
1
International Journal of Exact Sciences ISSN 2966-1153 DOI https://doi.org/10.22533/at.ed.153112401077

International Journal of

Exact
Sciences

v. 1, n. 1, 2024

All content in this magazine is
licensed under a Creative Com-
mons Attribution License. Attri-
bution-Non-Commercial-Non-
Derivatives 4.0 International (CC
BY-NC-ND 4.0).

CLASSICAL NUMERICAL
METHODS TO SOLVE
ORDINARY FIRST
ORDER DIFFERENTIAL
EQUATIONS

Esiquio Martín Gutiérrez Armenta
Department of Systems, Area of Computer
Systems, ``Universidad Autónoma
Metropolitana`` Azcapotzalco/ Cdmx, Mexico

Marco Antonio Gutiérrez Villegas
Department of Systems, Area of Computer
Systems, ``Universidad Autónoma
Metropolitana`` Azcapotzalco/ Cdmx, Mexico

Nicolas Domínguez Vergara
Systems Department, Applied Statistics Area
and Operations Research, ``Universidad
Autónoma Metropolitana``
Azcapotzalco/, Cdmx, Mexico

Israel Isaac Gutiérrez Villegas
Division of Engineering in Computer Systems,
Thesis - Tecnm, /state of Mexico
Department of Administration, Mathematics
and Systems Area, ``Universidad Autónoma
Metropolitana`` Azcapotzalco/Cdmx, Mexico

Alfonso Jorge Quevedo Martinez
Systems Department, Applied Statistics Area
and Operations Research, ``Universidad
Autónoma Metropolitana``
Azcapotzalco/, Cdmx, Mexico

Josué Figueroa González
Department of Systems, Area of Computer
Systems, ``Universidad Autónoma
Metropolitana`` Azcapotzalco/ Cdmx, Mexico

2
International Journal of Exact Sciences ISSN 2966-1153 DOI https://doi.org/10.22533/at.ed.153112401077

Abstract: The objective of this article is to
make a comparison of the classical methods
for solving first-order ordinary differential
equations. Both the analytical solution and the
implementation in programming language in
Dev-C++ of the fourth-order Euler, Improved
Euler (Heun) and Runge-Kutta methods
will be addressed. This way, it is intended to
offer a complete guide for selecting the most
appropriate one to solve a given problem.
In this work, classical methods are used to
find approximate solutions to problems with
initial values. Cauchy showed that an ordinary
differential equation with initial conditions
has a unique solution. These equations
are widely used in various areas, such as
engineering, exact sciences, humanities,
biology, management and medicine, among
others.
Keywords: Ordinary differential equations,
Analytical solution, DevC++ programming
language, Euler, Improved Euler (Heun),
Runge-kutta, Cauchy.

INTRODUCTION
Numerical methods emerge as a viable

alternative to solve differential equations
that do not admit analytical solutions. These
methods provide numerical approximations
to the solutions of ordinary differential
equations in a given interval.

The first numerical method forFirst-order
ordinary differential equations was proposed
by Leonhard Euler in 1768. Kamruzzaman
and Mithun Chandra Nath (2018) introduced
a simplified version of Euler’s method,
applicable to both linear and nonlinear
ordinary differential equations Kamruzzaman
eat al. (2018) and Nurujjaman. (2020).
Although this method is fundamental among
numerical methods for ordinary differential
equations, its simplicity makes it susceptible
to significant propagation error, especially
when a high number of partitions is used.

In order to improve the precision of Euler’s
method, mathematicians reformulated this
method to increase its speedup and reduce
the error. Among the proposed variants
are the midpoint method and the modified
Euler method. This article provides a concise
review of the geometric interpretation of the
Euler method, the midpoint method, and the
modified Euler method.

In 1900, Heun (who also proposed the
improved Euler method) made additional
contributions, while Kutta, in 1901, fully
characterized the set of order 4 RK methods
and proposed the first order 5 method,
presented in a published paper. that same
year. A further development of this work is
found in the article by Geeta eat al(2020).

Picard, in 1891, proposed a method based
on the fundamental theorem of integral
calculus by Youssef and Arabawy.(2007).
They begin by reformulating the initial value
problem for systems of differential equations.

In equation (1), the solutions converge. As
shown by Hubbard eat al. (2001), the theorem
states that if the function is defined for on an
interval and on an interval, and satisfies the
Lipschitz condition with respect to for, then
there exists a unique solution of the equation
(1) for each in.

From equation (1) the method converges
if it satisfies:

The theorem proven byhubbard eat. (2001).
If the following conditions are met:

1.	 The function is defined for on an
interval and on an interval. f(t,x)x1, x2x1,
x2 ∈ [c,d] tt ∈ [a,b]

3
International Journal of Exact Sciences ISSN 2966-1153 DOI https://doi.org/10.22533/at.ed.153112401077

2.	 The function satisfies the Lipschitz
condition with respect to en. f(t,x)x1,
x2x1, x2 ∈ [c,d]

3.	 For each sequence that of Euler
approximations for the first-order
ordinary differential equation given by
with un: [a,b] → [c,d] x' = f (t,x) u (t0) = c

4.	 Step lengths tend to 0, and if
it exists for some then there is a
unique solution for

From equation (1) the solutions converge.
Hubbard eat. (2001). al, demonstrate the
theorem, that if f(t,x) is defined for and
satisfies the Lipschitz condition if para is a
sequence of Euler approximations for the first-
order ordinary differential equation given by.
x' = f(x,t) con With step lengths tending to 0,
and if then there exists a unique solution for.
Although the theorem mentioned above is not
valid for the differential equation (1) when
x=0, that is, when the solution crosses the
t-axis, Euler approximations can still converge
under certain conditions. If theorem is not true
for the differential bond (1) when x = 0, that
is, when the solution crosses the axis. x' =
f(x,t) con u (t0) = ct

But the Euler approximations converge
if they satisfy the Lipschitz condition: if a
sequence of Euler approximation (t), defined
for, all satisfy for some then the theorem
applies and they converge to a solution if they
converge. in a single point. This is stated in the
following proposition. unt ∈ [a,b] un(t)> ε ó un
(t) <- ε ε > 0 un

Proposition. Let be a secession of step
lengths tending to 0, and let hk > 0 uk

a secession that approximates Euler’s
method with step length. hk

1.	 If there exists such that ac converges
with c > 0, then the sequence converges
for each a function a function t0 ck =

2.	 If there exists such that converges
to c with c < 0, then the sequence
converges for each a function t0 ck =

The fact depends on the fundamental
equality theorem without which it is essentially
impossible to prove anything about different
questions. We reformulate it here with the
following theorem.

Theorem.
Let it be defined for everything, and satisfy

the Lipschitz condition for everything,,
Suppose that they are continuous functions
differentiable by parts that satisfy

For all points where the functions and are
differentiable and

For some, then. You get

It can be thought that the are the errors of
the slopes that measure the extent to which
they do not have the appropriate slope to be
the solution and as the error of the initial
condition.

Then, regardless of the choice of the
initial condition, successive approximations
converge in some interval to the solution of
problem (1). Furthermore, if it is continuous
in the rectangle R, then the error of the
approximate solution is estimated by the
inequality:

4
International Journal of Exact Sciences ISSN 2966-1153 DOI https://doi.org/10.22533/at.ed.153112401077

METHODOLOGY
In this study, the fourth-order Euler,

Improved Euler (Heun Method) and Runge-
Kutta methods will be used to approximate the
solution of the ordinary differential equation (1).

The same spacing will be used for each
method in order to make accurate comparisons
with the known analytical solution.

Euler’s method is a simple and direct
numerical method for approximating
solutions of first-order ordinary differential
equations. It was given the initial value
problem by equation (4).

In these methods, a partition for time is used
as follows, where the other approximations
will be determined from the initial condition.

Equation (5) represents a generalization of
Euler’s method:

John H. Hubbard. eat. (2001). In his article
he gives some examples where the convergence
of Euler’s method exists where there are cases
in which its convergence is not obvious or may
fail. To avoid these the Lipschitz condition
must be satisfied and if a is a sequence then
Euler’s approximation of the differential
equation converges i.e.

The improved Euler method, also known
as Heun’s method, is a variant of the explicit
Euler method that offers greater precision
in solving first-order ordinary differential
equations.This method is based on the
following equations (6,7) where the iterative
expression is obtained:

The fourth-order Runge-Kutta iterative
method is an explicit high-order numerical
method for solving first-order ordinary
differential equations.following iterative
formulas Equations (8-12):

APPLICATION 1
It is important to note that the choice of the

most appropriate numerical method depends
on the specific ordinary differential equation,
the level of precision required and the available
computational resources. The comparison
between numerical and analytical solutions
provides valuable information for making this
decision.

Figure1. The graph of equation (4).

The analytical solution of equation (13) is
the following:

5
International Journal of Exact Sciences ISSN 2966-1153 DOI https://doi.org/10.22533/at.ed.153112401077

Figure 2: The graph of equation (14)

Figure 3: A comparative graphical representation
between the numerical approximations and the

analytical solution

APPLICATION 2
The following ordinary differential

equation (ODE) will be solved using the
numerical methods described above.

Figure 4: A graphical representation of equation (15).

Equation (16) represents the analytical
solution of equation (15).

Figure 5: Presents a graphic representation of
equation (16).

Figure 6: Presents a graphic representation of
the approximations obtained together with the

analytical solution

APPLICATION 3
Solve the ordinary differential equation by

numerical methods and compare it with the
analytical solution.

Figure 7: It shows the graph of equation (17).

6
International Journal of Exact Sciences ISSN 2966-1153 DOI https://doi.org/10.22533/at.ed.153112401077

Iteration x Euler Improved Euler Runge Kutta Analytics
0 0 1 1 1 1
1 0.05 1.05 1.05125 1.05125 1.05254219
2 0.1 1,105 1.105125 1.10643906 1.11034184
3 0.15 1.16525 1.16425625 1.16576906 1.17366849
4 0.2 1.2310125 1.22890656 1.22945223 1.24280552
5 0.25 1.30256313 1.29935189 1.29771166 1.31805083
6 0.3 1.38019128 1.37588199 1.37078188 1.39971762
7 0.35 1.46420085 1.45880108 1.44890945 1.4881351
8 0.4 1.55491089 1.54842864 1.53235356 1.5836494
9 0.45 1.65265643 1.64510007 1.62138668 1.68662437

10 0.5 1.75778925 1.74916757 1.71629525 1.79744254
11 0.55 1.87067872 1.86100095 1.81738038 1.91650604
12 0.6 1.99171265 1.9809885 1.92495862 2.0442376
13 0.65 2.12129828 2.10953793 2.03936275 2.18108166
14 0.7 2.2598632 2.24707732 2.16094259 2.32750541
15 0.75 2.40785636 2.39405619 2.2900659 2.48400003
16 0.8 2.56574918 2.5509465 2.42711928 2.65108186
17 0.85 2.73403664 2.71824382 2.57250914 2.8292937
18 0.9 2.91323847 2.89646851 2.72666273 3.01920622
19 0.95 3.10390039 3.08616694 2.8900292 3.22141932
20 1 3.30659541 3.28791279 3.06308069 3.43656366

Table 1: The results obtained in each iteration of equation (13) are presented.

Iteration x Euler Improved Euler Runge Kutta Analytics

0 0 1 1 1 1

1 0.05 1.05 1.05125 1.05125 1.0512492

2 0.1 1.10243439 1.10377805 1.10509208 1.10498683

3 0.15 1.15728073 1.15878958 1.16158312 1.16118163

4 0.2 1.21449501 1.21625025 1.22077187 1.21977856

5 0.25 1.27400931 1.2761024 1.28269766 1.28069636

6 0.3 1.33572949 1.33826264 1.34738917 1.34382524

7 0.35 1.39953304 1.40261959 1.41486316 1.40902476

8 0.4 1.4652672 1.4690318 1.48512319 1.47612195

9 0.45 1.53274722 1.53732589 1.55815836 1.54490981

10 0.5 1.60175511 1.60729505 1.63394209 1.6151463

11 0.55 1.67203873 1.67869789 1.71243102 1.68655372

12 0.6 1.74331143 1.75125787 1.7935639 1.75881885

13 0.65 1.81525228 1.82466316 1.87726066 1.8315936

14 0.7 1.88750693 1.89856728 1.96342167 1.90449653

15 0.75 1.95968917 1.97259028 2.05192704 1.9771151

16 0.8 2.03138331 2.04632083 2.14263623 2.04900865

17 0.85 2.10214723 2.11931895 2.23538785 2.11971237

18 0.9 2.17151632 2.19111968 2.32999966 2.18874191

19 0.95 2.23900813 2.26123743 2.42626886 2.25559885

20 1 2.30412779 2.32917115 2.52397272 2.31977682
Table 2: It presents the results obtained in each iteration.

7
International Journal of Exact Sciences ISSN 2966-1153 DOI https://doi.org/10.22533/at.ed.153112401077

Equation (18) provides the analytical
solution of equation (17).

Figure 8: It shows the graph of equation (18).

Figure 9: Graphically shows the approximations
with the analytical solution

APPLICATION 4
Solve the following ordinary differential

equation by the previous numerical methods
and compare it with the analytical solution.

Figure 10: It shows the graph of equation (20)
The analytical solution of equation (20).

Figure 11: It shows the graph of equation (21)

Figure 12: Graphically shows the approximations
with the analytical solution (20).

APPLICATION 5
Solve the following ordinary differential

equation by the previous numerical methods
and compare it with the analytical solution.

8
International Journal of Exact Sciences ISSN 2966-1153 DOI https://doi.org/10.22533/at.ed.153112401077

Iteration x Euler Improved Euler Runge Kutta Analytics
0 0 4 4 4 4
1 0.025 3.9875 4.04359375 3.9875 3.9875778
2 0.05 3.97515625 4.03101758 3.97515625 3.97530991
3 0.075 3.9629668 4.01859861 3.9629668 3.96319442
4 0.1 3.95092971 4.00633488 3.95092971 3.95122942
5 0.125 3.93904309 3.99422444 3.93904309 3.93941306
6 0.15 3.92730505 3.98226538 3.92730505 3.92774349
7 0.175 3.91571374 3.97045582 3.91571374 3.91621887
8 0.2 3.90426732 3.95879387 3.90426732 3.90483742
9 0.225 3.89296398 3.9472777 3.89296398 3.89359735

10 0.25 3.88180193 3.93590547 3.88180193 3.8824969
11 0.275 3.8707794 3.92467541 3.8707794 3.87153435
12 0.3 3.85989466 3.91358571 3.85989466 3.86070798
13 0.325 3.84914598 3.90263464 3.84914598 3.85001609
14 0.35 3.83853165 3.89182046 3.83853165 3.83945702
15 0.375 3.82805001 3.88114145 3.82805001 3.82902912
16 0.4 3.81769938 3.87059594 3.81769938 3.81873075
17 0.425 3.80747814 3.86018224 3.80747814 3.80856032
18 0.45 3.79738466 3.84989871 3.79738466 3.79851622
19 0.475 3.78741735 3.83974372 3.78741735 3.78859689
20 0.5 3.77757464 3.82971568 3.77757464 3.77880078
21 0.525 3.76785495 3.81981298 3.76785495 3.76912636
22 0.55 3.75825677 3.81003407 3.75825677 3.75957212
23 0.575 3.74877856 3.80037739 3.74877856 3.75013657
24 0.6 3.73941883 3.79084143 3.73941883 3.74081822
25 0.625 3.73017609 3.78142466 3.73017609 3.73161563
26 0.65 3.72104889 3.7721256 3.72104889 3.72252735
27 0.675 3.71203578 3.76294278 3.71203578 3.71355197
28 0.7 3.70313533 3.75387475 3.70313533 3.70468809
29 0.725 3.69434614 3.74492006 3.69434614 3.69593431
30 0.75 3.68566681 3.73607731 3.68566681 3.68728928
31 0.775 3.67709598 3.72734509 3.67709598 3.67875163
32 0.8 3.66863228 3.71872203 3.66863228 3.67032005
33 0.825 3.66027437 3.71020675 3.66027437 3.6619932
34 0.85 3.65202094 3.70179792 3.65202094 3.65376979
35 0.875 3.64387068 3.6934942 3.64387068 3.64564853
36 0.9 3.6358223 3.68529427 3.6358223 3.63762815
37 0.925 3.62787452 3.67719684 3.62787452 3.62970741
38 0.95 3.62002609 3.66920063 3.62002609 3.62188506
39 0.975 3.61227576 3.66130437 3.61227576 3.61415988
40 1 3.60462232 3.65350682 3.60462232 3.60653066

Table 3: It shows the results in each iteration using equation (17).

9
International Journal of Exact Sciences ISSN 2966-1153 DOI https://doi.org/10.22533/at.ed.153112401077

Iteration x Euler Improved Euler Runge Kutta Analytics
0 0 4 4 4 4
1 0.025 3.9875 4.04359375 3.9875 3.9875778
2 0.05 3.97515625 4.03101758 3.97515625 3.97530991
3 0.075 3.9629668 4.01859861 3.9629668 3.96319442
4 0.1 3.95092971 4.00633488 3.95092971 3.95122942
5 0.125 3.93904309 3.99422444 3.93904309 3.93941306
6 0.15 3.92730505 3.98226538 3.92730505 3.92774349
7 0.175 3.91571374 3.97045582 3.91571374 3.91621887
8 0.2 3.90426732 3.95879387 3.90426732 3.90483742
9 0.225 3.89296398 3.9472777 3.89296398 3.89359735

10 0.25 3.88180193 3.93590547 3.88180193 3.8824969
11 0.275 3.8707794 3.92467541 3.8707794 3.87153435
12 0.3 3.85989466 3.91358571 3.85989466 3.86070798
13 0.325 3.84914598 3.90263464 3.84914598 3.85001609
14 0.35 3.83853165 3.89182046 3.83853165 3.83945702
15 0.375 3.82805001 3.88114145 3.82805001 3.82902912
16 0.4 3.81769938 3.87059594 3.81769938 3.81873075
17 0.425 3.80747814 3.86018224 3.80747814 3.80856032
18 0.45 3.79738466 3.84989871 3.79738466 3.79851622
19 0.475 3.78741735 3.83974372 3.78741735 3.78859689
20 0.5 3.77757464 3.82971568 3.77757464 3.77880078
21 0.525 3.76785495 3.81981298 3.76785495 3.76912636
22 0.55 3.75825677 3.81003407 3.75825677 3.75957212
23 0.575 3.74877856 3.80037739 3.74877856 3.75013657
24 0.6 3.73941883 3.79084143 3.73941883 3.74081822
25 0.625 3.73017609 3.78142466 3.73017609 3.73161563
26 0.65 3.72104889 3.7721256 3.72104889 3.72252735
27 0.675 3.71203578 3.76294278 3.71203578 3.71355197
28 0.7 3.70313533 3.75387475 3.70313533 3.70468809
29 0.725 3.69434614 3.74492006 3.69434614 3.69593431
30 0.75 3.68566681 3.73607731 3.68566681 3.68728928
31 0.775 3.67709598 3.72734509 3.67709598 3.67875163
32 0.8 3.66863228 3.71872203 3.66863228 3.67032005
33 0.825 3.66027437 3.71020675 3.66027437 3.6619932
34 0.85 3.65202094 3.70179792 3.65202094 3.65376979
35 0.875 3.64387068 3.6934942 3.64387068 3.64564853
36 0.9 3.6358223 3.68529427 3.6358223 3.63762815
37 0.925 3.62787452 3.67719684 3.62787452 3.62970741
38 0.95 3.62002609 3.66920063 3.62002609 3.62188506
39 0.975 3.61227576 3.66130437 3.61227576 3.61415988
40 1 3.60462232 3.65350682 3.60462232 3.60653066

Table 4: It shows the results in each iteration of equation (20).

10
International Journal of Exact Sciences ISSN 2966-1153 DOI https://doi.org/10.22533/at.ed.153112401077

Figure 13: It shows the graph of equation (22)
(https://www.neurochispas.com/wiki/grafica-de-la-
tangente/#2-grafica-de-la-funcion-tangente-basica)

Analytical solution of equation (22)

Figure 14: It shows the graph of the analytical
solution of equation (23)

Figure 15: The graph shows the approximations
obtained using numerical methods and the

analytical solution (20).

In their article Zhang Lijuan and Guan
Tiannye. (2018) use the local and global
truncation errors which are shown in table 6.

method Local truncation
error

Global
truncation error

Euler EITHER () h² 0 (h)
Runge-Kuta second

order improved Euler
or Heun method

0 (h³) EITHER () h²

anoints-Kuta fourth
order 0 (h5) 0 (h4)

Table 6: It shows the local and global truncation
errors for different numerical methods used.

RESULTS AND ANALYSIS
It is important to mention that, if the step

size is too large, the program will not be able
to capture certain values where a significant
alteration in the solution must be observed.

This is because the approximation grows
too quickly, outpacing the computer’s
representation capacity. In this case, the
program could indicate an “overflow” at the
upper and lower extremes, or report that the
value is outside the allowed range.

Causes of overflow
•	 Excessive step size: Too large a step
size can cause the approximation to stray
too far from the true value, generating
significant numerical errors.
•	 Functions with rapid growth: If the
function being evaluated has exponential
or similar growth, a large step size may be
insufficient to capture abrupt changes in
the solution.
•	 Loss of precision: Overflow causes
a significant loss of precision in the
solution, making the results inaccurate
or even useless.
•	 Erratic behavior: The program
may exhibit erratic behavior, such
as generating meaningless values or
stopping execution prematurely.
•	 Failures in execution: In extreme cases,
overflow can cause a complete failure of
the program

11
International Journal of Exact Sciences ISSN 2966-1153 DOI https://doi.org/10.22533/at.ed.153112401077

Iteration X Euler Improved Euler Runge Kutta Analytics
0 0 0 0 0 0
1 0.0785398 0 0.003091 0.003087 0.003087
2 0.1570796 0.0061812 0.012401 0.012388 0.012388
3 0.2356195 0.0186207 0.028049 0.028019 0.028019
4 0.3141593 0.0374764 0.050236 0.050182 0.050182
5 0.3926991 0.0629956 0.079262 0.079174 0.079174
6 0.4712389 0.0955278 0.115537 0.115404 0.115404
7 0.5497787 0.1355459 0.159611 0.159418 0.159418
8 0.6283185 0.1836751 0.212206 0.211935 0.211935
9 0.7068584 0.2407377 0.274277 0.273903 0.273903

10 0.7853982 0.307817 0.347087 0.346574 0.346574
11 0.863938 0.3863568 0.432336 0.431633 0.431632
12 0.9424778 0.4783151 0.532366 0.531394 0.531394
13 1.0210177 0.5864159 0.650499 0.649134 0.649133
14 1.0995574 0.7145813 0.791653 0.789681 0.789679
15 1.1780972 0.8687243 0.96353 0.96055 0.960547
16 1.2566371 1.0583363 1.179197 1.174367 1.174359
17 1.3351769 1.3000569 1.463628 1.454832 1.454808
18 1.4137168 1.6271989 1.875139 1.855233 1.855119
19 1.4922565 2.1230803 2.622052 2.546591 2.545178
20 1.5707964 3.1210234 -898387 -299459.5 -300000

Table 5: It shows the results in each iteration of equation (22).

RESULTS AND ANALYSIS
It is important to mention that if the step sizeis

too large, the program may not take certain
values at which a significant alteration in the
solution must be observed. This is because the
approximation grows too quickly, outpacing the
computer’s representation capacity. In this case,
the program will indicate an “overflow” at the
upper and lower extremes, or will report that
the value is outside the allowed range.

CONCLUSIONS
The Runge-Kutta method is consolidated

as a fundamental tool to address problems
of ordinary differential equations with initial
conditions, offering approximate solutions
with high reliability.

Its ability to generate accurate and stable
results makes it an attractive option for a
wide range of applications. Application 5 in
Figure 5 clearly exemplifies the superiority of

the Runge-Kutta method. As the complexity
of the problem increases, as seen in Figure 6,
when the slopes grow rapidly, these methods
provide erroneous approximations, in general
these methods fail.

To further strengthen the approach, it
is proposed to implement an additional
constraint:append to the algorithm that
evaluates two slopes y'=f(t,y), given one has
for a depending on the problem taking two
consecutive iterations. If the difference between
these slopes exceeds an established threshold,
the algorithm must take corrective measures,
such as reducing the step size or adjusting the
approximation strategy. If the methods are
increased too much, a good approximation will
not be obtained. y1,y2 |f(t,y2)-(t,y1)|≤εε>0)

This constraint would allow the methods
to adapt to situations where slopes experience
drastic changes, guaranteeing the reliability
and accuracy of the solutions even in complex
scenarios.

12
International Journal of Exact Sciences ISSN 2966-1153 DOI https://doi.org/10.22533/at.ed.153112401077

REFERENCES
• Arora, G., Joshi, V., & Garki, I. S. (2020). Developments in Runge–Kutta Method to Solve Ordinary Differential Equations
https://www.researchgate.net/publication/340027249_Developments_in_Runge-Kutta_Method_to_Solve_Ordinary_
Differential_Equations.

• Hubbard, J. H., Habre, S. S., and West, B. (2001). The Convergence of and Euler Approximation of an Initial Value Problem Is
Not Always. Mathematical Association of America, 108(4), 326-335.

• Kamruzzaman, Md., & Nath, M. C. (2018). A Comparative Study on Numerical Solution of Initial Value Problem by Using
Euler’s Method and Ruge-Kutta Methodo. Journal of Computer and Mathematical Sciences, 9, 493-500.

• Nurujjaman, Md. (2020). Enhanced Euler’s Method to Solve First Order Ordinary Differential Equations with Better Accuracy.
Journal of Engineering Mathematics & Statistics, 4(1), MANTECH Publicationes.

• Youssef, I. K., & El-Arabawy, H. A. (2007). Picard iteration algorithm combined with Gauss–Seidel technique for initial value
problems. Applied Mathematics and Computation, 190(1), 345-355.

• Zhang, L., & Guan, T. (2018). Comparison of several Numerical Algorithms for Solving Ordinary Differential Equation Initial
Value Problem. Advances in Computer Science Research, 78, ATLASNTIS PRESS.

https://www.researchgate.net/publication/340027249_Developments_in_Runge-Kutta_Method_to_Solve_Ordinary_Differential_Equations
https://www.researchgate.net/publication/340027249_Developments_in_Runge-Kutta_Method_to_Solve_Ordinary_Differential_Equations

