarching goal is to foster a shared understanding for effective evaluation and
management of software quality across the entire lifecycle of a software product [20].

Metamodels serve as representation schemes at a conceptual level, often
depicted through diagrams that encompass entities and their relationships. Software
quality metamodels commonly feature entities pertinent to the definition, measurement
and evaluation of quality such as ‘quality attribute’, ‘quality characteristic’, ‘measure’, and
’metric’, among others.

From a metamodel-driven perspective, the initial step involves developing a
metamodel to establish the concept, scope, and vocabulary, providing a static holistic

Engenharias e soluções: Ciência e tecnologia para o desenvolvimento humano Capítulo 17 253

view of a domain. Subsequently, a quality model is formulated, delineating a set of quality
characteristics as instances of the elaborated metamodel [21]. Furthermore, numerous
researchers have introduced metamodels grounded in existing quality models [20].

From another perspective, software quality models and metamodels can be
classified based on their purpose as either basic or tailored [20]. Basic models, such as
[12], have a hierarchical structure adaptable to various types of software products and
focus on evaluation and improvement. Tailored models, on the other hand, are specific to
particular domains or applications, where the importance of features may vary compared
to a general model. According to a systematic review conducted by [20], tailored models
are often derived from basic models, involving the addition or modification of sub-factors to
meet the specific needs of specialized domains or applications.

Specifically in the field of API management software quality, the systematic mapping
study by [18] highlights that more than half of the research does not explicitly utilize formal
models. However, it also underscores that common meta-model elements, such as features
and metrics, are widely employed across these studies. These findings emphasize the need
for the proposed metamodel in this paper, which aims to establish a common framework to
enable more formal and cohesive research in the field.

3 | 	METHODS
Drawing upon principles from model-driven architecture, we have developed a

structured four-step approach aimed at creating a unified metamodel named API-MQM (API
Management Quality Metamodel). In this section, we detail each step of this approach,
elucidating its complexities and nuances.

Step 1 – Design Questions and Preliminary Analysis
The initial phase involved conducting a preliminary analysis by reviewing a

representative collection of existing software quality metamodels. To achieve this objective,
we updated the dataset provided by [20] to include API-related metamodels. This approach
followed the systematic search protocol outlined in guidelines such as [22, 23, 24].
Subsequently, we classified the updated data based on relevant criteria.

This exploration aimed to address a series of key design questions (DQs), with
the primary objective of providing guidance for either adopting an existing metamodel or
developing a new one. The DQs are outlined as follows:

DQ 1: Which software quality metamodels address APIs in general and API
management in particular?

This DQ aims to identify existing metamodels that specifically address the quality
attributes of APIs and API management. Understanding which metamodels are used helps
in assessing the current landscape and determining whether these metamodels sufficiently

Engenharias e soluções: Ciência e tecnologia para o desenvolvimento humano Capítulo 17 254

cover the particular aspects of API quality. This can highlight gaps in the existing literature
and establish a baseline for developing a more comprehensive metamodel tailored to both
APIs and API management.

DQ 2: What are the most common elements in software quality metamodels?
By identifying the most common elements across various software quality

metamodels, this DQ seeks to uncover the fundamental components and attributes that
are widely recognized as critical for evaluating software quality. This information is crucial
for ensuring that the proposed metamodel includes relevant and widely accepted elements,
thus enhancing its applicability and effectiveness.

DQ 3: Which software quality models are used as a reference for each
metamodel?

This DQ explores the foundational quality models that influence the development
of various metamodels. Understanding which models are referenced helps to identify the
theoretical underpinnings and best practices that shape these metamodels. It provides
insight into how well-established quality principles are integrated into the metamodels and
whether they align with current standards and practices in software quality characterization
and measurement.

DQ 4: What frameworks are employed as references for evaluation in the
metamodels analyzed in the study?

This DQ focuses on the frameworks used for evaluating software quality evaluation.
By examining the frameworks referenced for evaluation, the study aims to understand the
criteria and methodologies applied to assess software quality. This helps in evaluating the
robustness of existing frameworks and identifying potential improvements or alternative
approaches that could be adopted in the proposed metamodel.

Step 2 – PIM Construction and Concept Factoring
To address this step, the guidelines outlined by [19] where followed to ensure

clarity, coherence, and consistency in capturing key concepts, while avoiding ambiguity
and resolving potential contradictions. The approach to constructing the general Platform-
Independent Model (PIM) involved several key steps. Firstly, we identified the most common
elements drawn from the data gathered in DQ2 findings. Subsequently, we analyzed the
most frequently referenced model in the literature (from DQ3 data) and the prevailing
evaluation method (from DQ4 data), conducting an in-depth analysis of their elements and
their relationship with the elements found in DQ2. Finally, to achieve a tailored metamodel,
we integrated API management capabilities as a factored concept.

Step 3 – Building the Metamodel

Engenharias e soluções: Ciência e tecnologia para o desenvolvimento humano Capítulo 17 255

The metamodel was constructed using the Unified Modeling Language (UML), since
it defines a standardized framework for designing elements and specifying relationships
between them.

Step 4 – Metamodel validation
As highlighted by [24] [25], metamodels can be validated through both theoretical

and empirical methods. In the quality metamodel proposed in this work, the focus is on API
management capabilities, where quality characteristics are evaluated. These characteristics
are assessed using specific metrics, which are designed to address questions aligned with
the overall goals. This process is further facilitated by tools that automate the measurement
and evaluation procedures. To validate this proposal, three validation methods were
conducted.

From the theoretical perspective, it is noteworthy that many design challenges (DC)
are usually faced while creating metamodels [26]. These challenges often represent a
series of significant design and scope limitations. As this paper presents a design proposal,
a construct validation was conducted in light of these challenges, aiming at validating the
designed metamodel and identifying weaknesses and research opportunities.

To substantiate the feasibility and effectiveness of the proposed metamodel, two
empirical validation methods were conducted, namely analysis [24] and example [24]. First,
a comprehensive literature mapping and comparative analysis of existing metamodels was
performed, juxtaposing them with the developed metamodel in this study. This analysis
focused particularly on examining the metamodel elements and their application in existing
literature. Finally, to assess the practical applicability of the proposed approach, an instance
of the metamodel is presented.

4 | 	RESULTS
We identified and classified a total of 29 software quality metamodels. Of these,

28 studies were retrieved from [20]. An additional study [21] was discovered during the
execution of the proposed search protocol across major global databases, including
IEEEXplore, SpringerLink, ACM Digital Library, and ScienceDirect. These metamodels were
systematically classified to provide insights into the DQs as outlined below.

4.1	 Design Questions

DQ 1: Which metamodels address API in general and API management in
particular?

Findings indicate that while one metamodel addresses APIs in a general context,
none specifically focus on API management. Additionally, we observed that six metamodels
include considerations for API-related technologies, specifically webservices and

Engenharias e soluções: Ciência e tecnologia para o desenvolvimento humano Capítulo 17 256

microservices. Based on these findings, we proceeded to address the remaining design
questions. Findings are outlined as follows.

DQ 2: What are the most common elements in software quality metamodels?
14 categories of metamodel elements were identified. Four of them encompass

aggregated entities, following the UML aggregation concept. Table 1 showcases the five
most prevalent metamodel elements. The “Metamodel Element” column lists the different
elements within the metamodel. Alternative terms or synonyms for each metamodel element
are provided for flexibility and clarity. The “Aggregated Elements” column indicates related
elements or subcategories grouped under each metamodel element. Finally, the “Frequency”
column indicates the prevalence of each element, denoted by the number of metamodels
referencing it.

Metamodel Element Most common synonims Aggregate elements Frequency
Quality Attribute Characteristic / Feature / Factor Subcharacteristic 28

Metric Measure Base Metric / Derived Metric 24
Entity Component / Artifact - - - 19

Evaluation Assessment Formula / Rule 15
Measurement Measurement Method / Approach Result / Value 14

Table 1. Common elements of software quality metamodels.

DQ 3: Which software quality models are taken as reference for the metamodel?
To address this question, we processed the available data, recognizing that it was

not normalized. The absence of normalization stemmed from the presence of numerous
metamodels that referenced more than one quality model. Table 2 presents the five most
frequently cited models.

Within the examined studies, it’s significant to note that both ISO/IEC 9126 and its
successor, the ISO/IEC 25000 series, were both referenced in three studies. This indicates
that a total of 21 studies (72.41%) utilized both series as reference models.

Reference Model Metamodels % of total
ISO/IEC 9126 16 55.17%
Boehm 9 31.03%
McCall 8 27.59%
ISO/IEC 25010 8 27.59%
Dromey 6 20.69%

Table 2. Quality models in metamodels.

Engenharias e soluções: Ciência e tecnologia para o desenvolvimento humano Capítulo 17 257

DQ 4: What methods/techniques are used as reference for evaluation in the
metamodel?

Table 3 reveals that nearly half of the studies did not utilize any formal evaluation
framework. However, among the works that explicitly incorporated evaluation methods, 80%
(12 out of 15) opted for the GQM approach [15].

Evaluation Method Metamodels % of total
Not specified 14 48.28%
GQM 11 37.93%
FCM 2 6.90%
SQUID 1 3.45%
GQM and FCM 1 3.45%

Table 3. Reference evaluation methods.

4.2	 Building the Metamodel
To build the metamodel, we integrated the factored concepts derived from DQ2

common elements, following the standards outlined in ISO/IEC SQuaRE, and drew upon
GQM definitions, which serve as prevalent quality models and evaluation methodologies.
To tailor the metamodel to the specific context of API management, we introduced API
management capabilities as a factored concept. Furthermore, we extended the initial
framework to encompass considerations for the development and adoption of tools as a
factored concept, as such tools are designed to retrieve measured data.

To provide clarity and transparency regarding the origins and definitions of the entities
comprising the API-MQM metamodel, Table 4 showcases API-MQM elements represented
as Entities, along with their corresponding sources in the literature.

API/MQM Entity Source
API Management Capability [7] [8] [16]
Characteristic [12]
Goal [15]
Question [15]
Metric [13] [15]
Measurement Method [13]
Tool [14]

Table 4. API/MQM Entities.

The selected concepts have been incorporated into the designed metamodel, as
depicted in Figure 1. This metamodel organizes the concepts into three distinct packages
that are interconnected, as outlined below. Within the Package Domain, we encapsulated

Engenharias e soluções: Ciência e tecnologia para o desenvolvimento humano Capítulo 17 258

concepts related to API management capabilities and the conceptual perspective of [15]
(Goals). It is noteworthy that API management capabilities serve as the foundation for
instantiating quality requirements within the metamodel. Package System contains concepts
related to software product quality and the GQM operational and quantitative levels. It is
noteworthy that Metric is a factored concept from both [13] (Measure) and [15] (Metric).
The Package System encompasses concepts pertaining to software product quality and
operates at both the operational and quantitative levels of [15]. Notably, the concept of Metric
is derived from both [13] (referred to as Measure) and [15] (referred to as Metric). Package
Development refers to the amalgamation of measurement methods and the utilization of
both adopted and custom-developed tools for measurement purposes.

5 | 	VALIDATION

5.1	 Theoretical Validation
Next, a synthesis of the DC were addressed in the approach of this work.

DC1 – Terminology inconsistencies: To address this challenge, we established a
theoretical foundation, drawing upon established works such as This challenge was
addressed by adopting a theoretical ground [7] [12] [15] [20] to avoid terminology
inconsistencies. We also adopted the most common elements used in a set of 29
software quality metamodels.

DC2 – Partial definition: In pursuit of our study’s objective to offer a thorough analysis
of quality definition and measurement, the proposed metamodel deliberately omitted
guidelines for evaluation and decision criteria. Other elements were also omitted due
to addressing challenges DC3 and DC6.

DC3 – Lack of focus: To address this challenge, our approach focused on limiting
the scope of stakeholders and other levels of abstraction, especially concerning
aggregated entities such as base metrics and derived metrics, among others. While
our coverage may be limited in this regard, we ensured the implementation of the
most common elements. However, it’s important to note that this issue was further
investigated and elaborated upon in the empirical validation phase of our study.

DC4 – Disregard for process quality: Although the designed metamodel covers the
development and adoption of tools to measure quality, it is important to clarify that
this paper does not delve into the specifics of adopting or developing products in a
manner that it assures a desired quality level.

DC5 – Lack of integration with current practices: This work did not delve into providing
solutions for this particular challenge, as it falls outside the scope of our study.

DC6 – Lack of simplification and validation: To address this concern, all conceptual
redundancies were meticulously eliminated. Then, an analysis of design challenges
was performed to serve as a theoretical validation, complemented by a comprehensive
literature mapping for empirical validation. Additionally, we offered recommendations

Engenharias e soluções: Ciência e tecnologia para o desenvolvimento humano Capítulo 17 259

for future validation methods to further strengthen our findings.

DC7 – Interdependencies and measure interpretations not clear: Despite resolving
interdependencies through the design methodology outlined in this paper, the
proposed metamodel lacks to provide guidance on interpreting measurement results.

Figure 1: API-MQM Quality Metamodel for API Management UML representation

Engenharias e soluções: Ciência e tecnologia para o desenvolvimento humano Capítulo 17 260

DC8 – Lack of tool support: The developed meta-model includes entities that refer to
implemented or custom-made tools for automating the measurement process within
API Management platforms.

DC9 – Lack of guidelines for improvements: To address this challenge, a series of
future work was provided in this paper.

5.2	 Empirical validation
A comparative analysis is summarized in Tables 5 and 6.
Upon initial examination, Table 5 presents a comprehensive overview of the entities

defined in API-MQM, along with their corresponding equivalents within existing software
quality metamodels. It also includes the frequency of occurrence of each element and its
alternative names. Noteworthy is the alignment between the elements proposed in API-
MQM and those commonly identified in software quality metamodels.

API-MQM Entity Equivalent Common Element Frequency
API Management Capability Quality Requirement 3 (10.34%)
Characteristic Quality attribute 28 (96.55%)
Goal Quality goal 8 (27.59%)
Question Quality aspect 12 (41.38%)
Metric Metric 24 (82.76%)
Measurement Method Measurement 14 (48.28%)
Tool Instrument 5 (13.79%)

Table 5. Frequency of API-MQM entities within software quality metamodels.

On the other hand, table 6 highlights common metamodel elements absent from the
API-MQM metamodel. Specifically, categories such as “Entity”, “Unit”, “View”, “Scale”, and
“Quality Model” were omitted due to challenge C6, particularly stemming from the need
for simplification. Additionally, elements related to “Evaluation” and “Data Analysis” were
excluded, as the primary focus of this work lies in the introduction of a metamodel aimed at
guiding the definition and measurement of quality elements.

Element Most common synonyms
Entity Component, Artifact
Evaluation Assessment model
Quality model - - -
Unit Measurement unit
Data analysis Analysis model, Decision criteria
View Viewpoint, Stakeholder
Scale Measurement scale

Table 6. Elements not addressed within API-MQM.

Engenharias e soluções: Ciência e tecnologia para o desenvolvimento humano Capítulo 17 261

Additionally, an instance of the proposed metamodel is introduced as shown in Figure
2. This instance can be summarized as follows: Within the Domain package, the Service-
Level Monitoring capability [7] is selected as the target API management feature, with Latency
Tracking defined as the conceptual perspective (Goal) [15] This goal is further described
as “tracking network performance of the API management software to ensure efficient data
transmission”. In the System package, Time Behavior is chosen as a sub-characteristic
of Performance Efficiency, in accordance with [12]. From an operational perspective, the
objective is to define the method for measuring processing latency, addressing the question:
“How is processing latency measured?”

From the obtained question, a metric was defined: Latency RTT, which stands for
Latency Round Trip Time. Round Trip Time (RTT) is the duration it takes for a data packet to
travel from the source to the destination and back again to the source. This metric provides
a precise measurement of the network latency experienced during API requests, reflecting
the efficiency of data transmission in the API management software. This metric allows
for the definition of the evaluation function for the “Time Behavior” quality characteristic.
The evaluation function is derived by calculating the average latency from a given set of n
concurrent API requests, providing a comprehensive measure of the system’s performance
efficiency. Therefore, the evaluation function F is defined by Eq (1). Finally, the Orama
Framework, which is instantiated as a Tool object in this work, is introduced as” a support
tool for evaluating Function-as-a-Service-oriented environments” by [27].

Engenharias e soluções: Ciência e tecnologia para o desenvolvimento humano Capítulo 17 262

Figure 2: Service-Level Latency Monitoring.

6 | 	DISCUSSION
The systematic integration of quality considerations into the API Management domain

is mandatory to set the focus on prevention and to foster continuous improvement. By
providing practitioners with quality models that help to assure acceptable degrees of quality,
it is expected to enhance the likelihood of acceptance for a particular API Management
Platform. To achieve it, designing a tailored API Management software quality metamodel
and its associated models represents a crucial endeavor in sustaining continuous quality
management and assurance.

This paper presented two main contributions. Firstly, it offered an in-depth
examination of the key challenges associated with designing quality metamodels in Software
Engineering, along with an updated survey of the current terminology, relevant standards,
and evaluation methods employed in the field. Subsequently, API-MQM was introduced as
a bespoke software quality metamodel tailored for API Management platforms. Our decision
to undertake this endeavor was motivated by the absence of existing metamodels within the
domain, necessitating the development of a customized solution to address the identified
gaps. To accomplish this, we embraced the prevailing de facto frameworks, namely ISO/

Engenharias e soluções: Ciência e tecnologia para o desenvolvimento humano Capítulo 17 263

IEC 25000 and GQM, given their significant influence and widespread adoption within the
software engineering community for designing software quality metamodels.

Software quality models traditionally prescribe a static set of characteristics and their
interrelationships so that they should rather be selected dynamically based on stakeholder
needs. Thus, software quality models may not always align with the evolving needs of
stakeholders. To address this limitation, metamodels emerge as a flexible solution to help
building quality models in a formal basis.

Also important, the use of a metamodel allows to discuss the continuing quality
characteristics in the future. This flexibility ensures the relevance and applicability of the
quality framework across different contexts and evolving standards. As an example, we
suggest API-MQM is suitable for different versions of [12], namely 2011 and 2023 versions.
Also, API-MQM support API Management capabilities that can vary in their classification as
software and stakeholders needs evolve constantly.

Finally, subjecting API-MQM to both theoretical and empirical assessments allow
to suggest that the proposed metamodel met the primary domain requirements. It also
incorporated various common metamodel elements identified in existing literature and
effectively addressed several well-documented design challenges. These concluding
remarks affirm the robustness and relevance of the developed metamodel within the context
of API management. model should encompass all elements referenced in the metamodel
across different levels of abstraction. This approach would provide further concrete evidence
of the metamodel’s utility in real-world scenarios and enhance its practical value in software
engineering contexts.

7 | 	FUTURE WORK
While this study has identified certain limitations, two main future research directions

are proposed.
Primarily, the development of an empirically validated quality model and its

comprehensive evaluation stands as a crucial next step to in-depth validate the applicability,
feasibility, and effectiveness of the metamodel. Such a

Finally, this metamodel can be extended and improved by addressing various design
challenges such as: i. adding entities and guidelines for evaluation and decision criteria;
ii. incorporating aggregated entities to enhance semantics; iii. specifying desired quality
levels for measured elements; iv. Providing guidance on developing and adopting software
products to ensure a desired quality level; and v. assessing and recommending integration
strategies for incorporating this quality metamodel and its derived quality models into
existing quality management practices within organizations. We suggest this roadmap will
serve as a guiding framework to explore unaddressed challenges and refine the proposed
approach. By identifying key areas warranting further investigation, we aim to fortify the

Engenharias e soluções: Ciência e tecnologia para o desenvolvimento humano Capítulo 17 264

theoretical and empirical foundations of our proposal and contribute to advancing the field
of API management quality.

COMPETING INTERESTS
The authors have declared that no competing interests exist.

FUNDING
The first author is supported by CONICET through an internal PhD scholarship,

which underscores his commitment to and expertise in their research. This support validates
the research group’s plan and the author’s qualifications, further ensuring the successful
advancement of the proposed project.

AUTHORS’ CONTRIBUTION
The authors confirm contribution to the paper as follows. EDS: Conceptualization,

Investigation, Writing-Original draft preparation, Validation, Writing-Reviewing and Editing;
SC: Methodology, Writing-Reviewing and Editing; Supervision; Validation. All authors
reviewed the results and approved the final version of the manuscript.

REFERENCES
[1] Y. Duan, G. Fu, N. Zhou, X. Sun, N. C. Narendra, and B. Hu, “Everything as a service (XaaS) on the
cloud: Origins, current and future trends”, in 2015 IEEE 8th International Conference on Cloud Computing,
2015, pp. 621–628.

[2] C. Fehling, F. Leymann, R. Retter, W. Schupeck, and P. Arbitter, “Cloud Computing Patterns:
Fundamentals to Design, Build, and Manage Cloud Applications”. Vienna: Springer Vienna, 2014.

[3] R. T. Fielding, “Architectural styles and the design of network-based software architectures”, 2000.

[4] 2023 state of the API report, p. 58, 2023. [Online]. Available: https://voyager.postman.com/pdf/2023-
state-of-the-api-report-postman.pdf

[5] J. Bloch, “How to design a good api and why it matters”, in Companion to the 21st ACM SIGPLAN
Symposium on Object-Oriented Programming Systems, Languages, and Applications, ser. OOPSLA ’06.
New York, NY, USA: Association for Computing Machinery, 2006, p. 506–507.

[6] S. Andreo and J. Bosch, “Api management challenges in ecosystems,” in Software Business, S.
Hyrynsalmi, M. Suoranta, A. Nguyen-Duc, P. Tyrvainen, and P. Abrahamsson, Eds. Cham: Springer
International Publishing, 2019, pp. 86–93.

[7] B. De, API management: an architect’s guide to developing and managing APIs for your organization,
first edition ed., ser. For professionals by professionals. Berkeley, CA: Apress, 2017.

Engenharias e soluções: Ciência e tecnologia para o desenvolvimento humano Capítulo 17 265

[8] S. Preibisch, Api development: a practical guide for business implementation success. New York, NY:
Springer Science+Business Media, 2018.

[9] A. Gamez-Diaz, P. Fernandez, and A. Ruiz-Cortes, “Governify for apis: SLA-driven ecosystem for api
governance,” in Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, ser. ESEC/FSE 2019. New
York, NY, USA: Association for Computing Machinery, 2019, p. 1120–1123.

[10] K.-B. Schultis, C. Elsner, and D. Lohmann, “Architecture challenges for internal software ecosystems:
a large-scale industry case study”, in Proceedings of the 22nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering, ser. FSE 2014. New York, NY, USA: Association for Computing
Machinery, 2014, p. 542–552.

[11] E. Wilde and M. Amundsen, “The challenge of API management: Api strategies for decentralized api
landscapes”, in Companion Proceedings of The 2019 World Wide Web Conference, ser. WWW ’19. New
York, NY, USA: Association for Computing Machinery, 2019, p. 1327–1328.

[12] “ISO/IEC 25010:2023 - systems and software engineering - systems and software quality requirements
and evaluation (SQuaRE) - product quality model”, 2023.

[13] “ISO/IEC 25023:2016 - systems and software engineering - systems and software quality –
requirements and evaluation (SQuaRE) - measurement of system and software product quality”, 2016.

[14] “ISO/IEC 25040:2011 - systems and software engineering - systems and software quality requirements
and evaluation (SQuaRE) - evaluation process”, 2011.

[15] V. R. Basili, G. Caldiera, and H. D. Rombach, “The goal question metric approach”, in Encyclopedia
of software engineering. New York, NY, USA: Wiley-Interscience, 1994.

[16] M. Mathijssen, M. Overeem, and S. Jansen, “Identification of practices and capabilities in API
management: A systematic literature review”, 2020. [Online]. Available: http://arxiv.org/abs/2006.10481

[17] E. dos Santos and S. Casas, “API management and SQuaRE: A comprehensive overview from
the practitioners’ standpoint”, in Computer Science – CACIC 2023. Cham: Springer Nature Switzerland,
2024, pp. 137–150.

[18] E. dos Santos, and S. Casas, “Unveiling quality in API management: A systematic mapping study”, in
2024 L Latin American Computer Conference (CLEI), 2024.

[19] A. Khammal, Y. Boukouchi, M. A. Hanine, and A. Marzak, “General meta model of software quality,”
International Journal of Computer Science and Information Technologies, vol. 7, no. 4, 2016.

[20] N. Yılmaz and A. K. Tarhan, “Meta-models for software quality and its evaluation: A systematic
literature review”, in Joint Proceedings of the 30th International Workshop on Software Measurement and
the 15th International Conference on Software Process and Product Measurement, ser. CEUR Workshop
Proceedings, vol. 2725. Mexico City: CEUR-WS.org, 2020.

[21] R. Yamamoto, K. Ohashi, M. Fukuyori, K. Kimura, A. Sekiguchi, R. Umekawa, T. Uehara, and M.
Aoyama, “A quality model and its quantitative evaluation method for web APIs”, in 2018 25th Asia-Pacific
Software Engineering Conference (APSEC), 2018, pp. 598–607.

Engenharias e soluções: Ciência e tecnologia para o desenvolvimento humano Capítulo 17 266

[22] K. Petersen, S. Vakkalanka, and L. Kuzniarz, “Guidelines for conducting systematic mapping studies
in software engineering: An update”, Information and Software Technology, vol. 64, pp. 1–18, Aug. 2015.

[23] B. Kitchenham, O. Pearl Brereton, D. Budgen, M. Turner, J. Bailey, and S. Linkman, “Systematic
literature reviews in software engineering – A systematic literature review”, Information and Software
Technology, vol. 51, no. 1, pp. 7–15, Jan. 2009.

[24] M. Shaw, “Writing good software engineering research papers”, in 25th International Conference on
Software Engineering, 2003. Proceedings. Portland, OR, USA: IEEE, 2003, pp. 726–736.

[25] P. Ralph, “Toward methodological guidelines for process theories and taxonomies in software
engineering”, IEEE Transactions on Software Engineering, 2018, 45(7), pp. 712-735.

[26] C. Cachero, C. Calero, and G. Poels, “Metamodeling the quality of the web development process’
intermediate artifacts”, in Web Engineering, L. Baresi, P. Fraternali, and G.-J. Houben, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2007, pp. 74–89.

[27] L. R. d. Carvalho and A. Araujo, “Insights into the Performance of Function-as-a-Service Oriented
Environments Using the Orama Framework”, SN Computer Science, vol. 4, no. 3, p. 305, 2023.

