CAPÍTULO 4

OTIMIZAÇÃO DAS OPERAÇÕES E UTILIZAÇÃO DE INSTRUMENTOS E RECURSOS EM CUBESATS

Data de submissão: 24/09/2024

Data de aceite: 01/10/2024

Fernanda Lyra Alves

Instituto de Ciência e Tecnologia, UNIFESP, São José dos Campos, SP

Inácio Malmonge Martin

Departamento de Física, Divisão de Ciências Fundamentais, ITA, São José dos Campos, SP

Mauro A. Alves

Departamento de Física, Divisão de Ciências Fundamentais, ITA, São José dos Campos, SP

RESUMO: Acrescente aplicação de satélites CubeSat nas ciências espaciais tornam desejável a busca por métodos eficientes de otimizar o sequenciamento de suas tarefas. Este trabalho avalia a viabilidade da aplicação de três meta-heurísticas de otimização combinatória ao cenário de agendamento de execução de tarefas em satélites CubeSat. As meta-heurísticas são aplicadas a um cenário representativo de um CubeSat 1U e obtém resultados favoráveis, destacando o BRKGA como uma meta-heurística de alta performance e realçando a Busca Tabu como potencial ferramenta de pré-otimização na busca de soluções

iniciais para alimentação de uma metaheurística subsequente. O trabalho valida o uso dessas técnicas no contexto proposto, realçando a possibilidade de melhora de eficiência energética e produtividade desses equipamentos.

PALAVRAS-CHAVE: Otimização Combinatória. CubeSat. BRKGA. GRASP; Busca Tabu;

1 I INTRODUÇÃO

Desde sua introdução no início do século XXI, CubeSats tem se tornado cada vez mais relevantes no cenário da ciência espacial, em especial no contexto educacional. A relativa acessibilidade e baixo custo desses satélites os tornam uma opção atrativa para aproximar estudantes ao processo de construção e operação de satélites, bem como para a execução de missões com âmbito científico.

Entretanto, como todo aparato científico, estes ainda requerem bom planejamento sobre seu uso para seu maior proveito. A falta de qualidade no sequenciamento de tarefas executadas em órbita pode levar tanto a problemas

de menor escala como a subutilização dos instrumentos e perda de oportunidades de observação quanto a problemas mais severos como a exaustão da bateria e desligamento do satélite

Dessa forma, a busca por qualidade do sequenciamento pode ser vista como uma etapa importante na pesquisa e desenvolvimento desses equipamentos. Essa busca pode ser realizada usando uma variedade de técnicas de otimização, que variam tanto na sua efetividade quanto na sua eficiência.

2 I OBJETIVOS

Este trabalho busca avaliar a viabilidade da otimização da agenda de execução de tarefas de um CubeSat através do uso de três diferentes meta- heurísticas de otimização combinatória.

3 I METODOLOGIA

3.1 Dados e Contexto

Para investigação de um cenário próximo às necessidades de um CubeSat de pequeno porte, o cenário e modelo utilizados foram baseados no trabalho de Rigo et al. (2020), cuja instância de tarefas CubeSat 1U foi a base da instância usada neste trabalho.

3.2 Biased Random Key Genetic Algorithm

A meta-heurística BRKGA, introduzida por Gonçalves e Resende (2011), pesquisa por soluções através de um algoritmo genético que otimiza de maneira enviesada cromossomos de números reais no intervalo [0,1). Estes são traduzidos para o espaço de soluções por um componente chamado decodificador, que também calcula o *fitness* de cada solução.

A implementação elaborada neste projeto usou uma população de 250 cromossomos por geração, a definição do grupo elite como os 25 melhores cromossomos, a adição de 75 indivíduos inteiramente aleatórios a cada nova geração e 60% de preferência à genes de elite no processo de cruzamento.

3.3 Greedy Randomized Algorithmic Search Procedure

O GRASP, introduzido por Feo e Resende (1989), consiste na combinação de um algoritmo guloso de construção de solução seguido de uma pesquisa local por melhores soluções.

A implementação de GRASP elaborada para este trabalho usou como critério de

restrição dos candidatos no processo guloso de construção os elementos do percentil 33 de melhor benefício local.

3.4 Busca Tabu

A busca tabu, introduzida por Glover (1989), aplica um processo extensivo de busca local que memoriza por curto prazo o caminho tomado para chegar à solução atual, temporariamente proibindo movimentos contrários ao mesmo. Isso evita retornos precipitados e permite a exploração de uma maior parcela do espaço de soluções com menor atração à mínimos locais.

41 RESULTADOS

O código-fonte de condução dos experimentos foi escrito na linguagem de programação Python versão 3.12.0, usando as bibliotecas abertas NumPy e Matplotlib para auxílio aos cálculos e plotagem de gráficos respectivamente. Os testes foram executados em um computador com processador Intel Core i5- 8250U, 8GB de RAM e sistema operacional Windows 11 23H2.

Cada algoritmo foi executado por 5000 iterações. Para os algoritmos BRKGA e busca Tabu foi necessária a alimentação de soluções iniciais básicas manualmente construídas como ponto de partida (*warm starting*). O *fitness* de uma solução é definido como a somatória do tempo de execução de cada tarefa multiplicado por sua prioridade.

A Fig. 1 apresenta o gráfico de consumo energético da solução obtida pela metaheurística BRKGA. Com *fitness* de 291, essa solução foi o melhor resultado obtido neste trabalho. A execução de todas as iterações do algoritmo levou 14 min 9 s (849 s).

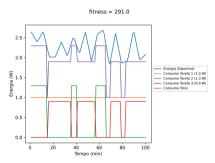


Figura 1 - Solução obtida pelo BRKGA.

A Fig. 2 apresenta o gráfico de consumo energético da solução obtida pela metaheurística GRASP. A execução de todas as iterações desse algoritmo levou 1 h 20 min 40 s (4840 s).

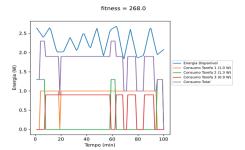


Figura 2 - Solução obtida pelo GRASP.

Finalmente, a Fig. 3 apresenta o gráfico de consumo energético da solução obtida pela busca Tabu. Essa solução apresenta subutilização energética e má sincronia entre as tarefas, entretanto a execução de todas as iterações da busca Tabu levou apenas 3 min 16 s (196 s). Devido a sua rápida execução, a busca Tabu poderia ser utilizada como mecanismo de construção de uma solução inicial básica a ser posteriormente refinada por outra meta-heurística.

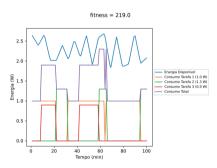


Figura 3 - Solução obtida pela busca Tabu.

51 RESULTADOS

Neste trabalho validamos a possibilidade de uso de meta-heurísticas para otimização do sequenciamento de tarefas de satélites CubeSat. Entre os três algoritmos testados, a meta-heurística BRKGA teve a melhor performance, resultando em uma solução de boa qualidade com pouco tempo de execução. A busca Tabu, por executar em pouco tempo, apresenta potencial para uso como uma etapa de pré-otimização na busca de novas soluções iniciais a serem usadas na inicialização de uma meta- heurística principal.

AGRADECIMENTOS

A bolsista agradece ao CNPq e ao programa PIBIC pelo suporte financeiro recebido. (Processo nº 156098/2023-7). A bolsista também agradece ao Instituto Tecnológico de Aeronáutica – Divisão de Ciências Fundamentais pelo apoio para a execução deste trabalho.

REFERÊNCIAS

RIGO, Cezar Antônio et al. Task scheduling for optimal power management and quality-of-service assurance in CubeSats. *Acta Astronautica*, v. 179, p. 550-560, 2021.

GONÇALVES, José Fernando; RESENDE, Mauricio GC. Biased random-key genetic algorithms for combinatorial optimization. *Journal of Heuristics, v. 17, n. 5, p. 487-525, 2011.*

FEO, Thomas A.; RESENDE, Mauricio GC. A probabilistic heuristic for a computationally difficult set covering problem. *Operations research letters, v. 8,* n. 2, p. 67-71, 1989.

GLOVER, Fred. Tabu search - part I. ORSA Journal on computing, v. 1, n. 3, p. 190-206, 1989.