
1
Journal of Engineering Research ISSN 2764-1317 DOI https://doi.org/10.22533/at.ed.3174292419121

Journal of
Engineering
Research

v. 4, n. 29, 2024

All content in this magazine is
licensed under a Creative Com-
mons Attribution License. Attri-
bution-Non-Commercial-Non-
Derivatives 4.0 International (CC
BY-NC-ND 4.0).

Submission date: 02/12/2024
Acceptance date: 27/12/2024

TRAINING OF A DEEP
NEURAL NETWORK
USING CUDA
PROGRAMMING

Patricia Pérez-Romero
National Polytechnic Institute, Cidetec,
Mexico
https://orcid.org/0000-0003-3395-6239

Miguel Hernández Bolaños
National Polytechnic Institute, Cidetec,
Mexico
https://orcid.org/0000-0002-5622-8747

https://orcid.org/0000-0003-3395-6239
https://orcid.org/0000-0002-5622-8747

2
Journal of Engineering Research ISSN 2764-1317 DOI https://doi.org/10.22533/at.ed.3174292419121

Abstract: Deep neural networks have been
successfully applied in the fields of computer
vision, automatic image recognition and spee-
ch, among others. An important part of their
architecture is the use of convolution opera-
tions that perform feature filtering at diffe-
rent levels of abstraction during the network
training phase. This paper proposes the use of
GPU graphics acceleration units to reduce the
computational load based on its SIMT (Single
Instruction Multiple Thread) architecture that
exploits the intrinsic data parallelism of these
applications.
Keywords: CUDA programming, graphics
processing unit, training phase, neural ne-
twork, spatial convolution, algorithm.

INTRODUCTION
According to Fujimoto, N. (2008), the in-

ternal structure of the deep neural network to
carry out the recognition of objects in images
can be made up of a series of operations that
are performed sequentially, such as: spatial
convolution, maxpooling and the different ac-
tivation functions, see Table 1.

Considering that much of the computa-
tion in the neural network is consumed by the
convolutional operations, since these are car-
ried out for each element of the image, it was
decided to improve performance by using a
graphics processing unit (GPU), which allows
through massive parallel processing to reduce
the computation time required in the training
phase of the network.
Layer Function Parameters

1 Convolution Space 16 characteristics Kernel 5x5
Tanh
MaxPooling Kernel 2x2

2 Convolution Space 256 features Kernel 5x5
Tanh
MaxPooling Kernel 2x2

3 Linear Output 128
Tanh
Linear 8 classes

Table 1. Characteristics of the deep neural
network model

CONVOLUTION
Before defining what the convolution pro-

cess is, it is necessary to clarify some concepts.
In the same way that an image is represented as
a two-dimensional matrix, there is a structure
called a spatial filter. This structure is nothing
more than a matrix of N x M, whose values
are called filter coefficients. For the purpose
of facilitating the calculations, N and M will
always be considered to be odd, although in
reality they can have arbitrary dimensions as
expressed by Karimi et al (2010).

Figure 1 shows the image to be filtered and
the respective filter. In this example, the por-
tion of the image around the pixel to be fil-
tered is taken and multiplied point by point
to find the resulting matrix; then the sum of
the values of this matrix is calculated and the
value of the filtered pixel is obtained whose
value is in the same position of the filtered
image as it was in the original image. This pro-
cess is known as convolution, which is the pro-
cess by which a filter is moved over an image
and the sum of the products at each position
is calculated.

Figure 1. Application of a 3x3 filter to a pixel of
an image (Own elaboration).

3
Journal of Engineering Research ISSN 2764-1317 DOI https://doi.org/10.22533/at.ed.3174292419121

METHODOLOGY AND
DEVELOPMENT
The methodology adopted for the work

consisted of the following steps:
1. Definition of the development environ-
ment.

2. Handling of external libraries.

3. Time measurements and benchmarking.

4. Proposed algorithm.

5. Shared memory management.

6. Test stage.

DEVELOPMENT ENVIRONMENT
For the development of the programs, the

compiler provided by NVIDIA CUDA Toolkit
within the Linux development environment
NVIDIA CUDA Compiler Driver (NVCC)
was used. It is worth mentioning that the
code produced can be compiled under other
architectures and operating systems as long
as it has hardware with CUDA architecture
or a CUDA emulator, according to NVIDIA,
(2010). The characteristics of the computer on
which we worked are the following:

• Processor: Intel Core i5 M520 2.4 GHz.

• RAM memory: 6 GB.

• Video Card: NVIDIA GeForce 330 MB.

• With dedicated video memory: 1 GB.

• NVIDIA Driver: The video card driver
is version 270.41.06 for 64-bit Linux ope-
rating system.

It is possible to estimate the theoretical
performance of the board we worked on. It
has 6 multiprocessors, with 8 processors each,
for a total of 48 processing units. Each of these
has an internal clock of 1.265 GHz, giving a
theoretical performance of 60.72 Gflops. This
is 60.72 billion floating point operations per
second.

EXTERNAL LIBRARIES
Only one library external to the standard

C libraries was used, and that was NVIDIA’s
cuda.h, as it allows the use of directives and
functions to take full advantage of the video
card. These range from memory copies betwe-
en host and device to thread synchronization.

TIME MEASUREMENTS AND
BENCHMARKING
NVIDIA Compute Visual Profiler version

3.2 is used to accurately measure kernel exe-
cution times and data copies from CPU me-
mory to device memory and vice versa. This
tool allows determining the execution times
of kernels and memory copies, as well as de-
termining the percentage of use of the video
card’s computational capacity, the amount of
memory used for each type of graphics card
memory, among other measurements that are
useful for the optimization of the implemen-
ted programs.

PROPOSED ALGORITHM
In the case of a color image, three matrices

are required, that is, there is a representation
for the red, green and blue planes respectively.
Likewise, the filters must correspond one for
each plane, as shown in figure 2 .

Figure 2. Color image convolution (Prepared
by the authors)

A thread is the execution unit in which
part of the data is processed and which can
synchronize and share information with other
threads. A thread in CUDA is similar to threa-

4
Journal of Engineering Research ISSN 2764-1317 DOI https://doi.org/10.22533/at.ed.3174292419121

ds in any multitasking operating system, with
the difference that the creation and synchro-
nization of these threads does not involve a
high computational cost, as it does in the case
of these operating systems. The main reason
lies in the execution model of the CUDA ar-
chitecture, SIMT (Single Instruction Multi-
ple Thread) in which the same instruction is
executed by several threads simultaneously, so
the cost of execution becomes almost unim-
portant, i.e. the architecture of the video card
is optimized to perform tasks of this type. For
more detail it should be clarified that the thre-
ads are grouped into blocks, which are an abs-
traction to denote an arrangement (up to 3 di-
mensions) of these. These blocks are grouped
in turn, in a grid, which is an array (also up to
3 dimensions) of blocks, see figure 3.

Figure 3. Pseudocode of the implementation
(Prepared by me).

SHARED MEMORY MANAGEMENT
For local memory accesses without cache

or global memory, latencies of 400 to 600 clo-
ck cycles can be expected. For this reason, me-
mory access optimization is considered a high
priority when optimizing a kernel, NVIDIA
(2010). Shared memory should be used whe-
never possible and in cases where memory
capacities (16 KB for 1.X devices and 48 KB
for 2.0 and above devices) are exceeded by the
amount of data, it is advisable to reorder and
group memory accesses or consider the use of
texture memory if the application allows it.

This can be seen in Figure 4, which also
shows the memory model of the CUDA ar-
chitecture.

Figure 4. Available memories in the CUDA
architecture. (Original image taken from

http://www.ks.uiuc.edu)

KERNEL EXECUTION (TEST STAGE)
It can be seen that a kernel is declared just

as a C function is declared with the difference
that the global declaration is used to indicate
that it will be executed on the GPU. Additio-
nally, the kernel parameters are specified be-
tween the braces <<<...>>>. The elaborated
code is shown in figure 5.

5
Journal of Engineering Research ISSN 2764-1317 DOI https://doi.org/10.22533/at.ed.3174292419121

Figure 5. CUDA code of the application (Own
elaboration).

RESULTS
Four different image sizes were chosen,

being of square proportions. Their sizes in as-
cending order are: 2800x2800px, 5600x5600px,
11200x11200px, 22400x22400px.

In addition, there were 3 different types of
masks that apply the convolution algorithm of
sizes 3x3, 5x5 and 7x7.

Each of the possible combinations between
image and filter were executed in each version
of the algorithm: sequential algorithm, CUDA
algorithm, CUDA algorithm using shared me-
mory. The above can be seen in Table 3, whi-
ch additionally shows the number of threads
used in each case.

Filter Image size (square) Sequential CUDA CUDA Shared Memory Threads
3x3 2800 6100 1,98 7,97 7840000
3x3 5600 24128 9,00 54,88 31360000
3x3 11200 100096 35,98 201,78 125440000
3x3 22400 404130 139,98 775,97 265932800
5x5 2800 15948 5,01 14,87 7840000
5x5 5600 59248 20,97 92,90 31360000
5x5 11200 259414 83,89 330,87 125440000
5x5 22400 1290042 297,01 1299,85 265932800
7x7 2800 31997 9,90 24,96 7840000
7x7 5600 168782 38,94 142,10 31360000
7x7 11200 723987 145,86 536,78 125440000
7x7 22400 3085853 547,67 1430,75 265574400

Average time (ms) of the 4 runs launched by each version of the algorithm, mask size and image size.

Figure 6 shows the different execution ti-
mes obtained for the different versions of the
algorithm. It can be seen that the scaling is lo-
garithmic, so the times improve exponentially
as the image size increases. It is also evident
that the times obtained with the version of
CUDA that uses shared memory were not as
efficient as expected, these results are explai-
ned due to the type of data used in each pixel
of the image, since the image has been repre-
sented using bytes to maximize the capacity
of the GPU and this caused collisions in the
access to the memory of the device. On the
other hand, the time cost of bringing the data
from global memory to local memory is not

compensated by the operations performed on
each data, so the times of the shared memory
version are not the best.

Figure 6. Times obtained with respect to
different image sizes with a 3x3 mask in

logarithmic scale base 2.

6
Journal of Engineering Research ISSN 2764-1317 DOI https://doi.org/10.22533/at.ed.3174292419121

CONCLUSIONS
In the study carried out, it can be seen how

the convolution operation is highly paralleli-
zable allowing an allocation of GPU resources
that accept to exploit the properties of both
shared memory and global memory, with whi-
ch high-growth linear gains can be obtained
for the processing of any image. It was obser-
ved that the larger the image size, the longer
the time required for its processing, however,
with respect to the sequential version, the pa-
rallel version manifests high performance for
any size, taking into account that it is a highly
parallelizable algorithm and that it can be ea-

sily adapted to the parallel architecture of a
GPU. It is also clear that the times obtained
with the version of CUDA using shared me-
mory is not as good as expected, results that
are explained due to the type of data used in
each pixel of the image, since the image has
been represented using bytes to maximize the
capacity of the GPU and this causes collisions
in the access to the memory of the device. On
the other hand, the time cost of bringing the
data from global memory to local memory is
not compensated by the operations perfor-
med on each piece of data, so the times of the
shared memory version are not the best.

REFERENCES
Fujimoto, N. (2008). Dense Matrix-Vector Multiplication on the CUDA Architecture. Parallel Processing Letters, Vol. 18(4), pp.
511-530.

Karimi, K.; Dickson, N. G. & Hamze, F. A. (2010). Performance Comparison of CUDA and OpenCL. CoRR, Vol. abs/1005.2581.

Kirk, D. B. & Hwu, W. (2010).Programming Massively Parallel Processors: A Hands-on Approach. Morgan Kaufmann.

NVIDIA. (2010). CUDA C Best Practices Guide.

Version 3.2. NVIDIA.

Wolfe, M. (2010). Understanding the CUDA Data Parallel Threading Model: A Primer. The Portland Group Technical News.

