
1
Journal of Engineering Research ISSN 2764-1317 DOI https://doi.org/10.22533/at.ed.3174222421089

Journal of
Engineering 
Research

v. 4, n. 22, 2024

All content in this magazine is 
licensed under a Creative Com-
mons Attribution License. Attri-
bution-Non-Commercial-Non-
Derivatives 4.0 International (CC 
BY-NC-ND 4.0).

IMPROVING THE 
ANDROID RELEASE 
HOMOLOGATION 
PROCESS THROUGH AN 
AUTOMATED SYSTEM 
APPLIED TO SECURITY 
MAINTENANCE 
RELEASES

Heryck Michael Dos Santos Barbosa
Sidia Institute of Science and Technology - 
SIDIA, AM - Brazil

Pedro Ivo Pereira Lancellotta
Sidia Institute of Science and Technology - 
SIDIA, AM - Brazil

João Gabriel Castro dos Santos
Sidia Institute of Science and Technology - 
SIDIA, AM - Brazil

Abda Myrria De Albuquerque
Sidia Institute of Science and Technology - 
SIDIA, AM - Brazil

Janislley Oliveira de Sousa
Sidia Institute of Science and Technology - 
SIDIA, AM - Brazil

Alice Albuquerque Castro
Sidia Institute of Science and Technology - 
SIDIA, AM - Brazil



2
Journal of Engineering Research ISSN 2764-1317 DOI https://doi.org/10.22533/at.ed.3174222421089

Abstract: Software testing is pivotal in ensuring 
the quality and reliability of technological 
products. This paper presents the development 
of PRIMA, an automated tool designed to 
enhance the homologation review process 
for Android releases. PRIMA systematically 
evaluates test artifacts produced by Google’s 
trade-fed tools, utilizing a predefined set of 
rules to verify the accuracy and completeness 
of the results. To demonstrate the effectiveness 
of our tool, real-world Security Maintenance 
Release (SMR) tests were conducted within 
our company. The results underscore 
PRIMA’s capacity to significantly streamline 
the Android release homologation process, 
reducing software release approval times by 
up to 54%. By automating these processes, 
PRIMA conserves time and resources for 
development teams and facilitates large-
scale projects, such as Android, by efficiently 
managing multiple software artifacts in 
software release validation.

INTRODUCTION
Software testing is crucial for maintaining 

the integrity and quality of technological 
products, as it identifies potential issues early 
in the production process, saving time in later 
development phases [Zhao et al. 2021]. Google 
imposes stringent requirements on Original 
Equipment Manufacturers (OEMs) that wish 
to integrate the Android operating system 
into their mobile devices. Each device model 
released by OEMs must undergo a series of 
automated and manual tests to comply with 
Google’s contractual requirements [AOSP 
2023a]. Furthermore, OEMs must conduct 
additional tests tailored to their specific needs. 
After passing several compatibility tests, the 
results are submitted to Google for approval, 
and only the approved versions are released to 
the market.

In the realm of software release validation, 
automated tools are pivotal in ensuring quality 
assurance across the development life cycle 
[Pargaonkar 2023]. These tools are designed 
to automate the verification of code against 
predefined standards and to detect anomalies 
that could lead to future failures or security 
breaches [Thota et al. 2020]. For instance, 
continuous integration systems automatically 
build and test code with each change, 
facilitating early detection of integration 
issues. Additionally, automated regression 
testing tools rapidly assess the impact of 
code modifications on existing functionality, 
thereby ensuring that new developments do 
not disrupt the operational integrity of the 
software [Ali et al. 2020]. Performance testing 
tools simulate varying loads on the system 
to evaluate how changes might affect user 
experiences under different conditions. The 
strategic integration of these automated tools 
into the release process not only streamlines 
the validation phases but also significantly 
enhances the robustness and reliability of the 
software product [Enríquez et al. 2020]. Such 
automation is indispensable in today’s fast-
paced development to the annual release cycle 
of the Android system where the demand 
for rapid, yet reliable software deployment is 
ever-increasing [Mahmoudi and Nadi 2018]. 
By leveraging automated testing tools and 
processes, you can ensure rapid yet reliable 
software deployment while upholding 
stringent quality standards. This systematic 
approach not only aligns the final product 
with user expectations but also ensures Google 
regulatory compliance in the ever-evolving 
landscape of mobile development.

Maintaining quality control over Android 
release validation rules poses a significant 
challenge due to the large number of artifacts 
that must be analyzed at the end of the testing 
process [Lancellotta et al. 2022]. To enhance 
the review stage of these validations, we 



3
Journal of Engineering Research ISSN 2764-1317 DOI https://doi.org/10.22533/at.ed.3174222421089

proposed a methodology and developed 
an automated review tool named PRIMA 
(Primary Review in Mobile Android). 
Through the development of PRIMA, we 
aim to address the central research question: 
Does the development and application of the 
proposed methodology improve the Android 
release homologation process? Reviewing test 
artifacts before submitting them to Google, 
we anticipate a reduction in approval time 
and the elimination of additional fixes, 
thereby enhancing the validation process. We 
employed a quantitative approach to address 
our research question and test our hypothesis 
by analyzing our methodology in real-world 
Android release tests.

This paper is an extended version of a 
previously published article in an industry 
experience report [Barbosa et al. 2023]. It 
includes additional data comparing SMR tests 
conducted before and after the implementation 
of PRIMA during the second quarter of 2021 
and the first quarters of 2023 and 2024. The goal 
is to assess the impact of PRIMA on the SMR 
testing process. This study provides valuable 
insights into how the proposed methodology 
and the PRIMA tool can enhance the Android 
release homologation process.

The following sections of this paper are 
organized as follows. Section 2 presents the 
background related to the Android life cycle 
product development. Section 3 outlines 
the methodology of the automated process 
developed through the creation of the PRIMA 
tool. Results will be presented in Section 4, 
highlighting the contributions of this work. 
Finally, Section 5 provides the conclusions 
regarding the automated system applied to 
security maintenance releases.

BACKGROUND
In this section, we will delve into 

the background of the Android release 
homologation process, focusing specifically on 
security maintenance releases. We will explore 
the Android product life cycle, the Google 
homologation process, and the importance 
of security maintenance releases in ensuring 
the safety and security of Android devices. By 
understanding these key components, we can 
better appreciate the need for an automated 
system to streamline and improve the Android 
release homologation process.

ANDROID PRODUCT LIFE CYCLE
To develop and release an Android-based 

device, Original Equipment Manufacturers 
(OEMs) must navigate various phases 
throughout the product life cycle. This 
intricate process necessitates a coordinated 
effort among multiple stakeholders, including 
Google, silicon manufacturers (SMs), device 
manufacturers (OEMs), and carriers. These 
parties must align their schedules to ensure 
seamless progression through each stage of 
development. Figure Figure 1 depicts the 
phases involved in launching an Android 
product, corresponding to each cycle of 
development [Proske et al. 2020].

Figure 1 Android product cycles development

The OEMs must follow these phases in the 
Android product life cycle:

•	 Initial cycle: Product development 
begins with selecting the appropriate 
System on Chip (SoC), defining hardware 
specifications, and designing the device 
to integrate seamlessly with the Android 



4
Journal of Engineering Research ISSN 2764-1317 DOI https://doi.org/10.22533/at.ed.3174222421089

operating system [Yaghmour 2013].

•	 Pre-GMS cycle: This phase involves 
validating the product concept against 
the Compatibility Definition Document 
(CDD), which outlines the requirements 
that devices must meet to be compatible 
with the latest version of Android. The 
CDD acts as a central reference, linking 
to other resources such as SDK API 
documentation, to provide a framework 
for utilizing Android source code in 
creating compatible systems [AOSP 
2024].

•	 Development cycle: To effectively 
run the latest Android OS, a device 
requires a compatible SoC supported 
by a Board Support Package (BSP). 
The BSP comprises vendor-specific 
implementations, key AOSP components, 
and additional framework elements 
for specific functionalities. During 
this phase, the operating system is 
developed based on the Android Open-
Source Project (AOSP), which provides 
the necessary source code to build 
customized operating systems while 
adhering to CDD guidelines [AOSP 
2023a, Yim et al. 2019]

•	 Test cycle: This phase is crucial for 
testing Android releases before their 
public deployment [Riccio et al. 2018]. 
Utilizing the Trade Federation (Trade-
fed) framework, the testing suite includes 
the Compatibility Test Suite (CTS), CTS 
Verifier for manual APIs, Vendor Test 
Suite (VTS) for reliability and system 
conformity, Google Test Suite (GTS) 
for Google Mobile Service (GMS) 
applications and Google contractual 
presets, Security Test Suite (STS) for 
CTS, and Closed Box Testing for OEM-
specific applications. These tests form the 
automated component of our research 

focus [Lancellotta et al. 2022].

•	 Submission cycle: A mandatory 
process for obtaining Google’s approval 
homologation before releasing Android 
software to the market. This phase 
ensures that all aspects adhere to Google’s 
guidelines [Lancellotta et al. 2022].

•	 Product launch cycle: Following 
Google’s approval and GMS certification, 
the product can be launched in the 
market through the Firmware Over-
the-Air (FOTA) process [Blázquez et al. 
2021].

GOOGLE HOMOLOGATION 
PROCESS
The Google homologation process refers 

to the rigorous testing and approval process 
followed by OEMs that Android devices must 
undergo in order to be certified by Google 
[Lancellotta et al. 2022]. This process ensures 
that devices meet Google’s standards for 
performance, compatibility, and security. By 
successfully completing the homologation 
process, OEMs can ensure that their devices 
are ready for market release by FOTA and 
will provide a seamless user experience for 
consumers. Overall, the Google homologation 
process plays a crucial role in maintaining 
the quality and integrity of the Android 
ecosystem.

In our process, the Key Person (KP) is 
responsible for analyzing the release request 
and distributing the releases between the 
tester squads. When the squad receives the 
release, they start executing the tests. When 
the tests are completed, they can start the 
manual Review, at this point in the process, we 
are trying to improve and implement our tool 
named PRIMA. If there is any inconsistency 
in the test result, an analysis is opened, and 
the GMS Support team is responsible for 
verifying if these tests failed. If the test is 



5
Journal of Engineering Research ISSN 2764-1317 DOI https://doi.org/10.22533/at.ed.3174222421089

failed, the release is canceled. If the manual 
review reveals any wrong result, the tester 
can fix the result before submission. In case 
any wrong result is caught in manual review, 
the tester can proceed with the submission. 
The Google Build Approval (GBA) team is 
responsible for reviewing the results before 
making the final submission to Google. If 
everything is correct, the release is approved 
and sent to Google. However, if the GBA team 
identifies any inconsistencies, feedback is sent 
to the tester squad with the results that need 
to be fixed. The tester squad fixes the results 
and replies to the feedback. GBA reviews the 
results again to approve the release. If the 
results cannot be fixed, the release is rejected 
and another release needs to be created. Figure 
2 illustrates the steps involved in the Google 
homologation process.

Reviewing the literature related to the 
Google homologation process for Android 
releases, there is not much information 
available on using automation tools to improve 
the release process. The paper [Balachandran 
2013] discusses Review Bot, an automated 
source code review tool that not only generates 
automatic reviews but also recommends the 
most suitable reviewers based on criteria such 
as their familiarity with the project. Review 
Bot significantly reduces the workload in 
peer code reviews by identifying common 
errors, thereby allowing human reviewers to 
concentrate on more complex and unusual 
errors or behaviors. The study [Lancellotta et 
al. 2022] also aimed to reduce human effort, 
specifically in validating review points to 
enhance the Android release homologation 
process. Building on these concepts, this 
paper advances the work by developing a 
tool and integrating it into our company’s 
daily operations. These tests are conducted 
to approve specific mobile software releases 
and their customization for the global market. 
Once the Google homologation process is 

completed, the approved release becomes 
available for download by end-users [Myrria 
de Albuquerque et al. 2023].

SECURITY MAINTENANCE RELEASE
Our company’s release testing process 

involves three distinct scopes. The first is 
the SMR tests, which focus on validating 
security issues by applying patches from the 
Google Security Bulletin. The NE (Normal 
Exception) test scope follows and is responsible 
for validating the customization made by 
each carrier within OEMs. Finally, the Full 
Submission scope serves as a base release for 
the SMR and NE scopes and comprises a set of 
tests aimed at validating all components of the 
Android system release [Alure and Puri 2021].

To illustrate the complexity of SMR, 
NE scope, and Full Submissions have 
approximately 1200, 105.000, and 3.400.000 
test cases respectively, because of that PRIMA 
started validating only SMR before applying 
the tool in NE and Full scopes, but even SMR 
has less number of test cases, it has a certain 
complexity level with on average, reviewing 6 
XML files, 3 TXT files, 62 JSON files, 20 PNG 
files, security patches, and two other extension 
files. In our company’s daily routine, each 
human test analyst typically concludes about 
five SMR tests per day, involving a review of 
nearly 500 files.

The Android Security Bulletin [AOSP 
2023b] offers patches that address Common 
Vulnerabilities and Exposures (CVE) issues, 
fixing security vulnerabilities including buffer 
overflows, use-after-free errors, and invalid 
pointer references [Andrade et al. 2023, de 
Sousa et al. 2023]. To ensure the security 
and safety required by Android, researchers 
developed and tested methodologies and 
tools that employ state-of-the-art models for 
verifying large software systems [Farhang et 
al. 2020, Sousa 2023]. This process involves 
pre-processing input source-code files and 



6
Journal of Engineering Research ISSN 2764-1317 DOI https://doi.org/10.22533/at.ed.3174222421089

Figure 2 Google Homologation Process

Figure 3 SMR process using PRIMA tool in Google Approval tests.

Figure 4PRIMA tool architecture and software artifacts



7
Journal of Engineering Research ISSN 2764-1317 DOI https://doi.org/10.22533/at.ed.3174222421089

systematically guiding the model to analyze 
them efficiently and identify Android software 
vulnerabilities [Senanayake et al. 2023]. The 
release of these patches and maintenance 
updates for significant mobile device models 
is the responsibility of OEMs, who follow a 
monthly SMR process provided by Google, as 
shown in Figure 3.

PRIMA ARCHITECTURE
Our methodology employs a REST API 

architecture, which enhances the system’s 
flexibility, scalability, and portability [John 
and Siddique 2021]. This architecture enables 
the broad application of our automated review 
tool, facilitating communication with other 
company tools that can leverage accurate 
result inputs for enhanced functionality.

PRIMA is an API developed using the 
proposed methodology, designed to review test 
artifacts for Android release homologation. 
Figure 4 illustrates the resulting architecture 
of our approach. The process begins when 
a software tester enters the ID of the release 
request from the management system (I), 
which contains important information 
about the release being tested. The software 
tester then loads the test artifacts (III) into 
PRIMA. These artifacts consist of output files 
generated by trade-fed tools, with various file 
types such as XML, JSON, TXT, and image 
extensions. Before proceeding (II), a set of 
rules for each trade-fed tool was established as 
a prerequisite to verify each validation point 
on a specific topic and the anticipated value. 
Finally, PRIMA compares all information 
extracted from the request (I) and the artifacts 
(III) with the implemented predefined rules 
(II). The tool then displays an output to the 
user with found and expected values (IV) 
for each incorrect value detected. With this 
information, the quality assurance tester can 
verify the proper files and take necessary 
actions to fix any issues.

RESULTS
In our company environment, various 

tests are conducted to homologate Android 
releases. Our experiment focused on the SMR 
test type, which involves a high volume of 
releases with frequent changes and updates to 
security patches and software fixes, as shown 
in Table 1. Despite the volume of releases, 
SMR has a smaller number of test artifacts 
compared to other types of tests.

Table1Submissions TTS and TTA.

Table 1 and Figure 5 illustrate all SMR 
submissions made by our company between 
the years 2021 and the first quarter of 2024. We 
observed the time to submission (TTS) and 
time to approval (TTA), both are measured 
in days. TTS corresponds to the average time 
between release test creation and when quality 
assurance tester submits to Google, TTA 
corresponds to the time between test creation 
and Google approval letter.

In Figure 5 the left side is the number 
of days, the right side is the number of 
submissions, each blue bar is the number of 
submissions for each quarter of the year from 
2021 to 2024 first quarter, the orange line 
and gray line are the average time to submit 
(TTS) and the average time to approval (TTA) 
respectively. It is a visual way to represent the 
data presented in Table 1.

PRIMA was implemented in 2023 and we 
noticed the TTS and TTA were lower than 
other periods without our tool. Comparing the 



8
Journal of Engineering Research ISSN 2764-1317 DOI https://doi.org/10.22533/at.ed.3174222421089

Figure 5. Submissions for each quarter related to TTS and TTA.

2023 1st quarter with the 2021 second quarter, 
which are periods with a similar number of 
submissions, we noticed approximately 50%-
time reduction from both TTS and TTA. 
Comparing these two periods with the 2024 
first quarter, even with more submissions this 
period has a time reduction from both TTS 
and TTA. Comparing only the 2021 second 
quarter with the 2024 first quarter we have a 
56%-time reduction in TTS and a 54% gain 
in TTA.

In summary, our observations indicated 
an increase in the number of submissions 
and a reduction in the time required to 
approve a release. While acknowledging that 
factors such as team headcount and other 
test demands may influence these results, 
potential discrepancies, particularly in the 
second quarter of 2021, have been considered. 
However, analyzing the overall scenario, 
the implementation of PRIMA appears to 
enhance the efficiency of the Android release 
homologation process.

As we can observe using the PRIMA 
tool, automating the software release process 
homologation can save time and effort for 
development teams, speeding up the overall 

release process. Automation tools ensure 
consistent and accurate homologation, 
reducing errors and risks. Real-time feedback 
from automated tools helps teams address 
issues promptly, accelerating the release 
process. Scaling processes becomes easier 
with automation, benefiting larger projects 
such as Android and simultaneous software 
releases. By automating homologation, teams 
reduce manual work, cut costs, and improve 
overall efficiency.

CONCLUSION AND FUTURE 
WORKS
Our observation from the SMR type of real-

world Android release tests demonstrated a 
significant improvement in the homologation 
process reducing until 54% time to release 
approval. The tool’s effectiveness and seamless 
integration into daily workflows justify its 
expansion to Full Submission and Normal 
Exception release types, which have a larger 
scope and are more susceptible to manual 
errors, we propose to bring more rigorous 
experiments to test the effectiveness of PRIMA 
in those scopes to minimize external factors.



9
Journal of Engineering Research ISSN 2764-1317 DOI https://doi.org/10.22533/at.ed.3174222421089

ACKNOWLEDGMENT
The authors are grateful for the support 

offered by SIDIA R\&D Institute in Smartgate 
project. This work was partially supported 

by Samsung, using resources of Informatics 
Law for Western Amazon (Federal Law No. 
8.387/1991). Therefore, the present work 
disclosure is in accordance as foreseen in 
article No. 39 of number decree 10.521/2020.

REFERENCES
Ali, S., Hafeez, Y., Hussain, S., and Yang, S. (2020). Enhanced regression testing technique for agile software development and 
continuous integration strategies. Software Quality Journal, 28:397–423.

Alure, S. and Puri, R. (2021). Firmware designing for android mobile. INTERNATIONAL JOURNAL, 5(12).

Andrade, E., Franca, H., Lima, W., and Barbosa, D. (2023). Sisyphus: um organizador de informações relacionadas a 
vulnerabilidades e correções para dispositivos android. In Anais da XX Escola Regional de Redes de Computadores, pages 
109–114. SBC.

AOSP (2023a). Android open-source project. Available at https://source.android.com/ (accessed: 2023/04/13). 

AOSP (2023b). Android security bulletin. Available at https://source.android.com/security/bulletin (accessed: 2023/04/13). 

AOSP (2024). Android compatibility definition document. Available at https://source.android.com/docs/compatibility/cdd 
(accessed: 2024/04/19).

Balachandran, V. (2013). Reducing human effort and improving quality in peer code reviews using automatic static analysis 
and reviewer recommendation. In 2013 35th International Conference on Software Engineering (ICSE), pages 931–940. IEEE. 

Barbosa, H., Lancellotta, P., Santos, J., Albuquerque, A., and Sousa, J. (2023). Prima: an automated tool for android releases 
homologation review. In Anais Estendidos do XIV Congresso Brasileiro de Software: Teoria e Pr ́atica, pages 1–4, Porto Alegre, 
RS, Brasil. SBC.

Blázquez, E., Pastrana, S., Feal, Á., Gamba, J., Kotzias, P., Vallina-Rodriguez, N., and Tapiador, J. (2021). Trouble over-the-air: An 
analysis of fota apps in the android ecosystem. In 2021 IEEE Symposium on Security and Privacy (SP), pages 1606–1622. IEEE.

de Sousa, J. O., de Farias, B. C., da Silva, T. A., Cordeiro, L. C., et al. (2023). Finding software vulnerabilities in open-source c 
projects via bounded model checking. arXiv preprint arXiv:2311.05281.

Enríquez, J. G., Jiménez-Ramírez, A., Domínguez-Mayo, F. J., and García-García, J. A. (2020). Robotic process automation: a 
scientific and industrial systematic mapping study. IEEE Access, 8:39113–39129.

Farhang, S., Kirdan, M. B., Laszka, A., and Grossklags, J. (2020). An empirical study of android security bulletins in different 
vendors. In Proceedings of The Web Conference 2020, pages 3063–3069.

John, E. and Siddique, M. (2021). Efficient semantic web services development approaches using rest and json. In 2021 
International Conference on Decision Aid Sciences and Application (DASA), pages 231–235.

Lancellotta, P. I. P., Barbosa, H. M. D. S., Santos, J. G. C., Sahdo, K. M. I., and De Sousa, J. O. (2022). An industry case study: 
Methodology application to the reviewing process on android releases homologation. In Anais Estendidos do XIII Congresso 
Brasileiro de Software: Teoria e Prática, pages 13–16. SBC.

Mahmoudi, M. and Nadi, S. (2018). The android update problem: An empirical study. In Proceedings of the 15th International 
Conference on Mining Software Repositories, pages 220–230.

https://source.android.com/


10
Journal of Engineering Research ISSN 2764-1317 DOI https://doi.org/10.22533/at.ed.3174222421089

Myrria de Albuquerque, A., Barbosa, H., Lancellotta, P., Santos, J., and Sousa, J. (2023). Automating android rotation vector 
testing in Google’s compatibility test suite using a robotic arm. In Proceedings of the 8th Brazilian Symposium on Systematic 
and Automated Software Testing, pages 54–63.

Pargaonkar, S. (2023). Synergizing requirements engineering and quality assurance: A comprehensive exploration in software 
quality engineering. International Journal of Science and Research (IJSR), 12(8):2003–2007. 

Proske, M., Poppe, E., and Jaeger-Erben, M. (2020). ”the smartphone evolution an analysis of the design evolution and 
environmental impact of smartphones “. Fraunhofer Institut für Zuverl ässigkeit und Mikrointegration.

Riccio, V., Amalfitano, D., and Fasolino, A. R. (2018). Is this the lifecycle we really want? An automated black-box testing 
approach for Android activities. In Companion Proceedings for the ISSTA/ECOOP 2018 Workshops, pages 68–77.

Senanayake, J., Kalutarage, H., Al-Kadri, M. O., Petrovski, A., and Piras, L. (2023). Android source code vulnerability detection: 
a systematic literature review. ACM Computing Surveys, 55(9):1–37.

Sousa, J. O. d. (2023). Lsverifier: a bmc approach to identify security vulnerabilities in c open-source software projects.

Thota, M. K., Shajin, F. H., Rajesh, P., et al. (2020). Survey on Software Defect Prediction techniques. International Journal of 
Applied Science and Engineering, 17(4):331–344. 

Yaghmour, K. (2013). Embedded Android: Porting, Extending, and Customizing. ” O’Reilly Media, Inc.”.

Yim, K. S., Malchev, I., Hsieh, A., and Burke, D. (2019). Treble: Fast software updates by creating an equilibrium in an active 
software ecosystem of globally distributed stakeholders. ACM Transactions on Embedded Computing Systems (TECS), 
18(5s):1–23.

Zhao, Y., Hu, Y., and Gong, J. (2021). Research on international standardization of software quality and software testing. In 2021 
IEEE/ACIS 20th International Fall Conference on Computer and Information Science (ICIS Fall), pages 56–62.


