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Abstract: The objective is to analyze and apply 
the Bessel function to systematize the move-
ment that occurs due to the restoration of for-
ces created by deformations. The analysis uses 
an exhaustive review of complex situations, 
where the theoretical and practical aspects 
are articulated with a set of theorems that are 
guides in different stages of the investigation. 
The results demonstrate that as we complica-
te the equation with boundary data, the need 
for new mathematical concepts arises for its 
correct interpretation. It is a problem of cir-
cular geometry of the limit with analysis of 
physical parameters, where factors such as the 
thickness, radial of a membrane and density 
intervene; Its importance is the interpretation 
of vibratory motion using Bessel functions.
Keywords: Bessel equation, Bessel functions, 
circular membrane, boundary problems. 

INTRODUCTION
The vibrations of a circular membrane, 

which is fixed to a rigid circular frame and 
is mainly elastic of uniform thickness, are 
formulated as a wave equation, which satisfies 
boundary conditions. A membrane can vibrate 
in different ways depending on the shape 
of the membrane. given deformation in an 
initial time interval, by means of the method 
of separation of variables, it is possible to find 
a set of simple vibration modes [Asmar, 2005; 
Arfken, 2005).

Vibrations are the propagation of classical 
waves, which cause deformations and tensions 
in a continuous medium; that is, vibrations can 
be considered as repetitive movements around 
an equilibrium position. The equilibrium 
position is the place reached when the force 
acting on it is zero; this movement does not 
necessarily cause an internal deformation 
of the entire body (Levedev, 1972; Jackson, 
1998).

For Asmar (2005) it is convenient to sepa-
rate the terms vibration and oscillation be-
cause the amplitude of the oscillation is much 
greater. Vibrations produce movements of 
smaller amplitude than oscillations around 
the equilibrium point, vibratory movements 
can be easily linearized, while in oscillations 
kinetic energy is usually converted into gravi-
tational potential and vice versa, while in vi-
brations there is an exchange between kinetic 
energy and elastic potential energy.

On the other hand, differential equations 
model many real-life processes, it is linked to 
science and engineering; while, Bessel func-
tions are in the group of special functions with 
multiple applications in mathematical physi-
cs, it appears as a result of solving an ordinary 
second-order differential equation with va-
riable coefficients (Malley, 1997; Davis, 1992; 
Arnol´d, 1992).

The mathematician Daniel Bernoulli 
(1700–1782) was the first to arrive at the Bes-
sel functions on the basis of the study of the 
vibrations of a hanging chain, later it appears 
again in the studies of Euler (1707 – 1782) re-
garding the vibrations of a circular membra-
ne; in the same way when Bessel studies the 
motion of planets. The Bessel equation arises 
naturally when dealing with boundary pro-
blems in potential theory for cylindrical do-
mains (Braun, 1983; Brauer, 1967; Kreyszig, 
2016).

In Spiegel (2011), he analyzes the singu-
larity and the analyticity of its coefficients; 
but, he is not very explicit in the foundation 
regarding the conditions of its coefficients to 
obtain the Bessel function of order and does 
not emphasize the role played by the gamma 
function, the order reduction theorem in the 
face of the need to find two linearly indepen-
dent solutions, while, in the works of Dehesta-
ni (2020), the substantial thing is the study of 
the spherical Bessel functions, associated with 
the wave equation in spherical coordinates; 
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however, Liouville He managed to show that 
 is elementary, and that they are 

the only elementary Bessel functions. Ano-
ther problem is the zeros of Bessel functions, 
although tables can be found in many books, 
especially for, it is necessary to formulate affine 
theorems to determine zeros of any non-tri-
vial function and to formulate the existence of 
zeros (Cruz, 2020); above all, pay attention to 
the orthogonality properties using change of 
variable, formulate new propositions related 
to the integration of Bessel functions (Barceló 
et al., 1997).

From the review of Muller (2001), it 
can be noted that the Bessel functions are 
initiated through a power series. In general, 
an expression of this type provides us only 
local information, but given the scarce global 
information on Jp(t), the question arises, 
would a representation by means of an 
oscillatory integral be better? The answer puts 
on alert aspects of its form of representation. 
For Córdova (1989) there are some uniform 
estimates in p, this due to the concern of the 
dependence of this parameter, although it 
is not enough to study the behavior of the 
Bessel functions for large values; according 
to Kreyszig (2016), in attention to the Bessel 
functions in their various species and order, 
we make specific modifications that promote 
their application to the interpretation of the 
circular membrane with adjustment to the 
boundary conditions.

METHODOLOGY
It corresponds to a fundamental investi-

gation, which is supported by other investi-
gations presented in reliable references, at an 
exploratory level, the objective being to apply 
Bessel -type functions that require establishing 
relationships between formulas and concepts 
that are interconnected, theorems associated 
with definitions, throughout the entire pro-
cess the deductive-inductive is manifested.

The design corresponds to a qualitative in-
vestigation, it is framed to detect a problem, 
interpret, apply theories, particularize and 
deepen its understanding. Its application re-
volves around the exhaustive analysis of new 
situations, where the theoretical aspects and 
the practical situation are articulated with a 
set of theorems being guides at different mo-
ments of the work. The arguments used in this 
work are: demonstrable; in addition, applicab-
le within the research context; the assessment 
of criteria, transfer and dependency are part 
of a set of premises and concepts.

RESULTS

BESSEL DIFFERENTIAL EQUATION
In limited cases, the solution of a linear 

equation with second-order variable coef-
ficients can be determined by means of ele-
mentary functions. Before solving a boundary 
problem, the Bessel differential equation is 
analyzed, which is presented in the canonical 
form

in its self-adjoint form, 
One of the most commonly used methods 

to solve the Bessel equation (1) is that of Fro-
benius (Simmons, 1993, Simmons, 2018), 
using a series of the form  
surrounding a point 0 that is a regular sin-
gular. The solution is sought in the form of a 
power series y = bo + b1x + b2x

2 + ... + bnx
n + ..., 

It is clear that there is no certainty that this se-
ries starts with the independent term. We con-
sider the first non-zero coefficient, if a0=bm. 
Therefore, y = a0x

m + a1x
m+1 + a2x

m+2 + ... an-
xm+n + ..., being m≥0, a0≠0, when replacing we 
obtain, a0m

2xm-1 + a1(m+1)2xm + a2(m+2)2xm+1 
+ ... + an(m+n)2xm+n+1 + ...; -a0p

2xm-1 - a1(p)2xm 
- a2(p)2xm+1 - ... - an(p)2xm+n+1 + .... Equating co-
efficients to the same power for a zero polyno-
mial, all of its coefficients must be zero,
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From this part a recurrence formula is 
obtained and they are

where from,

In this construction p ∈ ℤ+, then a1 = 0, a3 
= 0, a5 = 0, ..., a2k+1 = 0, only the pairs remain 

 it is the generic term, with 
some adjustments it is written,

Bessel function which is denoted by, 

It is clear that the solution to the problem 
for the Bessel equation is any function of 
the form AJp(x), where A is reflecting a fac-
tor A=a02

pp!, being arbitrary, one could even 
choose a0 = 1, then the Bessel function is bou-
nded for values of x, x→0+, positive on the ri-
ght, without losing sight of the fact that this 
comes from the problem of the circular mem-
brane that has axial or cylindrical symmetry. 
There are many problems that are solved in 
mathematical physics that have a pre-supposi-
tion of this symmetry. Therefore, the solution 
to the Bessel equation is

 (2)

In (2), Np(x) it is the Weber function or also 
known as the Newmann function, this is not 
used in the work, since this function tends to 
infinity, that is Np(x)→-∞, when x→0+, we only 
work with Jp(x), in the case where is not x→-∞, 
it can be if we consider the perforated membra-
ne and we can work as a superposition of both.

For the normal form of the Bessel equa-
tion, we first write

 (3)
in (3), making an appropriate change of 

variable 
Therefore, the Bessel function of the first 

kind, Jp(x), of order p, is

If p∉ℕ, then Jp(x) and are linearly indepen-
dent and form a basis of the solution space of 
J-p(x) Bessel ‘s equation , the general solution 
is the linear combination of both. If p∈ℕ, in 
this case Jp(x) and, J-p(x) are linearly depen-
dent, then Jp(x)= (-1)p J-p(x). If p∉ℕ and x→0, 
then 

Bessel function of the first kind, Ip(x), of 
order p, is

The Bessel function of the second kind, 
Np(x), of order p, is

The modified Bessel function of the second 
kind of order Kp(x), is

The functions Jp(x) and Np(x) are linearly 
independent, so the general solution of the 
Bessel equation in the case p=λ∈ℕ is a line-
ar combination of Jp(x) and Np(x). If p∈ℕ and 
x→0, then
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BESSEL FUNCTIONS
There are differential equations that ge-

nerate new functions, such as the differen-
tial equations of Bessel, the peculiarity is 
that these functions are applied to the field 
of physics. It is written in a generic way 

, this is the Bessel 
function of order p∈ℤ+. This expression is ge-
neralized using the gamma function defined 
as, Γ(z) = ∫0

∞tz-1e-tdt, z is the complex argument, 
in this case not only in the real numbers, it is 
also extended to the complex numbers, pre-
viously there was the presence of the factorial, 
which is defined for positive integers. In the 
case of generalizing for complex z, it is hi-
ghlighted that Re(z)>0 (Leighton, 1996; Zill, 
2003). Then, 

The definition given about the Bessel func-
tion for p positive integers is generalized to 
any real number, λ∈ℝ even complex ones, 
so that it is understood, taking into account 
some results,

(i) 

(ii) 

(iii) 

(iv) An integral representation of the func-
tion on the boundary called the Riemann- 
Hanke contour  we 
have that γ it is any contour of the complex 
plane that surrounds the point t=0, in the 
counterclockwise direction and that tends 
to infinity along the real axis. That is, we 
have moved on to a complex integral, it is 
also useful  where the 
border is any one that ends at the point t=0, 
in the counter clockwise direction, if the in-
tegration is in the opposite direction we ob-
tain negative, the integration can be in polar 
coordinates or any more comfortable coor-
dinates in the complex variable.

Bessel function, in particular if λ=-m and 
change the sign to ń =n-m= 0,1,2,..., the sum 
will start at ń , then J-m(x)=(-1)mJn(x), which 
leads to a series of expressions or formulas 
for the Bessel functions, associated with 
the ways in which they were constructed, 
formulas associated with the Bessel functions 
are written and many are called recurrence 
because it puts us in terms of the Bessel 
functions (Dehestani, 2020),

Although some integrals end up being 
improper, it is infinite along the X axis, when 
applying derivatives it is for 

BESSEL FUNCTIONS
The mathematical complexity of these re-

quires analysis when applying concepts to 
specific situations. In the Bessel equation 
x2y''+xy'+(x2-p2)y=0 the solution, being of se-
cond order, is the superposition of two func-
tions that are linearly independent of each 
other, y=c1Jp(x)+c2Np(x).

For now we are interested in the Bessel 
functions with some properties, the interest 
of this function responds to a problem that 
comes from a second order differential equa-
tion, in which it is required that the solution is 
essentially finite, and the Newmann functions 
are not finite (they are infinite), so they can-
not be solutions of our physical problem, the 
reason for their interest is their consistency. In 
case a Newmann function is required, it can 
be applied to another problem,



6
Journal of Engineering Research ISSN 2764-1317 DOI https://doi.org/10.22533/at.ed.3174292419123

It is observed that functions of even order 
are even and those of odd order are odd,

Bessel functions are continuous and de-
fined on the number line, the continuity co-
mes from the fact that it is a power series and 
is derivable infinitely many times, then it is 
continuous and has derivatives of any order, 
its analyticity comes from the analytical ex-
tension of the real function.

Bessel function has a set of real roots, only 
the positive ones on the positive semi-axis are 
considered, they can be numbered with the 
natural numbers in ascending order. If J0(x)=0, 
the roots are on the X axis, these are u1, u2, 
..., in the same way they can be numbered for 
J1(x) and J2(x). The asymptotic equality and 
others are important results and are very used 
expressions,

For all p∈ℝ, there exists a constant cp>0 
such that if x≥1, then

As for the damped trigonometric function, 
this equality is increasingly closer as it tends 
to x, which is more precise the larger is x, its 
periodicity helps to explain the problem, it is 
asymptotic if x→∞, the vibration is smaller 
towards the axis x, for x negative it is fulfilled 
by being even or odd, the roots are separated 
by the period π, however, the closer to infinity 
it is π with more decimals.

Bessel functions are functions of the form 
 These appear when solving the wave 

equation in spherical coordinates, from the 
above, the formulas,

even obtaining others like 
 it can be seen that this process of 

obtaining waves can be continued indefinitely; 
therefore, any  integer p is elementary. 
Liouville showed that these were the only 
elementary Bessel functions.

BESSEL FUNCTIONS, THE ZEROS OF 
SOME
Bessel functions are found in many refe-

rences, the theorem is useful.
Theorem 1. Let be u(x) any nontrivial so-

lution of u"+p(x)u = 0, with p(x)>0, for all 
x>0. If  then u(x) it has infinitely 
many zeros on the positive semiaxis.

Theorem 2. Let y(x) and be v(x) nontri-
vial solutions of the equations y"+p(x)y=0 
and v"+q(x)v=0, where p(x), q(x) are positi-
ve functions such that p(x)> q(x). Then y(x) 
vanishes at least once between two successive 
zeros of v(x).

Sturm‘s comparison theorem, now we 
analyze the behavior of the zeros of the Bessel 
functions.

Bessel ‘s equation has infinitely many po-
sitive zeros.

Indeed, let, be a non-trivial solution 
of u(x) Bessel’s equation, in the normal 
form u"+ , when x is large 

 is greater than zero, when 
calculating the integral, and by theorem 1, 
u(x) has infinitely many zeros on the positive 
semi-axis,

Theorem 4. Let be a non-trivial solution of 
the u(x) Bessel equation x2y"+xy'+(x2-p2)=0, 
on the positive semi-axis. The following is 
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true: (a) If , then every interval of 
length π contains at least one zero of u(x), (b) 
if  the distance between two successive 
zeros of u(x) is exactly π, (c) if  then 
every closed interval of length π contains at 
most one zero of u(x).

Indeed, from the normal Bessel equation 
 (a) if  then 

 let be u(x) a nontrivial 
solution of u"+p(x)u=0 and v(x) be a 
nontrivial solution of v"+v=0, since p(x)> 
q(x)=1, by Theorem 2, u(x) vanishes at least 
once between two successive zeros of v(x). 
While the solutions of v"+v=0 are senx and 
cosx, such that the distance between two zeros 
of, senx and the distance between two zeros of 
cosx is π, therefore, u(x) vanishes at least once 
in an interval of length π.

On the other hand (b), when  the 
equation is u"+u=0, whose solutions are the 
functions senx and cosx. Then yh(x) it va-
nishes exactly once in an interval of length π. 
However (c), if  Let be 
u(x) a non-trivial solution of u"+p(x)u=0 and 
v(x) a non-trivial solution of v"+v=0, since 
1=q(x)>p(x), by Theorem 2, we have that v(x) 
it vanishes at least once between two succes-
sive zeros of u(x), it is specified that the dis-
tance between two successive zeros of v(x) is 
π, then v(x) it vanishes at least once between 
two successive zeros of u(x). In physics, we 
have a limit associated with measurement, 
we cannot measure more than the accuracy 
of the measurement of our instruments; the-
refore, from the fourth root onwards, the real 
value of the difference in π, is not significant 
but is frequently used. In fact, for x large, the 
difference between two consecutive roots 
is approximately equal to π, with data from 
Table 1, these approximations can be seen, 
Δ1=5,52-2,40=3,12≅π, in general if un they 
are the roots, then we have un+1≈un+π.

Values of x when Jp(x)=0
X J0(x) J1(x) J2(x) J3(x) J4(x) J5(x) J6(x)
First zero 2.40 3.83 5.14 6.38 7.59 8.87 9.93
Second 
zero 5.52 7.02 8.42 9.76 11.06 12.34 13.59

Third 
zero 8,65 10,17 11,62 13.02 14.37 15.70 17.00

Quarter 
zero 11.79 13.32 14.80 16,22 17,62 18.98 20.32

Fifth 
zero 14.93 16.47 17.96 19.41 20.83 22,21 25.59

Sixth 
zero 18.07 19,61 21,12 22.58 24.02 25.43 26.82

Seventh 
zero 21,21 22.76 24,27 25.75 27.20 28,63 30.03

Eighth 
zero 24,35 25.90 27.42 28.91 30.37 31.81 33.23

Table 1: Bessel functions

Source: Author’s adaptation.

Figures 1 and 2 show a damped oscillation. 
Comparing both figures, the figure of the 
Newmann function, when x→0+, means that 
there is a break on the left, while on the right 
both are similar.

Figure 1: Bessel functions of the first kind for 
p=0,1,2.

Source: Author’s adaptation of Simmons (2018).



8
Journal of Engineering Research ISSN 2764-1317 DOI https://doi.org/10.22533/at.ed.3174292419123

Figure 2: Second Bessel functions for p=0,1,2.

Source: Author’s adaptation of Simmons (2018).

Proposition 5. Between two zeros of Jp(x) 
there is at least one zero of Jp+1(x).

Indeed, by proposition 3, Jp(x) has infinite 
positive zeros, on the other hand, the positive 
zeros of x-pJp(x) and the positive zeros of 
Jp(x) are the same. It is assumed that u1 and 
u2 are two positive zeros of x-pJp(x), where 
u1<u2; the function x-pJp(x) is continuous on 
the interval [u1, u2], derivable on ]u1, u2[ and 
we have u1

-pJp(u1) = u2
-pJp(u2). Rolle’s theorem 

states that there exists a point r∈]u1, u2[ 
that satisfies,  however, 

Therefore, Jp+1(r)=0. Consequently between 
two successive positive zeros of Jp(x) there 
exists at least one positive zero of Jp+1(x).

Proposition 6. Between two zeros Jp+1(x) 
there exists at least one zero of Jp(x).

Indeed, according to proposition 3, Jp+1(x) 
has infinite positive zeros, moreover, the 
infinite zeros of Jp+1(x) are the same positive 
zeros of xp+1Jp+1(x). Let u1 and u2 be two 
positive zeros of xp+1Jp+1(x), where u1<u2; 
the function xp+1Jp+1(x) is continuous on the 
interval [u1, u2], derivable on ]u1, u2[ and 
we have u1

p+1Jp+1(u1) = u2
p+1Jp+1(u2). Rolle’s 

theorem states that there exists a point s∈]
u1, u2[ that satisfies,  
however, 

Therefore, Jp(s)=0. Consequently between 
two successive positive zeros of Jp+1(x) there 
is at least one positive zero of Jp(x), then be-
tween two successive positive zeros of Jp+1(x) 
there is at least one positive zero of Jp(x). From 
propositions 5 and 6, the results are immedia-
te, the positive zeros Jp(x) and of Jp+1(x) appear 
alternately, that is, between each pair of suc-
cessive zeros of one of them there is exactly 
one zero of the other. This can be seen in fi-
gure 1, where the function J0(x) and is shown 
represented J1(x).

Orthogonality: The eigenvalues and ei-
genfunctions that we have are inherited from 
Sturm’s problems. Liouville and satisfy pro-
perties. Each eigenvalue  corresponds 
to only one eigenfunction , two diffe-
rent eigenfunctions are orthogonal with wei-
ght x.

Proposition 7. Let x∈[0, L], uk and 
be the positive zeros of some um fixed 
Jp(x) Bessel function with p≥0, it holds, 

The statement is almost an inheritance 
from the Sturm problem. Liouville, however, 
we will demonstrate, first we have, for L=1, this 
makes us lose generality, then we can make a 
change of variable in the Bessel equation, if 
we replace the Bessel function, we obtain the 
identity

Now if ε=uk you have it, 
 (5), being a generic 

value, uk it is already specific. Now, equation 
(4) by xJp(ukx), equation (5) by xJp(εx), 
consequently by subtracting both we obtain, 

 then it is integrated from 0 to 1, the 
integration is by parts
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consequently,

that is to say,

 evaluating limits, 
 where it 

comes from,

L’ Hópital applies, 
 for a change of variable  

we arrive at the orthogonality of the Bessel 
function, 

Bessel series: For many investigations in 
mathematical physics it is appropriate to 
obtain a function in terms of Bessel. A series 
of the form is considered (Brito et al, 2003; 
Pinsk, 2003),

where b(x) is defined on the interval [0,1] 
and un are the zeros of a fixed Bessel function 
Jp(x), with p≥0, we analyze on the interval 
[0,1] and by changing variables it is possible 
to extend to the interval [0,L].

In the case that it is possible to write the 
function b(x) as an expansion of the form (6), 
then we multiply in both members by xb(x) 
Jp(umx) the result, 

Integrating each term in [0,1], applying 
orthogonality, we obtain,

We change it m by n, we obtain the formula 
for the an and properly it is the Fourier- Bessel 
series 

Regarding convergence, there are condi-
tions under which the Bessel series with sum 
converges b(x).

Theorem 8. If b(x) and b'(x) have at most fi-
nitely many jump discontinuities on the inter-
val [0,1]. If, then the x∈]0,1[ Bessel series con-
verges to b(x) when x is a point of continuity of 
this function, and to  when x is 
a point of discontinuity. However, in the extre-
mum x=1 the series converges to zero indepen-
dently of any function Jp(un), it also converges 
to zero on x=0, if p>0 and b(0+) if p=0.

Bessel integral: It is about deducing the 
Bessel integral, finding the functions Jp(x) in 
the integral formula. From the expression, 

 with the generation 
of the generating function becomes the 
sum (Muller, 2001),  
we equalize the real parts, we have 

 by the 
relation  considering the 
parity of the cosine, we write

As for φ=0, the series remains 
while when 

 is the series  
 When the 

imaginary part is equalized, we have 
 by the relation 

 considering that sine is odd, we 
write

When  is the series 

These results show the close relationship 
of the Bessel functions with the trigonometric 
functions sine and cosine.

Proposition 9. Let the p Bessel function of 
order p y be φ∈[0,π] an integer Jp(x), then the 
integral is fulfilled  
Indeed, by multiplying cos(xsenφ) by cos(mφ) 
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and sen(xsenφ) by sen(mφ), we obtain, 

Applying the sum member by member, 
with application of trigonometric identities to 
obtain,  
the term is  Therefore, we can 
write in the form, 

 Integrating between φ=0 and 
φ=π in both members, we have, 

 Changing m to p, gives the 
Bessel integral, 

THE EQUATION OF MOTION
For this investigation, a membrane is a thin 

uniform sheet of a flexible material in a state 
of uniform tension and clamped along a clo-
sed curve in the xy plane. The membrane is 
displaced slightly from its equilibrium posi-
tion and released.

It is a matter of formulating a partial dif-
ferential equation that describes the motion. 
In this case, only small oscillations of a free 
membrane are considered. Assuming that the 
vibrations are very small and that the membra-
ne only moves in the direction u with displace-
ment given in time t by a function u=u(x,y,t). 
A small piece of membrane is taken, limited 
by the vertical planes that pass through the 
points (x,y), (x+Δx,y), (x+Δx,y+Δy), of the 
(x,y+Δy) xy plane. Then, the mass of the piece 
considered is mΔxΔy, being the mass per unit 
area. By Newton’s second law, the force acting 
on it in the direction of u is

If the membrane is in the equilibrium posi-
tion, the physical meaning of the tension T is: 
along any segment of length Δs, the material 
on one side exerts a force on the material on 
the other side. This force has magnitude TΔs 
and is normal to the segment Δs. Thus, the 
forces on opposite edges in the small piece of 
membrane are parallel to the xy plane, so they 
cancel each other out.

On the other hand, if the membrane is sli-
ghtly curved, although the deformation is very 
small and the tension is still T, it does not act 
parallel to the xy plane, but rather acts parallel 
to the tangent plane; therefore, it presents an 
appreciable vertical component. The curvatu-
re of our piece of membrane produces diffe-
rent magnitudes for the vertical components 
on opposite edges and is responsible for the 
restoring forces that produce the movement 
(Brito, 2011).

Let a fragment of membrane be noted by 
PQRS as being only slightly curved. On the 
edges PQ and SR the forces are perpendicular 
to the x-axis and nearly parallel to the y-axis, 
their small components at the points (x,y), 
(x,y+Δy) are approximately  and 

 whose sum is,
 

 si-
milarly for edges PS and QR, the components 
at points (x,y), (x+Δx+y) are approximately 

 and  whose sum is, 

Therefore, the total force in the direction of 
u, neglecting all external forces, is approximately 

 so that (7) 
can be expressed,  
tending to the limit, Δx→0, Δy→0 we obtain 
the derivatives,  and 

Finally, if we denote  we arrive 
at the two-dimensional wave equation, 

CIRCULAR MEMBRANE PROBLEM
To solve it, you have a circle, the imagina-

tion is the following, you have a drum, it is 
attached to that leather membrane, attached 
to one of its two ends, analyze what will ha-
ppen with that drum when you hit it in the 
center, as a result it will begin to oscillate, with 
radius of the drum r. The problem of small 
oscillations of a circular membrane of radius  
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with fixed ends, since the edge is fixed and is 
expressed as  with the condi-
tion on the edge u(r,φ,t)=0, another additio-
nal condition the value that forms u with the 
center |u(r,φ,t)|<M, the absolute value because 
it is a vibration up and down; that is, it forms 
a finite value, the vibration can be tiny. The 
problem together with the boundary condi-
tions is formulated as follows (Cruz, 2020) 

In the problem, it is not yet being indicated 
what the coordinates are, although the reaso-
nable thing would be to use cylindrical co-
ordinates, since it is more comfortable when 
starting with the analysis. The membrane is 
seen from one side where the ends are fixed 
and it will have to be oscillating around those 
ends, it means that when choosing an axis u 
that depends on the distance to the center r, 
the angle φ, the time t. The formulated equa-
tion is when the distance to the center or at 
any point of the membrane, that depends on 
the way the problem is posed, normally indi-
cating where we touch it, will be associated 
with the initial conditions, at that instant a 
pulse is given, imagine for a moment that you 
have a pot lid, then you hit it with a spoon, 
those are the initial conditions, we can give it 
speed, an initial deformation, that is relative.

On the other hand, the equation is zero, 
 because there is no vibrating 

source, i.e. external force. The initial condi-
tions part will not be worked on, rather the 
second order boundary conditions and that 
leads to a Sturm problem. Liouville. We want 
to see where some data come from, let’s say 
the magnitude  that represents the speed of 
sound, because in a vibration it generates a 
sound and considering polar coordinates, so 
it will be useful to know the Laplacian in di-
fferent coordinates,  We 
could point out that they are cylindrical coor-
dinates, but only the two-dimensional part is 
taken. It is important that the differential ope-

rator ∇, there are many problems that result in 
coordinates other than the Cartesian, for our 
case the symmetry is axial, that is, everything 
that happens around this point on the vertical 
axis is the same around that axis, it is conve-
nient to use a type of coordinate that has axial 
symmetry, in this case cylindrical or polar. In 
others.

Regarding the third condition, it must be 
limited. It can be stretched but not infini-
tely, because for it to have a solution it must 
be limited. If it is infinite it is assumed that 
it broke, in this case it is a different problem. 
For the drum problem, it is assumed that the 
blow is not very strong so that it does not bre-
ak. The value of M can be very large, but we 
are looking at the case of small oscillations; for 
large oscillations the problem posed changes 
a little, it must be understood as small in the 
sense of the radius.

The interest is in the oscillations that have 
a harmonic behavior; therefore, a solution of 
the form is sought, u(r,φ,t)=U(r,φ)e-iwt, sin-
ce it has to do with sine and cosines it takes 
the exponential form, e-iwt=cos(wt)+isen(wt), 
depending on the problem one could take 
sine or cosine, it is the representation of a 
harmonic oscillation in general. By replacing 
in the nabla operator, taking into account 

 we have,  
and  the other condition is the same 
|u(a,φ)|<N, it is not the same M or it could 
be, what is important is that it is bounded. We 
have obtained the boundary problem for the 
wave equation, based on the Helmholtz equa-
tion ∇2u=-k2U, will be solved using the me-
thod of separation of variables. Let the equa-
tion of separation of variables be, u(r,φ)=R(r)
Φ(φ), by substituting in  
in the explicit form 

 making a change 
of function  when 
making a division between R=Φ we have 

 that is,  
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separating variables  that is, 

For Φ, Φ"+mΦ=0 it is the equation of a 
simple harmonic motion, being m a parame-
ter of separation of variables, which is taken 
as positive, keep in mind that the value of 
the parameter w will be defined when using 
the initial conditions. For the radial part, we 
have  R=0, the change of va-
riable δ=kr, allows us to do R(r)=Y(δ), it is like 
Rr=Yy=yδ.yr  ky". As for the second de-
rivative, 

To which appropriate conditions must be 
added to obtain a contour problem of the form, 

 
which represents a Sturm problem Liouville, 
with Bessel differential equation is, then we 
see that the problem of the circular mem-
brane and in general in most of the problems 
that we use the Laplace operator in cylindri-
cal or polar coordinates usually leads us to a 
Bessel differential equation, it is a boundary 
problem, we have a Bessel differential equa-
tion under boundary conditions or the Sturm 
problem Liouville. Regarding the criterion for 
the change of variable δ=kr, it has to do with 
circular symmetry, a dependence on the ra-
dius, a frequent change when there are radial 
dependencies and it is the way to reach the 
Bessel equation (Simmons, 1993).

PROBLEM EIGENVALUE AND 
EIGENFUNCTION
We have the Bessel equation 

with the conditions on the interval ⟨0,L⟩
with y(x) finite x→0+, y(L), is the boundary 
problem to be solved. If, is a fixed number, 
then it is an eigenvalue problem, the pro-
blem satisfies p≥0 Sturm ‘s conditions Liou-
ville; therefore, the eigenvalues are greater 
than zero and ordered in decreasing order, 
0≤λ1<λ2<λ3<...<λk<..., to infinity λ, our bou-

ndary problem involves first finding which 
values of λ that are solutions to the problem, 
are the solutions corresponding to those λ. We 
analyze cases, for λ=0, is the equation x2y"-xy'-
p2y=0, we are going to solve this equation in 
two cases, if p=0, then, xy"-y'=0, with general 
solution y(x)=c1+c2lnx.

When the conditions are taken y(l)=0, we 
have 0=c1+c2lnL, which requires c1=0, c2=0, 
implies that there is only one trivial solution 
y(x)=0, in this case there is no solution, since 
non-trivial solutions are required.

If in (8) p>0, the characteristic equation is 
constructed, then it is written with two linear-
ly independent solutions y(x)=c1x

p+c2x
-p.

In case x→0+, for it to be finite again we 
have a trivial solution, so there is no solution. 
Therefore, we discard the fact that λ=0, so all 
the eigenvalues are positive. Doing λ=ε2, whe-
re ε>0, then x2y"+xy'+(ε2x2-p2)y=0, we must 
take into account that x2y"+xy'+(λx2-p2)y=0 is 
not the Bessel equation, since it does not have 
the factor λx.

The equation in its self-adjoint form 
 we take to another con-

ventional form by making the change of varia-
ble, εx=t we have, t2ytt+tyt+(t2-p2)y=0, which is 
a Bessel equation of order p, whose general so-
lution is, y=c1Jp(t)+c2Np(t), that is, taking into 
account the change is written, y=c1Jp(εx)+c-
2Np(εx) from y(L)=0, we obtain c1Jp(εL)=0, 
since c1 it must be different from zero, then 
Jp(εL)=0, but, being εL roots of the Bessel func-
tion, then εL=uk, thus  from which we 
have the eigenvalues  Therefore, the ei-
genvalues are  
in this way the importance of the roots of 
the Bessel equation and the eigenfunctions 
are established, 

 the eigenvalues associa-
ted with the eigenfunctions have been found.
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DISCUSSION
In the circular membrane problem, u(r,φ,-

t)=U(r,φ,)e-iwt by separation of variables, a 
function was obtained for Φ and R, where 
solutions are obtained for Φ(φ)=eimφ, u(r,φ,-
t)=R(r).Φ(φ)e-iwt, while is a R(r) Bessel func-
tion, and are radial solutions,  
The general solution of the problem is 

From now on, everything else depends on 
the specific problem, keeping in mind that 
you are working on a membrane which is a 
flat surface, we consider it harmonic, that is 
why w it Amk is the greatest amplitude, after 
that everything decays.

In the case of using the initial conditions, 
with respect to the case of a membrane that is 
displaced to a u=f(r), regardless of the variable 
φ and that at the moment t=0 is released star-
ting from rest; that is, with the initial condi-
tion u(r,φ,0)=f(r) and. The shape of  
at any time after, t>0 must be determined 
u(r,φ,t) (Davis,1992).

According to the condition, the initial form 
is independent of φ; then Φ(φ) it has to be cons-
tant and p it has to be zero. Therefore, denoting 
the positive zeros of J0(x) by u1, u2, u3,..., uk,..., then 

 by 
 we have that  and then, the par-

ticular solutions are the constant multiples of 
the functions J0(ukr)[c1cos(ukat)], k=1,2,3,..., 
the sums of solutions also form the space of 
solutions, then the general solution is the infi-
nite series, 

To satisfy the initial condition u(r,φ,0)=-
f(r), by making t=0, we set the results to f(r). 

Theorem 9, ensures the stable behavior of f(r), 
so the series converges to f(r). The coefficients 
ak can be defined by the expression

Thus, (9) is a formal solution to the mem-
brane problem, which satisfies the boundary 
condition and the initial conditions stated.

CONCLUSIONS
Bessel function is a mathematical solution 

for solving problems in cylindrical coordina-
tes. It is used in fields such as engineering and 
originated in astronomy. Although it can be 
complicated to understand, its correct inter-
pretation is very useful for finding solutions 
in different situations.

Vibration causes different types of waves to 
form, when you push something it moves it 
from its place and when we study noise, vi-
bration and severity in a system we do so with 
some specific characteristics. The ways to con-
trol vibrations are different from the ways to 
control noise, although vibrations and noise 
often have the same causes and can cause noi-
se, but they propagate differently.

In the end, calculations are made to descri-
be how a circular membrane vibrates. Formu-
las involving time and position on the mem-
brane are used, and these comply with specific 
rules at the edges of the membrane. The so-
lution can be written as a sum of functions 
where the details correspond to given point 
conditions; thus, the Bessel functions act to 
organize the motion caused by the recovery of 
force caused by changes in deformation.
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