
1
Journal of Engineering Research ISSN 2764-1317 DOI https://doi.org/10.22533/at.ed.3174232418092

Journal of
Engineering
Research

v. 4, n. 23, 2024

All content in this magazine is
licensed under a Creative Com-
mons Attribution License. Attri-
bution-Non-Commercial-Non-
Derivatives 4.0 International (CC
BY-NC-ND 4.0).

Acceptance date: 20/09/2024

UIB-AILS: A MODEL
FOR AUTONOMOUS
INDUCTIVE LEARNING
SYSTEMS

Gabriel Fiol-Roig
University of the Balearic Islands
Islas Baleares, Spain

2
Journal of Engineering Research ISSN 2764-1317 DOI https://doi.org/10.22533/at.ed.3174232418092

Abstract. Systems that learn autonomously
constitute a relevant exponent with- in the
category of intelligent systems. Such systems
are characterized by the ability to update
their decision/action hypothesis over time
without any external intervention. Such
capacity for updating is based on some main
considerations, such as: the experiences
accumulated by the system, the acquisition
of new knowledge from the environment,
the general structural characteristics of the
hypothesis and the criterion specifying the
particular properties that the hypoth- esis
must satisfy. The design of an autonomous
inductive learning system – AILS - is a com-
plex task. This work presents a general model
for the design of AILSs, whose components
can be customized according to the nature
of the problem in hand, so that the model
is suitable for addressing the design of a
variety of AILS with different peculiarities.
Such a model adopts a cyclic evolutionary
configuration that includes, among others,
components to deal with data imprecision,
tech- niques to handle the vagueness of
decisions/actions, and methods to process in a
unified way knowledge coming from different
levels of abstraction, such as raw data and
logic expressions.
Keywords: Evolutionary Inductive Learning
Systems, Knowledge Acquisition, Qualitative
Knowledge.

INTRODUCTION
Evolutionary learning is the process by

which a system/agent improves its function
over time [1]. In this way, a system/agent is said
to learn if its behavior over time is consistent
with the proposed objectives. Two important
issues for an agent to be able to learn over time
refer to: the agent’s ability to reason about the
knowledge provided by the environment and
the experiences accumulated by the agent
over time.

The design of autonomous inductive
learning systems from classified examples is
a complex task, since the issues affecting the
learning process are numerous and some
of them difficult to solve. In the literature
there are hardly any models that cover a
design of this type. Many of the published
models simply cover the design of induc- tive
reasoning systems, but they are not focused
on the task of true inductive learning. In fact,
the concepts of reasoning and learning are
often confused.

This paper presents a model for autonomous
evolutionary learning from examples and
accumulated experiences by the system/agent
up to that point. The learning pro- cess has no
time limits, that is, it is a permanently open
process of improving the per- formance of
the system/agent. Thus, the decision/action
capacity of the system/agent at a given time
depends solely on the knowledge provided
by the environment - ex- amples - and the
experiences accumulated by the agent.
Regarding knowledge pro- cessing, it should
be emphasized that the proposed model is
based on inductive- deductive reasoning [2],
since it works simultaneously on specific
knowledge struc- tures -the examples from the
environment- and on abstract structures that
give support to the decision/action hypothesis
and the experiences -decision trees, logical
expres- sions, graphs, neural networks, etc.-
in order to improve the decision/action
hypothe- sis. The components of the inductive
model presented in this work are briefly de-
scribed below.

The external environment is the device
that provides external knowledge to the
agent. In the particular case that concerns
us, this knowledge is expressed in terms of
concrete examples about some concept. It is
specific knowledge that can include pre- cise
and imprecise data. In [2, 3, 4] it has been
proved that imprecise data can provide useful

3
Journal of Engineering Research ISSN 2764-1317 DOI https://doi.org/10.22533/at.ed.3174232418092

qualitative knowledge for the decision/action
hypothesis of the system/agent.

The decision/action hypothesis, also known
as the knowledge base, contains the agent’s
knowledge about the environment – that is,
the agent’s interpretation of the environment.
It has an abstract – intentional – format, which
facilitates the sys- tem/agent’s deductive
reasoning in achieving its objectives. The
decision/action hy- pothesis is updated over
time.

The central core of the model, called
knowledge acquisition device, is responsible for
simultaneously processing specific knowledge
from the environment and abstract knowledge
from the hypothesis and experiences of the
system/agent. The knowledge acquired is
abstract and constitutes the current hypothesis
or knowledge base. This device constitutes the
inductive-deductive stage of the model.

The fact base stores the perceptions that
the agent receives from the environment at
each instant in time. Perceptions are used as
facts by the process of deductive reason- ing
-that is, the action-decision device- from the
knowledge base. Perceptions are described by
specific knowledge.

Based on the perceptions of the fact base,
the decision-action device is responsible for
reasoning deductively from the knowledge
base. The results of this reasoning process are
the decisions/actions that the agent will adopt.

The execution-verification device is
responsible, on the one hand, for executing
the decisions/actions deduced by the decision-
action device and, on the other hand, for
verifying their quality. The results of this
checking process will constitute the sys- tem/
agent’s experiences.

The feedback stage determines the cyclical
nature of the model. It is is based on the
knowledge provided by the experiences about
the decisions/actions taken. This knowledge is
the result of the execution-verification device.

The main components of the model are
described in more detail in the following
sections.

AN AUTONOMOUS INDUCTIVE
LEARNING SYSTEM MODEL
This section presents a model for

autonomous inductive learning from classified
ex- amples. This model is an extension of
the simple model described in [1]. Figure 1
illustrates such model.

From Figure 1 it can be seen that this is a
cyclic model, where the knowledge base and
the system experiences provide feedback to
the model, in particular to the knowledge
acquisition device.

The model consists of the six devices that
have been briefly described in the previ- ous
section, and the feedback stage. In order to
clarify the exposition of this work, two types
of feedback are distinguished in Figure 1:

•	 Feedback 1 is the simplest, as it only
considers the knowledge base as the
knowledge element from which the
knowledge acquisition device receives
feed- back - note in Figure 1 that the
experiences of the system/agent have not
been con- sidered as feedback elements-.
It is important to emphasize again that
the knowledge base is expressed in an
abstract format.

•	 Feedback 2 is the complete feedback, as
discussed in the previous section, cover-
ing the knowledge base and the system/
agent’s experiences, both expressed in an
abstract format.

This is an evolutionary and incremental
model that works by cycles, so that each cy- cle
defines a new stage of the system/agent. Each
cycle must necessarily lead to an improvement
of the knowledge base. Each cycle is referred
to as a learning cycle.

4
Journal of Engineering Research ISSN 2764-1317 DOI https://doi.org/10.22533/at.ed.3174232418092

Fig. 1. Model for autonomous inductive learning from classified examples.

The number of cycles of the system/agent
is limited by the number of examples and
experiences over time that the environment
and the execution-verification device are
able to provide to the model. That is, as
long as the environment and/or the execu-
tion-verification device provide examples/
experiences to the model, the system/agent
will process them in order to improve the
knowledge base. The knowledge base is
updated at each learning cycle, according to
the examples and the experiences gener- ated
up to the given cycle. This model is very useful
in complex environments, where the scope of
the number of examples is not known. In this
way, the learning process of the system/agent
can work indefinitely.

THE ENVIRONMENT
Also referred to as Object-Attribute Table

-abbreviated OAT-, it constitutes the exter- nal
input knowledge of the knowledge acquisition
device [2, 5, 6]. Such knowledge is expressed
in the form of examples or concrete portions
of knowledge about some concept. The notion
of OAT is referred to as Information System by
other authors [7], however there are relevant
differences between both concepts. Next the
concept of OAT is formally described.

An OAT consists of a set of classified
examples and a set of attributes in terms of
which the examples are described. An OAT
is said to be completely specified if the values
of the examples with respect to each of the
attributes are known and fully spec- ified [2,
8]. On the other hand, an OAT is incompletely
specified if some of the attrib- ute values are
not completely specified, or in the extreme
case, they are completely unknown [3, 4].

Completely and incompletely specified OATs
are processed in a unified way by the knowledge
acquisition device, that is, there is no need to
distinguish between both types of OAT. The
concept of OAT is formally defined below.

Definition 1 (representing attribute values).
The value of an attribute rj in a specific
situation di can be represented by a subset
Vdi,rj, Vdi,rj = {vi

j1 , v
i
j2 ,…, vi

jp }, being vi
j1 , v

i
j2 ,…,

vi
jp the different simple values adopted by rj in

the situation di. If the number of values of Vdi,rj
is greater than 1, that is #Vdi,rj >1 -where the
symbol # represents the cardinal of Vdi,rj -, then
ri is said to be an incompletely specified/vague
attribute. If #Vdi,rj =1 then ri is a completely
specified attribute. #Vdi,rj can never be less than
1. If Vdi,rj, Vdi,rj={vi

j1 , v
i
j2 ,…, vi

jp} is a vague value
of attribute rj -that is, #(Vdi,rj)>1- in the specific
situation di, then Vdi,rj will also be represented
by the symbol

5
Journal of Engineering Research ISSN 2764-1317 DOI https://doi.org/10.22533/at.ed.3174232418092

According to definition 1, let us note that if
an attribute rj is vague in any specific situation
di, then rj is definitely vague - that is, rj is
considered simply a vague attribute -. If there
is no specific situation di in which rj is vague,
then rj is definitely a fully specified attribute.

Definition 2 (domain of an attribute).
The domain Vi of the attribute ri covers the
values that the attribute can take in all specific
situations observed up to the current time.
This means that:

•	 Since Vi is made up of values of ri, then
Vi is a set of subsets, since, according to
definition 1, each value is represented by
a set.

•	 As Vi is made up of the values of ri
observed up to “the current time”, then Vi
may evolve over time, since new values of
ri will possibly be observed in the future.

Definition 3 (Object Attribute Table).
OAT= < D, R, W, V, V’, F, H, Q, C, f >, where:

D = {d1, d2, …, dm} is a set of examples or
concrete portions of knowledge.

R = {r1, r2, …, rn} is a set of qualities or
attributes in terms of which examples of D are
described.

W={W1, W2, …, Wn} is A set of domains
of simple values of the attributes, ri, ri ϵ R,
i=1…n, being, Wj, Wj ϵ W, the domain of
simple values of attribute rj in the OAT. A
simple domain is made up of all possible
simple values of attributes.

V={V1, V2, …, Vn} is a set consisting of the
domains of each attribute, ri, ri ϵ R, i=1…n,
being, Vj={ v1,rj, v2,rj,…, vp,rj}, Vj ϵ V, the
domain of attribute rj in the OAT. Note that
the values of a domain Vi are all different and
will take the form vk,ri, vk,ri ϵ Vi. According to
definition 1, each value vk,ri ϵ Vi is a subset of
simple values of Wi.

C is a set of concepts, C = {C1, C2,…, Cw}.
Each Ci i=1…w, represents a concept f is a
function that assigns to each element of D its
corresponding concepts, that is, f: D→П(C),

where П(C) denotes the set of parts of C.
Note that each example, di ϵ D, has a subset of
concepts associated.

V’, V’ = {V’1, V’2, …, V’n, V’1,2, …, V’i,j,…k,…,
V’1,2,…n}, represents the set of do- mains
of all attribute-value tuples of the OAT
corresponding to all attribute subsets of R. That
is, V’i,j,…,k, with i=1…n, j=1…n,… k=1…n,
i≠j≠…≠k, represents the domain of attribute-
value tuples of the OAT corresponding to the
attribute subset {ri, rj,…, rk}. Note how set V’
constitutes an extension of V to all attribute
subsets of the OAT. Set V’ contains 2n-1
elements - that is, domains of attribute-value
tuples.

F={f1, f2, …, fn}, fi : Dx{ri}→Vi, i=1...n, is a
set of functions that define the values adopted
by the elements of D for each attribute ri, i =
1, 2, …, n.

H={h1, h2,...hn} is a set of functions, one
for each attribute ri of the OAT, such that hj,
j=1..n, associates the corresponding subset
of concepts to each simple value vjk, vjk ϵ
vw,rj, vw,rj={vj1, vj2,…, vjp}, vw,rj ϵ Vj. That is,
hj:Wj→П(C), so that hj(vjk) = f(d1) ∪ f(d2) ∪…∪
f(dm)} for all ds, s=1..m, such that vjk ϵ fj(ds, rj).

Q={q1, q2,...qn} is a set of functions,
one for each attribute ri of the OAT. Let
vk,rj={vj1, vj2,…, vjp}, vk,rj ϵ Vj, be a value of
attribute rj, where vjk, k=1..p, are its sim- ple
values. Functions of set Q take the form qj:
Vj→П(П(C)), so that each qj, j=1..n, associates
the corresponding set of subsets of concepts
of C to each different value vk,rj={vj1, vj2,…,
vjp}, vk,rj ϵ Vj, being qj(vk,rj)={hj(vj1), hj(vj2),…,
hj(vjp)}. Note that expression {hj(vj1), hj(vj2),…,
hj(vjp)} represents a set of subsets of concepts,
one for each simple value, vjk, vjk ϵ vk,rj. It is
important to emphasize that the sets defined
by the functions qj(vk,rj)={hj(vj1), hj(vj2),…,
hj(vjp)} may contain repeated elements -that is,
repeated subsets of concepts of C-. To avoid
confusion in practice, it is important to define
an order relationship between the subsets
defined by the functions qj(vk,rj).

6
Journal of Engineering Research ISSN 2764-1317 DOI https://doi.org/10.22533/at.ed.3174232418092

Figure 2 illustrates graphically an example
of an OAT.

Example. Consider the OAT of Figure 2.
According to definitions 1, 2 and 3, we have:

D = {d1, d2, d3, d4, d5, d6, d7} is a set of
examples.

R = {r1, r2, r3, r4} is the set of attributes in
terms of which the examples are de- scribed.

C = {Ca, Cb, Cd} is the set of concepts.
The right column of the table, represented

by the symbol П(C), represents the con- cepts
of C associated with each element di ϵ D.

Fig. 2. Example of an OAT.

Vdi,rk, Vdi,rk ϵ Vi, i=1…m. k=1…n, are the
values of the examples for each attribute.
These values are actually subsets of values
-see definition 1-, so they are enclosed in
parentheses. Note how element d3 takes, with
respect to attribute r1, the value Vd3,r1={*1

0, 1},
which can also be represented as Vd3,r1= {0, 1}.
Such a value is a vague value, since #Vd3,r1>1.
The same occurs with values Vd6,r3= {0, 1, 2}
and Vd4,r4={0, 1}. The rest of values in the OAT
are fully specified.

W={W1, W2, …, Wn} is a set of domains
of simple values of the attributes, ri, ri ϵ R,
i=1…n. Thus, W1={0, 1}, W2={red, green,
blue}, W3={0, 1, 2}, W4={0, 1}.

 V = {V1, V2, V3, V4}, represents the set of
attribute domains of R, where Vi is the domain
of attribute ri. Thus, we have: V1={{0}, {1},
{*1

0, 1}}={{0}, {1}, {0,1}}, V2={{red}, {green},
{blue}}, V3={{0}, {1}, {2}, {*3

 0,1,2}}={{0}, {1},
{2}, {0,1,2}}, V4 = {{0}, {1}, {*4

0,1}}={{0}, {1},
{0,1}}.

V’ = {V’1, V’2, V’3, V’4, V’1,2, V’1,3, V’1,4, V’2,3,
V’2,4, V’3,4, V’1,2,3, V’1,2,4, V’1,3,4, V’2,3,4, V’1,2,3,4},
represents the set of domains of attribute-value
tuples of the OAT, for all attribute subsets of
R. Some examples of such domains are:

V’1={<0>, <1>, <*1
0, 1>},

V’1,2={<0, red>, <0, green>, <*1
0, 1, red>, <0,

blue>, <1, blue>},
V’2,3,4={<red, 1, 0>, <green, 0, 1>, <red, 0,

1>}, <blue, 0, *4 0,1>, <blue, 2, 0>, <red, *3
 0,1,2,

1>, <blue, 1, 1> }.
 F={f1, f2, f3, f4} is a set of functions that

define the values adopted by the elements of
D for each attribute ri, Examples:

f1(d1, r1) = {0}, f1(d2, r1) = {0}, f1(d3, r1) =
{*1

0, 1};
f2(d1, r2) = {red}; f2(d2, r2) = {green}; f2(d3,

r2)={red}.
H={h1, h2,...hn} is a set of functions hi,

hj:Wj→П(C), one for each attribute ri of
the OAT, such that hj, j=1..n, associates the
corresponding set concepts of C to each simple
value vjk, vjk ϵ vw,rj, vw,rj={vj1, vj2,…, vjp}, vw,rj ϵ
Vj, so that hj(vjk)=f(d1)uf(d2) ∪…∪ f(dm)} for
all ds, s=1..m, such that vjk ϵ fj(ds, rj).

Examples:
Let us consider attribute r1. W1={0, 1}. Then

h1(0)={Ca}∪{Cb}}∪{Cb}u {Cd}}∪{Cb}={Ca, Cb,
Cd}; h1(1)={Cb}∪{Ca}∪{Ca}={Ca, Cb}.

Let now consider attribute r3. W3={0,1,2}.
Thenh3(0)={Cb}∪{Cb}∪{C d}∪{Cb}={Cb,
C d} ; h 3 (1) = { C a} ∪ { C b} ∪ { C a} = { C a, C b} ;
h3(2)={Ca}∪{Cb}={Ca, Cb}.

Q={q1, q2,...qn} is a set of functions
qj:Vj→П(П(C)), one for each attribute ri of
the OAT, so that each qj, j=1..n, associates the
corresponding set of subsets of concepts of C
to each different value vk,rj={vj1, vj2,…, vjp}, vk,rj
ϵ Vj, being qj(vk,rj)={hj(vj1), hj(vj2),…, hj(vjp)}.

Examples:
Consider domain V1={{0},{1},{0,1}} of

attribute r1. Then q1{{0}}= {h1(0)}= {Ca, Cb,
Cd}; q1{{1}}= {h1(1)}= {Ca, Cb}; q1{{0,1}}=
{h1(0), h1(1)}= {{Ca, Cb, Cd }, {Ca, Cb}}.

7
Journal of Engineering Research ISSN 2764-1317 DOI https://doi.org/10.22533/at.ed.3174232418092

Let now consider domain V3={{0}, {1}, {2},
{0,1,2}} of attribute r3. Then q3{{0}}= {h3(0)}=
{Cb,Cd}; q3{{1}}= {h3(1)}= {Ca,Cb}; q3{{2}}=
{h3(2)}= {Ca,Cb}; q3{{0,1,2}}= {h3(0), h3(1),
h3(2)}= {{Cb, Cd}, {Ca, Cb}, {Ca, Cb}}.

Due to reasons of space and clarity in the
presentation of concepts, the OAT de- scribed
in this section has been formulated only for
attributes with discrete domains. An extension
for the case of OAT with continuous attributes
is presented in [4].

THE KNOWLEDGE ACQUISITION
DEVICE
The knowledge acquisition device

-abbreviated KAD- is responsible for updating
the knowledge base -abbreviated KB- in each
learning cycle of the system/agent, so that
the resulting KB is the one that best fits the
established criterion. This criterion de- pend
on the nature of the problem being solved and
specifies the characteristics that the KB must
satisfy.

Let us first consider the Feedback-1 of the
learning model in Figure 1. The key to updating
the KB is to design a qualitative knowledge
acquisition method from new examples
coming from the Environment and from the
KB, in order to improve the functionality of
the KB itself. If we now consider Feedback-2
from Figure 1, then the qualitative knowledge
acquisition method just mentioned must
consider, in addition to new examples from
the environment and the KB, the experiences
of the system/agent. From the just mentioned
considerations in this paragraph, we can
say that the referred qualitative knowledge
acquisition method constitutes the core of
KAD.

Due to space restrictions and in order to
clarify the discussion, only the learning model
based on Feedback-1 will be presented in this
section.

For practical reasons, the decision tree
structure has been considered as the format
to support the knowledge base -KB-. A
decision tree can be interpreted as a set of
antecedent-consequent rules, such that each
branch of the tree from the root to a leaf
node constitutes a rule. In turn, each example
from the Environment can also be seen as an
antecedent-consequent rule. This is the first
step: converting all the input knowledge to the
KAD -examples and KB- into the same abstract
format -antecedent- consequent rules-, which
requires an appropriate conversion process.
The next step is to reason about the resulting
set of antecedent-consequent rules, in order
to modify the KB, which adopts a decision
tree format. This is a process of extraction of
qualita- tive knowledge from a set of rules in
order to obtain a decision tree. Such a process
must necessarily be guided by a criterion
which defines the characteristics that the final
decision tree must satisfy.

The most relevant issues of the above two-
step process carried out by the KAD will be
described below.

INDUCTIVE INFERENCE ON AN
OAT: ATTRIBUTE BASES
The selection of an «adequate» subset

of attributes, Rx, Rx ⊆ R, to intensively de-
scribe the subsets or concepts of C in an
OAT, constitutes one of the main stages of
the inductive inference process. The term
«adequate» means that the attributes of
Rx must allow to describe the concepts of
C according to the characteristics of the
crite- rion considered. Such characteristics,
independently of the nature of the particular
problem, must guarantee, in any case, an
accurate description of the concepts, that is,
free of confusions or contradictions.

Any subset of attributes Rx, Rx ⊆ R, that
guarantees a confusion-free description of the
concepts of C is called an attribute basis of R

8
Journal of Engineering Research ISSN 2764-1317 DOI https://doi.org/10.22533/at.ed.3174232418092

with respect to C. Much of the com- putational
effort of an inductive process will focus on the
search for some “adequate” attribute basis,
particularly when it comes to getting an
optimal basis. Complete doc- umentation on
the concept of attribute basis can be found in
[2, 3, 4, 5, 8].

The following provides a formal definition
of the concept of attribute basis.

Definition 4 (couples of partially common
values). Consider a given OAT. Let vk,rj, vs,rj ϵ Vj,
k≠s, be two values in the domain of the same
attribute rj. If it holds that vk,rj ∩ vs,rj≠Ø, then
vk,rj and vs,rj are said to be a couple of partially
common values. Note that partially common
values are defined on the same domain.

Definition 5 (contradictory individual
values). Consider a given OAT. Let rj ϵ R be
an attribute of R with domain Vj. Let vk,rj={vj1,
vj2,…, vjw} be a value in the domain Vj, vk,rj ϵ
Vj. vk,rj is said to be a contradictory value if
and only if there exists some dr ϵ D, fj(dr,rj) ∩
vk,rj≠Ø, such that f(dr) ⊂ hj(vjs), s=1..w, for any
simple value vjs ϵ vk,rj, vjs ϵ fj(dr,rj) ∩ vk,rj –Note
that the symbol ⊂ refers to the strict inclusion
of subsets -.

Definition 6 (couples of contradictory
values). Consider a given OAT. Let rj ϵ R be
an attribute of R with domain Vj. Let vk,rj={vj1,
vj2,…, vjw} and vp,rj={v’j1, v’j2,…, v’js} be to
values in the domain Vj, vk,rj ϵ Vj, vp,rj ϵ Vj, such
that vk,rj ∩ vp,rj≠Ø. Let da ϵ D and db ϵ D, a≠b,
be such that fj(da, rj)=vk,rj and fj(db, rj)=vp,rj. If
f(da)≠f(db) then the cou- ple (vk,rj, vp,rj) is said
to be a couple of contradictory values. In the
case that vk,rj=vp,rj, then vk,rj/ vp,rj are individual
contradictory values -see definition 5-.

Definition 7 (couples of contradictory
attribute-value tuples). Consider a given OAT.
Let ea = <Vdv,ri, Vdv,rj,…, Vdv,rk>, ea ϵ V’i,j,…k,
Vdv,rs ϵ Vs, s=i,j,...,k, and eb=<Vdw,ri, Vdw,rj, …,
Vdw,rk>, eb ϵ V’i,j,…k, Vdw,rp ϵ Vp, p=i,j,…k, v≠w,
v,w = 1…m, be a couple of two attribute-value
tuples defined on the same attribute subset

Rx={ ri, rj,…, rk}, Rx⊂R. Tuples ea and eb are
said to be a couple of contradictory tuples with
respect to the subset of attributes Rx if and only
if [((Vdv,ri, Vdw,ri), (Vdv,rj, Vdw,rj), …, (Vdv,rk, Vdw,rk)
are all couples of partially common values)
AND (f(dv)≠f(dw)].

Definition 8 (attribute basis). Consider a
certain OAT. Let Rx={ri, rj,…, rk}, Rx⊆R, be a
subset of attributes of the OAT. Rx is said to
be an attribute basis with respect to C if, and
only if, there exist no couples of contradictory
attribute-value tuples with respect to the
subset Rx.

The concept of attribute basis is funda-
mental in induction from examples, since the
knowledge base is expressed in terms of an at-
tribute basis.

Example. Consider the OAT of Figure 2.
Let us test wether subset {r2, r3} is an at- tribute
basis. According to definition 8, {r2, r3} is an
attribute basis with respect to C if, and only if,
there is no couples of contradictory attribute-
value tuples with respect to the subset {r2, r3}.
Let’s check if this statement is true.

Consider tuples ea = <Vd1,r2, Vd1,r3> and
eb= <Vd2,r2, Vd2,r3>, whose values in the OAT
are ea=<{red},{1}> and eb=<{green},{0}>.
Reasoning according to definition 7, we see
that the couple ({red}, {green}) is not a couple
of partially common value. Therefore, ea and
eb are not a pair of contradictory attribute-
value tuples, so we cannot claim that ea and
eb are not an attribute base.

Consider now tuples ea = <Vd1,r2, Vd1,r3> and
eb = <Vd6,r2, Vd6,r3>, with values ea=<{red},{1}>
and eb=<{red},{0,1,2}> respectively. We have
that the couples ({red}, {red}) and ({1}, {0,1,2})
are both couples of partially common values,
since {red}∩{red}≠Ø and {1}∩{0,1,2}≠Ø.
Now we have tu check the second condition
of definition 7. We can see in Figure 1 that
f(d1)={Ca} and f(d6)={Cb}, thus f(d1)≠f(d6).
We have just shown that {r2, r3} is not an
attribute basis.

9
Journal of Engineering Research ISSN 2764-1317 DOI https://doi.org/10.22533/at.ed.3174232418092

Let us test now whether subset {r2, r3, r4}
is an attribute basis.

If we look at all the couples of attribute-
value tuples in set Rx={r2, r3, r4} of the OAT,
we see that the only couples of tuples that
satisfies the condition «((Vdv,ri, Vdw,ri), (Vdv,rj,
Vdw,rj), …, (Vdv,rk, Vdw,rk) are all couples of
partially common values)» from definition
7, is the couple of tuples (ed3, ed6), ed3=<Vd3,r2,
Vd3,r3, Vd3,r4>, ed6=<Vd6,r2, Vd6,r3, Vd6,r4>. No
other couple of tuples satisfies the above
condition. Therefore, now we only have to
verify the second condition of definition 7,
«(f(dv)≠f(dw)». From the OAT it follows that
f(d3)={Cb)} and f(d6) ={Cb}, hence f(d3)=f(d6).
Thus, it is concluded that Rx={r2, r3, r4} is an
attribute basis.

In this subsection we have described
the basic concepts to do with the second
gen- eral step of the knowledge acquisition
device: «reasoning about the resulting set
of antecedent-consequent rules, in order
to modify the KB, which adopts a decision
tree format». This step involves, first, finding
an attribute basis that satisfies the given
criterion, which depends on the nature of the
problem at hand. Second, generate a decision
tree from the attribute basis found. However,
before proceeding, it is neces- sary to turn
all the input knowledge to the KAD - that
is, the examples from the envi ronment and
the knowledge base - into the same format.
The following subsection describes the basic
concepts to do with such a conversion process.

OBJECT-ATTRIBUTE TABLES AS
SETS OF RULES
This section describes the general aspects

of the process to turn a knowledge base
expressed in a decision tree format into a set
of condition-action rules.

Condition-action rules -also named
production rules- are one of the most common
ways to express the knowledge base of a

reactive agent [9, 10]. The antecedent of the
rules is made up of conjunctions of attribute-
value pairs, while the consequent con- sists of
a single action - also called concept - which
can be triggered under the as- sumption of the
truth of its antecedent. A rule base is a set of
rules.

Decision trees constitute an intensive
-abstract- format to describe an OAT. Each
inner node of a decision tree -also called
attribute-node- generated from an OAT rep-
resents an attribute, whereas each leaf node
-also called concept-node- represents a subset
of concepts. Each attribute-node has as many
branches as values in the attrib- ute domain
associated with the node. A decision tree
covers all the examples of the corresponding
OAT.

Given a decision tree, each branch from
the root of the tree to a leaf node repre- sents
a rule. Thus, a decision tree can be represented
as a set of rules. Figure 2 illus- trates an
example.

Fig. 3. Decision-Tree as a set of rules.

{A, B, C} is the set of attributes of the
decision tree in Figure 3 and {α, β, skip} is the
set of concepts.

The following definition provides the
characteristics that a base of production rules
must meet in order to be suitable for applying
an inductive inference procedure to it.

Definition 9 (full rules). Let AT be the
set of attributes through which the anteced-
ents of all the rules in a production rule base,
BC, are described. A rule whose ante- cedent
include all the attributes in the set AT is called
a full rule.

10
Journal of Engineering Research ISSN 2764-1317 DOI https://doi.org/10.22533/at.ed.3174232418092

For example, rules (B=1)^(A=1) → α and
(B=1)^(A=0) → skip in Figure 3 are not full
rules, since their antecedent does not contain
all the attributes of AT={A,B,C}. While rule
(B=0)^(C=0)^(A=1)→ β is a full rule.

Let Vi be the domain of values of the
attribute ri in a rule base. If a rule is not a full
rule, then it can be turned into a full rule. To do
this, it is necessary to complete its antecedent
by adding to it those attribute-value pairs
whose attributes, ri ϵ AT, do not appear in the
antecedent of the rule and whose values of
said attributes will corre- spond to the value

, where {j, k,..., p}=Vi is the domain
of values of ri. For example, from Figure 3
we have that VA=VB=VC={0,1}. For example,
rule (B=1)^(A=1)→α is not a full rule, but
it can be turned into the following full rule:
(B=1)^(A=1)^(C= C0,1)→α. Figure 4 shows
the OAT from Figure 3 where all its rules have
been turned into full rules.

Fig. 4. Complete rules of an OAT.

An OAT can be considered as a set of full
rules. Those OATs resulting from the process
of turning not full rules into full rules are, in
general, incompletely specified OATs and can
be handled by the corresponding inference
mechanisms [3, 10].

Definition 10 (OAT of rules). An OAT
of rules is defined as a structure made up of
production rules such that all rules are full
rules.

From now on all considered OATs will
refer to OATs of rules.

INDUCTIVE INFERENCE ON OATS
OF RULES
The question at this point is «how to reason

about an OAT expressed as a set of rules»,
that is, an OAT of rules, «another set of rules
expressed as a decision tree».

The most common inference from a set of
rules is deductive inference, character- ized
by the search for specific conclusions from
assumptions represented through general
knowledge. Inductive inference, on the
other hand, represents reasoning on specific
elements of knowledge in order to obtain
general conclusions. Thus, it seems that
none of the types of deductive and inductive
inference fit the task actually posed at this
point; that is, a general knowledge structure -
decision tree - must be obtained from another
general knowledge structure - rule base. There
is little literature about the proposed problem.
With the exception of [10], all other references
that have been considered are based on points
of view very different from those of this work.

The algorithm proposed in [10] allows
obtaining a decision tree from an OAT of
rules with priorities defined on the rules.
The algorithm presented in [2] constitutes
the central core of the KAD. This algorithm
constitutes an extension of that presented
in [10], so that it allows reasoning jointly
from an OAT of examples coming from the
environment, an OAT of rules coming from
the decision tree - which constitutes the
knowledge base, KB - and the feedback, in
order to improve the decision tree -that is, the
knowledge base-.

This algorithm works cyclically, so that
each cycle constitutes a learning cycle. The
number of learning cycles of the algorithm
is unlimited, unless the environment is no
longer able to provide new examples and, at
the same time, the execution- verification
device is also not capable of generating new
experiences. As long as only one or both

11
Journal of Engineering Research ISSN 2764-1317 DOI https://doi.org/10.22533/at.ed.3174232418092

devices - the environment or the execution-
verification device - is still capable of providing
new knowledge - examples/experiences - then
the algorithm will continue working, since
the knowledge base can still be improved.
Thus, the algo- rithm is limited when both the
capacities of the environment and those of the
execu- tion-verification device are exhausted
at the same time.

A detailed analysis of the learning
algorithm described in [2] makes it possible
to highlight some important properties:

•	 The algorithm implements a dynamic
learning process, which allows, in each
learning cycle, to update the current
knowledge base based on the generation
of new experiences and/or when new
examples appear from the environment.

•	 The learning process of the described
model is carried out under the closed
domain hypothesis. In this way, the
evolution of the knowledge base is based
exclusively on the knowledge provided
by all the examples of the environment
that have ap- peared up to the current
moment. In this way, the learning process
updates, cycle by cycle, the knowledge
base.

•	 The sets of attributes and their domains
are not necessarily the same in each learn-
ing cycle. That is, in a learning cycle new
attributes that have not appeared in
pre- vious cycles may appear. Similarly,
attributes that have appeared in previous
cy- cles may not appear in a learning
cycle. This fact opens the door to more
powerful inductive learning systems.

•	 Each learning cycle of the algorithm
results in a necessarily non-negative
evolution of the knowledge base. The
term “non-negative” is used because there
is a possibil- ity that the new examples or
experiences that appear in a given cycle

do not pro- vide sufficient qualitative
knowledge to allow the knowledge base
to be improved. However, the knowledge
base can never get worse in any of the
cycles. This is a natural form of learning.

•	 The possibility of performing
inductive inference on incompletely
specified exam- ples is one of the great
contributions to learning, and it also
facilitates some of the previous properties.

•	 The activation of a new learning
cycle occurs for three reasons: simply
due to the appearance of new examples
- as described above -; simply by the
emergence of new experiences provided
by the Action-Decision device; or for
both of the above reasons.

•	 It is possible to provide the learning
algorithm with discretization processes of
continuous attributes [4] and binarization
processes of discrete attributes [17].

•	 The learning algorithm is clear, simple
and well structured, which makes it
easy to implement in a programming
language.

•	 This algorithm is not limited in time.

•	 Some applications of inductive
inference in different fields, such as
medicine, stock market analysis, disability
assistance, and web page classification,
are de- scribed in [11, 12, 13, 14, 15,
16]. These applications were developed
using the UIB-IK inductive platform [8],
designed for completely specified OATs,
including data of different typologies.

The following section describes the
most relevant features of the hypothesis or
knowledge base.

12
Journal of Engineering Research ISSN 2764-1317 DOI https://doi.org/10.22533/at.ed.3174232418092

THE HYPOTHESIS OR
KNOWLEDGE BASE
The knowledge base adopts a decision tree

format that evolves over time. Further- more,
it must be taken into account that the learning
process is carried out under the fundamental
hypothesis of the closed domain. That is,
the learning cycle at the current time must
consider only the characteristics of all the
examples that have appeared since the first
learning cycle. This means that those examples
that have not yet ap- peared in any learning
cycle must not be considered in the current
decision tree. The following subsections will
help us to understand how evolutionary
inductive learning can be handled.

DECISION TREES FOR LEARNING
To update the evolutionary hypothesis/

decision tree in the current learning cycle, it is
necessary, first of all, to know which examples
from the environment have appeared and
which have not appeared -missing examples-
in previous learning cycles. To do this, a
kind of decision trees known as decision
trees for learning – abbreviated DTL- will
be used. Once the decision tree for learning
has been generated in the current cycle, the
final decision tree –abbreviated FDT- is then
generated, which exclusively covers examples
that have appeared from the first cycle to the
current cycle.

As an illustrative example of the
characteristics of a DTL, without going into
deeper issues, consider the OAT of rules with
three rules in Figure 5.

Fig. 5. OAT of rules.

Note how the domains of attributes A, B, C
in Figure 5 are binary.

First, a decision tree for learning -DTL-
inferred from the examples in Figure 5 is
generated. This decision tree covers, on the
one hand, these examples and, on the other
hand, the rest of the possible examples of
the domain that do not appear in Fig- ure 5.
Such not appeared examples are denoted by
the symbol n.a -abbreviation of not appeared.
Figure 6 shows an example of such a decision
tree for learning.

Once the decision tree for learning has
been generated in the current cycle, the fi-
nal decision tree is then generated, which
exclusively covers examples that have ap-
peared from the first cycle to the current cycle.

Figure 7 shows the final decision tree for the
current cycle. This tree satisfies the minimum
number of nodes criterion.

Fig. 6. Decision tree for learning –DTL.

Fig. 7. Final decision tree –FDT.

13
Journal of Engineering Research ISSN 2764-1317 DOI https://doi.org/10.22533/at.ed.3174232418092

LEARNING DECISION TREES
For ease of discussion, only the Feedback 1

Model 1 will be considered at this point. The
inferential process in charge of updating the
DTL in each learning cycle of a Feedback-1
model is based on the following two knowledge
elements:

•	 The new examples of the OAT of rules
that appear in the current learning cycle.
These are the new examples coming from
the environment in this current learning
cycle.

•	 The current DTL, which corresponds
to the DTL generated in the preceding
learn- ing cycle.

Note that each of the two previously
mentioned elements of knowledge are
described through an OAT of rules. Both
OATs are then unified into a single OAT of
rules, which requires some specific processes
that are not described in this work.

In [2] is described algorithm that, on the
one hand, unifies both OATs of rules and, on
the other hand, updates the current DTL from
the resulting unified OAT. Some important
properties of this algorithm are highlighted in
section 4.3.

CONSIDERATIONS REGARDING
THE FEEDBACK 2 MODEL
Known as experience-driven learning,

Feedback_2 is a feedback model whose func-
tion is to update the current Knowledge Base.
To do this, it is based on the experienc- es
generated by the Action-Decision Device and,
possibly, the appearance of new examples
from the Environment.

EXPERIENCES AS A CONSEQUENCE
OF DECISION MAKING
Some general issues related to generating

experiences are:
•	 When and how should experiences be
generated?

•	 Who is responsible for generating
them?

•	 What are the reasons that lead to the
need for experiences?

•	 What kinds of experiences should be
considered?

•	 Do experiences depend on the nature
of each particular problem or do they
consti- tute generic patterns for an entire
class of problems?

•	 Is it possible to automate any type of
experiences and thus obtain a completely
autonomous learning system?

•	 How to turn the different types of
experiences into formal expressions so
that they are acceptable to the knowledge
acquisition device?

This section proposes a general approach
that addresses some of the issues mentioned
above.

Looking at the model in Figure 1, the
responsibility for generating experiences
lies with the execution-verification device.
Whatever the case, these decisions/actions
must first be carried out on the agent’s
environment and then, they must be evaluated
for their success or failure. This evaluation is
performed by the verification device. Thus, the
model in Figure 1 can be extended by that in
Figure 8.

The type of experiences of a learning
system depends on the nature of the problem
for which it was designed. Thus, a single
learning system can incorporate experiences
of different kinds and sources, such as:

14
Journal of Engineering Research ISSN 2764-1317 DOI https://doi.org/10.22533/at.ed.3174232418092

•	 Experiences guided by the user/expert
of the system, who may or may not feel
satisfied with the decisions made by the
learning system. For example, the user
de- cides that the criterion defining the
characteristics that the Hypothesis –
Decision Tree– must satisfy, must be
modified.

•	 Experiences generated by the system
itself, which can detect certain situations
that demand consideration. For example,
the system detects that the decision on
some examples in the Fact Base is not
satisfactory.

•	 Experiences due to changes in the
characteristics of the environment.
For example, some attributes become
unimportant due to disturbances in
the environment. This suggests that the
attribute basis on which the Hypothesis
is based is unsatisfactory and needs to be
modified.

•	 Etc…

Fig. 8. Autonomous inductive learning model extended with experiences.

In any case, the concept «experiences»
can be too complex and excessively broad to
be addressed in a unified way. In [2] a set of

possible experiences for inductive learn- ing
systems from examples is presented.

REFERENCES
1. Cohen, D. R., Feigenbaum, E, A.: The Handbook of Artificial Intelligence, vol 3. William Kaufman, Inc., Stanford, Calif. (1982).

2. Fiol Roig, G.: Autonomous Learning from Examples: An Incremental Inductive-Deductive Model (English Edition). Our Knowledge
Publishing, Chisinau (2023).

3. Fiol Roig, G.: Inductive Learning from Incompletely Specified Examples. Frontiers in Ar- tificial Intelligence and Applications 100,
286–295 (2003).

4. Fiol Roig, G.: Learning from Incompletely Specified Object Attribute Tables with Contin- uous Attributes. Frontiers in Artificial
Intelligence and Applications 113, 145–152 (2004).

5. Fiol Roig, G., Miró Nicolau, J., Miró Julià, J.: A New Perspective in Inductive Acquisition of Knowledge from Examples. Lecture Notes
in Computer Science 682, 219-228 (1993).

15
Journal of Engineering Research ISSN 2764-1317 DOI https://doi.org/10.22533/at.ed.3174232418092

6. Fiol Roig, G.: On Qualitative Knowledge in a Rule Based Knowledge Bases. Proceedings of the IJCAI-93 workshop on Validation,
Verification and Test of KBSs, pp. 27-36. Chambery (1993).

7. Pawlak, Z.: Theoretical Aspects of Reasoning About Data. Warsaw University of Tech- nology. Institute of Computer Science, 1990.

8. Fiol Roig, G.: UIB-IK: A Computer System for Decision Trees Induction. Lecture Notes in Artificial Intelligence 1609, 601-611
(1999).

9. Russell, S., Norvik, P.: Inteligencia Artificial. Un enfoque moderno, 2nd edn. Pearson Educación S.A., Spain (2004).

10. Fiol Roig, G.: On Discovering Qualitative Knowledge in Rule Based Knowledge Bases. An Intelligent Approach. Proceedings of
CISTI’2020 - 15th Iberian Conference on Infor- mation Systems and Technologies. Seville (2020).

11. Fiol Roig, G., Miró Nicolau, J.: A Diagnosis Problem Approach based on Inductive Ac- quisition of Knowledge from Examples.
Heuristics Vol 6(3), 54-65, (1993).

12. Fiol Roig, G. et al.: Computer-Aided Causal Diagnosis of Ascites. Analysis of a Prototype. Information, Intelligence and Systems Vol.
2, 1102-1107, (1996).

13. Fiol Roig, G., Arellano, D., Perales, F.J., Bassa, P., Zanlongo, M.: The Intelligent Butler: A Virtual Agent for Disabled and Elderly
People Assistance. Advances in Soft Computing Vol. 50, 375-384, (2008).

14. Fiol Roig, G., Miró Julià, M.: A Contribution for Elderly and Disabled Care Using Intelli- gent Approaches, Lecture Notes in
Computer Science 5518, 902-905 (2009).

15. Fiol Roig, G., Miró Julià, M.: Stock Market Analysis using Data Mining Techniques: a Practical Application. International Journal
of Artificial Intelligence Vol. 6 (11), 129-143 (2011).

16. Fiol Roig, G., Miró Julià, M., Herraiz, E.: Data Mining Techniques for Web Page Classifi- cation. Advances in Intelligent and Soft
Computing Vol. 89, 61-68, (2011).

17. Fiol Roig, G.: Contribución a la Adquisición Inductiva de Conocimiento. Doctoral disser- tation. University of the Balearic Islands,
Palma (1991).

