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ABSTRACT: Mycorrhizal technology to 
enhance the production of plant bioactive 
compounds in Brazil has been studied for 
around 20 years and has given promising 
results for the Brazilian industry. Therefore, 
this review aimed to present the research 
on the phytochemistry of species inoculated 
with arbuscular mycorrhizal fungi (AMF) in 
Brazil, to assist research groups in selecting 
isolates that are effective in boosting the 
production of bioactive compounds. Based 
on database searches (Web of Science 
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and National Center for Biotechnology Information), 66 experimental papers, four reviews, 
one editorial, and one opinion paper were selected. An overview of AMF species, botanical 
families, regions where studies have been carried out, experimental methods, main groups 
of biomolecules, and the most evaluated mycorrhizal parameters in the country were 
summarized. It was observed that Northeast Brazil accounts for more than 50% of all studies 
on the phytochemical aspect of mycorrhizal plants. The isolates of Entrophospora etunicata 
(W.N. Becker & Gerd.) Błaszk., Niezgoda, B.T. Goto & Magurno, Acaulospora longula Spain 
& N.C. Schenck, and Gigaspora albida N.C. Schenck & G.S. Sm. are the most tested in 
phytochemical studies of mycorrhizal species in the country, with results mainly reported 
under greenhouse conditions, as only six studies have been carried out under field conditions. 
The application of AMF can potentially increase the production of secondary compounds in 
plants, especially in Fabaceae representatives, which occur in Brazil, becoming an agronomic 
tool for the Brazilian pharmaceutical and cosmetic industries.
KEYWORDS: Entrophospora, mycorrhizal fungi, Glomeromycota, secondary metabolites.

1. INTRODUCTION 
The supply of raw materials from plants is essential to meet the global demand for 

food and medicine (Maroyi, 2022). From this perspective, Brazil has a high potential as the 
country with the world’s greatest biodiversity, due to its vast plant genetic heritage (Brasil, 
2016), including medicinal resources for the industry.

Raw plant materials can be used to formulate medicines due to the presence of 
pharmacologically active compounds (Bernardes et al., 2017). Examples of these are 
products marketed by pharmaceutical companies, such as coumarins obtained from Mikania 
laevigata Sch. Bip. ex Baker, vitexin found in Passiflora alata Curtis, senosides A and B 
produced by Senna alexandrina Mill. and valerenic acid, extracted from Valeriana officinalis 
L. (ANVISA, 2019). These compounds, among others found in products of plant origin, 
contributed to a revenue of more than R$300 million in Brazil in 2019 (ANVISA, 2021).

In addition to herbal medicines, cosmetic products with moisturizing, depigmenting, 
anti-acne, repairing, and sun protection properties can also contain plant-derived ingredients. 
In such products, species like Aloe vera (L.) Burm. f. (Nivea®) (www.niveausa.com), 
Melaleuca alternifolia Cheel (Sallve®) (www.sallve.com.br), Agathosma betulina (Bergius) 
Pillans (www.sallve.com.br), Rosa canina L. (Sallve®) (www. sallve.com.br), Bidens pilosa 
L. (Sallve®) (www.sallve.com.br), Centella asiatica L. (La Roche-Posay®) (www.laroche-
posay.pt), and Theobroma cacao L. (Natura®) (www.natura.com.br) are used by national 
and international companies. However, it is important to improve the quality of the raw 
materials used to manufacture these and other products, as they can vary in metabolite 
content (Barbosa et al., 2008).

Among the agro-biotechnologies available to improve plant production, beneficial 
microorganisms are promising, especially those that form mutualistic associations, such 
as arbuscular mycorrhizal fungi (AMF). This biotechnology has been tested to promote 
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the biosynthesis of secondary plant metabolites in Brazil for over 20 years (Freitas et al., 
2004a). It generates yields that exceed 500% to produce pharmaceutically and cosmetically 
relevant phytochemicals (Falcão et al., 2022).

AMF are obligate biotrophs (Redecker et al., 2013), belonging to the phylum 
Glomeromycota and classified into 17 families and 50 genera (Wijayawardene et al., 2022). 
In Brazil, 38 AMF genera are present in national biomes (Maia et al., 2020), with most 
species belonging to Glomeraceae and Acaulosporaceae (Maia et al., 2020). These fungi 
form a symbiotic association from the emission of the germ tube (Tanaka et al., 2022), an 
asymbiotic hypha that comes into contact with the root (Hepper, 1985) and differentiates into 
an appressorium (Mosse; Hepper, 1975). After penetration, the hyphae grow through the 
root cortex into the intercellular (Cox; Sanders, 1974; Mosse; Hepper, 1975) and intracellular 
spaces, where arbuscules are formed; in these, nutrient exchange takes place between 
the fungus and the host (Cox; Sanders, 1974; Marx et al., 1982). An external mycelium is 
formed after establishing intracellular root colonization, which commonly restarts the life 
cycle, producing new glomerospores (Mosse; Hepper, 1975).

To apply these fungi, it is recommended to produce considerable amounts of AMF 
inoculum containing spores, hyphae, and fragments of colonized roots. They are obtained 
through substrate cultivation (Silva et al., 2014a; Selvakumar et al., 2016;2018a), which can 
be by monosporic culture (Selvakumar et al., 2018b), transformed roots (Srinivasan et al., 
2014), in aeroponic (Mohammad et al., 2000) or hydroponic systems (Nurbaity et al., 2019). 

The cost of producing soil-inoculum is relatively low and can range from 0.02 - 1.30 
USD per pot (Santana et al., 2014; Silva; Silva, 2020). However, this technology has not been 
commercialized in Brazil yet. Considering the diversity of AMF representatives in Brazilian 
soils (Maia et al., 2020) with recognized efficiency (Pedone Bonfim et al., 2015; Falcão; 
Silva, 2023), the use of these microorganisms should be encouraged without sticking only 
to isolates marketed abroad (Basiru et al., 2021). When AMF propagules are applied (Muniz 
et al., 2021), the fungi benefits to the host plant can be identified (Chen et al., 2017; Mathur 
et al., 2018); among these, the enhanced production of metabolites stands out, which can 
be explained by nutritional, physiological and molecular modulations in the photobiont, as 
summarized in Figure 1.

The benefits of applying AMF in the production of bioactive compounds can be 
numerous (Wu et al., 2023; Falcão et al., 2023a), considering studies conducted in Brazil. 
Notwithstanding, compiled data on such symbiotic efficiency are not available, even though 
comprehensive reviews have been published worldwide (Pedone Bonfim et al., 2015; 
Sharma et al., 2017; Kaur; Suseela, 2020; Zhao et al., 2022; Thokchom et al., 2023; Falcão; 
Silva, 2023; Falcão et al., 2024a). Therefore, this review aimed to compile papers on the 
phytochemistry of mycorrhizal plants from studies conducted in Brazil. 
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Figure 1. Mechanisms that explain the improved biosynthesis of secondary compounds in response to 
mycorrhization (Lohse et al., 2005; Kapoor et al., 2007; Zubek et al., 2010; Mandal et al., 2013; Zhang 

et al., 2013; Torres et al., 2015; Sharma et al., 2017; Cui et al., 2019; Ran et al., 2021; Cela et al., 2022; 
Falcão et al., 2022;2023b;2024b; Muniz et al., 2023).

Icons: canva.com

2. MATERIAL AND METHODS
A descriptive review was conducted using combinations of descriptors related to 

studies on AMF and phytochemistry, with terms in English and research time interval of 
22 years (2002 to June 2024), as shown in Figure 2. In total, 433 articles were found, 
considering the search on the National Center for Biotechnology Information (NCBI) and 
Web of Science platforms, disregarding those repeated in both databases. After initial 
screening of titles, abstracts, keywords, and methodology, the aims of the papers were 
also assessed so that only those that focused on increasing the production of biomolecules 
with mycorrhizal inoculation and were setup in Brazil were included in this review. Thus, 72 
papers were selected (Figure 2).
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Figure 2. Flowchart of the search based on descriptors related to studies of arbuscular mycorrhizal fungi 
and the evaluation of the phytochemistry of inoculated plants whose research was conducted in Brazil. 

NCBI= National Center for Biotechnology Information.

The data from the selected papers were quantified, and the results were expressed 
as percentages and plotted on graphs. However, of these 72 papers, four were review 
papers (Pedone Bonfim et al., 2015; Santos et al., 2021a; Falcão; Silva, 2023; Falcão et 
al., 2024a), one opinion paper (Falcão et al., 2023a), and one was published as an editorial 
(Wu et al., 2023) so they were not included in the counting presented. In addition, a map 
was built to plot the distribution of all studies by region and Brazilian states, using Canva 
(canva.com) (see chapter 2).

3. RESULTS AND DISCUSSION: OVERVIEW OF BRAZILIAN STUDIES ON THE 
PHYTOCHEMISTRY OF MYCORRHIZAL SPECIES

In Brazil, the main AMF isolates used to increase the production of plant bioactive 
compounds were Entrophospora etunicata (W.N. Becker & Gerd.) Błaszk., Niezgoda, B.T. 
Goto & Magurno (previously classified as Claroideoglomus etunicatum (W.N. Becker & Gerd.) 
C. Walker & A. Schüßler or Glomus etunicatum W.N. Becker & Gerd.), Acaulospora longula 
Spain & N.C. Schenck (also considered Acaulospora morrowiae Spain & N.C. Schenck), 
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Gigaspora albida N.C. Schenck & G.S. Sm. and Rhizoglomus clarum (T.H. Nicolson & N.C. 
Schenck) Sieverd., G.A. Silva & Oehl (previously classified as Rhizophagus clarus (T.H. 
Nicolson & N.C. Schenck) C. Walker & A. Schüßler or Glomus clarus T.H. Nicolson & N.C. 
Schenck) (Figure 3). This pattern was partially observed in the review by Zhao et al. (2022), 
which systematized studies conducted worldwide. 

Other species evaluated were Acaulospora colombiana (Spain & N.C. 
Schenck) Kaonongbua, J.B. Morton & Bever (previously classified as Entrophospora 
colombiana Spain & N.C. Schenck), Acaulospora koskei Błaszk, Acaulospora 
scrobiculata Trappe, Dentiscutata heterogama (T.H. Nicolson & Gerd.) Sieverd, 
F.A. Souza & Oehl [previously classified as Scutellospora heterogama (Nicol. & 
Gerd.) Sieverd., Souza & Oehl], Diversispora versiformis (P. Karst.) Oehl, G.A. 
Silva & Sieverd. [previously classified as Glomus versiforme (P.Karst.) S.M. Berch],  
Entrophospora claroidea (N.C. Schenck & G.S. Sm.) Błaszk., Niezgoda, B.T. Goto & 
Magurno, Funneliformis geosporum (T.H. Nicolson & Gerd.) C. Walker & A. Schüßler, 
Fuscutata heterogama Oehl, F.A. Souza, L.C. Maia & Sieverd., Gigaspora decipiens I.R. Hall 
& L.K. Abbott, Gigaspora margarita W.N. Becker & I.R. Hall, Rhizoglomus intraradices (N.C. 
Schenck & G.S. Sm.) Sieverd., G.A. Silva & Oehl [previously classified as Rhizophagus 
intraradices (N.C. Schenck & G.S. Sm.)] C. Walker & A. Schüßler or Glomus intraradices 
N.C. Schenck & G.S. Sm.), Rhizoglomus irregulare (Błaszk., Wubet, Renker & Buscot) 
Sieverd., G.A. Silva & Oehl [also known as Rhizophagus irregularis (Błaszk., Wubet, Renker 
& Buscot) C. Walker & A. Schüßler], Cetraspora pellucida (T.H. Nicolson & N.C. Schenck) 
Oehl, F.A. Souza & Sieverd., Acaulospora mellea Spain & N.C. Schenck, Septoglomus 
viscosum (T.H. Nicolson) C. Walker, D. Redecker, Stiller & A. Schüßler, and Scutellospora 
calospora (T.H. Nicolson & Gerd.) C. Walker & F.E. Sanders (Figure 3).

http://www.mycobank.org/MycoTaxo.aspx?Link=T&Rec=105903
http://www.mycobank.org/MycoTaxo.aspx?Link=T&Rec=105903
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Figure 3. Tested AMF species in studies carried out in Brazil using arbuscular mycorrhizal fungi (AMF) 
to increase the production of phytochemicals. Number of experimental studies= 66. Acaulospora 

colombiana (Spain & N.C. Schenck) Kaonongbua, J.B. Morton & Bever, Acaulospora koskei Błaszk., 
Acaulospora longula Spain & N.C. Schenck, Acaulospora scrobiculata Trappe, Dentiscutata heterogama 

(T.H. Nicolson & Gerd.) Sieverd., F.A. Souza & Oehl, Diversispora versiformis (P. Karst.) Oehl, G.A. 
Silva & Sieverd., Entrophospora claroidea (N.C. Schenck & G.S. Sm.) Błaszk., Niezgoda, B.T. Goto & 
Magurno, Entrophospora etunicata (W.N. Becker & Gerd.) Błaszk., Niezgoda, B.T. Goto & Magurno, 

Funneliformis geosporum (T.H. Nicolson & Gerd.) C. Walker & A. Schüßler, Fuscutata heterogama Oehl, 
F.A. Souza, L.C. Maia & Sieverd., Gigaspora albida N.C. Schenck & G.S. Sm., Gigaspora decipiens I.R. 

Hall & L.K. Abbott, Gigaspora margarita W.N. Becker & I.R. Hall, Rhizoglomus clarum (T.H. Nicolson 
& N.C. Schenck) Sieverd., G.A. Silva & Oehl, Rhizoglomus intraradices (N.C. Schenck & G.S. Sm.) 

Sieverd., G.A. Silva & Oehl, Rhizoglomus irregulare (Błaszk., Wubet, Renker & Buscot) Sieverd., G.A. 
Silva & Oehl, Scutellospora calospora (T.H. Nicolson & Gerd.) C. Walker & F.E. Sanders, Cetraspora 

pellucida (T.H. Nicolson & N.C. Schenck) Oehl, F.A. Souza & Sieverd., Acaulospora mellea Spain & N.C. 
Schenck, Septoglomus viscosum (T.H. Nicolson) C. Walker, D. Redecker, Stiller & A. Schüßler (Freitas 
et al., 2004a,b; Andrade et al., 2010;2013; Oliveira et al., 2013;2015a,b,c;2019a,b;2020;2022; Pedone 
Bonfim et al., 2013;2018; Riter Netto et al., 2014; Silva et al., 2014a,b,c,d;2018a,b,c;2019;2021a,b,c,d; 

Lermen et al., 2015;2023; Lima et al., 2015a,b;2017; Urcoviche et al., 2015; Morelli et al., 2017; 
Santos et al., 2017;2020;2021b; Silva; Silva, 2017;2020; Almeida et al., 2018;2020; Silva; Maia, 2018; 
Chiomento et al., 2019;2021;2022; Cordeiro et al., 2019; Cruz et al., 2019;2020; Ferrari et al., 2020; 

Merlin et al., 2020; Vieira et al., 2021; Trindade et al., 2021; Muniz et al., 2021;2022a,b;2023; Marcolino 
et al., 2021; Falcão; Silva, 2022; Falcão et al., 2022;2023b;2024b; Palhares Neto et al., 2022; Pinc et 

al., 2022; Souza et al., 2022; Luz et al., 2023; Nardi et al., 2024; Melato et al., 2024).

When the distribution of studies by region was considered, A. longula and G. 
albida, which often promote plant anabolism, were the most applied fungi in research 
conducted in Northeast Brazil, region with the highest number of published papers (Figure 
4) (Oliveira et al., 2013; Pedone Bonfim et al., 2013;2018; Lima et al., 2015a,2017; Silva 
et al., 2014a,b,c,d;2018;2019;2021a; Oliveira et al., 2015a,b,c;2019a;2020; Santos et al., 
2017;2020;2021b; Silva; Silva, 2017;2020; Silva; Maia, 2018; Muniz et al., 2021;2022a,b;2023; 
Marcolino et al., 2021; Falcão; Silva, 2022; Falcão et al., 2022;2023b;2024b; Luz et al., 
2023).

http://www.mycobank.org/MycoTaxo.aspx?Link=T&Rec=105903
http://www.mycobank.org/MycoTaxo.aspx?Link=T&Rec=105903
http://www.mycobank.org/MycoTaxo.aspx?Link=T&Rec=105903
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Figure 4. Studies conducted in Brazil that investigated the use of arbuscular mycorrhizal fungi to 
increase the production of phytochemicals (Freitas et al., 2004a,b; Andrade et al., 2010;2013; Oliveira et 
al., 2013;2015a,b,c;2019a,b;2020;2022; Pedone Bonfim et al., 2013;2018; Riter Netto et al., 2014; Silva 

et al., 2014a,b,c,d;2018a,b,c;2019;2021a,b,c,d; Lermen et al., 2015;2023; Lima et al., 2015a,b;2017; 
Urcoviche et al., 2015; Morelli et al., 2017; Santos et al., 2017;2020;2021b; Silva; Silva, 2017;2020; 

Almeida et al., 2018;2020; Silva; Maia, 2018; Chiomento et al., 2019;2021;2022; Cordeiro et al., 
2019; Cruz et al., 2019;2020; Ferrari et al., 2020; Merlin et al., 2020; Vieira et al., 2021; Trindade et 
al., 2021; Muniz et al., 2021;2022a,b;2023; Marcolino et al., 2021; Falcão; Silva, 2022; Falcão et al., 
2022;2023b;2024b; Palhares Neto et al., 2022; Pinc et al., 2022; Souza et al., 2022; Luz et al., 2023; 

Nardi et al., 2024; Melato et al., 2024).

Among the most evaluated botanical families, representatives of Fabaceae, 
Passifloraceae, and Lamiacaeae were the most tested for the quantification of bioactive 
compounds in mycorrhizal species (Figure 5). Within the Passifloraceae family, only 
Passiflora species have been evaluated, mainly the leaves of P. alata (Oliveira et al., 
2015a,b; Muniz et al., 2021;2022a), Passiflora edulis f. flavicarpa Deg. (Oliveira et al., 
2019a;2020), Passiflora cincinnata Mast. (Falcão; Silva, 2022), and Passiflora setacea DC. 
(Muniz et al., 2022b) and some of these species are used in the anxiolytic herbal medicine 
industry (Fonseca et al., 2020; Oliveira et al., 2020). 
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Figure 5. Botanical families studied in Brazil using arbuscular mycorrhizal fungi (AMF) to increase 
the production of phytochemicals. Number of experimental studies= 66 (Freitas et al., 2004a,b; 

Andrade et al., 2010;2013; Oliveira et al., 2013;2015a,b,c;2019a,b;2020;2022; Pedone Bonfim et al., 
2013;2018; Riter Netto et al., 2014; Silva et al., 2014a,b,c,d;2018a,b,c;2019;2021a,b,c,d; Lermen et 
al., 2015;2023; Lima et al., 2015a,b;2017; Urcoviche et al., 2015; Morelli et al., 2017; Santos et al., 
2017;2020;2021b; Silva; Silva, 2017;2020; Almeida et al., 2018;2020; Silva; Maia, 2018; Chiomento 

et al., 2019;2021;2022; Cordeiro et al., 2019; Cruz et al., 2019;2020; Ferrari et al., 2020; Merlin et al., 
2020; Vieira et al., 2021; Trindade et al., 2021; Muniz et al., 2021;2022a,b;2023; Marcolino et al., 2021; 

Falcão; Silva, 2022; Falcão et al., 2022;2023b;2024b; Palhares Neto et al., 2022; Pinc et al., 2022; 
Souza et al., 2022; Luz et al., 2023; Nardi et al., 2024; Melato et al., 2024).

From the studies on terpene production in mycorrhizal Lamiaceae, three of them 
evaluated Mentha species (Freitas et al., 2004b; Silva et al., 2014b; Urcoviche et al., 2015), 
two of them studied Ocimum basilicum L. (Morelli et al., 2017; Silva et al., 2021b), in addition 
to assays using Salvia officinalis L. (Cruz et al., 2019), Plectranthus amboinicus (Lour.) 
Spreng (Merlin et al., 2020), and Melissa officinalis L. (Pinc et al., 2022). These studies 
are relevant, considering that essential oils have potential in the food industry due to their 
antimicrobial and antioxidant properties (Inanoglu et al., 2023).

It was expected that the most evaluated legumes would be those of food and economic 
importance, nevertheless, the most studied were those of ethnobotanical relevance, such 
as Libidibia ferrea (Mart. ex Tul.) L. P. Queiroz, Anadenanthera colubrina (Vell.) Brenan, 
Inga vera Willd., and Hymenaea martiana Hayne (Pedone Bonfim et al., 2013; Lima et al., 
2015; Silva et al., 2014a,b;2018a;2021a; Santos et al., 2017;2020;2021b; Falcão et al., 
2022;2023b;2024b; Muniz et al., 2023). In addition, all experiments on the phytochemistry 
of mycorrhizal legumes were conducted in the Northeast of Brazil, which hosts over 1179 
species from this plant family (Flora e Funga do Brasil, 2024).
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The most studied plant parts were the leaves alone and the aerial part (Figure 6a), 
with the inflorescence being one of the least studied organs (1.4% of the studies). The 
more significant number of studies on leaves likely reflects the potential of this organ to 
produce and present an optimized anabolism due to mycorrhizal inoculation, which could 
make up herbal medicines. Although Brazilian studies on the phytochemistry of mycorrhizal 
species represent approximately 10% of the research in this area of mycorrhizology, there 
is a need to validate the benefits reported in greenhouses under field conditions (Figure 6b). 
Thus, only 9.1% of the studies have been conducted in experimental fields (Cordeiro et al., 
2019), especially for L. ferrea (Silva et al., 2018a; Santos et al., 2017;2020;2021b). This 
reflects the need to plan studies that consider field conditions to develop protocols that can 
be reproduced in cultivation sites established by companies that manufacture and market 
phytoformulations.

To assess the mycorrhizal efficiency in the production of secondary metabolites, 
compounds from phenolic origin were estimated in more than 55% of the studies, followed 
by the terpene group (39.8%) (Figure 7a). However, alkaloids, which are extremely important 
in chemotherapy treatments (Dhyani et al., 2022), were only quantified in the studies by 
Andrade et al. (2013) and Luz et al. (2023), confirming the need for more research into this 
compound group, which are barely addressed from a mycorrhizal perspective. 
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Figure 6. a) Plant parts used to assess bioactive compounds in mycorrhizal species. b) Sites where the 
experiments were conducted to quantify the phytochemistry of mycorrhizal species in studies developed 

in Brazil. Number of experimental studies= 66 (Freitas et al., 2004a,b; Andrade et al., 2010;2013; 
Oliveira et al., 2013;2015a,b,c;2019a,b;2020;2022; Pedone Bonfim et al., 2013;2018; Riter Netto et 

al., 2014; Silva et al., 2014a,b,c,d;2018a,b,c;2019;2021a,b,c,d; Lermen et al., 2015;2023; Lima et al., 
2015a,b;2017; Urcoviche et al., 2015; Morelli et al., 2017; Santos et al., 2017;2020;2021b; Silva; Silva, 
2017;2020; Almeida et al., 2018;2020; Silva; Maia, 2018; Chiomento et al., 2019;2021;2022; Cordeiro 
et al., 2019; Cruz et al., 2019;2020; Ferrari et al., 2020; Merlin et al., 2020; Vieira et al., 2021; Trindade 
et al., 2021; Muniz et al., 2021;2022a,b;2023; Marcolino et al., 2021; Falcão; Silva, 2022; Falcão et al., 
2022;2023b;2024b; Palhares Neto et al., 2022; Pinc et al., 2022; Souza et al., 2022; Luz et al., 2023; 

Nardi et al., 2024; Melato et al., 2024).
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Figure 7. a) Compounds evaluated in phytochemical studies and b) parameters used to evaluate 
mycorrhizal activity in plants inoculated with arbuscular mycorrhizal fungi (AMF) based on studies 

conducted in Brazil. GRSP= Glomalin-Related Soil Proteins; Glomerospores= Glomerospore 
production; Colonization= Colonization percentage. Number of experimental studies= 66 (Freitas et al., 
2004a,b; Andrade et al., 2010;2013; Oliveira et al., 2013;2015a,b,c;2019a,b;2020;2022; Pedone Bonfim 
et al., 2013;2018; Riter Netto et al., 2014; Silva et al., 2014a,b,c,d;2018a,b,c;2019;2021a,b,c,d; Lermen 
et al., 2015;2023; Lima et al., 2015a,b;2017; Urcoviche et al., 2015; Morelli et al., 2017; Santos et al., 
2017;2020;2021b; Silva; Silva, 2017;2020; Almeida et al., 2018;2020; Silva; Maia, 2018; Chiomento 

et al., 2019;2021;2022; Cordeiro et al., 2019; Cruz et al., 2019;2020; Ferrari et al., 2020; Merlin et al., 
2020; Vieira et al., 2021; Trindade et al., 2021; Muniz et al., 2021;2022a,b;2023; Marcolino et al., 2021; 

Falcão; Silva, 2022; Falcão et al., 2022;2023b;2024b; Palhares Neto et al., 2022; Pinc et al., 2022; 
Souza et al., 2022; Luz et al., 2023; Nardi et al., 2024; Melato et al., 2024).

In studies on mycorrhizal benefits in the production of plant bioactive compounds, 
the most common method used to assess the presence of the fungus in the root was to 
estimate mycorrhizal colonization using the methods of Giovannetti; Mosse (1980) and 
McGonigle et al. (1990). However, around 16% of the studies did not investigate mycorrhizal 
parameters, which is a concern because many of the explanations for how AMF can enhance 
the synthesis of bioactive compounds have been attributed to mycorrhizal activity in roots 
(Oliveira et al., 2015a) and rhizosphere (Hristozkova et al., 2017; Falcão et al., 2023b).

Another important aspect of academic productivity is the establishment of partnerships 
between research groups from different countries (Rostan; Ceravolo, 2015), which seems to 
be a limitation for most Brazilian groups in the field of mycorrhizal plant phytochemistry that 
often do not have a national and/or international network. In any case, the number of papers 
with international partnerships is on the rise, as seen in the papers by Trindade et al. (2021), 
Oliveira et al. (2022), Falcão et al. (2023b; 2024b), Muniz et al. (2023), Wu et al. (2023), Luz 
et al. (2023), Nardi et al. (2024), and Falcão et al. (2024a,b), which had the collaboration of 
researchers from universities in the United States, Canada, China, India, and Spain.

	 Based on the continental dimensions of Brazil, data are presented on the publication 
of papers on the phytochemistry of mycorrhizal species in the five geographical regions of 
this country. Thus, these results will be presented in the next chapters, considering the 
overview of the evaluated studies.
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4. CONCLUSION AND PERSPECTIVES
Mycorrhizal biotechnology is an essential tool that can help to obtain a high-quality 

plant material that can be used to produce food, cosmetics, and medicines. Currently, 
several studies on the phytochemistry of mycorrhizal species have been conducted in 
Brazil, mainly in the Northeast (Figure 8); however, the recommendation for use must still 
be evaluated with caution, given the factors that can regulate the AMF efficiency, including 
climate, soil characteristics, and symbiotic partners. Given this, the lack of studies in the 
Central-West region, from a phytochemical perspective, needs to be encouraged, as this 
location has other climatic characteristics.

Given that the focus of research has been on phenolics and terpenes, it is important 
to fill the gap to understand how the production of Nitrogen compounds occurs, which have 
been poorly evaluated. In addition, it is necessary to explore the varied species of AMF 
occurring and isolated in the country, whose relationships with some plants are not yet known 
and could provide advantageous information to increase the production of biomolecules of 
industrial interest.

In addition, it is essential to develop new field studies aimed not only at improving the 
synthesis of molecules but also at understanding the mechanisms involved, the relationships 
established by the soil microbiota, and the ideal conditions for plant production, thus 
enabling the development of specific protocols that can meet the need of farmers and large 
industries.

This review aimed to compile the various aspects covered in studies of the 
phytochemistry of mycorrhizal species in Brazil and thus serve as an incentive for the 
creation of new research groups distributed throughout the country, which will help to clarify 
the role of mycorrhizal symbiosis in improving the plant biomass used in various industry 
sections. 
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Figure 8. Overview of mycorrhizal species phytochemistry studies in Brazil (Freitas et al., 2004a,b; 
Andrade et al., 2010;2013; Oliveira et al., 2013;2015a,b,c;2019a,b;2020;2022; Pedone Bonfim et al., 
2013;2018; Riter Netto et al., 2014; Silva et al., 2014a,b,c,d;2018a,b,c;2019;2021a,b,c,d; Lermen et 
al., 2015;2023; Lima et al., 2015a,b;2017; Urcoviche et al., 2015; Morelli et al., 2017; Santos et al., 
2017;2020;2021b; Silva; Silva, 2017;2020; Almeida et al., 2018;2020; Silva; Maia, 2018; Chiomento 

et al., 2019;2021;2022; Cordeiro et al., 2019; Cruz et al., 2019;2020; Ferrari et al., 2020; Merlin et al., 
2020; Vieira et al., 2021; Trindade et al., 2021; Muniz et al., 2021;2022a,b;2023; Marcolino et al., 2021; 

Falcão; Silva, 2022; Falcão et al., 2022;2023b;2024b; Palhares Neto et al., 2022; Pinc et al., 2022; 
Souza et al., 2022; Luz et al., 2023; Nardi et al., 2024; Melato et al., 2024).

Icons: canva.com
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