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Abstract: Despite the importance of birds of 
prey in ecosystems, knowledge about them is 
limited for most species, especially in tropical 
regions. On the other hand, there are efforts 
to collect massive amounts of data, but it is a 
challenge to convert them into information. 
This work makes use of the eBird database, 
updated with Citizen Science, to contribute 
to the state of knowledge about birds of prey 
by analyzing the current distribution of the 
bat falcon. (Falco rufigularis) in Mexico using 
two complementary approaches; 1) species 
distribution modeling and 2) population 
regionalization (records clustering) applying 
supervised and unsupervised machine 
learning algorithms. Results show bat falcon 
has a wide distribution in Mexico, with an area 
of ​​environmental suitability of 19,720 km2. 
Its most abundant and extensive populations 
are found in the lowlands of the southeast 
of the country, which is a region with strong 
anthropogenic pressures. On the other hand, 
unsupervised clustering models turned out to 
be a good tool to analyze spatial patterns in 
distribution, identifying 8 groups of records 
that could be interpreted as subpopulations, 
presenting greater continuity in the states of 
Veracruz, Tabasco and Chiapas, as well as in 
the Yucatan peninsula.
Keywords: Birds of prey; Species distribution 
modeling; machine learning; Biogeography

INTRODUCTION 
The bat falcon (Falco rufigularis) is a 

species of bird of prey belonging to the 
Falconidae family (Order: Falconiformes) 
widely distributed in America; historically, it is 
found from southern Sonora and Tamaulipas 
(with Mexico being the northernmost part of 
its distribution), distributed throughout the 
country in tropical and subtropical lowlands 
of up to 1500 meters above sea level; the 
rest of its distribution covers almost all of 
Central America and extends to Ecuador, 

Peru, Bolivia, Paraguay, Argentina and 
Brazil; however, it is likely that its current 
distribution and abundance have changed 
considerably, considering the intense change 
in land use and habitat destruction to which 
the Neotropics has been subjected, in addition 
to the indiscriminate use of pesticides such as 
Dichloro Diphenyl Trichloroethane (DDT) 
(Cade, 1982; Mindell et al. 2018).

The existence of three subspecies has 
been proposed in F. rufigularis; F. r. petoensis, 
F. r. rufigularis and F. r. ophryophanes; the 
subspecies belonging to Mexico and Central 
America is petoensis and, like the others, it is 
not considered migratory, with individuals 
often established in pairs in the same place 
throughout the year, and in the case of 
juveniles, dispersing from breeding areas 
and perhaps carrying out local nomadic 
movements (Global Raptor Information 
Network, 2022). 

However, the Mexican population, even 
though it belongs to the same subspecies, 
given the heterogeneity of the environment 
with respect to biomes and mountain axes, 
can probably be divided into different 
subpopulations if the appropriate tools 
are used and sufficient data is available. F. 
rufigularis, given its wide distribution and 
abundance in suitable habitats, is listed in 
the Least Concern category of the Red List of 
the International Union for Conservation of 
Nature (IUCN); however, its population trend 
is estimated to be decreasing (IUCN, 2022).

One of the most notable peculiarities 
of birds as a study group is the important 
contribution made by members of society 
who are not specialized in data collection due 
to the interest they generate among people; 
these data recorded by amateurs have great 
ecological value and must be considered to 
update and improve the state of knowledge 
of the species, as well as to strengthen the 
ties between the academic sector and society 
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(Berlanga et al. 2015). In particular, eBird 
is a citizen science initiative of the Cornell 
Laboratory of Ornithology and the National 
Audubon Society created in 2002, which 
allows for the massive collection of data 
collected by bird watchers (citizen scientists) 
using standardized protocols (Sullivan et al. 
2009). This source of data can be and has been 
used to evaluate and adapt bird conservation 
strategies in different parts of the world, 
since it offers the possibility of improving 
our understanding of birds, the habitats they 
require and how to protect them (Sullivan et 
al. 2017).

Species distribution models relate data on 
either presence or abundance at known sites 
with information on the environment (both 
biotic and abiotic factors) that have or could 
have an impact on their distribution; in order 
for them to perform well in the projection, 1) 
a good sampling design is needed (quantity 
and quality of data), 2) choosing correct 
predictor variables (that have an impact on 
distribution) and 3) choosing an appropriate 
computational model (for example, non-
parametric models that are flexible and 
resilient to the possible correlation between 
predictor variables) (Elith and Leathwock, 
2009). In birds, bioclimatic variables have been 
successfully used as distribution predictors, 
allowing to identify suitable habitat for the 
species within the established range based on 
specific environmental requirements (Mi et 
al. 2016).

How to study and protect birds of prey 
in a changing environment is a non-trivial 
question; as predators, they have specific 
characteristics (relatively low population 
density and elusive habits) that make it a 
challenge to have solid information about 
their biology, however, the development of 
successful strategies demands more work to 
guide future sampling, study and conservation 
efforts. The objective of this article is to reveal 

the current distribution of F. rufigularis in 
Mexico based on records collected through 
citizen science using a replicable methodology 
for spatial modeling of the distribution of 
other species, allowing us to know details 
in the patterns of its distribution that are 
only possible thanks to 1) the existence of a 
large amount of data collected collectively 
and systematically over long periods of time 
and 2) the use of statistical techniques and 
machine learning algorithmsthat allow us to 
process this data and find patterns that might 
otherwise go unnoticed (Kelling et al. 2013). 

MATERIALS AND METHODS

DATA ACQUISITION AND PRE-
PROCESSING
The data used for the analysis were obtained 

from the eBird database (eBird Basic Dataset, 
2021), filtering the records of F. rufigularis for 
the years 2010-2020 throughout the country. 
The data processing in this work was carried 
out using the programming languages ​​R (R 
Core Team, 2021) and Python (Van Rossum 
and Drake, 1995), choosing one or the other 
based on the availability and usability of 
packages to perform the analyses.

Once the database was obtained, the 
R package AUK was used to process the 
data and eliminate duplicate records due to 
lists shared by observers and keeping only 
records corresponding to the specified period 
(Astriñas-Mackey and Hochachka, 2018; 
Strimas-Mackey et al. 2020). Furthermore, 
given the potential bias in the distribution of 
observation records in eBird (sampling bias) 
and in order to generate a statistically more 
reliable model, spatial filtering was performed 
using the R package spThin, reducing 
observations to one point per five kilometers, 
thus decreasing spatial autocorrelation. In 
the end, 668 records were obtained (Aiello-
Lammens et al. 2015). 
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DISTRIBUTION MODELING 
A distribution  model for the species was 

developed using the 19 bioclimatic variables 
from WorldClim (http://www.worldclim.
org/) as predictors: (BIO1) mean annual 
temperature; (BIO2) mean diurnal range; 
(BIO3) isothermality; (BIO4) temperature 
seasonality; (BIO5) maximum temperature 
of the warmest month; (BIO6) minimum 
temperature of the coldest month; (BIO7) 
annual temperature range; (BIO8) mean 
temperature of the wettest quarter; (BIO9) 
mean temperature of the driest quarter; 
(BIO10) mean temperature of the warmest 
quarter, (BIO11) mean temperature of the 
coldest quarter; (BIO12) annual precipitation; 
(BIO13) precipitation of the wettest month; 
(BIO14) precipitation of the driest month; 
(BIO15) precipitation seasonality; (BIO16) 
precipitation of the wettest quarter; (BIO17) 
precipitation of the driest quarter; (BIO18) 
precipitation of the warmest quarter, and 
(BIO19) precipitation of the coldest quarter. 
These variables were obtained using the R 
package raster version 3.6-11 at a spatial 
resolution of 10 minutes (approximately 340 
km2) (Hijmans, 2022).

Once the climatic data for the coordinates 
with records of the species were extracted, a 
matrix was generated in which each record 
stores the numerical value of each of the 19 
predictor variables for the target presence/
absence variable. Since the data downloaded 
from eBird are only for sightings (positive 
presence records), there is no absence data 
(negative records), so in order to use supervised 
machine learning models, a simulation of 
3000 random absence data (background 
data) was performed, which establish the 
domain of the bioclimatic variables in the 
study area (Mexico) and would represent 
the records if the distribution of the species 
were not related to the predictor variables, 
that is, if the species had no preference for 

the different environmental parameters 
considered as variables (Philips et al. 2009). 
This data processing was performed with the 
specialized R libraries maptools (version 1.1-
5), raster and dismo (version 1.3-9) (Bivand & 
Lewin-Koh, 2022; Hijmans et al. 2022).

The Breiman random forest algorithm 
was used as a predictive model because it 
has demonstrated superior performance to 
traditional regression techniques and other 
predictive algorithms in species distribution 
modeling, particularly those for which 
relatively few records are available and the 
distribution territory has been sampled in a 
limited way, in addition to being resilient to 
the correlation between predictor variables 
(Mi et al. 2016; Mi et al. 2017). The model was 
developed with the R package randomForest 
(Liaw and Wiener, 2002).

The random forest is a supervised machine 
learning algorithm based on decision trees, 
however, it prevents the overfitting that 
trees usually imply by determining the final 
prediction as the vote (the average) of the 
trees that make up the ensemble (wisdom of 
the crowds) (Breiman, 2001). The model was 
trained with 75% of the records, using the 
remaining 25% to evaluate it with a balanced 
stratification. The number of m predictor 
variables randomly selected for each tree 
(hyperparameter mtry) was three, thus 
seeking a balance between the correlation of 
the model trees and the variance (expressed 
in overfitting), which reflected an out-of-bag 
error of 0.127 (Figure 1). The random forest 
was set to regression mode, thus prioritizing 
the discriminatory capacity of the model 
between presence and random absence data 
(Zhang et al. 2019). The assembly was adjusted 
with 500 trees since from there the error 
(average of the squared residuals; 0.1242157) 
did not decrease significantly, explaining 
16.61% of the model variance. 
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Figure 1: Out-of-bag error values ​​with different 
values ​​of m predictor variables. 

For greater interpretability, the measure 
of the importance of the variables in the 
prediction of the model was obtained as the 
average decrease in the impurity of the node 
(being the residual sum of squares because it 
is a regression model) by dividing according 
to the variable averaged in all the trees; in 
turn, the partial dependence graph of each 
variable with the response variable was 
obtained, which shows the marginal effect of 
the predictors on the target variable (Liaw and 
Wiener, 2002).

The model was evaluated by computing 
a confusion matrix, deriving from it the 
Receiver Operating Characteristic Curve 
(ROC) and obtaining the Area Under the 
ROC Curve (AUC) metric. The AUC has 
been used extensively in species distribution 
modelling, whose probabilistic interpretation 
in this context would be the probability 
that the model classifies a randomly chosen 
site of presence of the species higher than a 
randomly chosen site of absence (Pearce and 
Ferrier, 2000; Liu et al. 2010). 

GENERATION OF GROUPS
To understand the distribution of the 

species in the country and its potential 
grouping into subpopulations, a DBSCAN 
(Density-Based Spatial Clustering of 
Applications with Noise) algorithm was 
applied, an unsupervised machine learning 
clustering technique based on point density 
that allows classifying unlabeled data into 
groups in an unsupervised manner and that 

has an appropriate performance with spatial 
data, in addition to being able to detect 
records that naturally under the criteria used 
do not belong to any group (noise) (Ester et 
al. 1996). DBSCAN requires three parameters 
(in the context of Machine Learning, hyper 
parameters) that were defined by us;

1) an epsilon value, which is the minimum 
distance criterion between two points to 
be considered neighbors and form a group 
(subpopulation in the context of this work), 
2) minimum samples, which is the minimum 
number of grouped records to be considered 
a group and not outliers or noise (isolated 
records) and 3) a metric to calculate the 
distance between points.

To choose the most appropriate value for 
epsilon, a Nearest Neighbors model was first 
created, another machine learning algorithm 
that groups the data based on a number 
of groups determined by the researcher, 
allowing the distance to the n closest points of 
each record to be calculated, ordered and then 
graphed to observe the optimal epsilon value, 
which is reflected as the point of maximum 
curvature (Figure 2) (Rahmah and Sukaesih, 
2016).

Figure 2: Distances plotted from smallest to 
largest, with the inflection point observed at 

approximately 0.010.
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Finally, the hyperparameters chosen for 
the model were 0.010 for epsilon and 4 for the 
minimum number of samples, applying the 
semiverse formula as a metric to calculate the 
distance between instances. The analysis was 
performed in Python using the Scikit-learn 
library (Pedregosa et al. 2011).

The silhouette coefficient was obtained 
as a metric for evaluating clustering, which 
considers both the distance from each point 
(record) i to all points in the closest cluster 
(intercluster distance) and the distance from 
each point i to all points in the same cluster 
(intracluster distance), being a point value 
in the range from -1, which means a poor 
generation of clusters, to 1, which means 
well-formed clusters with sufficient distance 
between them (Rousseeuw, 1987). 

RESULTS

SPECIES DISTRIBUTION MODEL
Figure 3 shows the continuous prediction 

of the random forest model projected onto 
the Mexico raster; the area under the curve 
(AUC) value is 0.825 (Figure 4). 

Figure 3: Original prediction of the model.

The importance of each of the bioclimatic 
variables used in the model is shown in Figure 
5, with bio7 (annual temperature range), bio 
18 (precipitation in the warmest quarter) 
and bio 12 (annual precipitation) being the 
variables with the greatest influence on the 
prediction. 

Figure 5: Importance of predictor variables 
considering the average decrease in node 

impurity. 

The partial dependence of each of the 
variables used in the model is shown in Figure 
6; in it, we can see the effect that each variable 
has marginally on the target variable, that is, 
the value of the prediction generated by the 
model. 

For a better interpretation, we transformed 
the original continuous distribution map 
made with the model into a binary one, 
whose interpretation would be a presence-
absence map with a threshold of  .85 (Figure 
7), which we considered appropriate to reduce 
false positives in the result; thus, the current 
prediction of suitable area for the presence of 
the species in Mexico is 19720 km2. 
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Figure 4: ROC (receiver-operating characteristic) curve of the model; the area covered (AUC) reflects a 
model with good performance. 

Figure 6: Partial dependency graphs. 
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Figure 7. Binary raster map with pixels of 340 km2. 

Figure 8. Representation of the groups assigned by the DBSCAN algorithm for the records of the species 
in Mexico. 
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GROUPING INTO SUBPOPULATIONS 
Regarding the grouping of records, the 

DBSCAN algorithm labeled eight groups 
(Figure 8). In purple and with a label of -1, the 
atypical data (or noise, in the context of the 
DBSCAN algorithm) are represented, which 
are records that did not meet the criterion 
of belonging to any group by proximity. The 
value of the silhouette coefficient is 0.344. 

DISCUSSION
The area under the curve (AUC) value 

of 0.825 reflects that the model adequately 
captures the relationship between the 
presence of the species and the values ​​of the 
climatic variables used as predictors (Figure 
4); for most applications, values ​​higher 
than 0.75 mean that the model has good 
performance and predicts considerably better 
than if the values ​​were assigned randomly 
(Pearce and Ferrier, 2000; Mi et al. 2016). We 
can understand the selection of areas that 
the model proposed as highly suitable after 
making a joint analysis of the importance of 
variables in the prediction together with the 
partial dependence graphs; the most relevant 
predictor variables (annual temperature 
range, precipitation in the warmest quarter 
and annual precipitation, Figure 5) allow us to 
understand why the species is found mostly in 
areas of low altitude above sea level and mostly 
in the southeast of the country, maintaining a 
Neotropical distribution.

The annual temperature range (calculated 
as the maximum temperature of the warmest 
month minus the minimum temperature 
of the coldest month) corresponds to the 
highest prediction values ​​between 16 and 
19 °C; in the case of precipitation in the 
warmest quarter and annual precipitation, 
the highest prediction value is achieved from 
approximately 800 mm to 2750 mm. 

The highest density of records for F. 
rufigularis is concentrated in the south and 

southeast of the country, where we can 
identify two large populations (recognized 
as groups by the DBSCAN algorithm), one 
in the Gulf of Mexico, Tabasco and Chiapas 
(group one, figure 8), and one in the Yucatan 
Peninsula (group zero, figure 8). Both regions 
present high environmental suitability for the 
species, however, like many other tropical 
birds, bat falcons are sensitive to changes in 
the environment, and it is precisely in these 
regions where greater deforestation and land 
use change are recorded; although it has been 
seen that falcons have the capacity to adapt to 
new environments, isolated tropical forests 
that do not regenerate represent a temporary 
habitat that does not necessarily satisfy the 
ecological requirements of the species (Cade, 
1982; Prieto-Torres et al. 2021). For example, 
Estrada-Contreras et al. (2015) modeled 
the potential effect of climate change on 
vegetation types in Veracruz, which is a region 
with a high density of records for this species; 
the results show a reduction of the evergreen 
tropical forest by 53% by 2050, being the most 
affected vegetation type, and precisely the one 
inhabited by the bat falcon.

In the West of the country, the most 
important population is found in Nayarit and 
Jalisco (group 2, figure 8), in an area with a 
mostly semi-warm sub-humid climate, so the 
tropical sub-deciduous and deciduous forest 
is the majority of the landscape; however, the 
area is also subject to strong pressures from 
direct or indirect development actions, such 
as land use change, unsustainable livestock 
farming and unplanned intensive tourism 
(Delgadillo and Cupul, 1999). At higher 
latitudes, records are rather isolated and do 
not represent considerably connected and 
abundant populations, which is supported 
by the environmental suitability model, so 
records obtained there that do not belong to a 
group can be interpreted as outliers (or noise, 
group -1 figure 8). The same applies to the first 
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and only record of this species in the United 
States, which was announced in February 
2022, involving an individual observed in 
the Santa Ana National Wildlife Refuge in 
southern Texas (Fieldstadt, 2022). It is possible 
that the isolated records correspond mostly 
to juvenile individuals dispersing from their 
parents’ territory and looking for new sites 
with suitability to establish themselves and not 
to a constant expansion of their distribution 
(Global Raptor Information Network, 2022). 
The geographic separation between the 
country’s populations, particularly between 
those on the Atlantic and Pacific coasts, 
could result in biological divergence due 
to different ecological and environmental 
pressures, although complementary studies 
would be needed to identify and understand 
this process (Báez, 2019). In any case, the 
loss and fragmentation of the tropical forest 
affects their community of diurnal birds of 
prey, where a high dependence on the natural 
environment and a low capacity to use human 
matrices have generally been observed (Kattan 
et al. 1994; Renjifo, 2001; Thiollay 1989, 1996). 

In contrast, raptors in temperate 
ecosystems do not seem to constitute a group 
particularly sensitive to habitat replacement 
and fragmentation, probably due to their 
capacity to adapt to and use agroecosystems 

(Filloy and Bellocq 2007; Rodríguez-Estrella 
et al. 1998). In particular, F. rufigularis has 
been reported to have a high sensitivity to 
deforestation and fragmentation, with a low 
capacity to cross human matrices (Cadena, 
2012); Furthermore, like other birds of prey, 
it is especially sensitive to the indiscriminate 
use of pesticides such as DDT (Dichloro 
Diphenyl Trichloroethane), which could be  
used in regions of Veracruz, Tabasco and 
other parts of southeastern Mexico (regions 
of great importance in the distribution of 
the species in the country), and affects birds 
at a metabolic level resulting in thinner egg 
shells, increasing reproductive failure (Cade, 
1982; Kiff et al., 1981). Due to its abundance 
and distribution in the Neotropical region 
of the country, as well as its sensitivity to 
disturbance, it is possible that this species is 
a good environmental indicator to know the 
impact of anthropogenic activities on other 
tropical birds of prey present in the region 
but due to lower population density and 
more elusive habits are difficult to study and 
monitor.
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