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Abstract: One of the main discussions 
about women’s health is the efficiency 
and effectiveness of using simplified 
methodologies, such as isolated biomarkers, 
to support differential diagnosis. Based on 
this premise, we used a database to identify 
the specificity and sensitivity of the ROMA 
index in detecting ovarian cancer compared 
to an intelligent computational model. This 
model was trained with anamnesis and blood 
count data to differentiate subtle nuances 
between patients with a potential diagnosis of 
ovarian cancer. The premise is that this type 
of model can provide better groupings for 
risk factors, allowing for more accurate data 
classifications that can better describe early 
patterns of silent diseases, such as ovarian 
cancer, in gynecological clinics, or at least in 
the early stages, to reduce mortality. Our goal 
is to identify clusters within data on signs 
and symptoms, combined with data on the 
immune and endocrine systems, that can group 
characteristics for better clinical outcomes in 
ovarian cancer. Our methodology was based 
on multicriteria analysis methods, achieving 
a sensitivity of 94.6% and a specificity of 97%, 
as measured by the kappa index. These results 
indicate the potential of our methodology 
to support physicians in the gynecological 
monitoring of women in Basic Health Units.
Keywords: artificial intelligence, ovarian 
cancer, early diagnosis

INTRODUCTION
Menstrual disorders pose a formidable chal-

lenge to global women’s health initiatives. They 
affect the lives of countless women, causing 
physical discomfort and psychological distur-
bance, and can, in certain cases, negatively af-
fect fertility. The imperative of early detection 
and effective intervention is critical to impro-
ving the well-being of affected women[1,2].

Menstruation constitutes a fundamental 
physiological process in the female reproduc-

tive life cycle, necessarily a crucial parameter 
for reproductive health, marked by consis-
tent cyclical patterns, duration and sufficient 
blood discharge. However, the configurations 
of a “typical menstrual cycle” are subject to 
individual variations and evolve throughout 
the different stages of a woman’s life. Faced 
with this reality, countless women around the 
world face menstrual irregularities, which can 
significantly reduce their quality of life and 
general health[2,3].

Therefore, our efforts are in-depth in the 
analysis of blood count data and hormone 
levels to identify changes and risks for mens-
trual disorders and neoplasms of the female 
reproductive system. Studies of this magnitu-
de aim to identify risk factors during routine 
assessments in clinics and basic health units 
during the gynecological routine by health 
professionals such as doctors and nurses, as 
well as specialists in the field of oncology[4].

Faced with this growing disruptive scena-
rio in the health sector, the development of 
platforms to support the tracking and moni-
toring of neoplasms such as ovarian cancer, 
using laboratory test data to observe small 
physiological changes that allow the identi-
fication of different nuances between the he-
alth-disease process, significantly benefiting 
early diagnosis, in addition to progressively 
monitoring changes, especially benign gyne-
cological conditions, which can affect fertility, 
quality of life and because they present poten-
tial characteristics that favor the appearance 
of neoplasms. Such analysis can also promote 
greater public health policies for women’s he-
alth and maternal health[5].

Data from the World Health Organization 
indicate that 314,000 women were diagnosed 
with ovarian cancer worldwide and appro-
ximately 69% die from ovarian cancer, whi-
ch means that out of every 10 women, 7 are 
diagnosed. In the United States, there are an 
average of 22,440 new cases of ovarian can-
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cer, a disease that kills about 14,000 women 
annually. In Brazil, the risk for each year from 
2023 to 2025 is 7,310 cases, corresponding to 
an estimated risk of 6.62 new cases for every 
100,000 women. Although ovarian cancer has 
a lower prevalence compared to breast cancer, 
it is three times more lethal, and the morta-
lity rate from this type of cancer is expected 
to increase significantly by the year 2040[1-4]. 
This is explained by the fact that ovarian can-
cer presents risk factors associated with age, 
diet, personal and family history of ovarian 
cancer, breast cancer or cancer, reproductive 
history, hormonal therapy after menopause, 
genetic changes such as and/or mutations. 
Furthermore, studies show that the CA-125 
tumor marker has low specificity for early 
diagnosis, as do ultrasound and the detection 
of the BRCA1 and BRCA2 genes. Data on 
ovarian cancer show that the disease has he-
terogeneous characteristics, being made up of 
more than 15 distinct types with a high mor-
tality rate of 80% among women aged 45 to 
65 years[3-6]. The proliferation of this neoplasm 
is autonomous, abnormal and uncontrolled, 
mainly in the lining epithelial tissue, a type of 
tissue derived from germ cells. Thus, there are 
several types with specific risk factors, clini-
cal, molecular and pathological characteris-
tics. We can also observe influences on germ 
cells, such as environment, age, reproductive 
and hormonal factors involved in the disease 
process. Indications for ovarian cancer mainly 
involve simplified CA-125 analysis and ultra-
sound evaluation to classify and identify the 
ovarian system[4-6]. However, these early diag-
nosis methods lack better defined parameters 
or the use of artificial intelligence to increase 
the risk of ovarian cancer. Another important 
aspect is that many of these platforms still lack 
analysis regarding accuracy, severity levels 
and study of what may be involved in ovarian 
cancer. Furthermore, studies of this magnitu-
de allow the description of the baseline of a 
pathology in the country or regions. Further-

more, it can indicate to healthcare professio-
nals the appropriate treatment measures for 
each stage of the disease, as the tool helps in 
understanding the disease. In conclusion, a 
platform with more accessible high-tech arti-
ficial intelligence models will significantly im-
prove research and education. Furthermore, it 
will improve the quality of care, tracking and 
ovarian diagnosis, ensuring more accurate 
and timely interventions.

METHODS
Dataset: For the project, 2500 blood counts 

were acquired from women with: hormonal 
laboratory tests and two markers CA 125 and 
HE4, which did not contain the patients’ per-
sonal data, only the age group that was from 35 
years old and female biological sex. Regarding 
signs and symptoms, we collected general data 
on the patient’s complaints, and signs evaluated 
during the physical examination.

Control Group:
• Group I: Women with no history of 
any gynecological alterations, with clini-
cal exams within normal limits, and no 
history of sexually transmitted infections.
• Group II: Women with a history of 
treatment over 12 months ago, excluding 
cases of HPV and syphilis, who no longer 
exhibit signs and symptoms.
• Group III: Women diagnosed with 
ovarian cancer, post-surgical treatment.

GROUP WITH CONFIRMED 
DIAGNOSIS:
In the patient’s electronic medical record, 

we will classify the diagnostic hypotheses as 
follows: Malignant neoplasm of the ovary and 
Benign neoplasm of the ovary. In this way, we 
will collect blood count tests, with hormonal 
levels and the molecular marker CA-125, 
for grouping: Stage 1 ovarian cancer; Stage 2 
ovarian cancer; Stage 3 ovarian cancer; Stage 
4 ovarian cancer.
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Marie.IA PLATFORM[8,9,10]:
This study utilizes an intelligent 

computational model inspired by the work 
of Goodfellow et al. (2014), known for 
introducing Generative Adversarial Networks 
(GANs). The proposed methodology involves 
simulating 15,000 cases of ovarian cancer 
based on data extracted from scientific 
articles. The model uses this data to generate a 
wide variety of ovarian cancer cases, enabling 
an in-depth analysis of the characteristics 
associated with the disease.

After the simulation, the resulting data is 
used to test the efficacy of complete blood 
counts and specific biomarkers related to the 
pathophysiology of ovarian cancer. The process 
involves analyzing patterns in blood tests and 
correlating these patterns with the presence 
of biological markers that may indicate the 
presence or progression of the disease. The 
methodology aims to identify combinations 
of biomarkers and hematological parameters 
that could improve early detection and 
monitoring of ovarian cancer, providing a 
foundation for future clinical research.

Data Extraction: Specific clinical details 
from the anamnesis included age, signs and 
symptoms, hereditary tumors, diet as deter-
minants for diagnosis, surgical procedures, 
prescribed medications, and etiology of dise-
ases. Information extraction techniques such 
as Learning Patterns and Relationship Analy-
sis were utilized to identify and structure this 
information in a structured format.

Validation and Evaluation: The evalua-
tion metrics used were precision, recall, F1-s-
core, ROC curve, confusion matrix, sensitivi-
ty, specificity, and accuracy.Patient symptom 
data. Data Analysis of Complete Blood Cou-
nt, Hormone Levels, HE4 and CA-125: In this 
stage, the relationships between the following 
parameters were analyzed: red blood cells, 
hemoglobin, hematocrit, mean corpuscular 
volume (MCV), mean corpuscular hemoglo-

bin (HCM), mean corpuscular hemoglobin 
concentration (MCHC), red blood cell distri-
bution width (RDW), leukocyte count, total 
leukocytes, neutrophils, segmented neutro-
phils, lymphocytes, monocytes, eosinophils, 
basophils, platelets, growth hormone (GH), 
follicle-stimulating hormone (FSH), luteini-
zing hormone (LH), insulin, thyroid-stimula-
ting hormone (TSH), testosterone, estradiol, 
parathyroid hormone (PTH), albumin, HDL 
cholesterol, low-density lipoprotein (LDL), 
creatinine, ferritin, and CA-125. Additionally, 
the data present in the blood count, including 
vitamins, minerals, and other elements, were 
evaluated to identify any patterns.

Data Mining: The data was organized and 
transformed from raw data into a dataset wi-
thout empty fields and with all mandatory in-
formation. We analyzed the dataset for outliers 
(using oversampling and undersampling) and 
transformed variables to ensure they met the 
assumptions of the analysis method.

Feature Engineering: The goal of this step 
was to improve the performance of machine 
learning algorithms by reducing noise in the 
data, increasing the accuracy of predictions, 
and making the model more interpretable. 
Techniques used included normalization 
and standardization, time series analysis, and 
dimensionality reduction.

Model Training: Supervised machine le-
arning methods used included decision trees, 
Random Forest, Gradient Boosting, and Su-
pport Vector Machine. Non-parametric dis-
criminant analysis methods, such as k-Nea-
rest Neighbors and Support Vector Machines, 
were applied based on the proximity of obser-
vations in feature spaces.Statistical Analysis:  
validation of diagnostic performance test.
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RESULTS
The image shows a heatmap representing 

the correlations between various variables re-
lated to risk and biological markers in a da-
taset. Each cell in the heatmap indicates the 
correlation coefficient between two variables, 
with colors ranging from blue (negative cor-
relation) to red (positive correlation). The in-
tensity of the color reflects the strength of the 
correlation, with the gradient on the right si-
debar indicating the correlation value, which 
ranges from -1 to 1. The variables include risk 
factors, levels of CA125, HE4, and other rele-
vant laboratory metrics (Figure 1).

The image shows a line graph representing 
the performance of different classifiers based 
on the number of features used. The horizon-
tal axis indicates the number of features, while 
the vertical axis displays the accuracy of the 
models. The RadialSVM classifier (blue line) 
demonstrates inconsistent performance, with 
a sharp drop in accuracy when more than 10 
features are utilized. Its accuracy remains rela-
tively low and stable between 0.70 and 0.75 as 
the number of features increases (Figure 2). In 
contrast, the RandomForest classifier (orange 
line) maintains consistently high accuracy, 
close to 1.0, regardless of the number of fea-
tures, indicating its robustness concerning the 
number of variables selected.

AdaBoost (green line) generally shows 
high performance with slight variations as 
the number of features changes, consistently 
maintaining accuracy above 0.95. The Deci-
sionTree classifier (red line) exhibits signi-
ficant fluctuations in accuracy, though it ge-
nerally remains around 0.95, with occasional 
drops and peaks depending on the number 
of features. The KNeighbors classifier (purple 
line) experiences a notable decline in accu-
racy as more features are included, particu-
larly after 20 features, where accuracy drops 
to around 0.85 and continues to decrease. 
GradientBoosting (brown line) displays con-

sistent and high performance, with accuracy 
close to 1.0, similar to RandomForest. 

LinearSVM (pink line) shows fluctuating 
accuracy, but it tends to remain around 0.95, 
with a slight decrease as the number of fea-
tures increases. Finally, the Logistic classifier 
(gray line) also exhibits strong performance, 
with accuracy varying little and staying close 
to 1.0 most of the time.

Based on the heatmap provided, the 
Logistic Regression classifier demonstrates 
consistently high performance across all 
thresholds, particularly from a threshold of 
0.6 onwards, where it achieves an accuracy of 
1.0000. This indicates that Logistic Regression 
has a strong ability to correctly classify data, 
making it a reliable choice for testing data. 
The other algorithms show more variability 
and do not consistently achieve perfect scores, 
especially at lower thresholds, reinforcing the 
decision to choose Logistic Regression for its 
stability and high accuracy (Table 1).

The comparison between the ROMA index 
used in ovarian cancer diagnosis and the Lo-
gistic Regression algorithm can be made based 
on the provided performance metrics for both.

For the ROMA index, the accuracy is 
0.67619, sensitivity is 0.844828, and specifi-
city is 0.468085. In contrast, the Logistic Re-
gression algorithm shows an accuracy of 0.99, 
precision of 0.98 for class 0 and 1.00 for class 
1, recall of 1.00 for class 0 and 0.97 for class 1, 
and an F1-score of 0.98 for class 0 and 0.99 for 
class 1. Additionally, the Logistic Regression 
algorithm has a train accuracy of 0.9749, an 
F1 Score of 0.987, and an accuracy of 0.9282 
in 5-fold cross-validation.

When comparing these metrics, the Logis-
tic Regression algorithm demonstrates signi-
ficantly higher accuracy (0.99) compared to 
the ROMA index (0.67619), indicating that 
Logistic Regression is much more effective in 
correctly classifying cases. The sensitivity of 
the ROMA index (0.844828) is good but still 
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Figure 1: Correlation Heatmap of Top Features

Figure 2: Classifier performance across different numbers of features
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Table 1: Classifier Performance Across Different Thresholds

Figure 3: Confusion Matrix

lower than the sensitivity observed in Logis-
tic Regression (1.00 for class 0 and 0.97 for 
class 1). Logistic Regression captures almost 
all positive cases, showing higher sensitivity. 
The specificity of the ROMA index (0.468085) 
is considerably lower than the performan-
ce of Logistic Regression, which shows high 
precision for both classes, indicating that Lo-
gistic Regression has a much better ability to 
avoid false positives. The F1 Score of Logistic 
Regression is nearly perfect (0.99), reflecting 
the balance between precision and recall. This 
balance indicates the superiority of Logistic 
Regression compared to the ROMA index.

In conclusion, the Logistic Regression al-
gorithm demonstrates significantly superior 
performance compared to the ROMA index 
in terms of accuracy, sensitivity, specificity, 
and F1 Score. This suggests that Logistic Re-
gression is a more robust and effective tool for 
classification and diagnosis in ovarian cancer 
cases compared to the ROMA index.

The confusion matrix (Figure 3) displayed 
shows the classification results of a diagnostic 
test. It consists of four quadrants: True Negati-
ves (736), False Positives (23), False Negatives 
(93), and True Positives (1648). True Negati-
ves represent the number of cases where the 
actual class was negative, and the test cor-
rectly predicted it as negative. False Positives 
indicate the cases where the actual class was 
negative, but the test incorrectly predicted a 
positive result. False Negatives are the cases 
where the actual class was positive, but the 
test failed to detect it, predicting a negative 
result instead. Finally, True Positives are the 
cases where the actual class was positive, and 
the test correctly identified them as such. The 
Y-axis represents the actual class labels, with 
the top being “Actual Negative” and the bot-
tom being “Actual Positive,” while the X-axis 
represents the predicted class labels, with the 
left being “Predicted Negative” and the right 
being “Predicted Positive”.
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DISCUSSION
Our results indicate that the risk factors 

for abdominal pain predominantly on the left 
side and sporadic, abdominal distension out-
side of menstrual periods and constipation, 
and the moderate positive correlation with 
CA125 (0.56) and albumin (0.57), indicated 
by lighter shades of red in the heat map, may 
be related to the pathophysiology of ovarian 
cancer. This relationship presents a differen-
tial for the clinical and physical evaluation of 
gynecological patients as a risk factor to strati-
fy the population of women at risk for ovarian 
cancer. However, pain in the lower abdominal 
region is also present in diverticulosis and di-
verticulitis, thus, an investigation is necessary 
to identify and differentiate these pathologies, 
since there is a relationship between diverti-
culitis and diverticulosis with CA 125. Studies 
indicate that CA125 has been used to predict 
complications in acute colonic diverticuli-
tis, showing potential as a marker for disease 
severity. Therefore, symptoms such as lower 
abdominal pain, whether on the right or left 
side, should be investigated as this region is 
related to other pathologies.[7,11]. 

Regarding CA125, data show that parti-
cularly in advanced stages of ovarian cancer, 
since high levels of CA125 are associated with 
the presence of tumor cells in the peritoneum 
and during inflammatory processes, the use of 
CA125 alone to identify early stages of ova-
rian cancer is therefore inefficient. The posi-
tive correlation between the risk factor varia-
ble and CA125 suggests that these reported 
symptoms may be directly related to increased 
tumor activity and associated inflammation, 
common characteristics in ovarian cancer. 
The increase in CA125 may be a reflection of 
the extent of the disease or the inflammatory 
response to the tumor. Thus, the observation 
of symptoms such as lower abdominal pain, 
constipation and abdominal distension outsi-
de may be symptoms that point to a potential 

triad of the pathophysiology of ovarian can-
cer.[7,11,12,13].

Albumina is a plasma protein essential for 
maintaining oncotic pressure and transpor-
ting various substances in the blood. In the 
context of cancer, low albumin levels may in-
dicate malnutrition or chronic inflammation, 
both of which are common in patients with 
advanced cancer. The moderate positive cor-
relation between risk factor variable and albu-
mina may suggest that, although albumin is 
generally reduced in advanced disease states, 
its relationship with symptoms of abdominal 
pain and bloating outside of menstrual pe-
riods may reflect the complex interaction be-
tween the patient’s nutritional status and tu-
mor burden. Patients with more pronounced 
symptoms might paradoxically have less alte-
red albumin levels, possibly due to compensa-
tory mechanisms or individual variability in 
response to the tumor[14,15].

These moderate correlations between risk 
factor variables, CA125, and albumina may 
therefore provide useful information for un-
derstanding the underlying mechanisms of 
ovarian cancer and for the clinical assessment 
of symptoms reported by patients. Detecting 
these patterns can assist in early diagnosis, 
monitoring disease progression, and persona-
lizing treatment[15,16].

In the context of ovarian cancer pathophy-
siology, the relationship between electrolytes 
such as chloride (Cl-) and sodium (Na), glu-
cose receptors (GLU), phosphorus (Phos), and 
indirect bilirubin (I_Bili) can provide insights 
into metabolic and biochemical alterations 
associated with the development and pro-
gression of the disease. Chloride and sodium 
are essential electrolytes that play fundamen-
tal roles in maintaining osmotic balance and 
the electrical potential of cells. In cancerous 
cells, such as those in ovarian cancer, changes 
in the concentration of these ions may reflect 
alterations in the tumor microenvironment, 
which is often characterized by hypoxia, aci-
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dosis, and electrolyte imbalance. Alterations 
in Cl- and Na- levels can influence tumor 
invasion and metastasis, as the acidic micro-
environment and osmotic stress can promote 
cell proliferation and resistance to apoptosis 
(programmed cell death)[16,17,18].

Ovarian cancer, like many other types of 
cancer, may exhibit increased glucose uptake, 
known as the Warburg effect. This effect is 
characterized by the anaerobic metabolism of 
glucose to generate energy, even in the presence 
of oxygen. Glucose receptors (GLUTs) are 
often overexpressed in tumor cells to meet 
the high energy demand. The overexpression 
of glucose receptors is associated with tumor 
aggressiveness and a poorer prognosis, as the 
elevated glucose uptake sustains the growth 
and survival of cancer cells[18].

Phosphorus is an essential component of 
various biological molecules, including ATP 
(adenosine triphosphate), which is the pri-
mary source of cellular energy. Alterations in 
phosphorus levels may be associated with the 
uncontrolled cell proliferation observed in 
tumors. Additionally, altered phosphorus me-
tabolism can influence protein phosphoryla-
tion, which is a critical process in regulating 
cell signaling, tumor growth, and treatment 
resistance[17,18].

Indirect bilirubin is a byproduct of hemo-
globin breakdown and is often elevated in 
conditions involving cell destruction or liver 
dysfunction. In advanced cancers, liver dys-
function may occur due to metastasis or tu-
mor pressure on the liver, leading to increased 
bilirubin levels. Elevated levels of indirect bi-
lirubin may be associated with oxidative stress 
and inflammation, which are characteristics of 
the tumor microenvironment and may contri-
bute to the progression of ovarian cancer[17-19].

In conclusion, the relationship between 
Cl-, Na-, glucose receptors, phosphorus, and 
indirect bilirubin in ovarian cancer may re-
flect the complex biochemical and metabolic 
changes that occur during the development 

and progression of the disease. These altera-
tions not only sustain tumor growth but also 
may serve as potential biomarkers for diagno-
sis, prognosis, and therapeutic targets.

The Logistic Regression algorithm’s supe-
rior performance compared to the ROMA 
index for diagnosing ovarian cancer, as pre-
viously discussed, is further emphasized when 
considering the correlations between various 
risk factors, biomarkers, and biochemical pa-
rameters associated with ovarian cancer.

The ROMA index, which includes CA125 
as a primary component, showed moderate 
accuracy and specificity, indicating its limi-
tations in comprehensive diagnostic perfor-
mance. This is particularly evident when com-
paring it to the Logistic Regression algorithm, 
which demonstrated near-perfect accuracy, 
precision, and recall. The ROMA index’s mo-
derate correlation with CA125 (0.56) reflects 
its reliance on this biomarker to assess ovarian 
cancer risk, which is often influenced by tu-
mor activity and inflammation, manifesting 
as symptoms like abdominal pain and bloa-
ting. However, the Logistic Regression algori-
thm, by integrating multiple features and po-
tentially capturing non-linear relationships, 
surpasses ROMA in effectively predicting the 
presence of ovarian cancer[18-19].

Additionally, the correlation between albu-
min levels and the risk factor variables pro-
vides insights into the complex interaction 
between a patient’s nutritional status and tu-
mor burden. While the ROMA index focuses 
primarily on CA125, the Logistic Regression 
model likely benefits from incorporating a 
broader range of variables, such as albumin, 
to achieve a more holistic assessment of dise-
ase status. The moderate positive correlation 
between albumin and the risk factors suggests 
that the Logistic Regression algorithm might 
better account for the nuanced interactions 
between inflammation, nutritional status, and 
tumor progression, which are critical in ova-
rian cancer pathophysiology[19,20].
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The relationships between electrolytes 
(Cl- and Na-), glucose receptors, phospho-
rus, and indirect bilirubin also underscore 
the metabolic and biochemical complexities 
of ovarian cancer that the Logistic Regression 
model could capture more effectively than the 
ROMA index. For instance, alterations in elec-
trolyte levels, which are crucial for maintai-
ning osmotic balance and cellular functions, 
could be indirectly associated with tumor mi-
croenvironment changes, such as hypoxia and 
acidosis, which the Logistic Regression model 
might identify as significant predictors of can-
cer progression.

Moreover, the Warburg effect, characteri-
zed by increased glucose uptake in cancer cells, 
and the overexpression of glucose receptors, 
could be better represented in the Logistic Re-
gression model by including variables related 
to glucose metabolism, thus providing a more 
accurate prediction of tumor aggressiveness 
and prognosis compared to the ROMA index. 
The inclusion of phosphorus and indirect bili-
rubin levels in the Logistic Regression model 
could further enhance its predictive power by 
reflecting the tumor’s metabolic demands and 
the systemic effects of advanced disease, such 
as liver dysfunction or oxidative stress.

In conclusion, the Logistic Regression 
model’s ability to integrate a diverse range of 
variables and capture complex interactions 
makes it a more robust and effective tool for 
ovarian cancer diagnosis and prognosis com-
pared to the ROMA index. The correlation 
between risk factors, biomarkers like CA125 
and albumin, and metabolic indicators such 
as Cl-, Na-, glucose receptors, phosphorus, 
and indirect bilirubin provides a deeper un-
derstanding of the underlying mechanisms of 
ovarian cancer, which the Logistic Regression 
model can leverage to improve clinical outco-
mes. This comprehensive approach allows for 
better early diagnosis, monitoring of disease 
progression, and personalization of treatment 
strategies in ovarian cancer patients.

The provided confusion matrix can be 
interpreted as follows: the model correctly 
identified 1,648 cases of ovarian cancer 
(true positives) and 736 cases that were not 
ovarian cancer (true negatives). However, it 
made some errors, incorrectly classifying 23 
cases that were not cancer as positive (false 
positives) and failing to identify 93 cases of 
ovarian cancer (false negatives).

With this information, we can calculate the 
model’s sensitivity and specificity. Sensitivity, 
which measures the proportion of ovarian 
cancer cases correctly identified out of the to-
tal number of cancer cases, was approximately 
94.6%. On the other hand, specificity, which 
measures the proportion of cases correctly 
identified as non-cancer out of the total num-
ber of negative cases, was about 97.0%.

This suggests that these 50 cases are part 
of the 93 false negatives, which may indicate 
that the model has a different performance 
when identifying early-stage ovarian cancer. 
The remaining 43 cases among the 93 false 
negatives likely refer to more advanced or 
intermediate stages of the disease that were 
also not identified by the model.

In conclusion, the model showed an 
overall sensitivity of 94.6% and a specificity of 
97.0%. However, it failed to identify 50 cases 
of early-stage ovarian cancer, which points to 
a possible limitation in its ability to detect the 
disease in its early stages.
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