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Abstract: Attention Deficit/Hyperactivity Di-
sorder (ADHD) is a neurobiological disorder 
characterized by a persistent pattern of inat-
tention/hyperactivity-impulsivity. In school-
-age children, the influence of this disorder 
can lead to low academic performance, but 
the main factor is the interference in the in-
dividual’s social, academic and professional 
life. Therefore, this study aims to develop an 
analysis system based on the Electroencepha-
logram (EEG) signal to encourage the deve-
lopment of tools to identify signs suggestive 
of ADHD in school children. To this end, the 
classifier is based on the Threshold technique 
using the Redundant Discrete Wavelet Trans-
form to extract signal characteristics. The si-
mulation environment used was MATLAB 
(2015a). The data set analyzed was from the 
IEEE Dataport database. To achieve the objec-
tive of the work, the delta and theta frequency 
ranges of the wavelet coefficients were used as 
parameters for the threshold method, and the 
electrodes analyzed were from the frontal re-
gion of the brain. The proposed model perfor-
med with a sensitivity of 88.58 % and positive 
predictivity of 73.26 % for a set of 40 analyzed 
data. Among the aspects identified, it can be 
seen that the algorithm’s performance was sa-
tisfactory, however, for a small volume of data.
Keywords: Electroencephalography. Wavelet 
transform. ADHD.

INTRODUCTION 
Attention-Deficit/Hyperactivity Disorder 

(ADHD), according to the Diagnostic and 
Statistical Manual of Mental Disorders 5th 
edition (DSM-5), is a neurodevelopmental 
disorder characterized by a persistent pattern 
of inattention and/or hyperactivity-impulsi-
vity that interferes with the individual’s deve-
lopment (American Psychiatric Association, 
2014). 
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Thus, some symptoms of ADHD may 
involve: inattention to detail, difficulty 
maintaining concentration when carrying 
out activities, as well as difficulty organizing 
tasks. In addition, there is the possibility of 
hyperactivity and impulsivity with agitation 
and hyperactivity of motor activity, such 
as: frequently getting up from the chair, 
squirming in the chair, difficulty listening 
to others or interrupting others’ speech, 
among other possible symptoms (American 
Psychiatric Association, 2014). 

For a clinical diagnosis, most of the 
symptoms must be present, even if in different 
forms, with a substantial presence of symptoms 
before the age of 12. In addition, the symptoms 
must interfere with the functioning of the 
individual’s social, academic and professional 
life (American Psychiatric Association, 2014). 

The worldwide prevalence of ADHD in 
children and adolescents is between 3% and 
8%. In Brazil, it is around 7.6% in children and 
adolescents aged between 6 and 17 and 5.2% 
in people aged between 18 and 44 (BRASIL, 
2022). The Brazilian Attention Deficit 
Disorder Association (ABDA) also reports 
that the disorder in children ranges from 3% 
to 5% of the child population (ABDA, 2016). 

The risk factors for ADHD include envi-
ronmental, genetic and physiological factors. 
In this context, the possible consequences of 
the disorder can be: low academic performan-
ce, emotional and behavioral problems. Al-
though the presence of ADHD does not mean 
interference in the child’s life (American Psy-
chiatric Association, 2014). 

In this context, the exploratory field study 
by Couras et al. (2018) aimed to identify the 
prevalence of ADHD characteristics with a 
quantitative approach. In this way, the group 
assessed were students in the second year of 
elementary school in public schools in the 
Sertão Paraibano. The descriptive research 
found that 50.35% of the 95 students assessed 

had some symptom of the disorder, and 
among the 50.35%, 12.35% had hyperactivity 
and 19% inattention, 19% hyperactivity and 
inattention. Thus, it is clear that the study 
is relevant in exploring the presence of the 
disorder among children and adolescents since 
the result was significant for the possibility of 
signs suggestive of ADHD, in addition, the 
study emphasizes the lack of information on 
the part of the community, family and school, 
about ADHD.

ADHD is a neurodevelopmental disorder 
that involves clinical diagnosis. Thus, investi-
gating the variation of electroencephalogram 
(EEG) signals in patients with ADHD pre-
sents an advantageous way of exploring the 
singularities of the disorder. Thus, the results 
of the literature review by Slater et al (2022) 
show that there is significant information on 
the EEG signal that makes ADHD symptoma-
tology promising, although there is no defi-
nitive biological marker that is diagnostic of 
ADHD. The study points to the differentiation 
of subtypes and symptoms of the disorder in 
the resting state and modulation related to 
the alpha, beta and theta power task, among 
others. From this, it is possible to indicate that 
the correlation between ADHD and the EEG 
signal points to promising research into the 
disorder.

In order to understand the behavior 
of brain activity, EEG technology is used 
to record electrical signals from the brain 
(TATUM et al., 2008). It is a non-invasive 
method that allows a graphic display of the 
difference in voltage between two recording 
sites over time. The types of activity recorded 
by the EEG include morphology, frequency, 
amplitude, rhythmicity, symmetry, synchrony 
and reactivity (MORCH et al., 2021). 

Among the mathematical tools used to 
analyze biological signals is the Wavelet Trans-
form (WT) method, which allows data to be 
analyzed at various scales and resolutions, 
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both globally and in terms of signal details in 
the time and frequency domain (BARBOSA 
et.al, 2008).

Arrais Junior (2016) used the Discrete 
Wavelet Transform Redundant (TWDR) te-
chnique from the Daubechies family and the 
Daubechies 4 (db4) mother wavelet to analy-
ze electrocardiogram signals. The paper pre-
sented a system for analyzing electrocardio-
gram signals in real time using thresholding 
techniques. The system achieved sensitivity of 
99.20% and positive predictivity of 99.64%.

Cortés (2021) in his final paper presented a 
classifier for ADHD using the Discrete Wavelet 
Transform (DWT) with the Daubechies 
family and the db4 mother wavelet, due to 
the identification of singular characteristics in 
electrophysiological signals. In addition, the 
technique used to study the possible presence 
of ADHD was logistic regression. The 
classifier’s performance was 96 % for cross-
validation, for a study group of 64 children

Thus, given the importance of characterizing 
ADHD in the elementary school environment 
in public schools, this study seeks to explore 
EEG data from children with ADHD, as a 
strategy to substantiate the clinical diagnosis 
to identify signs related to ADHD using the 
Redundant Discrete Wavelet Transform 
(RDWT) and the threshold technique, based 
on the Daubechies family and the db4 mother 
wavelet, evaluating the delta and theta wave of 
the wavelet coefficients of the electrodes in the 
frontal region.

RELEVANCE 
The field of study involving EEG and 

ADHD in order to identify a diagnostic 
biomarker for the disorder has been studied 
by researchers over the years. Although 
there is no definitive biological marker that 
is diagnostic of ADHD. Given the lack of 
knowledge in this area, the research by Slater 
et al. (2022) pointed to significant results in 

ADHD symptomatology. In addition, the 
tools used have unstable prediction accuracy 
(CHEN et al., 2019). In view of this, this work 
seeks to make an exploratory contribution to 
the identification of signs related to ADHD.

MOTIVATION
The motivation for the project arose from 

the questioning of the impact of ADHD in the 
school environment. The study by Pedroso 
et al. carried out exploratory and descriptive 
research to investigate the presence of 
classroom resources to assist students with 
ADHD in the school environment. The 
study was carried out in the municipality of 
Uruguaiana, in Rio Grande do Sul, in two 
public primary schools. Of the 44 teachers, 
only 17 answered the questionnaire. The results 
show that 41.18% of teachers believe that the 
model partially guarantees inclusion, 23.53% 
of teachers believe that it does not guarantee 
inclusion, 35.29% fully guarantees inclusion 
and 5.88% have no information about the 
presence of resources for students with 
ADHD. In this way, the survey demonstrates 
the deficiency in the structure of the school 
environment to meet the possible needs of the 
student in the classroom.

Furthermore, recent research points to a 
high prevalence rate of ADHD in children 
and adolescents. As a result, a public school 
in Salvador in the state of Bahia evaluated 
a group of 265 elementary school students 
who presented clinical signs of ADHD. The 
result obtained was that 16.6% of the students 
presented symptoms of ADHD (OLIVEIRA et 
al., 2022). Thus, the result indicates that there 
is a prevalence of the disorder in the school 
environment. Thus, educational policies that 
discuss ADHD are necessary in the school 
environment to disseminate knowledge about 
ADHD. 
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OBJECTIVES

GENERAL
The aim of this work is to develop a system 

for evaluating EEG signals that may be related 
to ADHD in children, using the Wavelet 
Transform and Threshold techniques.

SPECIFIC
To achieve the general objective, the 

following specific objectives were set.
• Collect and identify the biological 
signal of children with ADHD and 
without ADHD from the IEEE Dataport 
database;

• Analyze the EEG signal in children 
with ADHD and without ADHD;

• Understanding and applying the 
Redundant Discrete Wavelet Transform;

• Perform signal analysis;

• Extract information from wavelet 
coefficients;

• Create a classifier with the wavelet 
coefficients (W4, W5 and W6);

• Perform tests with the classifier.

CONTRIBUTIONS
The proposal of this work contributes to an 

initial screening of possible EEG alterations 
suggestive of ADHD, given that there is 
no definitive biomarker for ADHD. But it 
can substantiate the diagnosis of ADHD in 
school-age children. It makes it possible to 
analyze EEG signals, as well as identifying 
them so that the child or adolescent can later 
be referred to a health service. 

METHODOLOGY
The organization of the proposed research 

will follow these steps:
Initially, the set of 40 EEG signal data from 

children with and without ADHD were down-
loaded from the IEEE Dataport database. The 
data was then analyzed using the TWDR ma-
thematical tool in the MATLAB (2015a) si-
mulation environment to extract signal cha-
racteristics, which will return information 
on: approximation coefficients, wavelet coeffi-
cients and energy at 6 levels of resolution.

In the second stage, the singularities of 
the results obtained in the previous stage 
are analyzed and understood for the two 
sets of children with and without ADHD. 
Subsequently, the wavelet coefficients of the 
4,5 and 6 scale are used as parameters for the 
thresholding technique. 

Finally, the threshold method with the 
wavelet coefficients of the 4,5 and 6 scale is 
used to identify signs suggestive of ADHD.

WORK ORGANIZATION
This paper is divided into the following 

sections.
Chapter 1 begins with an introduction 

to ADHD, presenting information from the 
DSM-5, statistical data, as well as a general 
contextualization of the work on EEG and the 
TWDR technique. 

Chapter 2 reviews the literature on ADHD 
and the use of EEG as a detection tool for the 
disorder, as well as mathematical tools used in 
research to detect ADHD.

Chapter 3 presents the EEG technique for 
recording brain activity, discussing how the 
procedure works. Chapter 4 presents the tool 
used in this work, the TWDR, discussing the 
mathematical equations of the mechanism, as 
well as the advantages of the technique.

Chapter 5 shows the signal classification 
method for identifying ADHD-related sig-
nals, in which the classification logic is dis-
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cussed in detail. The results and discussions 
are presented in Chapter 6. These include the 
results obtained from the TWDR mathema-
tical tool, as well as the performance of the 
classifier.

Finally, Chapter 6 presents the conclusions 
of this work, as well as suggestions for future 
work.

LITERATURE REVIEW

EEG SIGNAL WITH EMPHASIS 
ON ATTENTION DEFICIT 
HYPERACTIVITY DISORDER
In recent years, the rate of ADHD has 

risen sharply in Brazil and around the world, 
arousing the interest of several authors in the 
search for biomarkers that can help in the 
clinical diagnosis of the disorder. Some of the 
studies carried out include:

Markovska-Simoska and Pop-Jordanova 
(2016) evaluated the absolute and relative 
power of the EEG and verified the theta and 
beta relationship in individuals with ADHD. 
The observations made were that children 
with ADHD had an increase in the absolute 
power of the delta and theta waves, which is 
not seen in adults with the disorder. There was 
also greater relative power in theta and beta 
waves in children with ADHD.

Giertuga et al. (2017) studied age-related 
changes using EEG in 74 healthy children and 
67 diagnosed with ADHD in a resting state. 
From this, it was observed that the ADHD 
group had a lower absolute power in relation 
to the theta band compared to the healthy 
group.

Ibrahim et al. (2019) also aimed to detect 
EEG abnormalities in children with ADHD. 
Thus, the study group consisted of 60 healthy 
children and 60 with ADHD, the conclusion of 
the study found that there was an increase in 
low-frequency bands and a decrease in high-
frequency activity for children with ADHD.

Ekhlasi et al. (2021) studied the informa-
tion pathways of brain activity in 61 children 
with and 60 without ADHD using EEG in-
formation during a visual activity. The detec-
tion parameter was the calculation of directed 
phase transfer entropy in the delta, theta, al-
pha, beta and lower gamma frequency bands. 
The results obtained were in the beta band 
with a greater flow of information in the ante-
rior region for the control group. In contrast, 
a difference was observed in the delta band for 
individuals with ADHD. 

MATHEMATICAL TOOLS FOR 
ANALYZING ATTENTION DEFICIT 
HYPERACTIVITY DISORDER
Studies on EEG signals for individuals with 

ADHD have been explored in recent years, 
with the aim of finding a biomarker indicative 
of ADHD. With this in mind, mathematical 
tools are being applied to EEG signal 
processing in order to extract characteristics 
and classify the ADHD EEG signal. 

Mohammadi et al. (2016), proposed a 
model to detect children with ADHD and 
children without the disorder using EEG 
when performing activities. To this end, the 
techniques of approximate entropy, Iyapunov 
exponent and fractal dimension were used 
to capture signal characteristics, in addition 
to the Double Input Symmetrical Relevance 
(DISR) and Minimum Redundancy Maximum 
Relevance (mRMR) relevance methods to 
improve the neural network’s classification 
result. The results obtained were 92.28 % 
accuracy using mRMR and 93.65 % with 
DISR in the Multi-Layer Perceptron (MLP) 
Neural Network (NN). 

Allahverdy A. et al. (2016) also used NN 
Multi-Layer Perceptron as a classifier to iden-
tify children with ADHD. The following me-
thods were applied to verify the uniqueness of 
the EEG signal: Lyapunov’s exponent, Higu-
chi’s fractal dimension, Katz’s fractal dimen-
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sion and Sevcik’s fractal dimension to assess 
the patients’ attention state. The result was 
that the frontal lobe region showed the best 
accuracy at 96.7%, showing that there is a 
disparity between children with and without 
ADHD.

Dubreuil-Vall, Ruffini and Camprodon 
(2020) also used a four-layer CNN with 
clustering and filtering, using spectrograms 
related to EEG events to differentiate ADHD 
from healthy individuals. The result of the 
classifier was approximately 88%.

Taghibeyglou et al. (2022), use the Con-
volutional Neural Network (CNN) structure 
to classify the ADHD condition. It also uses 
support vector machine, logistic regression 
and random forest techniques, among others, 
to extract features from the raw EEG signal. 
Finally, the proposal achieved approximately 
86.33% accuracy without using mapping. 
However, for the condition of specific selec-
tion of classifiers, the accuracy achieved was 
around 91.16 %.

Finally, Table 1 shows a summary table of 
the aforementioned techniques. It shows the 
metrics used to analyze the algorithm and the 
results obtained. The parameters used differ 
between the authors’ techniques, however, 
the performances obtained prove to be 
satisfactory in the exploratory study of EEG 
signals suggestive of ADHD.

ELECTROENCEPHALOGRAM
The electroencephalogram allows the 

electrical signals of the brain to be recorded. 
The recording of brain activity can be 
extracranial, in which the electrodes are 
positioned on the surface of the scalp, being 
a non-invasive method, as well as allowing a 
graphic display of the difference in voltages 
of two recording sites over time from both 
hemispheres of the brain. Another method is 
intracranial, where electrodes are surgically 
implanted to provide a specific recording of 

the brain region (TATUM et al., 2008). The 
recorded characteristics of the EEG signal 
include morphology, frequency, amplitude, 
rhythmicity, symmetry, synchrony and 
reactivity (MORCH et al., 2021). In this 
way, recording the EEG signal makes it 
possible to detect diseases at an early stage 
(SANEI; CHAMBERS, 2007). It also allows 
neurological disorders to be detected from the 
behavior of the EEG signal (ALTURKI et al., 
2020).

BASIC PHYSIOLOGY OF BRAIN 
POTENTIALS 
The electrical signals that occur in the 

brain are created by electrical charges that 
flow into the Central Nervous System (CNS) 
(TATUM et al., 2008). The CNS is made up of 
nerve cells, also called neurons, and glial cells. 
The response to stimuli and the transmission 
of information occurs through nerve cells. 
Likewise, the transmission of the electrical 
impulse occurs through the axon, which is 
connected to other dendrites that receive 
the electrical impulse and relay the signal to 
other nerves. The propagation of information 
between axons and dendrites or dendrites and 
dendrites of cells is called a synapse. Figure 
1 shows the components of the neuron’s 
structure that cooperate to propagate the 
nerve impulse (SANEI; CHAMBERS, 2007).

The Action Potential (AP) is the informa-
tion transmitted along a nerve through the 
exchange of ions in the neuron’s membrane. 
For an action potential to occur, the stimulus 
must reach a level higher than the activation 
threshold. Stimuli can be: chemical, electrical, 
luminous, among others (SANEI; CHAM-
BERS, 2007). In Figure 1, the AP begins when 
the activation threshold is reached, when the 
cell depolarizes and sodium (Na+) channels 
open, when ions enter the cell. At the peak of 
the signal, the Na+ channels close and the po-
tassium (K+)-dependent channels open, re-
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REFERENCE TECHNICAL PARAMETER RESULT
Mohammadi et al. (2016) DISR and mRMR precision 92,28 % e 93,65 %
Nasrabadi et al.(2016) NN accuracy 96,7 %
Taghibeyglou et al. (2022) CNN precision 86,33 %
Dubreuil-Vall, Ruffini and Camprodon (2020) CNN precision 88 %
Cortés (2021) TWD cross-validation 96 %

Table 1: Summary table of the techniques used to analyze the ADHD EEG signal.

Source: Prepared by the author (2022).

Figure 1: Illustrative image of the structure of a neuron.

Source: Sanei; Chambers (2007)

polarizing the cell. Before reaching the resting 
potential, the cell hyperpolarizes, preventing 
it from receiving another stimulus (SANEI; 
CHAMBERS, 2007).

Figure 2: Action potential. 

Source: Sanei; Chambers (2007)

EEG SIGNAL ACQUISITION
The capture of the EEG signal follows 

the standard of the International Federation 
of Societies of Electroencephalography 
and Clinical Neurophysiology, with the 
terminology “10-20”. This represents the 
standard measurement interval of 10% or 20% 
(LOUIS et al., 2016). Standardization refers to 
the positioning of the electrodes on the scalp. 
This electrode placement region is subdivided 
into 10% and 20% intervals (TATUM et al., 
2008). This conventional configuration is for 
21 electrodes, with the exception of the left and 
right earlobe electrodes, represented by A1 and 
A2 respectively, which are used as reference 
electrodes. Therefore, the term “10 or 20%” 
refers to the distance between the electrodes 
(SANEI; CHAMBERS, 2007). Figure 3 shows 
the distribution of the electrodes according to 
the 10%-20% standard.

The positioning of the electrodes, 
according to the “10-20” standard, favors 
complete coverage of the entire scalp. It is 
guided by the positioning of the bones and 
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Figure 3: Representation of the 10-20 EEG pattern.

Source: Sanei; Chambers (2007)

their distances. The regions of the brain are 
indicated by numerical indices and letters 
(SANEI; CHAMBERS, 2007).

• Earpiece - A;

• Central- C;

• Parietal - P;

• Front - F;

• Polar Front - F;

• Occipital - O;

• Temporal - T.

In a nutshell, signal acquisition begins with 
the capture of the electrical potential by the 
electrodes located on the surface of the scalp 
and then conducted to the electrode box, 
called the jack box. Next, an assembly selector 
allows the EEG signal to be amplified and 
finally the signal is filtered (TATUM et al., 
2008).

BRAIN RHYTHM 
The EEG signal enables the diagnosis of a 

brain disorder. Clinical specialists therefore 
analyze the brain rhythms of EEG signals as 
a parameter for identification. The EEG signal 
changes from individual to individual, with 
alterations in the amplitude and frequency of 
the signal, and age is also a factor in altering 
the behavior of the EEG signal. The literature 
segments the frequency bands into 5 ranges 
(SANEI; CHAMBERS, 2007).

• Delta waves (δ) in the range of 0.5 to 
4 Hz;

• Theta waves (θ) in the 4 to 7.5 Hz 
range;

• Alpha waves (α ) in the 8 to 13 Hz 
range;

• Beta waves ( β ) in the 14 to 26 Hz 
range;

• Gamma waves ( γ) ) above 30 Hz.
In this way, the signal can be broken down 

into a series of sine waves to form the frequen-
cy spectrum (BIASIUCCI et al., 2019). Figure 
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4 shows the representation of each frequency 
wave, including: the delta wave which is re-
lated to deep sleep or wakefulness, the theta 
wave is linked to a state of drowsiness such 
as deep meditation, the alpha wave indicates 
a state of relaxed consciousness, and the beta 
wave is related to a state of fixed attention and 
thought. Finally, the gamma wave with a low 
wave amplitude is normally used to detect 
brain diseases (SANEI; CHAMBERS, 2007).

Figure 4: Image depicting frequency waves.

Source: Sanei; Chambers (2007)

Finally, the recording of the EEG signal can 
suffer from non-cerebral interference due to 
non-physiological or physiological artifacts, 
which can lead to behavior that is different 
from normal. Such as picking up signals from 
eye movement, muscle movement or some 
signal present in the environment in which it 
is being carried out (TATUM et al., 2008). 

MATHEMATICAL TOOLS
Over the years, research into biological 

signals has been developed and mathematical 
tools are increasingly being used to understand 
the behavior of signals in nature. Science seeks 
to determine the pattern of the biological 
signal, but computational techniques are 
needed to analyze the signal in the time 
and frequency domain and understand its 
peculiarities. 

Among the most widespread tools is the 
Fourier Transform (FT) technique, which 
allows a signal in the time domain to be re-
presented as a signal in the frequency domain, 
so that the decomposition into frequencies 
makes up the original signal. In this way, any 
one- or two-dimensional signal can be descri-
bed by the sum of sine and cosine oscillations. 
The TF mathematical equation is an integral 
transform that expresses several frequencies 
contained in a time series (1.1)(SILVA, 2014). 

In which f(x) represents the analyzed time 
series, and the presence of the exponential in-
dicates the transformation to the frequency 
domain. However, TF has a limitation when it 
comes to identifying the time of a signal divi-
ded into several frequencies, as non-stationary 
series are difficult to apply in TF (SILVA, 2014). 

To remedy this deficiency, there is the 
Short Time Fourier Transform (STFT) 
method, which segregates the time series into 
fixed instants and calculates the time of the 
signal. f(ω) in each part of the fixed periods, 
but depending on the size of the signal 
segmentation window, information may be 
lost. However, this technique helps to analyze 
non-stationary time series (SILVA, 2014). 

The article by Fadzal et al. (2012) used the 
STFT method to analyze the EEG signal in the 
relaxed and writing conditions. The results 
obtained, shown in the spectrogram of the 
EEG signals, range from 11 to 28.38 Hz when 
the individual is writing and 8 to 12.25 Hz in 
the relaxed condition, i.e. it was possible to 
obtain time and frequency information with 
a fixed time window.

Peng et al. (2022) also used the STFT 
technique to extract features in the frequency 
and time domain, combined with the 
maximum mean discrepancy autoencoder 
technique to map the EEG signal in space. The 
purpose of the work was to predict epileptic 
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seizures. The result was 76 % sensitivity for 
intracranial samples of the EEG signal and 73 
% for extracranial. 

Arrais Junior (2016) used the Discrete 
Wavelet Transform Redundant (TWDR) te-
chnique from the Daubechies family and the 
Daubechies 4 (db4) mother wavelet to analy-
ze electrocardiogram signals. The paper pre-
sented a system for analyzing electrocardio-
gram signals in real time using thresholding 
techniques. The system achieved sensitivity of 
99.20% and positive predictivity of 99.64%.

Cortés (2021) in his final paper used the 
Discrete Wavelet Transform (DWT) to deve-
lop a classifier for ADHD with the Daubechies 
family and the db4 mother wavelet, due to 
the identification of unique characteristics in 
electrophysiological signals. In addition, the 
technique used to study the possible presence 
of ADHD was logistic regression. The perfor-
mance of the classifier was 96 % for cross-vali-
dation, for a study group of 64 children

Another wavelet tool is the Wavelet Packet 
Transform, which was applied in the article 
by Yuan et al. (2017) to detect seizures in the 
continuous recording of the EEG signal. The 
algorithm’s event-based sensitivity was 97.73 
%. As a result, the method showed promise 
for assessing seizure events. 

The mathematical tool used in this work 
was the TWDR because it has a simpler im-
plementation from a numerical point of view, 
does not have subsampling by 2 and has been 
used over the years to analyze biomedical 
signals. The basis of the wavelet used in this 
work was the Daubechies family of type db4. 
In view of the work of Jahankhani, Kodogian-
nis and Revett (2006) who used the db4 due 
to its smoothing characteristic, it is useful for 
detecting changes in the EEG signal, as well 
as providing a good signal output. The same 
applies to Cortés (2021), who also used db4 to 
identify unique characteristics in electrophy-
siological signals.

DISCRETE WAVELET TRANSFORM
But although the STFT has contributed 

to the analysis of non-stationary time series, 
there are still some gaps, such as:

• The fixed interval (window) could not 
be changed;

• For trigonometric functions, the 
energy is infinite.

These questions gave rise to the Wavelet 
Transform (WT), which is a finite-energy ma-
thematical tool that can be dilated or compres-
sed in time, removing the fixed windowing of 
the STFT method (SILVA, 2014). 

The TW method allows data to be analyzed 
at varying scales and resolutions, both globally 
and in terms of signal detail, thus eliminating 
gaps in the TF time window. TW uses various 
bases, including: Morlet, Biorthogonal, Me-
xican, Hat, Harr, Daubechies, among others, 
with their own characteristics. They are used 
in specific analyses and are displayed by the psi 
(ѱ) mother wavelet (BARBOSA et.al, 2008).

To examine discrete signals, the multireso-
lution analysis mechanism allows the signal 
to be decomposed into approximation coe-
fficients and wavelet coefficients at different 
scale levels and using high-pass and low-pass 
filters (MALLAT, 1989). The numerical equa-
tion that obtains the fast decomposition of the 
TWD, to obtain the coefficients are:

Sj being the approximation coefficients, ɷj 
wavelet coefficients, j resolution scale and g(k) 
low-pass and h(k) high-pass filters (ARRAIS 
JUNIOR, 2016).

The frequency spectrum of the approxi-
mation coefficients and wavelet coefficients at 
each scale j is given according to the sampling 
frequency fs in the range of:
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The mother wavelet of the four-coefficient 
Daubechies family. The db4 has four 
filter coefficients for the g approximation 
coefficients, as well as four coefficients for 
the h wavelet filter (ARRAIS JUNIOR, 2016). 
Below are the filter coefficients.

REDUNDANT DISCRETE WAVELET 
TRANSFORM 
Due to the fact that TWD uses a sub-

sampling procedure for the approximation 
and wavelet coefficients because of their time-
varying behavior, the efficiency of the method 
is impaired. As a result, we have the TWDR, 
which does not include the process of sub-
sampling the coefficients, because it is time-
invariant and allows for real-time analysis. 
Therefore, the TWDR equation is similar to 
the TWD, but without subsampling by two 
(PERCIVAL D. B.; WALDEN, 2000).

The equations for the approximation and 
wavelet coefficients are:

Figure 5 shows two levels of resolution 
of the TWDR decomposition of the input 
signal, which will output the approximation 
coefficients s and wavelet coefficients ω. 
With each decomposition of the signal, the 
approximation coefficient is used at a new 
scale in the process. In this way, the TWDR 
generalization process takes place.

The four filter coefficients for the scalar 
coefficients g and for the wavelet filter 
coefficients h of the TWDR are given by:

From the approximation and wavelet 
coefficients it is possible to calculate the 
energies of the terms based on Parseval’s 
theory (BURRUS; GOPINATH; GUO,1997).

 Energy associated with 
the input signal;

 Energy of the jth scale 
approximation coefficients;

 Energy of the 
wavelet coefficients of scale j.

PROPOSED METHOD
Based on the state of the art, studies point to 

increased amplitude in low-frequency bands 
(delta and theta) in children with ADHD, so 
the wavelet coefficients of scale 4, 5 and 6 were 
the points of interest since from level 4 there is 
already a transition to high frequencies.

Figure 6 shows the flowchart for identifying 
EEG signals that may be related to ADHD 
in children. The logic applied was empirical. 
Based on observations of the signal’s 
characteristics obtained with the TWDR 
mathematical tool, the input EEG signal was 
decomposed into approximation and wavelet 
coefficients, and the energy associated with 
the wavelet coefficients was calculated at 6 
levels of resolution. So, the empirical logic 
aims to obtain better accuracy for the set to 
determine signs suggestive of ADHD.

In view of the analysis logic in Figure 6, the 
EEG signal from children with and without 
ADHD was first applied to the TWDR 
algorithm. Next, the signal was decomposed 
into approximation and wavelet coefficients, 
and the energy amplitude of the wavelet 
coefficients in 6 frequency scales was presented 
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Figure 5: Two levels of TWDR resolution.

Source: Arrais Junior (2016).

in the 3 results obtained. Subsequently, the 
response of the wavelet coefficients is used 
as a parameter in the threshold technique, 
which evaluates the following reasoning: if 
the modulus of the maximum value of the 
wavelet coefficient of scale 6 is greater than the 
modulus of the maximum value of the wavelet 
coefficient of scale 4, and if the modulus of 
the maximum value of the wavelet coefficient 
of scale 5 is greater than the modulus of the 
maximum value of the wavelet coefficient 
of scale 4, if true, the classification will be 
the possible presence of ADHD. Otherwise, 
the algorithm classifies the individual as not 
having ADHD.

Figure 6: Flowchart for ADHD classification.

Source: Prepared by the author (2022).

DATABASE
The EEG databases for children with 

ADHD and without ADHD are from the 
IEEE Dataport, with free access to the data. 
The EEG records were obtained from medical 
records at the psychiatric clinic of Roozbeh 
Hospital in Iran. As a result, the file contains 
documentation on 121 patients, 61 of whom 
were children with ADHD and 60 without 
ADHD aged between 7 and 12 who had been 
taking ritalin for up to 6 months.

The recording of brain activity followed the 
10-20 pattern, with 19 electrodes, as seen in 
Figure 3. The activity developed by the patients 
was visual attention to count the number 
of figures of the characters. The sampling 
frequency was 128 Hz and the electrode 
impedance was 5 kΩ. The recording time for 
individuals with ADHD was 285 seconds and 
for those without ADHD 50 seconds.

RESOLUTION LEVELS
This stage consists of breaking down 

the signal into scale levels. Thus, the signal 
acquired from the IEEE Dataport database has 
a sampling frequency of 128 Hz. However, in 
order to decompose the signal into 6 TWDR 
resolution levels, it was necessary to sample the 
signal at 270 Hz. The purpose of resampling 
was to separate the lower delta (2.1093 - 
4.2187 Hz) and theta (4.2187 - 8.4375 Hz) 
frequencies and analyze the behavior of these 
frequency ranges, as can be seen in Table 2.
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Scale Frequency range [Hz]
1 67,5 - 135
2 33,75 - 67,5
3 16,875 - 33,75
4 8,4375 - 16,875
5 4,2187 - 8,4375
6 2,1093 - 4,2187

Table 2 - TWDR resolution levels

Source: Prepared by the author (2022).

CLASSIFICATION

THRESHOLD
The threshold values were based on the 

peaks of the wavelet coefficients at resolution 
level 4 (8.4375 - 16.875 Hz), 5 (4.2187 - 8.4375 
Hz) and 6 (2.1093 - 4.2187 Hz). The empirical 
logic involves obeying the following criterion: 

• The modulus of the maximum value of 
the wavelet coefficient of scale 6 is greater 
than the modulus of the maximum value 
of the wavelet coefficient of scale 4;

• The modulus of the maximum value of 
the wavelet coefficient of scale 5 is greater 
than the modulus of the maximum value 
of the wavelet coefficient of scale 4;

• If it meets the two previous criteria, it 
would indicate the possible presence of 
ADHD;

• Otherwise, the algorithm classifies 
them as not having ADHD.

ANALYSIS METRICS 
Two parameters were used to assess the 

classifier’s performance: Sensitivity (Se) and 
Positive Predictivity () (KOHLER; HENNIG; 
ORGLMEISTER, 2002), (MARTINEZ et al., 
2004). In this way, the number of False Posi-
tives (FP), False Negatives (FN) and Correct 
Detections (CD) of the classifier is verified.

Sensitivity is the probability of the algori-
thm detecting sick individuals. Positive pre-
dictivity, on the other hand, is the probability 
of the algorithm correctly identifying the exis-
tence of the disease (SOPELETE, 2005).

RESULTS AND DISCUSSIONS
Analysis of the EEG signal related to signs 

suggestive of ADHD is carried out using the 
TWDR technique. The characteristics of the 
decomposed signal include: Approximation 
coefficients resulting from the low-pass filter 
that attenuates high frequencies, wavelet 
coefficients resulting from the high-pass filter 
that attenuates low frequencies, being sensitive 
to large signal variations. The characteristics 
extracted by the TWDR tool were for the 
6 levels of resolution, as shown in Table 2. 
Finally, the energy of the wavelet coefficients 
was also analyzed for EEG signal analysis, as 
shown in Table 2.

Thus, the data set analyzed consisted of 
40 patients, 20 children with ADHD and 
20 without ADHD from the IEEE Dataport 
database. In addition, only the frontal 
electrodes (Fz, Fp1, Fp2, F3, F4, F7, F8) 
shown in Figure 4 were analyzed, i.e. 7 of the 
19 electrodes, as this region shows disparity 
among patients with the disorder, in addition 
to presenting good classification results, as 
presented in the state of the art.

The aim of this method is to detect pos-
sible alterations in the EEG signal indicative 
of ADHD in groups of children with and wi-
thout ADHD. In this way, this work evaluates 
which scales showed discrepancies in ampli-
tudes, either in the value of the approximation 
and wavelet coefficients or in the energy of the 
wavelet coefficients. To this end, 3 EEG signals 
were chosen from the set to demonstrate sig-
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nal processing and to check for singularities. 
Of the three, two had ADHD and one did not 
have ADHD.

The following analysis shows the TWDR 
of the EEG signal from the v1p set of the 
Fz electrode, showing the recording of a 
patient with ADHD. In the Figures of the 
set, the behavior of the signal is observed 
and then the Figures are enlarged for the 
instant of interest. Figure 7a shows the EEG 
signal with amplitude peaks at various time 
points between 0 and 250 seconds. Figure 7b 
shows in red the moment with the highest 
amplitude value, around 4000 mV. This 
moment is a possible indication of when the 
child with ADHD was visually stimulated 
with the figures of the characters to record the 
EEG signal, according to the IEEE Dataport 
database. Figure 7c shows the interval of 30 
to 40 seconds from the moment of greatest 
amplitude of the signal in Figure 7b. 

Figure 8 shows the approximation 
coefficients for the six resolution levels using 
the low-pass filtering process in which high-
frequency noise is attenuated from the EEG 
signal in Figure 7a. Based on this, Figure 
8a shows the approximation coefficients in 
the 0 to 250 second range. Figure 8b shows 
the coefficients in the 30 to 40 second range 
with similar behavior to the original signal, 
however, a delay is shown as the scale 
increases, due to the delay being in the order 
of 2j, with j indicating the level of resolution.

Figure 9a shows the wavelet coefficients 
with the 6 frequency scales in the range 0 to 
250 seconds. The wavelet coefficients are the 
result of filtering the EEG signal in Figure 7a 
using a high-pass filter which attenuates the 
low noise frequencies and also captures the 
high variations in the EEG signal. Figure 9b 
shows the amplitude of the coefficients in the 
time interval between 30 and 40 seconds. It 
can be seen that W4v (8.4375 - 16.875 Hz) 
has a maximum amplitude value close to 1500 

mV, while W5v (4.2187 - 8.4375 Hz) also has 
an amplitude close to 1500 mV. W6v (2.1093 
- 4.2187 Hz) shows an amplitude value above 
-1500 mV. Therefore, the statements made by 
researchers Ibrahim et al. (2019) and Ekhlasi 
et al. (2021) were observed in this analysis, in 
which there was an increase in low frequencies 
in W6v (delta wave) and W5v (theta wave) for 
children with ADHD. 

Finally, Figure 10a shows the energy 
concentrations of the wavelet coefficients of 
the signal in Figure 9a. In Figure 10b, the time 
domain interval has been reduced to analyze 
the energy concentration between 30 and 40 
seconds, due to the amplitude peak that occurs 
in this time interval, as seen in Figure 7b. 

The concentration of energy occurs on the 
E2 (W2v) and E3 (W3v) scales in 34 seconds, 
exhibiting an order of magnitude of . At 
another point, the concentration of energy 
in the wavelet coefficients is for scales E2 
(W2v), E3 (W3v) and E4 (W4v). In contrast 
to Figure 9b, which showed higher amplitudes 
at low frequencies (W6v and W5v), the 
concentration of energy occurred at high 
frequencies.

The following analysis shows the TWDR of 
the EEG signal from the v18p set of electrode 
F7, showing the recording of a patient with 
ADHD. The Figures show the behavior of 
the signal and then zoom in to the instant of 
interest. Figure 11a shows the EEG signal with 
an amplitude peak in the interval between 0 
and 250 seconds. Figure 11b shows in red the 
moment with the highest amplitude value 
above 4000 mV. This moment is a possible 
indication of when the child with ADHD 
was visually stimulated with the figures of the 
characters to record the EEG signal, according 
to the IEEE Dataport database. Figure 11c 
shows the interval of 12 to 18 seconds from 
the moment of greatest amplitude of the signal 
in Figure 11b.
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(a)

(b)

(c) 

Figure 7: Signal from electrode Fz of set v1p (IEEE database), with ADHD: (a) Original signal, (b) Instant 
of greatest amplitude and (c) Time interval of greatest amplitude between 30 and 40s.

Source: Prepared by the author (2022).



17
Journal of Engineering Research ISSN 2764-1317 DOI https://doi.org/10.22533/at.ed.3174272407111

(a)

(b)

Figure 8: Fz electrode signal from the v1p set (IEEE database), with ADHF: (a)Approximation coefficients 
and (b)Approximation coefficients in the 30 to 40s interval.

Source: Prepared by the author (2022).

(a)
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(b)

Figure 9: Fz electrode signal from the v1p set (IEEE database), with ADHD: (a)Wavelet coefficients, (b)
Wavelet coefficients in the 30 to 40s interval.

Source: Prepared by the author (2022).

(a)

(b)

Figure 10: Fz electrode signal from the v1p set (IEEE database), with ADHD: (a) Energy of the wavelet 
coefficients and (b) Energy of the wavelet coefficients in the interval between 30 and 40s.

Source: Prepared by the author (2022).
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(a)

(b)

(c)

Figure 11: Signal from electrode F7 of the v18p set (IEEE database), with ADHD: (a) Original signal, (b) 
Instant of greatest amplitude and (c) Time interval of greatest amplitude between 12 and 18s.

Source: Prepared by the author (2022).



20
Journal of Engineering Research ISSN 2764-1317 DOI https://doi.org/10.22533/at.ed.3174272407111

Figure 12 shows the approximation 
coefficients for the six resolution levels using 
the low-pass filtering process in which high-
frequency noise is attenuated from the EEG 
signal in Figure 11a. Based on this, Figure 
12a shows the approximation coefficients in 
the 0 to 250 second range. Figure 12b shows 
the coefficients in the interval from 12 to 18 
seconds with similar behavior to the original 
signal, however, a delay is shown as the scale 
increases, due to the delay being in the order 
of 2j, with j indicating the level of resolution.

Figure 13a shows the wavelet coefficients 
with the 6 frequency scales in the range from 
0 to 250 seconds. The wavelet coefficients are 
the result of filtering the EEG signal in Figure 
11a using a high-pass filter which attenuates 
the low noise frequencies and also captures 
the high variations in the EEG signal. Figure 
13b shows the amplitude of the coefficients in 
the time interval between 12 and 18 seconds. 
It can be seen that W6v (2.1093 - 4.2187 Hz) 
has an amplitude value of over 2000 mV. On 
the other hand, W4v (8.4375 - 16.875 Hz) and 
W5v (4.2187 - 8.4375 Hz) have amplitude 
values close to 1500 mV. Therefore, the 
discrepancy in the low frequency in W6v 
(delta wave) can be observed, in line with the 
research by Ekhlasi et al. (2021). 

Figure 13c shows a possible detection of 
variation in the EEG signal from Figure 11a, 
in the interval between 54 and 56 seconds, at 
W3v (16.875 - 33.75 Hz) with an amplitude 
value of 1000 mV. 

Finally, Figure 14a shows the energy 
concentrations of the wavelet coefficients of 
the signal in Figure 13a. In Figure 14b, the 
time domain interval has been reduced to 
analyze the energy concentration between 12 
and 18 seconds, due to the amplitude peak that 
occurs in this time interval, as seen in Figure 
11b. The highest concentration of energy 
occurs at scales E2 (W2v) , E3 (W3v) and E5 
(W5v) with an order of magnitude of 106.

The following analysis shows the TWDR of 

the EEG signal from the v53p set of electrode 
F7, showing the recording of a patient without 
ADHD. In the Figures of the set, the behavior 
of the signal is observed and then the Figures 
are enlarged for the instant of interest. Figure 
15a shows the EEG signal with amplitude pe-
aks at various time points between 0 and 50 
seconds. Figure 15b shows in red the moment 
of greatest concentration of peaks with an am-
plitude of around 4000 mV. This moment is a 
possible indication of when the child without 
ADHD was visually stimulated with the figu-
res of the characters to record the EEG signal, 
as reported by the IEEE Dataport database. Fi-
gure 15c shows the interval between 22 and 26 
seconds from the moment of greatest concen-
tration of signal variation in Figure 15b. 

Figure 16 shows the approximation coef-
ficients for the six resolution levels using the 
low-pass filtering process in which high-fre-
quency noise is attenuated from the EEG sig-
nal in Figure 15a. Based on this, Figure 16a 
shows the approximation coefficients in the 0 
to 50 second range. Figure 16b shows the coe-
fficients in the interval from 22 to 26 seconds 
with similar behavior to the original signal, 
however, a delay is shown as the scale incre-
ases, due to the delay being in the order of , 
with j indicating the level of resolution.

Figure 17a shows the wavelet coefficients 
with the 6 frequency scales in the range 0 to 
50 seconds. The wavelet coefficients are the 
result of filtering the EEG signal in Figure 15a 
using a high-pass filter which attenuates the 
low noise frequencies and also captures the 
high variations in the EEG signal. Figure 17b 
shows the amplitude of the coefficients in the 
time interval between 22 and 26 seconds. It 
can be seen that W3v (16.875 - 33.75 Hz) has 
a maximum amplitude value of around 3000 
mV, as does W4v (8.4375 - 16.875 Hz) with 
a peak value of 3000 mV. Therefore, the EEG 
signal without ADHD showed higher wavelet 
coefficient amplitudes for high frequencies in 
W3v and W4v. 
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(a)

(b)

Figure 12: Signal from electrode F7 of the v18p set (IEEE database), with ADHF: (a) Approximation 
coefficients and (b) Approximation coefficients in the interval from 12 to 18s.

Source: Prepared by the author (2022).

(a)



22
Journal of Engineering Research ISSN 2764-1317 DOI https://doi.org/10.22533/at.ed.3174272407111

(b)

(c)

Figure 13: Signal from electrode F7 of the v18p set (IEEE database), with ADHD: (a)Wavelet coefficients, (b)
Wavelet coefficients in the interval from 12 to 18s and (c) Wavelet coefficients in the interval from 54 to 56s.

Source: Prepared by the author (2022).

(a)
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(b)

Figure 14: Signal from electrode F7 of the v18p set (IEEE database), with ADHD: (a) Energy of the wavelet 
coefficients and (b) Energy of the wavelet coefficients in the interval between 12 and 18s.

Source: Prepared by the author (2022).

(a)

(b)
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(c)

Figure 15: Figure 7: Signal from electrode F7 of the v53p set (IEEE database), without ADHD: (a) Original 
signal, (b) Instant of greatest amplitude and (c) Time interval of greatest amplitude between 22 and 26s.

Source: Prepared by the author (2022).

(a)

(b)
Figure 16:Figure 12: Signal from electrode F7 of the v53p set (IEEE database), without ADHF: (a)

Approximation coefficients and (b)Approximation coefficients in the interval from 22 to 26s.
Source: Prepared by the author (2022).
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Finally, Figure 18a shows the energy 
concentrations of the wavelet coefficients of 
the signal in Figure 17a. In Figure 18b, the 
time domain interval has been reduced to 
analyze the energy concentration between 22 
and 26 seconds, due to the amplitude peak 
that occurs in this time interval, as seen in 
Figure 15b. The highest concentration of 
energy occurs on the E2 (W2v) scales with an 
order of magnitude of 106.

Finally, the energy of the wavelet 
coefficients in Figures 10b, 14b and 18b did 
not vary by an order of magnitude for the 
condition with and without ADHD. However, 
there is a disparity between the amplitudes 
of the wavelet coefficients between frequency 
ranges for Figures 9b and 13b, around W5v 
and W6v for those with ADHD. In contrast, 
Figure 17b shows an increase in the amplitude 
of the high-frequency coefficients W3v and 
W4v for the condition without ADHD.

Table 3 shows the analyses of the classifier 
for recognizing signs suggestive of ADHD. 
The data set analyzed consisted of 40 patients, 
20 with ADHD (1 to 20) and 20 healthy (21 
to 40). Of the 19 electrodes used to record 
brain activity, only 7 electrodes in the frontal 
region were used to test the tool. As such, the 
classifier performed with a sensitivity of 88.58 
% and a positive predictivity of 73.26 % for the 
frontal electrodes.

The false positive and false negative results 
were significant, due to the variations in the 
amplitude of the wavelet coefficients for each 
electrode investigated. It was observed that 
the increase in amplitude in the delta and 
delta band did not only occur in patients 
with ADHD, but also in the group of patients 
without ADHD. Furthermore, no standard 
behavior was found in the EEG signal for 
ADHD in children, only signs suggestive of 
ADHD.

The results of the performance parameters 
were satisfactory, however, for a small vo-
lume of data. The algorithm was able to de-
tect ADHD-related signs with a probability 
of 88.58 %, but for a correct classification of 
73.26 % of the actual presence of ADHD. 

In the process of classifying the signal, 
some data was disregarded because it did not 
show significant variation. Therefore, the re-
sult shows that the result is not highly efficient 
for identifying ADHD-related signals, due to 
the fact that it is an exploratory analysis of the 
data and does not analyze all the singularities 
of the signal. Therefore, the algorithm showed 
a promising result for the small group of data 
analyzed, favoring in-depth studies in this 
area of knowledge.

CONCLUSIONS 
The classifier of signs suggestive of 

Attention-Deficit/Hyperactivity Disorder 
for school-age children was developed 
using wavelet coefficients (W4v, W5v and 
W6v) from the Redundant Discrete Wavelet 
Transform obtained from the EEG signal as a 
parameter of the threshols technique. 

Preliminary investigations of the EEG signal 
with the TWDR tool showed no difference in 
terms of the order of magnitude of the energy 
of the wavelet coefficients in patients with 
ADHD and without ADHD. In addition, the 
amplitude of the wavelet coefficients showed 
a discrepancy for the delta and theta bands, 
resulting in an increase in the value of W5v 
and w6V in the ADHD condition, but in 
some groups of patients without ADHD this 
similarity was also observed.

The algorithm performed with Se = 88.58 
% and 73.26 % for the frontal region of the 
brain. Thus, the classifier does not have a 
high probability of detecting signals related 
to the disorder due to the small number of 
data analyzed, only 40, with 20 patients with 
ADHD and 20 without ADHD. Furthermore, 
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(a)

(b)

Figure 17: Signal from electrode F7 of the v53p set (IEEE database), without ADHD: (a) Wavelet coefficients 
and (b) Wavelet coefficients in the interval from 22 to 26s.

Source: Prepared by the author (2022).

(a)
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(b)

Figure 18: Signal from electrode F7 of the v53p set (IEEE database), without ADHD: (a) Energy of the 
wavelet coefficients and (b) Energy of the wavelet coefficients in the interval between 22 and 26s.

Source: Prepared by the author (2022).

WAVELT PICOS FN FP TOTAL FAILURES
1 49 23 0 23
2 127 6 0 6
3 20 5 0 5
4 54 6 0 6
5 54 5 0 5
6 59 5 0 5
7 98 6 0 6
8 145 4 0 4
9 97 12 0 12

10 63 3 0 3
11 147 5 0 5
12 38 0 0 0
13 6 0 0 0
14 67 7 0 7
15 66 1 0 1
16 149 0 0 0
17 63 33 0 33
18 199 195 0 195
19 23 19 0 19
20 9 0 0 0
21 19 0 14 14
22 210 0 203 203
23 28 0 23 23
24 32 0 29 29
25 40 0 37 37
26 39 0 38 38
27 42 0 36 36
28 38 0 33 33
29 40 0 38 38
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30 98 0 85 85
31 36 0 36 36
32 31 0 29 29
33 30 0 5 5
34 129 0 120 120
35 34 0 31 31
36 43 0 37 37
37 35 0 31 31
38 5 0 5 5
39 53 0 43 43
40 85 0 76 76

TOTAL 2600 335 949 1284

Table 3- Table with the results for detecting signal characteristics, according to the proposed method

Source: Prepared by the author (2022).

the EEG signal does not behave in a standard 
way, and artifacts, whether physiological 
or non-physiological, also influence the 
acquisition of the signal, adding noise to the 
recorded signal. 

Despite the difficulty in identifying signs 
related to ADHD, the results were promising, 
even though the work was exploratory in 
its analysis of signs related to ADHD in 
schoolchildren. 

FUTURE WORK

• Perform TWDR analysis for all brain 
regions (Frontal, Occipital, Parietal, 
Temporal and Central);

• Classify the ADHD signal in all brain 
regions (Frontal, Occipital, Parietal, 
Temporal and Central);

• To carry out a statistical study on which 
Wavelet family has the best applicability 
for EEG signal analysis. Evaluating the 
Discrete Wavelet Transform and the 
Packet Wavelet Transform.
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