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Abstract: In this article we show numerical 
examples and an application to microecono-
mics of a proximal point method, introduced 
by Papa Quiroz, Bermeo and Ichpas (2023), 
for a class of non-convex multiobjective mi-
nimization problems. In the work the authors 
demonstrated the theoretical convergence of 
the algorithm to a Pareto-Clarke critical point 
and to a Pareto solution when the functions 
are convex. The present work extends the 
numerical experimentation of the algorithm 
by applying it to a specific problem with the 
intention of showing the practicability of the 
proposed algorithm. The algorithm was im-
plemented in MATLAB and the results show 
that the algorithm promises to solve determi-
nistic microeconomic problems.
Keywords: Proximal point method, Multiob-
jective minimization, Clarke subdifferential, 
Pareto critical point Microeconomics.

INTRODUCTION
The problems of the real context imply the 

search to simultaneously optimize several ob-
jectives that are generally in conflict with each 
other, that is, if one improvement leads to the 
worsening of the other, for example, to buy a 
car you have to look at the cost, the material of 
construction, the brand among other factors 
that imply the purchase decision, this type of 
problem motivated the development of resear-
ch works in optimization. Edgeworth [21] and 
Pareto [19] were the first researchers to intro-
duce multi-objective optimization in the field 
of economics, then Stadler [23] and Steuer 
[24] developed multi-objective algorithms in 
Applied Mathematics and Engineering. Cur-
rently several researchers have developed me-
thods to solve this class of multiobjective op-
timization problems.

In 2019, Papa Quiroz and Cruzado [17] 
introduced the inexact proximal method to 
solve unrestricted multi-objective quasi-con-
vex minimization problems in two versions. 

Where they showed the convergence of the 
sequence generated by the algorithm, under 
certain conditions of the objective function, 
they demonstrated that the sequence con-
verges towards a Pareto-Clarke critical point, 
they performed the numerical experimenta-
tion of the proposed method.

In 2020, Papa Quiroz, Borda and Collantes 
[1] presented the Proximal method for 
quasiconvex multi-objective minimization in 
the non-negative orthant and its application 
to the theory of demand in microeconomics. 
Where they showed the convergence of the 
sequence generated by the algorithm, under 
certain conditions of the objective function, 
they proved that the sequence converges 
towards a Pareto-Clarke critical point, they 
carried out the numerical experimentation 
of the proposed method by varying the 
parameter {λk} of a specific example.

In 2022, Papa Quiroz, Bermeo and Ichpas 
[15] introduced an inexact proximal method 
to solve multiobjective quasi-convex minimi-
zation problems with constraints. Where they 
presented the convergence of the sequence ge-
nerated by the algorithm, under certain con-
ditions of the objective function, where they 
proved that the sequence converges towards a 
Pareto-Clarke critical point, they carried out 
the numerical experimentation of the propo-
sed method for biobjective problems.

In this work we are interested in the 
application of the proximal point method in 
multiobjective optimization see [5,8,10,14,17]. 
That is, we will apply the method to the 
multiobjective quasi-convex minimization 
problem with constraints defined by:

where  is a quasi-convex 
vector function, with each of the functions 

 being quasi-convex 
defined on the convex set C. The aforemen-
tioned model is motivated by applications in 
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microeconomic theory where quasi-convex 
objective functions are strongly related to 
convex preferences in the diversification of 
consumption choice, in demand and produc-
tion theory, see Mas-Colell et al. [4] and Ma-
dden Paul [11].

In this article we will carry out more 
numerical experiments and the application, 
of the proposed method, to a specific example 
applied to economics.

BASIC TOOLS

PROXIMAL DISTANCES
We start with the definition of proximal 

distance on  which, for general convex 
sets, has been introduced in [9].

Definition 2.1. A function 
 is called a proximal distance in C 

if for each y ∈ C, it satisfies the following pro-
perties:

1)  is proper, lower semiconti-
nuous, strictly convex and continuously 
differentiable on C

2)  and  
where  denote the classical sub-
differential map of the function  
with respect ti the first variable

3)  is coercive on 

4) 
We denote by D(C) the family of functions 

satisfying this definition.

Definition 2.2 Given  a func-
tion  is called the 
induced proximal distance to d if H is a finite 
valued function on CxC and for each  
satisfies

Ii. 

Iii.  
 for all  where 

We denote by  to the pro-
ximal and induced proximal distance that sa-
tisfies the conditions of the Definition 2.2. We 
also denote by  if there exists H 
such that:

Iiii. LH is finite-valued on  satisfying Ii 
and Iii for each 

Iiv. for each  has level 
bounded sets on C.

Finally, we write  if 

Iv. 

Ivi. For all  and for all  
bounded with  then 

Ivii. For all  and all  such 
that  then 

CLARKE SUBDIFFERENTIAL
Definition 2.3 Let  be 

a locally lipschitzian function at the point 
 The generalized directional deriva-

tive of f at x, in the direction of  is 
defined by: 

We should note that f° exists thanks to the 
locally function lipschitzian condition of f.

Definition 2.4 Let  be 
a locally lipschitzian function at the point 

 then the sub-differential, in sense of 
Clarke, of f at x is the set

Each element of  is called subgra-
dient of f at x, in the sense of Clarke.
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LOCALLY LIPSCHITZ, CONVEX 
AND QUASICONVEX FUNCTIONS
Definition 2.5 A function  

is locally lipschitzian with positive constant 
k in  if there is  such that; 

 for all 

Definiton 2.6 A function  
is convex in  if for each  and each 

 it holds:

Definiton 2.8 A function  
is strictly quasi-convex in  if for each 

 and for each  It is 
true that:

Definiton 2.9 A function  
is semi-strict quasi-convex in  if for each 

 and for each  It is true that:

MULTIOBJECTIVE OPTIMIZATION
In this section we consider some basic 

definitions and properties of multiobjective 
optimization.

Let  be the m-dimensional Euclide-
an space with the partial order  induced 
by the Paretian cone  given by: For each 

 if and only if  
this means that  and 
the strict partial order ≺ induced by the 
cone  where For each  
if only if , this means that 

 These partial orders es-
tablish a class of problems known in the mul-
tiobjective optimization literature.

Consider the mathematical model defined by

 

where  with C being a no-
nempty convex set, the point  is a weak Pa-
reto solution (or Pareto optimal) of the vector 
function F restricted to the set C if there is no 
other  such that .

A function  is called lo-
cally Lipschitz on  is each component 

 is locally Lipschitz on C whe-
re 

A function  is called 
convex (quasiconvex) on C is each component 

 is convex (quasi-convex).

OPTIMALITY CONDITIONS AND 
PARETO-CLARKE CRITICAL POINT
Definition 2.8 Let  with 

 be a locally Lipschitz 
function on C. We say that  is a Pareto-
Clarke critical point of F yes for any  exists 

 such that 

SEQUENCE PROPERTIES 
Lemma 2.9 Let  and  

three nonnegative sequences satisfying

for all k, where it holds

Then the sequence  converges.

INEXACT ALGORITHM WITH 
PROXIMAL GENERALIZED 
DISTANCE
We are interested in solving the multi-

objective optimization problem (POM) with 
constraints:

where  satisfies the 
following assumptions:

(H1)  for all  
and for all 

(H2) F is locally Lipschitz on 
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(H3) F is strict or semi-strict quasi-convex 
in .

In order to solve the problem (1), we pro-
pose an Inexact Scalarization Proximal Point 
Method with proximal distance regulariza-
tion, which we call ISPPMR.

ISPPMR algorithm
Initialization: choice an arbitrary initial point

Iterative step: For  and given  
find  and  such that:

where  is the Clarke subdifferential, 
 is a pro-

ximal distance.
Stop criterion: If  or  is a 

Pareto-Clarke critical point, then stop.
Otherwise, make  and return to 

Iterative Step.
Remark: In practice to obtain a point  

satisfying the equation of the algorithm, we 
should find only an approximate critical point 
(local minimum, local maximum or saddle 
point) of the following optimization problem:

Theorem 3.1 If  
is a function that satisfies the hypotheses 
(H1),(H2),(H3) and  then the 
sequence  generated by the ISPPMR 
algorithm is well defined

Proof. Simmilar to Theorem 5.1 (see [15]).
Next, we present another assumption 

about the objective function F and the initial 
point x0, which is mentioned in several works 
related to proximal method algorithms, re-
view, for example, [12], [13] and [14]. The-
refore, The following additional statement is 
then considered:

 is  complete.
This assumption means that for all se-

quence  with , such 
that , for all  there exists 

 such that  for all .
Denote the set:

CONVERGENCE RESULTS
Lemma 3.2 Let  be a 

function satisfying (H1), (H2), (H3), (H4), 
 and  the sequence ge-

nerated by the ISPPMR algorithm. If  is an 
accumulation point of , then 

Proof.  See Lemma 3.3.1 [16]
Proposition 3.3 Let  and  be 

the sequences generated by the ISPPMR 
algorithm. If the assumptions (H1), (H4) 
are satisfied and , then for all 

 and for all  we have

Proof.  See Proposition 3.3.2 [16]
Proposition 3.4 Let  and  be 

the sequences generated by the ISPPMR 
algorithm. Suppose that the assumptions 
(H1), (H3), (H4) are satisfied, 

. If the following conditions hold:

i. 

ii. 

iii. There exists  such that

for all  and for all    
then we have
a. There exists a natural number k0 such 
that for all  and for all  we 
have 
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b.  converges for all 

c.   is bounded;

d. 

e. If  then  converges 
in E.

Proof.  See Proposition 3.3.3 [16]
Theorem 3.5 If the function  such 

that  satisfies the hypotheses 
(H1), (H2), (H3) and (H4), with  
then the sequence generated by ISPPMR con-
verges towards some Pareto Clarke critical point 
of the multi-objective optimization problem.

Proof.  See Theorem 3.3.4 [16]

NUMERICAL EXPERIMENT AND 
APPLICATION TO THE THEORY 
OF MICROECONOMICS
In this section we give a numerical exam-

ple that shows the functionality of the propo-
sed method and then we apply the algorithm 
to solve a specific optimization problem in 
microeconomy.

For that we use an Intel Core i7 2.30 GHz 
computer, 5GB of RAM, Windows 10 as 
operating system with SP1 64 bits and we 
implement our code using MATLAB R2022 a.

NUMERICAL EXPERIMENT 
Let the multiobjective minimization pro-

blem be defined by

where 
 and 

The functions  are quasi-convex and 
differentiable functions, therefore  
is a quasi-convex vector function of class 

 this problem satisfies the hypotheses 
(H1), (H2) and (H3)). Observe that this pro-
blem only has a unique Pareto solution given 
by (4, 6) which is a feasible point in the set C, 
as shown in figure 1.

We take x0 as initial point and given  
the main step of the proposed algorithm is to 
find a critical of the following problem

where we consider as the proximal distance 
 for the numerical experimentation of 

this example, the Kullback -Leibler Bregman 
distance defined by

Next, we present the numerical 
experiments, taking the proximal distance 
mentioned above, and making a variation of 
the fixed parameters.

1.-Let  
be the point  is the starting point 
of the algorithm and the point  
is used to solve all the subproblems using 
the MATLAB functionality with the SQP 
algorithm and we consider the stopping 
criterion  to finish the 
ISPPMR algorithm.

k N[xk]

1 9 (2.85303 4.58408) -5.64657
2 11 (3.75158 5.73600) -7.16821
3 14 (3.95622 5.95520) -7.47601
4 14 (3.99266 5.99258) -7.52931
9 14 (3.99978 5.99978) -7.53963

10 15 (3.99978 5.99978) -7.53963

Table 1. Results of iterations of the ISPPMR 
algorithm using the Kullback-Leibler Bregman 

distance with λk = 0,2
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Fig 1. Constraint Set 

Fig 2. Objective Component Functions

Fig 3. Distances of consecutive points with λk = 0,2.
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Table 1. shows that with k=10, iterations 
approach the solution of the problem. Likewise, 
we can observe in the table that the sequence 
xk converges to the point (4,6), which, as we 
mentioned, is the unique Pareto solution, 
implying that the problem has a unique 
solution on the Pareto frontier, determined by 
the proposed algorithm. Figure 3 shows the 
difference of two consecutive iterations that 
are converging to zero.

2.-Let , be  the 
point is the initial point  of the al-
gorithm and we choose  as starting 
point of each subproblem. To solve all the 
subproblems we use the MATLAB functiona-
lity with the SQP algorithm and we consider 
the stopping criterion  to 
finish the ISPPMR algorithm.

k N[xk]

1 6 (2.08783    3.76654) -4.43995
2 9 (2.98041    4.90343) -5.93316
3 13 (3.51488    5.49713) -6.74782
4 12 (3.78491     5.78064) -7.14378

15                  11        (3.99999    5.99999) -7.45288
16 16 (3.99999    5.99998) -7.45288

Table 2. Results of iterations of the ISPPMR 
algorithm using the Kullback-Leibler Bregman 

distance with λk = 0,4

Table 2. shows that with k=16 iterations 
it approaches the solution of the problem, 
having a difference with respect to the first 
numerical experimentation in which needed 
only k=10 iterations. Likewise, we can indicate 
that the convergence of the sequence and the 
solution on the Pareto frontier is analogous to 
the first numerical experimentation, except 
for the behavior of the difference of two 
consecutive steps that converges to zero, has 
more iterations, as can be seen in the Figure 4.

APPLICATION TO THE THEORY OF 
MICROECONOMICS
In economic theory, it is always needed 

optimize resources, for example, in the field of 
production it is necessary to use mathematical 
models to optimize production (see [3], [11]). 
One of the functions that is widely used 
in this area is the Cobb-Douglas function 
initially proposed by Knut Wicksell (1851-
1926), then Charles Coob and Paul Douglas 
in 1928 evidenced concrete statistical studies, 
they considered that the production function 
described by  was linked to 
the labor factor denoted by L to the capital 
factor denoted by K, and to the total factor of 
production denoted by A, where  and 
A>0 Next we present an example using the 
Cobb-Douglas function.

The company RENAP produces a good. 
The production function of a good Q is given 
by the function,  and 
its sale price is P=40 dollars. The prices of the 
capital and labor factors are 80 and 40 respec-
tively. Calculate the levels of capital and work, 
with which they maximize the utility and mi-
nimize the costs of the company, considering 
that the company has an investment amount 
of 10240 dollars.

To formulate the mathematical model, 
the utility and cost functions of the com-
pany must be defined, in fact, the income 
function , the cost 
function  and the utility 
function  and 
also considering the restrictions 

Therefore, the problem to be optimized is 
given by:

where
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Fig 4. Distances of consecutive points with λk = 0,4

Fig 5. Component functions objective utility and cost

Fig 6. Pareto solutions in set C
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With the cost and utility functions defined 
above, the vector function  is qua-
si-convex on the convex set C. This problem 
satisfies hypotheses (H1), (H2) and (H3), just 
like the examples in the previous chapter. Fur-
thermore, it can be seen in Figure 6 that the 
point (70,70) is a Pareto solution.

Now taking as starting point  
and given  the main step of the 
algorithm proposal is to find a critical point 
(local minimum) of the following problem.

Considering the fixed parameters 
 for each k. In addition, by 

doing  the problem descri-
bed as:

where we consider, for the numerical 
experimentation of this example, the following 
proximal distances.

i.- Kullback -Leibler Distance Bregman,

ii. - Itakura-Saito distance

iii. -Second order Homogeneous distance

With  and .

Next, we present the numerical experi-
ments, taking the proximal distances mentio-
ned above and the fixed parameters zk, λk.

1.- Kullback -Leibler Distance Bregman, 
defined by

and the fixed parameters given by 
 also the point 

x0=(100, 10) where iteration 0 is obtained and 
the initial point p0=(100, 10) to solve all the 
subproblems using the MATLAB functionality 
with the SQP algorithm and we consider the 
stopping criterion  to 
finish the ISPPMR algorithm.

k N[xk]

1 6 (70.02529,69.94940)   -42879.97922
2 6 (69.99998,70.00002)   -42879.98458
3 8 (70.00001, 69.99996)   -42879.98458
4 6 (69.99997,70.00005)   -42879.98458

11 6 (69.99997,70.00005)   -42879.98458
12 6 (69.99997,70.00005)   -42879.98458

Table 3. Results of iterations of the ISPPMR 
algorithm using the Kullback-Leibler Bregman 

distance with λk = 0.1

Table 3. shows that with k=12 iterations 
we approach of the solution of the problem. 
Likewise, we can observe in the table that 
the sequence {xk} converges to the point (70, 
70), which is a Pareto solution as indicated in 
Figure 6. On the other hand, Figure 7 shows 
the solutions that form the Pareto frontier, 
in particular the solution of the problem 
determined by the proposed algorithm.

In addition, also we observe that Figure 
8 shows us the difference of two consecutive 
steps that are converging to zero, according to 
the iterations.
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Fig 7. Pareto frontier utility and cost function

Fig 8. Distances of consecutive points

Figure 9. Pareto frontier utility and cost function
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2. Itakura-Saito distance defined by

and the fixed parameters 
 also the point x0=(100, 10) 

where iteration 0 is obtained and the initial 
point p0=(100, 10) to solve all the subproblems 
using the MATLAB functionality with the 
SQP algorithm and we consider the stopping 
criterion  to finish the 
ISPPMR algorithm.

k N[xk]

1 6 (70.00256, 69.99487) -33002.53174
2 6 (69.99999,70.00001) -33002.53178
3 6 (69.99999,70.00001) -33002.53178

Table 4. Results of numerical experimentation 
with Itakura distance Saito

Table 4. shows that with k=3, internal 
iterations approach the solution of the 
problem. Likewise, we can see in the table that 
the sequence xk converges towards the point 
(70, 70), which is a Pareto solution like the 
previous case that was considered the Kullback 
-Leibler proximal distance. Bregman. On the 
other hand, Figure 9 shows the solutions that 
form the Pareto frontier, in particular the 
solution to the problem determined by the 
proposed algorithm.

Furthermore, it should also be noted 
that Figure 10 shows us the difference of 
two consecutive steps that converge to zero, 
according to the iterations.

3.- Second order Homogeneous Distance 
defined by

With  and  and the fixed 
parameters   

also the point x0=(100, 10) where iteration 
0 is obtained and the initial point p0=(10, 
10) to solve all the subproblems using 
the MATLAB functionality with the SQP 
algorithm and we consider the stopping 
criterion  to finish 
the ISPPMR algorithm.

k N[xk]

1 6 (70.01312, 69.97374) -27246.11346
2 6 (69.99998, 70.00003) -27246.11448
3 6 (69.99997, 70.00004) -27246.11448
4 7 (70.00000, 69.99999) -27246.11448
5 6 (69.99997, 70.00004) -27246.11448
6 6 (69.99997 70.00004) -27246.11448

Table 5. Results of numerical experimentation 
with second-order Homogeneous distance

Table 5. shows that with k=6, internal 
iterations approach the solution of the 
problem. Likewise, we can see in the table 
that the sequence xk converges towards the 
point (70, 70), which is a Pareto solution like 
the two previous cases where the Kullback 
-Leibler proximal distances were used. 
Bregman and Itakura -Saito. On the other 
hand, Figure 11 shows the solutions that form 
the Pareto frontier, in particular the solution 
to the problem determined by the proposed 
algorithm.

Furthermore, it should also be noted 
that Figure 12 shows us the difference of 
two consecutive steps that converge to zero, 
according to the iterations.

In the numerical experiments carried 
out, it has been observed that with the 
three proximal distances used, a Pareto 
optimal solution has been reached, with the 
difference that with the Kullback -Leibler 
distance Bregman, and the parameters 

 12 iterations were 
obtained, with the Itakura-Saito distance 
and the parameters  
3 iterations were obtained and with the 
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Figure 10. Distances of consecutive points

Figure 11. Pareto frontier utility and cost function

Figure 12. Distances of consecutive points
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second-order Homogeneous distance and the 
parameters  6 iterations 
were obtained.

Finally, we can conclude that the company 
RENAP, when producing the good, will have 
an approximate maximum utility of 69,041 
dollars and an approximate minimum cost of 
8,400 dollars, when the prices of the capital 
and labor factors are 69.99 and 70 respectively.

METHODOLOGY
In the present investigation we use the 

Optimization methodology mathematics, in 
which it consists of giving a good approach 
to the multi-objective optimization problem 
to then apply the algorithm of the proximal 
method, in such a way that the sequence of 
points generated by the algorithm exists and 
also converges to a solution of the problem. 
On the other hand, it is of a non-experimen-
tal type because no manipulation of the inde-
pendent variables is done, where its design is 
correlational descriptive since its purpose is 
to investigate the convergence of values that 
present the properties of the proximal optimi-
zation method.

RESULTS AND DISCUSSIONS
The examples presented in this document 

extend those presented by Papa Quiroz et 
al. [15] to solve constrained quasi-convex 
multiobjective optimization problems.

The numerical experimentation shows in 
detail the convergence of the proximal algori-
thm to a Pareto critical point using a Bregman 
proximal distance and the variation of the {λk} 
parameter. With respect to the application 
example, the proximal distances, Kullback-
-Leibler Bregman, Itakura-Saito, and secon-
d-order homogeneous distances were used, 
where we show the Pareto solutions and the 
Pareto frontier solutions, evidencing the con-
vergence of the proximal algorithm to a criti-
cal Pareto point. 

CONCLUSIONS AND FUTURE 
WORK
In conclusion, the present work consists in 

the elaboration of a desktop application, which 
seeks to generate This article presents a nume-
rical experimentation and application of the 
proximal algorithm for multiobjective quasi-
-convex problems with restrictions. The algori-
thm can be used to solve models in the theory 
of consumption, demand, and production. Fu-
ture research may be the computational imple-
mentation of the studied method for some real 
context problems in decision theory.
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