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Abstract: The main objective of the current 
study is to develop a neural network for the 
prediction of response matrix for neutron 
spectrometry with a Bonner sphere. The 
Bonner multisphere spectrometry system, 
more commonly known as Bonner Spectro-
meter (BS), is a system that consists of a set 
of moderator spheres, where in the center of 
each sphere it is possible to accommodate a 
thermal neutron detector. However, in this 
system each sphere behaves as a different de-
tector, therefore, obtaining information from 
a neutron spectrum through the BS requires 
knowledge of the response of each sphere as 
a function of the neutron energy. This process 
introduces an imperative to obtain the res-
ponse of a set of spheres through the response 
function that must be determined in order to 
characterize the neutrons that pass through 
the system. This response function, which 
allows access to the fluence values of the neu-
trons in the various energy ranges, is in prac-
tice replaced by a response matrix. Obtaining 
this response matrix is not trivial and involves 
a complex calculation process that includes 
Monte Carlo simulation from experimental 
data. The present work seeks to circumvent 
this difficulty using machine learning techni-
ques with neural networks. The Laboratory of 
Neutron Metrology (NL/NLMIR) of the Na-
tional Laboratory of Metrology of Ionizing 
Radiation (NLMIR) of the Institute of Radio-
protection and Dosimetry of Brazil (IRD), 
which dominates the Bonner spectrometry 
technique where the development of the pre-
sent work took place, has given particular at-
tention to techniques for determining the res-
ponse matrix, in particular the use of neural 
networks given the data set and experience it 
has accumulated with its Bonner sphere over 
the years. An MLP (Multi Layer Perceptron) 
network was developed in this work to obtain 
the response matrix. This network is tested by 
changing its different parameters and compa-

ring its performances with other neural ne-
tworks. The observed performances demons-
trate that the developed technique serves as 
a solid alternative for obtaining the response 
matrix in neutron spectrometry. 
Keywords: 1. Neutron spectrometry 2. Neural 
network 3. Machine learning 4. Response 
matrix 5. Bonner sphere.

INTRODUCTION
The study of the atomic structure led to 

the discovery of a fundamental element of 
matter whose effects and interaction with 
matter continue to be the focus of many 
challenges: the neutron. This particle without 
charge can be generated by different processes 
and rearrangements of matter leading us to a 
continuous distribution of energy that makes 
the measurement of neutron fields complex 
[1]. The difficulty of measuring neutron 
fields is due in part to the complexity of its 
interaction with matter, for being electrically 
neutral, and in part to the wide variety of 
neutron energies that can be found. because 
the way in which neutrons interact with 
matter depends largely on the energy of the 
neutron that presents a spectrum that extends 
from a few meV (thermal neutrons) in nuclear 
energy production, to hundreds of MeV in 
clinical accelerators and up to the GeV region 
for accelerators and cosmic rays [2]. 

Spectrometry is one of the main techni-
ques that seeks to circumvent the difficulties 
linked to the characterization of neutrons of 
different energy ranges, and has even been 
used in the discovery of the neutron itself [2]. 
It has played and still plays an important role 
in the development of nuclear physics since 
the first works on the characterization of the 
elements of the atom in the early 20th century 
and has also become an important tool in se-
veral other fields, notably nuclear technology, 
fusion plasma diagnosis, radiotherapy and 
radiation protection. However, the use of this 
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very useful technique, when the energy range 
is well defined, becomes complex when one 
wants to characterize neutron over a wide and 
continuous energy range. For such situations, 
a moderation system is used that makes it pos-
sible to obtain the characteristics of neutron 
spectra [3]. The Bonner multisphere spectro-
metry system, more commonly known as the 
Bonner Spectrometer (BS), is a system that 
meets this need. This system is composed of a 
set of moderator spheres where in the center 
of each sphere a thermal neutron detector can 
be accommodated [4]. However, in this system 
each sphere behaves as a different detector, 
therefore, obtaining information of a neutron 
spectrum through BS, requires the knowledge 
of the response of each sphere as a function 
of the neutron energy. This process introduces 
an imperative to obtain the response of a set 
of spheres through the response function that 
must be determined in order to characterize 
the neutrons that pass through the system. 
This response function, which allows access 
to the fluence values of the neutrons in the va-
rious energy ranges, is in practice replaced by 
a response matrix [5]. Obtaining this respon-
se matrix is not trivial and involves a complex 
calculation process that includes Monte Carlo 
simulation from experimental data. These ex-
periments and simulations are usually perfor-
med in metrology laboratories that have the 
technologies, techniques and skills adapted to 
the complexity of the procedure [6]. 

Metrology is, according to the Interna-
tional Vocabulary of Metrology (IVM), the 
science of measurement and its applications 
[7]. One of the fields in which the implemen-
tation of metrology is fundamental is that of 
detection and dosimetry of ionizing radiation, 
among them the neutron whose detection and 
measurement involve complex instrumen-
tation, theory and data processing. Neutron 
metrology is the science of measuring the 
intensity of neutron fields in different energy 

and intensity ranges. It is concerned with topi-
cs that include: quantities and their relations, 
the units for their measurements, techniques 
to produce and measure neutron fields, and 
reliability, that is, the uncertainties related to 
the measurements. Neutron metrology is in-
dispensable for several areas including critica-
lity dosimetry, nuclear reactor control and for 
providing input parameters for reactor design 
and radiological protection [8]. the National 
Laboratory of Metrology of Ionizing Radia-
tion (NLMRI) of the Institute of Radioprotec-
tion and Dosimetry of Brazil (IRD) has a Neu-
tron Metrology Laboratory (NML/NLMIR) 
that is responsible for the neutron metrology 
in the country. The Laboratory of Neutron 
Metrology has and masters the Bonner spec-
trometry technique for the determination of 
neutron spectra, which it uses for the quanti-
fication of radioprotection operational quan-
tities [9]. The NL/NLMIR has given some at-
tention to this alternative, given the data set 
and experience it has accumulated with its 
Bonner spheres over the years and the possi-
bilities offered by the use of neural networks. 
This work, which is in accordance with this 
particular objective of the NL/NLMIR, is pre-
sented here, in addition to this introduction, 
through the materials and methods used and 
the results achieved in the development of 
the neural network, and concluded with final 
considerations about the process. 

MATERIALS AND METHODS 

The NLMIR/IRD Neutron Metrology 
Laboratory
The Laboratory of Neutron Metrology 

(LNM) is the site of this work. It is one of the 
research laboratories of the National Labora-
tory of Metrology of Ionizing Radiation (NL-
MIR) of the Institute of Radioprotection and 
Dosimetry (IRD). It was created in 1973, as 
a reference laboratory in the area of neutron 
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metrology, being responsible for the custody 
and maintenance of the Brazilian Standard of 
Neutron Fluence, and for performing the neu-
tron fluence magnitude. The LNM has a labo-
ratory structure that includes a Laboratory of 
Neutron Spectrometry (LNS) where the Bon-
ner spectrometers are located, which were 
used to obtain experimental data in a first sta-
ge of the process of building the database used 
in this work. Figure 1 shows the basic scheme 
of the Bonner sphere model of LNS and figure 
2 shows images of the LNS spheres. 

Among the main research lines of the 
Computational Methods Laboratories (CML) 
are mathematical simulations based on 
experimental or non-experimental data. In 
this sense, the NL/NLMIR has a database of 
data obtained both experimentally and by 
Monte Carlo simulations from the research 
carried out in these laboratories, which were 
the sites of this study. Thus, the works of 
Perreira (1999) [11] for character recognition 
and of Lemos (2009) [10] that uses a Monte 
Carlo simulation based on the MCNP code 
to develop a response matrix, which were 
developed in the scope of the activities of 
NL/NLMIR, provided the data that served 
as a basis for obtaining the response matrix 
that was used to train the neural network 
developed in this study.

Figure 1: Schematic of a Bonner sphere with 
a source.

Figure 2: NL/NLMIR Bonner spheres.

THE DETERMINATION OF THE 
RESPONSE MATRIX
To obtain information from a neutron 

spectrum through the Bonner Sphere (BS), 
one must know the response of each sphere 
as a function of the neutron energy, since each 
sphere is characterized as a different detector, 
for having the ability to register neutrons of 
different energy ranges. The response for a set 
of spheres can be obtained from the solution 
of the equation: 

 (2.1)

Where:
Aj is the count of the jth detector;
aj (E) is the response function of the jth 

detector;
Фj (E) is the neutron fluence of the jth 

detector; and
M is the total number of detectors.
Equation (2.1) is known to be the first-or-

der Fredholm integral. It could be solved if 
the response function (E) were an analytically 
known function; but this is not the case for 
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the practical neutron spectrometry systems. 
In practice, Equation (2.1) is replaced by a 
set of M linear equations dividing the energy 
range of that detector into several smaller re-
gions, making the response and fluence of the 
detector constant over these small energy in-
tervals. Therefore, Equation 1 can be written 
as follows:

 (2.2)

Where:
ajk is the jth detector response for neutrons 

in the kth energy interval; and N is the total 
number of energy intervals. Therefore, the 
detector response function can be replaced by 
the matrix formed by the elements ajk.

Obtaining the neutron spectrum from 
the detector responses is a rather complex 
process, since the count of each sphere has a 
characteristic spectrum due to the difference 
in diameter between them making necessary 
the use of computational methods like it’s 
been studied in this work by neural network.

THE IMPLEMENTED NEURAL 
NETWORK
The mathematical model of Neural Ne-

twork (NN) chosen in this work consists of 
a multilayer architecture of the “Multilayer 
Perceptron” (MLP) type, based on a totally 
interconnected network configuration with 
supervised learning, on a “Backpropagation” 
error back-propagation algorithm with “cros-
s-validation” stopping criterion, based on the 
best result for the test set, and for determining 
and classifying the referential characteristi-
cs of the neutron spectra. As for the type of 
neuron connections, the “Feedforward” was 
adopted and the activation function chosen 
is the Linear Renormalization (ReLu) that 
can be changed to Sigmoid function or ano-
ther function. The ReLu function was the 
one most used in the tests for its advantages, 
because it allows faster and more efficient 

training of deep neural architectures, such 
as MLP on large and complex data sets, and 
enables efficient gradient propagation, which 
means that no gradient problems disappear or 
explode, leading to efficient computation with 
only comparison, addition or multiplication 
of scales. The network was developed in Py-
thon language using the Google Colaboratory 
environment. 

A draft of the structure of the neural 
network in this work is shown in figure 3 
below with the input, hidden and output 
layers indicated.

Figure 3: Schematic diagram showing the 
structure of the developed MLP neural network

With the methodology established and the 
database set up and defined, the next step was 
to set up and test the network to observe the 
results presented and discussed below. 

RESULTS 
The neural network for neutron spectro-

metry in this work was structured using Py-
thon’s Sequential Dense model library, whi-
ch, in addition to allowing condensing the 
layers, enables the structuring and operation 
of these in sequence. With the development of 
the neural network name “Espectrometria de 
neutron-sinal-neutron” for neutron spectro-
metry, several trainings and evaluations were 
performed to find the best configuration for 
structuring the layers. The configuration that 
showed the most stable behavior and the most 
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interesting performances during the tests was 
a network structure with eight (8) layers ar-
ranged as follows:

- one input layer with seven (7) neurons;

- six intermediate hidden layers with a 
first layer of 50 neurons and the rest of 
the 5 with 25 neurons each;

- an output layer with eighty-four (84) 
neurons;

Thus, it was possible to evaluate the 
performance of the network by comparing 
the evolutions of the accuracy, which shows 
the quality of the approximation and the loss 
function, which indicates the learning rate of 
the network and its applicability to other data 
sets with MNIST digit recognition neural 
network, and Lemos (2009) accuracy. 

The net performance analysis, which was 
important for choosing the best network con-
figuration, was carried out by monitoring the 
evolution of accuracy and the loss function 
“Loss” in relation to the number of training 
rounds “epochs”. The accuracy allows the iden-
tification of the percentage of correct answers, 
as well as comparisons with other models. The 
loss function allows you to observe the lear-
ning level of the model. A reduced loss is an 
indication that the model has indirectly lear-
ned the function that maps input and output 
data and can make reliable predictions with 
new data. 

This performance evaluation should involve 
both the loss function and the accuracy. As an 
example, one of the configurations (figure 4) 
tested with 7 layers (7-14-28-56-56-84) during 
the structuring of the network, which did not 
show any evolution of accuracy even showing 
an interesting evolution of the loss function, 
remained null and was rejected, as it shows 
the network did not train.

Figure 4: Network performance with 
misconfiguration

Another important aspect observed in 
the performance analysis is the number of 
training epochs. The analysis process showed 
that a number of epochs below 150 did not 
show interesting performances, as observed 
in figure 5 with the training of the chosen 
structure in 50 epochs.
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Figure 5: Training with 50 epochs

As it can be seen in figure 5, despite the 
interesting performance of the network, there 
is a difference between the training loss and the 
test loss, indicating that the network does not 
replicate its performance well with other data. 
Then, the maintained structure was trained 
with five hundred (500) epochs and presented 
a behavior of accuracy and Loss function 
similar to the MNIST digit recognition model, 
which is a network already classic for being 
used in many applications and in the teaching 
of neural networks, thus, confirming the 
quality of the network assembled within this 
work. Figures 6 , 7, 8 and 9 below highlight 
the performance curves of the two networks 
for comparative purposes.

Figure 6: MNIST Network accuracy Evolution

Figure 7: Evolution of accuracy of the Neural 
Network “spectrometria de neutron-LN”.

Figure 8: MNIST Network Loss Function 
Evolution

Figure 9: Evolution of the Loss Function of the 
Neural Network “spectrometria de neutron-LN”.

The above figures indicate an identical 
behavior of the network for spectrometry 
developed in this work with a classic network, 
but with a better refinement of the network for 
neutron spectrometry between training and 
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testing both in accuracy and Loss function. 
This is partly explained by the smaller amounts 
of epochs used for the MNIST network, but 
it consolidates the efficiency of the neutron 
spectrometry network by showing that it is an 
effective network for predicting the response 
matrices of Bonner spheres. This is confirmed 
by the observed accuracy of 97% with an 
uncertainty of 3%, the same range as in the 
work of Lemos,2009 [9]. The Loss function 
that remained at 0.06 for both training and 
testing shows, on the one hand, that the 
network can handle new data with the same 
efficiency as known data, and, on the other 
hand, that the network is stable during the 
learning process. Further tests showed the 
possibility of reaching 98% accuracy, showing 
that the network settings can be improved to 
obtain more refined results. 

CONCLUSION 
The general objective of this work, which 

sought the development of a neural network 
for determining the response matrix of a set 
of data obtained from measurements made 
with Bonner spheres, was achieved with 
the construction of the neural network in 
MPL (Multi Layer Perceptron) “Neutron 
Spectrometry”. This process was accomplished 
after conducting a literature review that 
allowed to have theoretical foundation and 
knowledge of the state of the art of techniques, 
theories and equipment to distinguish the 
Python and Google Colaboratory tools with 
the most adapted to perform this task. With 
the determination of the tool, procedures were 
implemented for the selection and treatment 
of the database for the implementation of 

the neural network in spectrometry with 
Bonner spheres at the LNMRI’s Neutron 
Spectrometry Laboratory. Therefore, it was 
possible to assemble, train and test the neural 
network “Neutron Spectrometry” and show 
through an evaluation process of its efficiency 
by comparison between trained and tested 
data, as well as comparison with literature 
data, such as MNIST and Lemos,(2009).

This study demonstrated the possibility of 
using neural networks for the prediction of 
response matrix in spectrometry with Bonner 
Spheres, and allows improving the knowledge 
about machine learning and neutron 
spectrometry through the use and application 
of the results in different areas related to 
neutron metrology. These applications can be 
extended to other aspects of metrology, such 
as the uncertainty estimation and pattern 
classification. The results achieved by the 
development of this work finally open up paths 
for future works with other neural network 
models, such as the Convolutional Neural 
Network (CNN) in neutron spectrometry. 
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