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Abstract. Systems that learn autonomously 
constitute a relevant exponent with- in the 
category of intelligent systems. Such systems 
are characterized by the ability to update 
their decision/action hypothesis over time 
without any external intervention. Such 
capacity for updating is based on some main 
considerations, such as: the experiences 
accumulated by the system, the acquisition 
of new knowledge from the environment, 
the general structural characteristics of the 
hypothesis and the criterion specifying the 
particular properties that the hypoth- esis 
must satisfy. The design of an autonomous 
inductive learning system – AILS - is a com- 
plex task. This work presents a general model 
for the design of AILSs, whose components 
can be customized according to the nature 
of the problem in hand, so that the model 
is suitable for addressing the design of a 
variety of AILS with different peculiarities. 
Such a model adopts a cyclic evolutionary 
configuration that includes, among others, 
components to deal with data imprecision, 
tech- niques to handle the vagueness of 
decisions/actions, and methods to process in a 
unified way knowledge coming from different 
levels of abstraction, such as raw data and 
logic expressions.
Keywords: Evolutionary Inductive Learning 
Systems, Knowledge Acquisition, Qualitative 
Knowledge.

INTRODUCTION
Evolutionary learning is the process by 

which a system/agent improves its function 
over time [1]. In this way, a system/agent is said 
to learn if its behavior over time is consistent 
with the proposed objectives. Two important 
issues for an agent to be able to learn over time 
refer to: the agent’s ability to reason about the 
knowledge provided by the environment and 
the experiences accumulated by the agent 
over time.

The design of autonomous inductive 
learning systems from classified examples is 
a complex task, since the issues affecting the 
learning process are numerous and some 
of them difficult to solve. In the literature 
there are hardly any models that cover a 
design of this type. Many of the published 
models simply cover the design of induc- tive 
reasoning systems, but they are not focused 
on the task of true inductive learning. In fact, 
the concepts of reasoning and learning are 
often confused.

This paper presents a model for autonomous 
evolutionary learning from examples and 
accumulated experiences by the system/agent 
up to that point. The learning pro- cess has no 
time limits, that is, it is a permanently open 
process of improving the per- formance of 
the system/agent. Thus, the decision/action 
capacity of the system/agent at a given time 
depends solely on the knowledge provided 
by the environment - ex- amples - and the 
experiences accumulated by the agent. 
Regarding knowledge pro- cessing, it should 
be emphasized that the proposed model is 
based on inductive- deductive reasoning [2], 
since it works simultaneously on specific 
knowledge struc- tures -the examples from the 
environment- and on abstract structures that 
give support to the decision/action hypothesis 
and the experiences -decision trees, logical 
expres- sions, graphs, neural networks, etc.- 
in order to improve the decision/action 
hypothe- sis. The components of the inductive 
model presented in this work are briefly de- 
scribed below.

The external environment is the device 
that provides external knowledge to the 
agent. In the particular case that concerns 
us, this knowledge is expressed in terms of 
concrete examples about some concept. It is 
specific knowledge that can include pre- cise 
and imprecise data. In [2, 3, 4] it has been 
proved that imprecise data can provide useful 
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qualitative knowledge for the decision/action 
hypothesis of the system/agent.

The decision/action hypothesis, also known 
as the knowledge base, contains the agent’s 
knowledge about the environment – that is, 
the agent’s interpretation of the environment. 
It has an abstract – intentional – format, which 
facilitates the sys- tem/agent’s deductive 
reasoning in achieving its objectives. The 
decision/action hy- pothesis is updated over 
time.

The central core of the model, called 
knowledge acquisition device, is responsible for 
simultaneously processing specific knowledge 
from the environment and abstract knowledge 
from the hypothesis and experiences of the 
system/agent. The knowledge acquired is 
abstract and constitutes the current hypothesis 
or knowledge base. This device constitutes the 
inductive-deductive stage of the model.

The fact base stores the perceptions that 
the agent receives from the environment at 
each instant in time. Perceptions are used as 
facts by the process of deductive reason- ing 
-that is, the action-decision device- from the 
knowledge base. Perceptions are described by 
specific knowledge.

Based on the perceptions of the fact base, 
the decision-action device is responsible for 
reasoning deductively from the knowledge 
base. The results of this reasoning process are 
the decisions/actions that the agent will adopt.

The execution-verification device is 
responsible, on the one hand, for executing 
the decisions/actions deduced by the decision-
action device and, on the other hand, for 
verifying their quality. The results of this 
checking process will constitute the sys- tem/
agent’s experiences.

The feedback stage determines the cyclical 
nature of the model. It is is based on the 
knowledge provided by the experiences about 
the decisions/actions taken. This knowledge is 
the result of the execution-verification device.

The main components of the model are 
described in more detail in the following 
sections.

AN AUTONOMOUS INDUCTIVE 
LEARNING SYSTEM MODEL
This section presents a model for 

autonomous inductive learning from classified 
ex- amples. This model is an extension of 
the simple model described in [1]. Figure 1 
illustrates such model.

From Figure 1 it can be seen that this is a 
cyclic model, where the knowledge base and 
the system experiences provide feedback to 
the model, in particular to the knowledge 
acquisition device.

The model consists of the six devices that 
have been briefly described in the previ- ous 
section, and the feedback stage. In order to 
clarify the exposition of this work, two types 
of feedback are distinguished in Figure 1:

•	 Feedback 1 is the simplest, as it only 
considers the knowledge base as the 
knowledge element from which the 
knowledge acquisition device receives 
feed- back - note in Figure 1 that the 
experiences of the system/agent have not 
been con- sidered as feedback elements-. 
It is important to emphasize again that 
the knowledge base is expressed in an 
abstract format.

•	 Feedback 2 is the complete feedback, as 
discussed in the previous section, cover- 
ing the knowledge base and the system/
agent’s experiences, both expressed in an 
abstract format.

This is an evolutionary and incremental 
model that works by cycles, so that each cy- cle 
defines a new stage of the system/agent. Each 
cycle must necessarily lead to an improvement 
of the knowledge base. Each cycle is referred 
to as a learning cycle.
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Fig. 1. Model for autonomous inductive learning from classified examples.

The number of cycles of the system/agent 
is limited by the number of examples and 
experiences over time that the environment 
and the execution-verification device are 
able to provide to the model. That is, as 
long as the environment and/or the execu- 
tion-verification device provide examples/
experiences to the model, the system/agent 
will process them in order to improve the 
knowledge base. The knowledge base is 
updated at each learning cycle, according to 
the examples and the experiences gener- ated 
up to the given cycle. This model is very useful 
in complex environments, where the scope of 
the number of examples is not known. In this 
way, the learning process of the system/agent 
can work indefinitely.

THE ENVIRONMENT
Also referred to as Object-Attribute Table 

-abbreviated OAT-, it constitutes the exter- nal 
input knowledge of the knowledge acquisition 
device [2, 5, 6]. Such knowledge is expressed 
in the form of examples or concrete portions 
of knowledge about some concept. The notion 
of OAT is referred to as Information System by 
other authors [7], however there are relevant 
differences between both concepts. Next the 
concept of OAT is formally described.

An OAT consists of a set of classified 
examples and a set of attributes in terms of 
which the examples are described. An OAT 
is said to be completely specified if the values 
of the examples with respect to each of the 
attributes are known and fully spec- ified [2, 
8]. On the other hand, an OAT is incompletely 
specified if some of the attrib- ute values are 
not completely specified, or in the extreme 
case, they are completely unknown [3, 4].

Completely and incompletely specified OATs 
are processed in a unified way by the knowledge 
acquisition device, that is, there is no need to 
distinguish between both types of OAT. The 
concept of OAT is formally defined below.

Definition 1 (representing attribute values). 
The value of an attribute rj in a specific 
situation di can be represented by a subset 
Vdi,rj, Vdi,rj = {vi

j1 , v
i
j2 ,…, vi

jp }, being vi
j1 , v

i
j2 ,…, 

vi
jp the different simple values adopted by rj in 

the situation di. If the number of values of Vdi,rj 
is greater than 1, that is #Vdi,rj >1 -where the 
symbol # represents the cardinal of Vdi,rj -, then 
ri is said to be an incompletely specified/vague 
attribute. If #Vdi,rj =1 then ri is a completely 
specified attribute. #Vdi,rj can never be less than 
1. If Vdi,rj, Vdi,rj={vi

j1 , v
i
j2 ,…, vi

jp} is a vague value 
of attribute rj -that is, #(Vdi,rj)>1- in the specific 
situation di, then Vdi,rj will also be represented 
by the symbol 
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According to definition 1, let us note that if 
an attribute rj is vague in any specific situation 
di, then rj is definitely vague - that is, rj is 
considered simply a vague attribute -. If there 
is no specific situation di in which rj is vague, 
then rj is definitely a fully specified attribute.

Definition 2 (domain of an attribute). 
The domain Vi of the attribute ri covers the 
values that the attribute can take in all specific 
situations observed up to the current time. 
This means that:

•	 Since Vi is made up of values of ri, then 
Vi is a set of subsets, since, according to 
definition 1, each value is represented by 
a set.

•	 As Vi is made up of the values of ri 
observed up to “the current time”, then Vi 
may evolve over time, since new values of 
ri will possibly be observed in the future.

Definition 3 (Object Attribute Table). 
OAT= < D, R, W, V, V’, F, H, Q, C, f >, where:

D = {d1, d2, …, dm} is a set of examples or 
concrete portions of knowledge.

R = {r1, r2, …, rn} is a set of qualities or 
attributes in terms of which examples of D are 
described.

W={W1, W2, …, Wn} is A set of domains 
of simple values of the attributes, ri, ri  ϵ  R, 
i=1…n, being, Wj, Wj ϵ W, the domain of 
simple values of attribute rj in the OAT. A 
simple domain is made up of all possible 
simple values of attributes.

V={V1, V2, …, Vn} is a set consisting of the 
domains of each attribute, ri, ri ϵ R, i=1…n, 
being, Vj={ v1,rj, v2,rj,…, vp,rj}, Vj ϵ V, the 
domain of attribute rj in the OAT. Note that 
the values of a domain Vi are all different and 
will take the form vk,ri, vk,ri ϵ Vi. According to 
definition 1, each value vk,ri ϵ Vi is a subset of 
simple values of Wi.

C is a set of concepts, C = {C1, C2,…, Cw}. 
Each Ci i=1…w, represents a concept f is a 
function that assigns to each element of D its 
corresponding concepts, that is, f: D→П(C), 

where П(C) denotes the set of parts of C. 
Note that each example, di ϵ D, has a subset of 
concepts associated.

V’, V’ = {V’1, V’2, …, V’n, V’1,2, …, V’i,j,…k,…, 
V’1,2,…n}, represents the set of do- mains 
of all attribute-value tuples of the OAT 
corresponding to all attribute subsets of R. That 
is, V’i,j,…,k, with i=1…n, j=1…n,… k=1…n, 
i≠j≠…≠k, represents the domain of attribute-
value tuples of the OAT corresponding to the 
attribute subset {ri, rj,…, rk}. Note how set V’ 
constitutes an extension of V to all attribute 
subsets of the OAT. Set V’ contains 2n-1 
elements - that is, domains of attribute-value 
tuples.

F={f1, f2, …, fn}, fi : Dx{ri}→Vi, i=1...n, is a 
set of functions that define the values adopted 
by the elements of D for each attribute ri, i = 
1, 2, …, n.

H={h1, h2,...hn} is a set of functions, one 
for each attribute ri of the OAT, such that hj, 
j=1..n, associates the corresponding subset 
of concepts to each simple value vjk, vjk ϵ 
vw,rj, vw,rj={vj1, vj2,…, vjp}, vw,rj ϵ Vj. That is, 
hj:Wj→П(C), so that hj(vjk) = f(d1) ∪ f(d2) ∪…∪ 
f(dm)} for all ds, s=1..m, such that vjk ϵ fj(ds, rj).

Q={q1, q2,...qn} is a set of functions, 
one for each attribute ri of the OAT. Let 
vk,rj={vj1, vj2,…, vjp}, vk,rj ϵ Vj, be a value of 
attribute rj, where vjk, k=1..p, are its sim- ple 
values. Functions of set Q take the form qj: 
Vj→П(П(C)), so that each qj, j=1..n, associates 
the corresponding set of subsets of concepts 
of C to each different value vk,rj={vj1, vj2,…, 
vjp}, vk,rj ϵ Vj, being qj(vk,rj)={hj(vj1), hj(vj2),…, 
hj(vjp)}. Note that expression {hj(vj1), hj(vj2),…, 
hj(vjp)} represents a set of subsets of concepts, 
one for each simple value, vjk, vjk ϵ  vk,rj. It is 
important to emphasize that the sets defined 
by the functions qj(vk,rj)={hj(vj1), hj(vj2),…, 
hj(vjp)} may contain repeated elements -that is, 
repeated subsets of concepts of C-. To avoid 
confusion in practice, it is important to define 
an order relationship between the subsets 
defined by the functions qj(vk,rj).
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Figure 2 illustrates graphically an example 
of an OAT.

Example. Consider the OAT of Figure 2. 
According to definitions 1, 2 and 3, we have:

D = {d1, d2, d3, d4, d5, d6, d7} is a set of 
examples.

R = {r1, r2, r3, r4} is the set of attributes in 
terms of which the examples are de- scribed.

C = {Ca, Cb, Cd} is the set of concepts.
The right column of the table, represented 

by the symbol П(C), represents the con- cepts 
of C associated with each element di ϵ D.

Fig. 2. Example of an OAT.

Vdi,rk, Vdi,rk ϵ Vi, i=1…m. k=1…n, are the 
values of the examples for each attribute. 
These values are actually subsets of values 
-see definition 1-, so they are enclosed in 
parentheses. Note how element d3 takes, with 
respect to attribute r1, the value Vd3,r1={*1

0, 1}, 
which can also be represented as Vd3,r1= {0, 1}. 
Such a value is a vague value, since #Vd3,r1>1. 
The same occurs with values Vd6,r3= {0, 1, 2} 
and Vd4,r4={0, 1}. The rest of values in the OAT 
are fully specified.

W={W1, W2, …, Wn} is a set of domains 
of simple values of the attributes, ri, ri ϵ R, 
i=1…n. Thus, W1={0, 1}, W2={red, green, 
blue}, W3={0, 1, 2}, W4={0, 1}.

  V = {V1, V2, V3, V4}, represents the set of 
attribute domains of R, where Vi is the domain 
of attribute ri. Thus, we have: V1={{0}, {1}, 
{*1

0, 1}}={{0}, {1}, {0,1}}, V2={{red}, {green}, 
{blue}}, V3={{0}, {1}, {2}, {*3

 0,1,2}}={{0}, {1}, 
{2}, {0,1,2}}, V4 = {{0}, {1}, {*4 

0,1}}={{0}, {1}, 
{0,1}}.

V’ = {V’1, V’2, V’3, V’4, V’1,2, V’1,3, V’1,4, V’2,3, 
V’2,4, V’3,4, V’1,2,3, V’1,2,4, V’1,3,4, V’2,3,4, V’1,2,3,4}, 
represents the set of domains of attribute-value 
tuples of the OAT, for all attribute subsets of 
R. Some examples of such domains are:

V’1={<0>, <1>, <*1
0, 1>},

V’1,2={<0, red>, <0, green>, <*1
0, 1, red>, <0, 

blue>, <1, blue>},
V’2,3,4={<red, 1, 0>, <green, 0, 1>, <red, 0, 

1>}, <blue, 0, *4 0,1>, <blue, 2, 0>, <red, *3
 0,1,2, 

1>, <blue, 1, 1> }.
  F={f1, f2, f3, f4} is a set of functions that 

define the values adopted by the elements of 
D for each attribute ri, Examples:

f1(d1, r1) = {0}, f1(d2, r1) = {0}, f1(d3, r1) = 
{*1

0, 1};
f2(d1, r2) = {red}; f2(d2, r2) = {green}; f2(d3, 

r2)={red}.
H={h1, h2,...hn} is a set of functions hi, 

hj:Wj→П(C), one for each attribute ri of 
the OAT, such that hj, j=1..n, associates the 
corresponding set concepts of C to each simple 
value vjk, vjk ϵ vw,rj, vw,rj={vj1, vj2,…, vjp}, vw,rj ϵ 
Vj, so that hj(vjk)=f(d1)uf(d2) ∪…∪ f(dm)} for 
all ds, s=1..m, such that vjk ϵ fj(ds, rj).

Examples:
Let us consider attribute r1. W1={0, 1}. Then 

h1(0)={Ca}∪{Cb}}∪{Cb}u {Cd}}∪{Cb}={Ca, Cb, 
Cd}; h1(1)={Cb}∪{Ca}∪{Ca}={Ca, Cb}.

Let now consider attribute r3. W3={0,1,2}. 
Thenh3(0)={Cb}∪{Cb}∪{C d}∪{Cb}={Cb, 
C d} ; h 3 ( 1 ) = { C a} ∪ { C b} ∪ { C a} = { C a, C b} ; 
h3(2)={Ca}∪{Cb}={Ca, Cb}.

Q={q1, q2,...qn} is a set of functions 
qj:Vj→П(П(C)), one for each attribute ri of 
the OAT, so that each qj, j=1..n, associates the 
corresponding set of subsets of concepts of C 
to each different value vk,rj={vj1, vj2,…, vjp}, vk,rj 
ϵ Vj, being qj(vk,rj)={hj(vj1), hj(vj2),…, hj(vjp)}.

Examples:
Consider domain V1={{0},{1},{0,1}} of 

attribute r1. Then q1{{0}}= {h1(0)}= {Ca, Cb, 
Cd}; q1{{1}}= {h1(1)}= {Ca, Cb}; q1{{0,1}}= 
{h1(0), h1(1)}= {{Ca, Cb, Cd }, {Ca, Cb}}.
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Let now consider domain V3={{0}, {1}, {2}, 
{0,1,2}} of attribute r3. Then q3{{0}}= {h3(0)}= 
{Cb,Cd}; q3{{1}}= {h3(1)}= {Ca,Cb}; q3{{2}}= 
{h3(2)}= {Ca,Cb}; q3{{0,1,2}}= {h3(0), h3(1), 
h3(2)}= {{Cb, Cd}, {Ca, Cb}, {Ca, Cb}}.

Due to reasons of space and clarity in the 
presentation of concepts, the OAT de- scribed 
in this section has been formulated only for 
attributes with discrete domains. An extension 
for the case of OAT with continuous attributes 
is presented in [4].

THE KNOWLEDGE ACQUISITION 
DEVICE
The knowledge acquisition device 

-abbreviated KAD- is responsible for updating 
the knowledge base -abbreviated KB- in each 
learning cycle of the system/agent, so that 
the resulting KB is the one that best fits the 
established criterion. This criterion de- pend 
on the nature of the problem being solved and 
specifies the characteristics that the KB must 
satisfy.

Let us first consider the Feedback-1 of the 
learning model in Figure 1. The key to updating 
the KB is to design a qualitative knowledge 
acquisition method from new examples 
coming from the Environment and from the 
KB, in order to improve the functionality of 
the KB itself. If we now consider Feedback-2 
from Figure 1, then the qualitative knowledge 
acquisition method just mentioned must 
consider, in addition to new examples from 
the environment and the KB, the experiences 
of the system/agent. From the just mentioned 
considerations in this paragraph, we can 
say that the referred qualitative knowledge 
acquisition method constitutes the core of 
KAD.

Due to space restrictions and in order to 
clarify the discussion, only the learning model 
based on Feedback-1 will be presented in this 
section.

For practical reasons, the decision tree 
structure has been considered as the format 
to support the knowledge base -KB-. A 
decision tree can be interpreted as a set of 
antecedent-consequent rules, such that each 
branch of the tree from the root to a leaf 
node constitutes a rule. In turn, each example 
from the Environment can also be seen as an 
antecedent-consequent rule. This is the first 
step: converting all the input knowledge to the 
KAD -examples and KB- into the same abstract 
format -antecedent- consequent rules-, which 
requires an appropriate conversion process. 
The next step is to reason about the resulting 
set of antecedent-consequent rules, in order 
to modify the KB, which adopts a decision 
tree format. This is a process of extraction of 
qualita- tive knowledge from a set of rules in 
order to obtain a decision tree. Such a process 
must necessarily be guided by a criterion 
which defines the characteristics that the final 
decision tree must satisfy.

The most relevant issues of the above two-
step process carried out by the KAD will be 
described below.

INDUCTIVE INFERENCE ON AN 
OAT: ATTRIBUTE BASES
The selection of an «adequate» subset 

of attributes, Rx, Rx ⊆ R, to intensively de- 
scribe the subsets or concepts of C in an 
OAT, constitutes one of the main stages of 
the inductive inference process. The term 
«adequate» means that the attributes of 
Rx must allow to describe the concepts of 
C according to the characteristics of the 
crite- rion considered. Such characteristics, 
independently of the nature of the particular 
problem, must guarantee, in any case, an 
accurate description of the concepts, that is, 
free of confusions or contradictions.

Any subset of attributes Rx, Rx ⊆ R, that 
guarantees a confusion-free description of the 
concepts of C is called an attribute basis of R 
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with respect to C. Much of the com- putational 
effort of an inductive process will focus on the 
search for some “adequate” attribute basis, 
particularly when it comes to getting an 
optimal basis. Complete doc- umentation on 
the concept of attribute basis can be found in 
[2, 3, 4, 5, 8].

The following provides a formal definition 
of the concept of attribute basis. 

Definition 4 (couples of partially common 
values). Consider a given OAT. Let vk,rj, vs,rj ϵ Vj, 
k≠s, be two values in the domain of the same 
attribute rj. If it holds that vk,rj ∩ vs,rj≠Ø, then 
vk,rj and vs,rj are said to be a couple of partially 
common values. Note that partially common 
values are defined on the same domain.

Definition 5 (contradictory individual 
values). Consider a given OAT. Let rj ϵ R be 
an attribute of R with domain Vj. Let vk,rj={vj1, 
vj2,…, vjw} be a value in the domain Vj, vk,rj ϵ 
Vj. vk,rj is said to be a contradictory value if 
and only if there exists some dr ϵ D, fj(dr,rj) ∩ 
vk,rj≠Ø, such that f(dr) ⊂ hj(vjs), s=1..w, for any 
simple value vjs ϵ vk,rj, vjs ϵ fj(dr,rj) ∩ vk,rj –Note 
that the symbol ⊂ refers to the strict inclusion 
of subsets -.

Definition 6 (couples of contradictory 
values). Consider a given OAT. Let rj ϵ R be 
an attribute of R with domain Vj. Let vk,rj={vj1, 
vj2,…, vjw} and vp,rj={v’j1, v’j2,…, v’js} be to 
values in the domain Vj, vk,rj ϵ Vj, vp,rj ϵ Vj, such 
that vk,rj ∩ vp,rj≠Ø. Let da ϵ D and db ϵ D, a≠b, 
be such that fj(da, rj)=vk,rj and fj(db, rj)=vp,rj. If 
f(da)≠f(db) then the cou- ple (vk,rj, vp,rj) is said 
to be a couple of contradictory values. In the 
case that vk,rj=vp,rj, then vk,rj/ vp,rj are individual 
contradictory values -see definition 5-.

Definition 7 (couples of contradictory 
attribute-value tuples). Consider a given OAT. 
Let ea = <Vdv,ri, Vdv,rj,…, Vdv,rk>, ea ϵ V’i,j,…k, 
Vdv,rs ϵ Vs, s=i,j,...,k, and eb=<Vdw,ri, Vdw,rj, …, 
Vdw,rk>, eb ϵ V’i,j,…k, Vdw,rp ϵ Vp, p=i,j,…k, v≠w, 
v,w = 1…m, be a couple of two attribute-value 
tuples defined on the same attribute subset 

Rx={ ri, rj,…, rk}, Rx⊂R. Tuples ea and eb are 
said to be a couple of contradictory tuples with 
respect to the subset of attributes Rx if and only 
if [((Vdv,ri, Vdw,ri), (Vdv,rj, Vdw,rj), …, (Vdv,rk, Vdw,rk) 
are all couples of partially common values) 
AND (f(dv)≠f(dw)].

Definition 8 (attribute basis). Consider a 
certain OAT. Let Rx={ri, rj,…, rk}, Rx⊆R, be a 
subset of attributes of the OAT. Rx is said to 
be an attribute basis with respect to C if, and 
only if, there exist no couples of contradictory 
attribute-value tuples with respect to the 
subset Rx.

The concept of attribute basis is funda-
mental in induction from examples, since the 
knowledge base is expressed in terms of an at-
tribute basis.

Example. Consider the OAT of Figure 2. 
Let us test wether subset {r2, r3} is an at- tribute 
basis. According to definition 8, {r2, r3} is an 
attribute basis with respect to C if, and only if, 
there is no couples of contradictory attribute-
value tuples with respect to the subset {r2, r3}. 
Let’s check if this statement is true.

Consider tuples ea = <Vd1,r2, Vd1,r3> and 
eb= <Vd2,r2, Vd2,r3>, whose values in the OAT 
are ea=<{red},{1}> and eb=<{green},{0}>. 
Reasoning according to definition 7, we see 
that the couple ({red}, {green}) is not a couple 
of partially common value. Therefore, ea and 
eb are not a pair of contradictory attribute-
value tuples, so we cannot claim that ea and 
eb are not an attribute base.

Consider now tuples ea = <Vd1,r2, Vd1,r3> and 
eb = <Vd6,r2, Vd6,r3>, with values ea=<{red},{1}> 
and eb=<{red},{0,1,2}> respectively. We have 
that the couples ({red}, {red}) and ({1}, {0,1,2}) 
are both couples of partially common values, 
since {red}∩{red}≠Ø and {1}∩{0,1,2}≠Ø. 
Now we have tu check the second condition 
of definition 7. We can see in Figure 1 that 
f(d1)={Ca} and f(d6)={Cb}, thus f(d1)≠f(d6). 
We have just shown that {r2, r3} is not an 
attribute basis.
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Let us test now whether subset {r2, r3, r4} 
is an attribute basis.

If we look at all the couples of attribute-
value tuples in set Rx={r2, r3, r4} of the OAT, 
we see that the only couples of tuples that 
satisfies the condition «((Vdv,ri, Vdw,ri), (Vdv,rj, 
Vdw,rj), …, (Vdv,rk, Vdw,rk) are all couples of 
partially common values)» from definition 
7, is the couple of tuples (ed3, ed6), ed3=<Vd3,r2, 
Vd3,r3, Vd3,r4>, ed6=<Vd6,r2, Vd6,r3, Vd6,r4>. No 
other couple of tuples satisfies the above 
condition. Therefore, now we only have to 
verify the second condition of definition 7, 
«(f(dv)≠f(dw)». From the OAT it follows that 
f(d3)={Cb)} and f(d6) ={Cb}, hence f(d3)=f(d6). 
Thus, it is concluded that Rx={r2, r3, r4} is an 
attribute basis.

In this subsection we have described 
the basic concepts to do with the second 
gen- eral step of the knowledge acquisition 
device: «reasoning about the resulting set 
of antecedent-consequent rules, in order 
to modify the KB, which adopts a decision 
tree format». This step involves, first, finding 
an attribute basis that satisfies the given 
criterion, which depends on the nature of the 
problem at hand. Second, generate a decision 
tree from the attribute basis found. However, 
before proceeding, it is neces- sary to turn 
all the input knowledge to the KAD - that 
is, the examples from the envi ronment and 
the knowledge base - into the same format. 
The following subsection describes the basic 
concepts to do with such a conversion process.

OBJECT-ATTRIBUTE TABLES AS 
SETS OF RULES
This section describes the general aspects 

of the process to turn a knowledge base 
expressed in a decision tree format into a set 
of condition-action rules.

Condition-action rules -also named 
production rules- are one of the most common 
ways to express the knowledge base of a 

reactive agent [9, 10]. The antecedent of the 
rules is made up of conjunctions of attribute-
value pairs, while the consequent con- sists of 
a single action - also called concept - which 
can be triggered under the as- sumption of the 
truth of its antecedent. A rule base is a set of 
rules.

Decision trees constitute an intensive 
-abstract- format to describe an OAT. Each 
inner node of a decision tree -also called 
attribute-node- generated from an OAT rep- 
resents an attribute, whereas each leaf node 
-also called concept-node- represents a subset 
of concepts. Each attribute-node has as many 
branches as values in the attrib- ute domain 
associated with the node. A decision tree 
covers all the examples of the corresponding 
OAT.

Given a decision tree, each branch from 
the root of the tree to a leaf node repre- sents 
a rule. Thus, a decision tree can be represented 
as a set of rules. Figure 2 illus- trates an 
example.

Fig. 3. Decision-Tree as a set of rules.

{A, B, C} is the set of attributes of the 
decision tree in Figure 3 and {α, β, skip} is the 
set of concepts.

The following definition provides the 
characteristics that a base of production rules 
must meet in order to be suitable for applying 
an inductive inference procedure to it.

Definition 9 (full rules). Let AT be the 
set of attributes through which the anteced- 
ents of all the rules in a production rule base, 
BC, are described. A rule whose ante- cedent 
include all the attributes in the set AT is called 
a full rule.
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For example, rules (B=1)^(A=1) → α and 
(B=1)^(A=0) → skip in Figure 3 are not full 
rules, since their antecedent does not contain 
all the attributes of AT={A,B,C}. While rule 
(B=0)^(C=0)^(A=1)→ β is a full rule.

Let Vi be the domain of values of the 
attribute ri in a rule base. If a rule is not a full 
rule, then it can be turned into a full rule. To do 
this, it is necessary to complete its antecedent 
by adding to it those attribute-value pairs 
whose attributes, ri ϵ AT, do not appear in the 
antecedent of the rule and whose values of 
said attributes will corre- spond to the value 

, where {j, k,..., p}=Vi is the domain 
of values of ri. For example, from Figure 3 
we have that VA=VB=VC={0,1}. For example, 
rule (B=1)^(A=1)→α is not a full rule, but 
it can be turned into the following full rule: 
(B=1)^(A=1)^(C= C0,1)→α. Figure 4 shows 
the OAT from Figure 3 where all its rules have 
been turned into full rules.

Fig. 4. Complete rules of an OAT.

An OAT can be considered as a set of full 
rules. Those OATs resulting from the process 
of turning not full rules into full rules are, in 
general, incompletely specified OATs and can 
be handled by the corresponding inference 
mechanisms [3, 10].

Definition 10 (OAT of rules). An OAT 
of rules is defined as a structure made up of 
production rules such that all rules are full 
rules.

From now on all considered OATs will 
refer to OATs of rules.

INDUCTIVE INFERENCE ON OATS 
OF RULES
The question at this point is «how to reason 

about an OAT expressed as a set of rules», 
that is, an OAT of rules, «another set of rules 
expressed as a decision tree».

The most common inference from a set of 
rules is deductive inference, character- ized 
by the search for specific conclusions from 
assumptions represented through general 
knowledge. Inductive inference, on the 
other hand, represents reasoning on specific 
elements of knowledge in order to obtain 
general conclusions. Thus, it seems that 
none of the types of deductive and inductive 
inference fit the task actually posed at this 
point; that is, a general knowledge structure - 
decision tree - must be obtained from another 
general knowledge structure - rule base. There 
is little literature about the proposed problem. 
With the exception of [10], all other references 
that have been considered are based on points 
of view very different from those of this work.

The algorithm proposed in [10] allows 
obtaining a decision tree from an OAT of 
rules with priorities defined on the rules. 
The algorithm presented in [2] constitutes 
the central core of the KAD. This algorithm 
constitutes an extension of that presented 
in [10], so that it allows reasoning jointly 
from an OAT of examples coming from the 
environment, an OAT of rules coming from 
the decision tree - which constitutes the 
knowledge base, KB - and the feedback, in 
order to improve the decision tree -that is, the 
knowledge base-.

This algorithm works cyclically, so that 
each cycle constitutes a learning cycle. The 
number of learning cycles of the algorithm 
is unlimited, unless the environment is no 
longer able to provide new examples and, at 
the same time, the execution- verification 
device is also not capable of generating new 
experiences. As long as only one or both 
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devices - the environment or the execution-
verification device - is still capable of providing 
new knowledge - examples/experiences - then 
the algorithm will continue working, since 
the knowledge base can still be improved. 
Thus, the algo- rithm is limited when both the 
capacities of the environment and those of the 
execu- tion-verification device are exhausted 
at the same time.

A detailed analysis of the learning 
algorithm described in [2] makes it possible 
to highlight some important properties:

•	 The algorithm implements a dynamic 
learning process, which allows, in each 
learning cycle, to update the current 
knowledge base based on the generation 
of new experiences and/or when new 
examples appear from the environment.

•	 The learning process of the described 
model is carried out under the closed 
domain hypothesis. In this way, the 
evolution of the knowledge base is based 
exclusively on the knowledge provided 
by all the examples of the environment 
that have ap- peared up to the current 
moment. In this way, the learning process 
updates, cycle by cycle, the knowledge 
base.

•	 The sets of attributes and their domains 
are not necessarily the same in each learn- 
ing cycle. That is, in a learning cycle new 
attributes that have not appeared in 
pre- vious cycles may appear. Similarly, 
attributes that have appeared in previous 
cy- cles may not appear in a learning 
cycle. This fact opens the door to more 
powerful inductive learning systems.

•	 Each learning cycle of the algorithm 
results in a necessarily non-negative 
evolution of the knowledge base. The 
term “non-negative” is used because there 
is a possibil- ity that the new examples or 
experiences that appear in a given cycle 

do not pro- vide sufficient qualitative 
knowledge to allow the knowledge base 
to be improved. However, the knowledge 
base can never get worse in any of the 
cycles. This is a natural form of learning.

•	 The possibility of performing 
inductive inference on incompletely 
specified exam- ples is one of the great 
contributions to learning, and it also 
facilitates some of the previous properties.

•	 The activation of a new learning 
cycle occurs for three reasons: simply 
due to the appearance of new examples 
- as described above -; simply by the 
emergence of new experiences provided 
by the Action-Decision device; or for 
both of the above reasons.

•	 It is possible to provide the learning 
algorithm with discretization processes of 
continuous attributes [4] and binarization 
processes of discrete attributes [17].

•	 The learning algorithm is clear, simple 
and well structured, which makes it 
easy to implement in a programming 
language.

•	 This algorithm is not limited in time.

•	 Some applications of inductive 
inference in different fields, such as 
medicine, stock market analysis, disability 
assistance, and web page classification, 
are de- scribed in [11, 12, 13, 14, 15, 
16]. These applications were developed 
using the UIB-IK inductive platform [8], 
designed for completely specified OATs, 
including data of different typologies.

The following section describes the 
most relevant features of the hypothesis or 
knowledge base.
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THE HYPOTHESIS OR 
KNOWLEDGE BASE
The knowledge base adopts a decision tree 

format that evolves over time. Further- more, 
it must be taken into account that the learning 
process is carried out under the fundamental 
hypothesis of the closed domain. That is, 
the learning cycle at the current time must 
consider only the characteristics of all the 
examples that have appeared since the first 
learning cycle. This means that those examples 
that have not yet ap- peared in any learning 
cycle must not be considered in the current 
decision tree. The following subsections will 
help us to understand how evolutionary 
inductive learning can be handled.

DECISION TREES FOR LEARNING
To update the evolutionary hypothesis/

decision tree in the current learning cycle, it is 
necessary, first of all, to know which examples 
from the environment have appeared and 
which have not appeared -missing examples- 
in previous learning cycles. To do this, a 
kind of decision trees known as decision 
trees for learning – abbreviated DTL- will 
be used. Once the decision tree for learning 
has been generated in the current cycle, the 
final decision tree –abbreviated FDT- is then 
generated, which exclusively covers examples 
that have appeared from the first cycle to the 
current cycle.

As an illustrative example of the 
characteristics of a DTL, without going into 
deeper issues, consider the OAT of rules with 
three rules in Figure 5.

Fig. 5. OAT of rules.

Note how the domains of attributes A, B, C 
in Figure 5 are binary.

First, a decision tree for learning -DTL- 
inferred from the examples in Figure 5 is 
generated. This decision tree covers, on the 
one hand, these examples and, on the other 
hand, the rest of the possible examples of 
the domain that do not appear in Fig- ure 5. 
Such not appeared examples are denoted by 
the symbol n.a -abbreviation of not appeared. 
Figure 6 shows an example of such a decision 
tree for learning.

Once the decision tree for learning has 
been generated in the current cycle, the fi- 
nal decision tree is then generated, which 
exclusively covers examples that have ap- 
peared from the first cycle to the current cycle.

Figure 7 shows the final decision tree for the 
current cycle. This tree satisfies the minimum 
number of nodes criterion.

Fig. 6. Decision tree for learning –DTL.

Fig. 7. Final decision tree –FDT.



13
Journal of Engineering Research ISSN 2764-1317 DOI https://doi.org/10.22533/at.ed.3174232418092

LEARNING DECISION TREES
For ease of discussion, only the Feedback 1 

Model 1 will be considered at this point. The 
inferential process in charge of updating the 
DTL in each learning cycle of a Feedback-1 
model is based on the following two knowledge 
elements:

•	 The new examples of the OAT of rules 
that appear in the current learning cycle. 
These are the new examples coming from 
the environment in this current learning 
cycle.

•	 The current DTL, which corresponds 
to the DTL generated in the preceding 
learn- ing cycle.

Note that each of the two previously 
mentioned elements of knowledge are 
described through an OAT of rules. Both 
OATs are then unified into a single OAT of 
rules, which requires some specific processes 
that are not described in this work.

In [2] is described algorithm that, on the 
one hand, unifies both OATs of rules and, on 
the other hand, updates the current DTL from 
the resulting unified OAT. Some important 
properties of this algorithm are highlighted in 
section 4.3.

CONSIDERATIONS REGARDING 
THE FEEDBACK 2 MODEL
Known as experience-driven learning, 

Feedback_2 is a feedback model whose func- 
tion is to update the current Knowledge Base. 
To do this, it is based on the experienc- es 
generated by the Action-Decision Device and, 
possibly, the appearance of new examples 
from the Environment.

EXPERIENCES AS A CONSEQUENCE 
OF DECISION MAKING
Some general issues related to generating 

experiences are:
•	 When and how should experiences be 
generated?

•	 Who is responsible for generating 
them?

•	 What are the reasons that lead to the 
need for experiences?

•	 What kinds of experiences should be 
considered?

•	 Do experiences depend on the nature 
of each particular problem or do they 
consti- tute generic patterns for an entire 
class of problems?

•	 Is it possible to automate any type of 
experiences and thus obtain a completely 
autonomous learning system?

•	 How to turn the different types of 
experiences into formal expressions so 
that they are acceptable to the knowledge 
acquisition device?

This section proposes a general approach 
that addresses some of the issues mentioned 
above.

Looking at the model in Figure 1, the 
responsibility for generating experiences 
lies with the execution-verification device. 
Whatever the case, these decisions/actions 
must first be carried out on the agent’s 
environment and then, they must be evaluated 
for their success or failure. This evaluation is 
performed by the verification device. Thus, the 
model in Figure 1 can be extended by that in 
Figure 8.

The type of experiences of a learning 
system depends on the nature of the problem 
for which it was designed. Thus, a single 
learning system can incorporate experiences 
of different kinds and sources, such as:
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•	 Experiences guided by the user/expert 
of the system, who may or may not feel 
satisfied with the decisions made by the 
learning system. For example, the user 
de- cides that the criterion defining the 
characteristics that the Hypothesis –
Decision Tree– must satisfy, must be 
modified.

•	 Experiences generated by the system 
itself, which can detect certain situations 
that demand consideration. For example, 
the system detects that the decision on 
some examples in the Fact Base is not 
satisfactory.

•	 Experiences due to changes in the 
characteristics of the environment. 
For example, some attributes become 
unimportant due to disturbances in 
the environment. This suggests that the 
attribute basis on which the Hypothesis 
is based is unsatisfactory and needs to be 
modified.

•	 Etc…

Fig. 8. Autonomous inductive learning model extended with experiences.

In any case, the concept «experiences» 
can be too complex and excessively broad to 
be addressed in a unified way. In [2] a set of 

possible experiences for inductive learn- ing 
systems from examples is presented.
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