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Abstract: In this paper we present some con-
cepts of spherical geometry, such as spherical 
surface, spherical line, spherical line segments, 
spherical coordinates, spherical triangles and 
spherical trigonometry, and propose two ac-
tivities that contextualize these concepts. In 
the activities, designed for the Mathematics 
Degree Course, we covered cartography con-
cepts using Google Earth, a computer pro-
gram that renders a 3D representation of the 
Earth based on satellite images. The activities 
were organized with the aim of equipping ma-
thematics undergraduate students to teach 
non-Euclidean geometry, specifically spheri-
cal geometry, in accordance with the Paraná 
State Department of Education’s Curriculum 
Framework for High School, on the teaching 
of non-Euclidean geometry in high school. 
We conclude that Google Earth is a fantastic 
tool for teaching spherical geometry, enabling 
interdisciplinary interactions with geography, 
specifically cartography.
Keywords: Non-Euclidean geometries. Sphe-
rical geometry. Cartography. Teaching mathe-
matics. Curriculum Framework for Secon-
dary Education in Paraná.

INTRODUCTION
We live on a quasi-spherical surface. 

Euclidean geometry (Euclid, 2009) is not 
enough to explain our world, let alone the 
universe that surrounds it (Wolfson, 2005). 

The world around us has provided reasons 
for much of the development of mathemati-
cs. The fact that the Earth is itself a sphere, 
and the sky has the appearance of an inver-
ted shell above us, has put curves, circles and 
spheres at the heart of geometry since the 
earliest times. These features of the world 
have given rise to challenging problems in 
explaining, representing and modeling the 
universe as we know it. How can we repre-
sent the three-dimensional environment we 
see in a flat drawing? How can we map the 
spherical Earth on a two-dimensional map? 
Struggling with these problems brought up 

other questions about dimensions and geo-
metry. Sometimes the world doesn’t seem to 
match the geometry established by Euclid, 
which has been accepted for 2000 years. 
New models for dealing with these situa-
tions have opened up exciting new avenues 
for mathematicians (Rooney, 2012, p. 97). 

In this way, the study of non-Euclidean 
geometries, such as spherical geometry, for 
example, is a pertinent topic for teacher trai-
ning and needs to be addressed in mathemati-
cs degree courses. In addition, the Curriculum 
Framework for Secondary Education in Para-
ná (Paraná, 2021) emphasizes the teaching of 
non-Euclidean geometries in secondary edu-
cation.

Non-Euclidean geometries emerged betwe-
en the end of the century and the end of the 
20th century.
They gained importance at the beginning of 
the 20th century with the Theory of General 
Relativity and later with the development of 
Fractal Theory. The study of fractals at this 
stage of education allows students to develop 
their creativity, intuition and imagination, 
understanding the processes of regularity 
and interaction of these geometric entities. 
Their emergence has shown that, in order to 
understand various problems of reality and 
the scientific world, in addition to the ma-
thematical relationships with Euclidean ge-
ometry itself, it is necessary to incorporate 
the study of non-Euclidean geometries into 
basic education (Paraná, 2021, p. 541). 

Unfortunately, the National Common Core 
Curriculum - BNCC (Brazil, 2018) does not es-
tablish parameters for teaching non-Euclidean 
geometries. However, the BNCC for Mathema-
tics and its Technologies proposes the use of te-
chnological tools and computer programs.

It is also worth noting that the use of tech-
nologies provides students with alternatives 
for varied experiences that facilitate learning 
and reinforce their ability to reason logically, 
formulate and test conjectures, assess the va-
lidity of reasoning and construct arguments 
(Brasil, 2018, p. 536).
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Thus, in this work we propose two activi-
ties using Google Earth (Nós; Almeida, 2023a, 
2023b) that contextualize some characteristi-
cs and properties of spherical geometry, based 
on theorems demonstrated in Brannan et al. 
(2012), Doria (2019) and Motta (2018), and 
illustrated in three-dimensional figures built 
with CorelDRAW (Corel, 2024), which can 
be replaced by GeoGebra 3D (GeoGebra3D, 
2024; Nós; Silva, 2018, 2020). These activities 
were planned for the Mathematics Degree 
Course (Nós; Motta, 2021; Motta; Nós, 2022), 
and in the research work we also propose 
spherical geometry activities for primary and 
secondary schools (Motta, 2018).

SPHERICAL GEOMETRY
Spherical geometry is a specialty of ellipti-

cal geometry, both developed by the German 
mathematician Georg Friedrich Bernhard 
Riemann (1826-1866). Spherical geometry 
satisfies Postulate 1, called the elliptic postu-
late of parallels (Brannan et al., 2012), which 
characterizes it as a non-Euclidean geometry 
(Burton, 2011; Eves, 2004; Rooney, 2012).

Postulate 1: Given a line r and a point P not 
belonging to r, every line that passes through 
P intersects r.

Spherical geometry is geometry defined on 
the surface of a  of a sphere  with center 
0=(x0, y0, z0) and radius p illustrated in 
Figure 1. Thus, a point P = (x,y,z) of abscissa 
x, ordinate y and coordinate z belongs to  if, 
and only if, 

(x-x0)² + (y-y0)² = (z-z0)² = p². (1)

Figure 1: Spherical surface  with center 0 
and radius p

Source: The authors.

The spherical line is a maximum 
circumference of  (Brannan et al., 2012), 
that is, a circle whose center is the center of 
the spherical surface. Circumferences of  
whose centers do not coincide with the center 
of the spherical surface are called minimal, 
as illustrated in Figure 2(a). Unlike the 
Euclidean line, which is infinite, the spherical 
line has a finite length. Two spherical lines, i.e. 
two maximum circumferences of  always 
intersect at two diametrically opposite points 
- Figure 2(b), called antipodes.

The coordinates of a point P ∈  called the 
spherical coordinates of P are of great impor-
tance for proving results in spherical geome-
try. For every point P= (x,y,z) ∈  there are 
two angles ψ and φ bounded by the orthogo-
nal axes x0y0z. These two angles are sufficient 
to define the spherical coordinates of P.

Let’s consider the equatorial plane of  in 
which the points P1 e A=(p,0,0) belong to the 
equator, which is the maximum circle passing 
through the points A = (p,0,0) e B = (0,p,0). 
We denote the angle AÔP1=φ which rotates 
around the axis z axis, i.e, 0≤φ<2π, and the an-
gle NÔP1=ψ, where P ∈  e ψ does not exceed 
an angular measure of π radians, i.e, 0≤ψ≤π. 
The positive direction for φ e ψ is counterclo-
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Figure 2: Circumferences of  (a) minimum; (b) maximum

Source: The authors.

ckwise, defined by rotations in  (Brannan et 
al., 2012; Doria, 2019). To define the spherical 
coordinates of P as a function of the angles φ 
e ψ given by Theorem 1, we must construct a 
maximum circle C that passes through P1, P 
and the pole N as shown in Figure 3. The po-
les N e S are defined by the intersection of the 
spherical surface with its axis of revolution.

Theorem 1: If P=(x,y,z) is a point belonging 
to , with 0≤ φ≤ 2π e 0≤ ψ≤ π then the sphe-
rical coordinates of P are given by

P = p(cosφ senψ, senφ senψ, cosψ). (2)

Figure 3: Coordinates of the point P ∈  as a 
function of the angles φ e ψ

Source: The authors.

Spherical line segments are called geode-
sics. A geodesic of  is an arc of maximum 
circumference or, more specifically, it is every 
arc of maximum circumference that minimi-

zes the distance between two points belonging 
to the spherical surface (Doria, 2019) - Theo-
rem 2. 

Theorem 2: If P, Q ∈  are two non-
diametrically opposite points, then there is a 
single geodesic at  connecting P a Q.

Given two points P, Q ∈ , the arc PQ is 
defined by the angle PÔQ = α where 0 is the 
center of P, Q ∈  e 0 < α ≤ π. Thus, the length 
of the geodesic with ends P e Q is the distan-
ce between the points P e Q on the spherical 
surface - Theorem 3, as illustrated in Figure 4.

Theorem 3: If P=(p1, p2, p3) and Q=(q1, q2, 
q3) are two points belonging to  e α is the 
central angle corresponding to the arc of ma-
ximum circumference with ends P e Q then 
the distance  from P a Q is equal to

        (3)

Figure 4: A geodesic of : the arc PQ or d(P,Q)

Source: The authors.
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In Euclidean geometry, three distinct non-
-collinear points define a single triangle; in 
spherical geometry, three distinct points, not 
simultaneously belonging to the same geode-
sic and not diametrically opposed two by two, 
define eight spherical triangles, as illustrated 
in Figure 5(b). In a spherical triangle ABC - 
Figure 5(a): the points A, B e C are the verti-
ces; the geodesics AB, AC e BC are the sides; α, 
β e γ are the internal angles.

Considering the points A=(p,0,0), B=(0,p,0) 
e C=(0,0,p) the spherical triangle ABC has an 
area, defined by Theorem 4, equivalent to one 
eighth of the spherical surface - Figure 5(c). 
In this case, the internal angles of ABC are all 
straight, i.e. equal to  or 90° because the axes 
Ox, Oy e Oz are orthogonal to each other and 
each of the geodesics AB, AC e BC is contai-
ned in a single plane that is orthogonal to the 
planes containing the other two. A spherical 
triangle with these characteristics is called a 
trirectangle, and the sum of the internal an-
gles of this triangle is equal to 3π or 270°. This 
is an important and interesting result sin-
ce, unlike Euclidean geometry, the spherical 
triangle ABC has internal angles whose sum is 
greater than π or 180° - Theorem 5.

Theorem 4: If ABC is a triangle in  whose 
interior angles measure α, β e γ then the area 
𝒜 of ABC is equal to

 (4)
Measure (4) is positive and can be rewritten 

as

 (5)
where E=α+β+γ is the deficiency (excess) 

of the spherical triangle ABC i.e. how much the 
sum of the internal angles of ABC exceeds π. 
Relation (5) makes it possible to demonstrate 
the sum of the internal angles of a spherical 
triangle - Theorem 5.

Theorem 5: If ABC is a triangle in  with 
interior angles of measures α, β e γ then the 
sum of ABC the internal angles of  is given by

 (6)
The lower and upper bounds in inequality 

(6) can be proven through practical activities, 
both in secondary school and in mathematics 
degrees (Motta, 2018).

To calculate the area of a spherical triangle 
using relation (4), we need to know the 
measures of the internal angles. Once we 
know the measures of the sides of the spherical 
triangle - Theorem 3, the law of spherical sines 
and the law of spherical cosines - Theorems 
6 and 7, respectively, make it possible to 
calculate the measure of the internal angles.

Theorem 6: If ABC is a triangle in  whose 
interior angles are α, β e γ and whose sides 
opposite these angles measure respectively, a, 
b e c then

 (7)
Theorem 7: If ABC is a triangle in  whose 

interior angles are α, β e γ and whose sides 
opposite these angles measure, respectively, a, 
b e c then:

 (8)

 (9)

 (10)
The demonstration of Theorems 6 and 7 

depends on Theorem 3, Euclidean geometry 
and trigonometry relations (Brannan et al., 
2012; Motta, 2018). Figures 6(a) and 6(b) 
illustrate, respectively, the geometric approach 
required to demonstrate the law of cosines 
and spherical sines.
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Figure 5: Spherical triangles in  (a) internal angles of the triangle ABC (b) spherical triangles defined by three 
distinct points; (c) spherical triangle trirectangle

Source: (a) The authors; (b) Wikimedia Commons (2024); (c) the authors.

Figure 6: Spherical trigonometry: (a) law of cosines; (b) law of sines

Source: The authors.

Figure 7: Maximum circumferences at  (a) equator; (b) Greenwich meridian

Source: The authors.
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ACTIVITIES IN GOOGLE EARTH
The texts by Abrantes (2018), Alves (2009), 

Filho et al. (2018) and Jahn and Bongiovanni 
(2016) are recommended reading for the sta-
ge preceding the application of the activities. 
These texts explore the relationship between 
spherical geometry and cartography.2

ACTIVITY 1: THE CITY FURTHEST 
FROM CURITIBA
In this activity, we calculate the distance 

between the cities of Curitiba in Brazil and 
Uruma in Japan. To do this, students must be 
able to transform geographical coordinates 
into spherical coordinates and calculate the 
length of a geodesic.

According to FurthestCity (2024), the city 
closest to the antipode (diametrically opposite) 
of Curitiba on the Earth’s surface is Uruma, 
Japan. According to Wikipedia (2024), the 
geographical coordinates of Uruma are:

 (11)
 (12)

The geographical coordinate (11) is the 
latitude of Uruma, which is north of the 
equator. In cartography, the equator divides 
the earth’s surface into north (N) and south (S). 
Latitude is the spherical coordinate of a point 
P ∈  given by the distance between that point 
and the equator. The intersection between  
and a plane secant to  parallel to the equator 
is a curve called the circumference of latitude. 
In particular, the equator is a circumference 
of latitude, illustrated in Figure 7(a).

The geographical coordinate (12) is the 
longitude of Uruma, which is east of the me-
ridian3 of Greenwich. In cartography, the 
meridian passing through the English city of 
Greenwich is considered to be ground zero for 
determining the longitude of a point, dividing 
the spherical surface into west (W) and east 
2. The science of drawing geographical or topographical maps.
3. Every maximum circumference of  that passes through the N pole.
4. Students use a calculator and convert degrees into radians.

(E). Longitude is the spherical coordinate of 
a point P ∈  given by the distance between 
that point and the Greenwich meridian, illus-
trated in Figure 7(b).

The latitude (N or S) and longitude (E or IW) 
of a point P are given, respectively, by the angles

e φ where ψ is the colatitude (complemen-
tary angle of latitude) of P. Figure 8 illustrates 
the angles ψ e φ which, together with the ra-
dius of the spherical surface p of the spherical 
surface, the spherical coordinates of the point 
P - Theorem 1.

Figure 8: Colatitude ψ and longitude φ of the 
point P at 

Source: The authors.

Thus, using Theorem 1 and p=6371 km 
as a measure of the Earth’s mean radius, 
the students transform the geographical 
coordinates of Curitiba and Uruma in Table 
1 into spherical coordinates4. Then, using 
Theorem 3, they calculate the distance, in 
between the cities of Curitiba and Uruma. 
Finally, the students use Google Earth (Google, 
2024) to locate Curitiba and Uruma on the 
earth’s surface, and compare the distance 
between the two cities provided by Google 
Earth with the distance previously calculated.

We describe the steps of the Google Earth 
activity below.
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City Latitude Colatitude Colatitude (rad) Longitude Longitude (rad)
Curitiba 25°25'47'' S 64°34'13'' S 1,117 49°16'19'' W 0,8552
Uruma 26°22'45'' N 63°37'15' N 1,0996 127°51'27'' E 0,4712

Table 1: Geographical coordinates of the cities of Curitiba and Uruma
Source: Google (2024) and Wikipedia (2024).

Figure 10: Locating Uruma in Japan
Source: Google (2024).

STAGES

1. First, create a project in Google Earth via 
the left-hand sidebar under the “Projects” 
icon, shown in Figure 9. Next, click on 
“Create” in the interaction menu and select 
“Create project in Google Drive” or “Create 
KML file”, so that the project can be saved 
in the cloud or on a device, respectively.

Figure 9: Creating a project in Google Earth

Source: Google (2024).

2. To locate Uruma in Japan, click on “Se-
arch” and type in the geographical coor-
dinates of the city, as shown in Figure 10.

3. Once the location has been determined, 
click on “Add to project” - Figure 11, and 
store the project created for the activity.

Figure 11: Adding the project

Source: Google (2024).

4. We repeat steps 2 and 3 to locate the city 
of Curitiba - Figure 12. 
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Figure 12: Locating Curitiba

Source: Google (2024).

5. Using the “Measure distance and area” 
tool in the left-hand side menu, click on the 
points determined in steps 2, 3 and 4 and then 
click on “Done” in the information box in the 
right-hand corner. Before that, we increased 
the scale to get more detail (just move the 
mouse wheel up or click on the “+” button in 
the bottom right corner). Google Earth now 
gives us the distance between Curitiba and 
Uruma - Figure 13.

Figure 13: Checking the distance between 
Curitiba and Uruma

Source: Google (2024).

The distance between the two cities is 
represented by a line - Figure 14, which will 
remain visible until we click on “Start new” or 
close the frame in the right-hand corner.

Figure 14: (Geodesic) line representing the 
distance between Curitiba and Uruma

Source: Google (2024).

ACTIVITY 2: THE AREA OF THE 
BERMUDA TRIANGLE
In this activity, we use spherical coordina-

tes to calculate the distance between the three 
cities that define the Bermuda triangle and the 
area of the spherical triangle whose vertices 
are these three cities. To do this, students must 
be able to calculate the length of a geodesic 
and the area of a spherical triangle.

The Bermuda Triangle, illustrated in Fi-
gure 15(a), is perhaps one of the most ico-
nic subjects in terms of disastrous events for 
aviation and navigation. This is because seve-
ral planes, boats and ships have mysteriously 
disappeared while traveling through its area, 
determined by Fort Lauderdale (USA), San 
Juan (Puerto Rico) and Hamilton (Bermuda), 
as illustrated in Figure 15(b).

There are scientific explanations for disa-
ppearances, such as those based on the re-
gion’s magnetic field, climatic events such as 
earthquakes and whirlpools, sea currents, etc. 
But there are also sensationalist explanations, 
based on conspiracies, and even supernatural 
ones. The mysteries of the Bermuda Triangle 
became popularly known through the book 
Invisible horizons: true mysteries of the sea, by 
American sensationalist writer Vincent Gad-
dis (1913-1997).

Activity 1

New element Present

distance

start new
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(a) (b)

Figure 15: Bermuda Triangle: (a) surface; (b) vertices

Source: Google (2024).

Thus, using Theorem 1, p=6371 km as the 
measure of the Earth’s average radius and 
the data in Table 2, the students transform 
the geographical coordinates of the cities of 
Fort Lauderdale, San Juan and Hamilton into 
spherical coordinates; then, using Theorem 
3, they calculate the distance, in km Then, 
using Theorems 6 and 7, they determine the 
measures of the internal angles of the spherical 
triangle whose vertices are the three cities. 
Finally, using Theorem 4, students calculate 
the area, in km² of the Bermuda triangle and 
compare this measurement with the one 
provided by Google Earth.

The following are the stages of the Google 
Earth activity.

Stages
1. We created a new project in Google Earth 

and located the three vertices (points) of the 
Bermuda triangle (steps 1 to 3 of Activity 1) 
- Figure 16.

Figure 16: Locating the Bermuda triangle

Source: Google (2024).

2. Using the “Measure distance and 
area” tool, we join the three points to form 
the triangle. Google Earth provides the 
measurements of the perimeter and area of 
the triangle formed - Figure 17.

Figure 17: Calculating the area of the Bermuda 
triangle

Source: Google (2024).
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Location Latitude Colatitude ψ Longitude φ
Fort Lauderdale 26°08'00'' N 63°52'00'' N 80°08'00'' W
San Juan 18°28'00'' N 71°32'00'' N 66°04'00'' W
Hamilton 32°18'00'' N 57°42'00'' N 64°47'00'' W

Table 2: Geographical coordinates of the Bermuda triangle

Source: Google (2024).

FINAL CONSIDERATIONS
In this paper, we discuss spherical geo-

metry, presenting important geometric rela-
tionships such as the length of a geodesic, the 
sum of internal angles and the area of a sphe-
rical triangle. We also propose two activities 
to explore concepts and properties of spheri-
cal geometry using Google Earth in a Mathe-
matics degree course.

The main difficulties faced in preparing 
this work were the scant bibliography in Por-
tuguese on spherical geometry and the defi-
nition of the software to be used to build the 
three-dimensional images of the sphere, its 
elements and sections. As for the former, our 
basic reference was Geometry (Brannan et 
al., 2012). However, the authors of this work 
demonstrate spherical geometry results on 

the unit sphere, i.e. the sphere of radius R=1. 
Thus, demonstrating these results on a sphere 
of radius R=p with p>0 proved to be an inte-
resting challenge. As for the second, we opted 
for CorelDRAW (Corel, 2024), which can be 
replaced by a free dynamic geometry appli-
cation such as GeoGebra 3D (GeoGebra3D, 
2024).

We hope that this work will be useful to 
students on mathematics degree courses, par-
ticularly at UTFPR, Curitiba Campus, and 
also to mathematics teachers in basic educa-
tion. As for the latter, we hope that the work 
will inspire the use of Google Earth in the 
planning/development of introductory activi-
ties to the study of spherical geometry, as well 
as in interdisciplinary activities involving ma-
thematics and geography.
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