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Abstract: The objective of this article is to 
make a comparison of the classical methods 
for solving first-order ordinary differential 
equations. Both the analytical solution and the 
implementation in programming language in 
Dev-C++ of the fourth-order Euler, Improved 
Euler (Heun) and Runge-Kutta methods 
will be addressed. This way, it is intended to 
offer a complete guide for selecting the most 
appropriate one to solve a given problem. 
In this work, classical methods are used to 
find approximate solutions to problems with 
initial values. Cauchy showed that an ordinary 
differential equation with initial conditions 
has a unique solution. These equations 
are widely used in various areas, such as 
engineering, exact sciences, humanities, 
biology, management and medicine, among 
others.
Keywords: Ordinary differential equations, 
Analytical solution, DevC++ programming 
language, Euler, Improved Euler (Heun), 
Runge-kutta, Cauchy.

INTRODUCTION
Numerical methods emerge as a viable 

alternative to solve differential equations 
that do not admit analytical solutions. These 
methods provide numerical approximations 
to the solutions of ordinary differential 
equations in a given interval.

The first numerical method forFirst-order 
ordinary differential equations was proposed 
by Leonhard Euler in 1768. Kamruzzaman 
and Mithun Chandra Nath (2018) introduced 
a simplified version of Euler’s method, 
applicable to both linear and nonlinear 
ordinary differential equations Kamruzzaman 
eat al. (2018) and Nurujjaman. (2020). 
Although this method is fundamental among 
numerical methods for ordinary differential 
equations, its simplicity makes it susceptible 
to significant propagation error, especially 
when a high number of partitions is used.

In order to improve the precision of Euler’s 
method, mathematicians reformulated this 
method to increase its speedup and reduce 
the error. Among the proposed variants 
are the midpoint method and the modified 
Euler method. This article provides a concise 
review of the geometric interpretation of the 
Euler method, the midpoint method, and the 
modified Euler method.

In 1900, Heun (who also proposed the 
improved Euler method) made additional 
contributions, while Kutta, in 1901, fully 
characterized the set of order 4 RK methods 
and proposed the first order 5 method, 
presented in a published paper. that same 
year. A further development of this work is 
found in the article by Geeta eat al(2020).

Picard, in 1891, proposed a method based 
on the fundamental theorem of integral 
calculus by Youssef and Arabawy.(2007). 
They begin by reformulating the initial value 
problem for systems of differential equations.

In equation (1), the solutions converge. As 
shown by Hubbard eat al. (2001), the theorem 
states that if the function is defined for on an 
interval and on an interval, and satisfies the 
Lipschitz condition with respect to for, then 
there exists a unique solution of the equation 
(1) for each in.

From equation (1) the method converges 
if it satisfies:

The theorem proven byhubbard eat. (2001). 
If the following conditions are met:

1.	 The function is defined for on an 
interval and on an interval. f(t,x)x1, x2x1, 
x2 ∈ [c,d] tt ∈ [a,b]
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2.	 The function satisfies the Lipschitz 
condition with respect to en. f(t,x)x1, 
x2x1, x2 ∈ [c,d]

3.	 For each sequence that of Euler 
approximations for the first-order 
ordinary differential equation given by 
with un: [a,b] → [c,d] x' = f (t,x) u (t0) = c

4.	 Step lengths tend to 0, and if 
it exists for some then there is a 
unique solution for 

From equation (1) the solutions converge. 
Hubbard eat. (2001). al, demonstrate the 
theorem, that if f(t,x) is defined for and 
satisfies the Lipschitz condition if para is a 
sequence of Euler approximations for the first-
order ordinary differential equation given by. 
x' = f(x,t) con With step lengths tending to 0, 
and if then there exists a unique solution for. 
Although the theorem mentioned above is not 
valid for the differential equation (1) when 
x=0, that is, when the solution crosses the 
t-axis, Euler approximations can still converge 
under certain conditions. If theorem is not true 
for the differential bond (1) when x = 0, that 
is, when the solution crosses the axis. x' = 
f(x,t) con u (t0) = ct

But the Euler approximations converge 
if they satisfy the Lipschitz condition: if a 
sequence of Euler approximation (t), defined 
for, all satisfy for some then the theorem 
applies and they converge to a solution if they 
converge. in a single point. This is stated in the 
following proposition. unt ∈ [a,b] un(t)> ε ó un 
(t) <- ε ε > 0 un

Proposition. Let be a secession of step 
lengths tending to 0, and let hk > 0 uk

a secession that approximates Euler’s 
method with step length. hk

1.	 If there exists such that ac converges 
with c > 0, then the sequence converges 
for each a function a function t0 ck =

2.	 If there exists such that converges 
to c with c < 0, then the sequence 
converges for each a function t0 ck = 

The fact depends on the fundamental 
equality theorem without which it is essentially 
impossible to prove anything about different 
questions. We reformulate it here with the 
following theorem.

Theorem.
Let it be defined for everything, and satisfy 

the Lipschitz condition for everything,, 
Suppose that they are continuous functions 
differentiable by parts that satisfy 

For all points where the functions and are 
differentiable and 

For some, then. You get 

It can be thought that the are the errors of 
the slopes that measure the extent to which 
they do not have the appropriate slope to be 
the solution and as the error of the initial 
condition. 

Then, regardless of the choice of the 
initial condition, successive approximations 
converge in some interval to the solution of 
problem (1). Furthermore, if it is continuous 
in the rectangle R, then the error of the 
approximate solution is estimated by the 
inequality: 
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METHODOLOGY
In this study, the fourth-order Euler, 

Improved Euler (Heun Method) and Runge-
Kutta methods will be used to approximate the 
solution of the ordinary differential equation (1).

The same spacing will be used for each 
method in order to make accurate comparisons 
with the known analytical solution.

Euler’s method is a simple and direct 
numerical method for approximating 
solutions of first-order ordinary differential 
equations. It was given the initial value 
problem by equation (4).

In these methods, a partition for time is used 
as follows, where the other approximations 
will be determined from the initial condition. 

Equation (5) represents a generalization of 
Euler’s method:

John H. Hubbard. eat. (2001). In his article 
he gives some examples where the convergence 
of Euler’s method exists where there are cases 
in which its convergence is not obvious or may 
fail. To avoid these the Lipschitz condition 
must be satisfied and if a is a sequence then 
Euler’s approximation of the differential 
equation converges i.e. 

The improved Euler method, also known 
as Heun’s method, is a variant of the explicit 
Euler method that offers greater precision 
in solving first-order ordinary differential 
equations.This method is based on the 
following equations (6,7) where the iterative 
expression is obtained:

The fourth-order Runge-Kutta iterative 
method is an explicit high-order numerical 
method for solving first-order ordinary 
differential equations.following iterative 
formulas Equations (8-12):

APPLICATION 1
It is important to note that the choice of the 

most appropriate numerical method depends 
on the specific ordinary differential equation, 
the level of precision required and the available 
computational resources. The comparison 
between numerical and analytical solutions 
provides valuable information for making this 
decision.

Figure1. The graph of equation (4).

The analytical solution of equation (13) is 
the following:
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Figure 2: The graph of equation (14)

Figure 3: A comparative graphical representation 
between the numerical approximations and the 

analytical solution

APPLICATION 2
The following ordinary differential 

equation (ODE) will be solved using the 
numerical methods described above.

Figure 4: A graphical representation of equation (15).

Equation (16) represents the analytical 
solution of equation (15).

Figure 5: Presents a graphic representation of 
equation (16).

Figure 6: Presents a graphic representation of 
the approximations obtained together with the 

analytical solution

APPLICATION 3
Solve the ordinary differential equation by 

numerical methods and compare it with the 
analytical solution.

Figure 7: It shows the graph of equation (17).
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Iteration x Euler Improved Euler Runge Kutta Analytics
0 0 1 1 1 1
1 0.05 1.05 1.05125 1.05125 1.05254219
2 0.1 1,105 1.105125 1.10643906 1.11034184
3 0.15 1.16525 1.16425625 1.16576906 1.17366849
4 0.2 1.2310125 1.22890656 1.22945223 1.24280552
5 0.25 1.30256313 1.29935189 1.29771166 1.31805083
6 0.3 1.38019128 1.37588199 1.37078188 1.39971762
7 0.35 1.46420085 1.45880108 1.44890945 1.4881351
8 0.4 1.55491089 1.54842864 1.53235356 1.5836494
9 0.45 1.65265643 1.64510007 1.62138668 1.68662437

10 0.5 1.75778925 1.74916757 1.71629525 1.79744254
11 0.55 1.87067872 1.86100095 1.81738038 1.91650604
12 0.6 1.99171265 1.9809885 1.92495862 2.0442376
13 0.65 2.12129828 2.10953793 2.03936275 2.18108166
14 0.7 2.2598632 2.24707732 2.16094259 2.32750541
15 0.75 2.40785636 2.39405619 2.2900659 2.48400003
16 0.8 2.56574918 2.5509465 2.42711928 2.65108186
17 0.85 2.73403664 2.71824382 2.57250914 2.8292937
18 0.9 2.91323847 2.89646851 2.72666273 3.01920622
19 0.95 3.10390039 3.08616694 2.8900292 3.22141932
20 1 3.30659541 3.28791279 3.06308069 3.43656366

Table 1: The results obtained in each iteration of equation (13) are presented.

Iteration x Euler Improved Euler Runge Kutta Analytics

0 0 1 1 1 1

1 0.05 1.05 1.05125 1.05125 1.0512492

2 0.1 1.10243439 1.10377805 1.10509208 1.10498683

3 0.15 1.15728073 1.15878958 1.16158312 1.16118163

4 0.2 1.21449501 1.21625025 1.22077187 1.21977856

5 0.25 1.27400931 1.2761024 1.28269766 1.28069636

6 0.3 1.33572949 1.33826264 1.34738917 1.34382524

7 0.35 1.39953304 1.40261959 1.41486316 1.40902476

8 0.4 1.4652672 1.4690318 1.48512319 1.47612195

9 0.45 1.53274722 1.53732589 1.55815836 1.54490981

10 0.5 1.60175511 1.60729505 1.63394209 1.6151463

11 0.55 1.67203873 1.67869789 1.71243102 1.68655372

12 0.6 1.74331143 1.75125787 1.7935639 1.75881885

13 0.65 1.81525228 1.82466316 1.87726066 1.8315936

14 0.7 1.88750693 1.89856728 1.96342167 1.90449653

15 0.75 1.95968917 1.97259028 2.05192704 1.9771151

16 0.8 2.03138331 2.04632083 2.14263623 2.04900865

17 0.85 2.10214723 2.11931895 2.23538785 2.11971237

18 0.9 2.17151632 2.19111968 2.32999966 2.18874191

19 0.95 2.23900813 2.26123743 2.42626886 2.25559885

20 1 2.30412779 2.32917115 2.52397272 2.31977682
Table 2: It presents the results obtained in each iteration.
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Equation (18) provides the analytical 
solution of equation (17).

Figure 8: It shows the graph of equation (18).

Figure 9: Graphically shows the approximations 
with the analytical solution

APPLICATION 4
Solve the following ordinary differential 

equation by the previous numerical methods 
and compare it with the analytical solution.

Figure 10: It shows the graph of equation (20)
The analytical solution of equation (20).

Figure 11: It shows the graph of equation (21)

Figure 12: Graphically shows the approximations 
with the analytical solution (20).

APPLICATION 5
Solve the following ordinary differential 

equation by the previous numerical methods 
and compare it with the analytical solution.
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Iteration x Euler Improved Euler Runge Kutta Analytics
0 0 4 4 4 4
1 0.025 3.9875 4.04359375 3.9875 3.9875778
2 0.05 3.97515625 4.03101758 3.97515625 3.97530991
3 0.075 3.9629668 4.01859861 3.9629668 3.96319442
4 0.1 3.95092971 4.00633488 3.95092971 3.95122942
5 0.125 3.93904309 3.99422444 3.93904309 3.93941306
6 0.15 3.92730505 3.98226538 3.92730505 3.92774349
7 0.175 3.91571374 3.97045582 3.91571374 3.91621887
8 0.2 3.90426732 3.95879387 3.90426732 3.90483742
9 0.225 3.89296398 3.9472777 3.89296398 3.89359735

10 0.25 3.88180193 3.93590547 3.88180193 3.8824969
11 0.275 3.8707794 3.92467541 3.8707794 3.87153435
12 0.3 3.85989466 3.91358571 3.85989466 3.86070798
13 0.325 3.84914598 3.90263464 3.84914598 3.85001609
14 0.35 3.83853165 3.89182046 3.83853165 3.83945702
15 0.375 3.82805001 3.88114145 3.82805001 3.82902912
16 0.4 3.81769938 3.87059594 3.81769938 3.81873075
17 0.425 3.80747814 3.86018224 3.80747814 3.80856032
18 0.45 3.79738466 3.84989871 3.79738466 3.79851622
19 0.475 3.78741735 3.83974372 3.78741735 3.78859689
20 0.5 3.77757464 3.82971568 3.77757464 3.77880078
21 0.525 3.76785495 3.81981298 3.76785495 3.76912636
22 0.55 3.75825677 3.81003407 3.75825677 3.75957212
23 0.575 3.74877856 3.80037739 3.74877856 3.75013657
24 0.6 3.73941883 3.79084143 3.73941883 3.74081822
25 0.625 3.73017609 3.78142466 3.73017609 3.73161563
26 0.65 3.72104889 3.7721256 3.72104889 3.72252735
27 0.675 3.71203578 3.76294278 3.71203578 3.71355197
28 0.7 3.70313533 3.75387475 3.70313533 3.70468809
29 0.725 3.69434614 3.74492006 3.69434614 3.69593431
30 0.75 3.68566681 3.73607731 3.68566681 3.68728928
31 0.775 3.67709598 3.72734509 3.67709598 3.67875163
32 0.8 3.66863228 3.71872203 3.66863228 3.67032005
33 0.825 3.66027437 3.71020675 3.66027437 3.6619932
34 0.85 3.65202094 3.70179792 3.65202094 3.65376979
35 0.875 3.64387068 3.6934942 3.64387068 3.64564853
36 0.9 3.6358223 3.68529427 3.6358223 3.63762815
37 0.925 3.62787452 3.67719684 3.62787452 3.62970741
38 0.95 3.62002609 3.66920063 3.62002609 3.62188506
39 0.975 3.61227576 3.66130437 3.61227576 3.61415988
40 1 3.60462232 3.65350682 3.60462232 3.60653066

Table 3: It shows the results in each iteration using equation (17).
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Iteration x Euler Improved Euler Runge Kutta Analytics
0 0 4 4 4 4
1 0.025 3.9875 4.04359375 3.9875 3.9875778
2 0.05 3.97515625 4.03101758 3.97515625 3.97530991
3 0.075 3.9629668 4.01859861 3.9629668 3.96319442
4 0.1 3.95092971 4.00633488 3.95092971 3.95122942
5 0.125 3.93904309 3.99422444 3.93904309 3.93941306
6 0.15 3.92730505 3.98226538 3.92730505 3.92774349
7 0.175 3.91571374 3.97045582 3.91571374 3.91621887
8 0.2 3.90426732 3.95879387 3.90426732 3.90483742
9 0.225 3.89296398 3.9472777 3.89296398 3.89359735

10 0.25 3.88180193 3.93590547 3.88180193 3.8824969
11 0.275 3.8707794 3.92467541 3.8707794 3.87153435
12 0.3 3.85989466 3.91358571 3.85989466 3.86070798
13 0.325 3.84914598 3.90263464 3.84914598 3.85001609
14 0.35 3.83853165 3.89182046 3.83853165 3.83945702
15 0.375 3.82805001 3.88114145 3.82805001 3.82902912
16 0.4 3.81769938 3.87059594 3.81769938 3.81873075
17 0.425 3.80747814 3.86018224 3.80747814 3.80856032
18 0.45 3.79738466 3.84989871 3.79738466 3.79851622
19 0.475 3.78741735 3.83974372 3.78741735 3.78859689
20 0.5 3.77757464 3.82971568 3.77757464 3.77880078
21 0.525 3.76785495 3.81981298 3.76785495 3.76912636
22 0.55 3.75825677 3.81003407 3.75825677 3.75957212
23 0.575 3.74877856 3.80037739 3.74877856 3.75013657
24 0.6 3.73941883 3.79084143 3.73941883 3.74081822
25 0.625 3.73017609 3.78142466 3.73017609 3.73161563
26 0.65 3.72104889 3.7721256 3.72104889 3.72252735
27 0.675 3.71203578 3.76294278 3.71203578 3.71355197
28 0.7 3.70313533 3.75387475 3.70313533 3.70468809
29 0.725 3.69434614 3.74492006 3.69434614 3.69593431
30 0.75 3.68566681 3.73607731 3.68566681 3.68728928
31 0.775 3.67709598 3.72734509 3.67709598 3.67875163
32 0.8 3.66863228 3.71872203 3.66863228 3.67032005
33 0.825 3.66027437 3.71020675 3.66027437 3.6619932
34 0.85 3.65202094 3.70179792 3.65202094 3.65376979
35 0.875 3.64387068 3.6934942 3.64387068 3.64564853
36 0.9 3.6358223 3.68529427 3.6358223 3.63762815
37 0.925 3.62787452 3.67719684 3.62787452 3.62970741
38 0.95 3.62002609 3.66920063 3.62002609 3.62188506
39 0.975 3.61227576 3.66130437 3.61227576 3.61415988
40 1 3.60462232 3.65350682 3.60462232 3.60653066

Table 4: It shows the results in each iteration of equation (20).
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Figure 13: It shows the graph of equation (22) 
(https://www.neurochispas.com/wiki/grafica-de-la-
tangente/#2-grafica-de-la-funcion-tangente-basica)

Analytical solution of equation (22)

Figure 14: It shows the graph of the analytical 
solution of equation (23)

Figure 15: The graph shows the approximations 
obtained using numerical methods and the 

analytical solution (20).

In their article Zhang Lijuan and Guan 
Tiannye. (2018) use the local and global 
truncation errors which are shown in table 6.

method Local truncation 
error

Global 
truncation error

Euler EITHER () h² 0 (h)
Runge-Kuta second 

order improved Euler 
or Heun method

0 (h³) EITHER () h²

anoints-Kuta fourth 
order 0 (h5) 0 (h4)

Table 6: It shows the local and global truncation 
errors for different numerical methods used.

RESULTS AND ANALYSIS
It is important to mention that, if the step 

size is too large, the program will not be able 
to capture certain values where a significant 
alteration in the solution must be observed.

This is because the approximation grows 
too quickly, outpacing the computer’s 
representation capacity. In this case, the 
program could indicate an “overflow” at the 
upper and lower extremes, or report that the 
value is outside the allowed range.

Causes of overflow
•	 Excessive step size: Too large a step 
size can cause the approximation to stray 
too far from the true value, generating 
significant numerical errors.
•	 Functions with rapid growth: If the 
function being evaluated has exponential 
or similar growth, a large step size may be 
insufficient to capture abrupt changes in 
the solution.
•	 Loss of precision: Overflow causes 
a significant loss of precision in the 
solution, making the results inaccurate 
or even useless.
•	 Erratic behavior: The program 
may exhibit erratic behavior, such 
as generating meaningless values or 
stopping execution prematurely.
•	 Failures in execution: In extreme cases, 
overflow can cause a complete failure of 
the program
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Iteration X Euler Improved Euler Runge Kutta Analytics
0 0 0 0 0 0
1 0.0785398 0 0.003091 0.003087 0.003087
2 0.1570796 0.0061812 0.012401 0.012388 0.012388
3 0.2356195 0.0186207 0.028049 0.028019 0.028019
4 0.3141593 0.0374764 0.050236 0.050182 0.050182
5 0.3926991 0.0629956 0.079262 0.079174 0.079174
6 0.4712389 0.0955278 0.115537 0.115404 0.115404
7 0.5497787 0.1355459 0.159611 0.159418 0.159418
8 0.6283185 0.1836751 0.212206 0.211935 0.211935
9 0.7068584 0.2407377 0.274277 0.273903 0.273903

10 0.7853982 0.307817 0.347087 0.346574 0.346574
11 0.863938 0.3863568 0.432336 0.431633 0.431632
12 0.9424778 0.4783151 0.532366 0.531394 0.531394
13 1.0210177 0.5864159 0.650499 0.649134 0.649133
14 1.0995574 0.7145813 0.791653 0.789681 0.789679
15 1.1780972 0.8687243 0.96353 0.96055 0.960547
16 1.2566371 1.0583363 1.179197 1.174367 1.174359
17 1.3351769 1.3000569 1.463628 1.454832 1.454808
18 1.4137168 1.6271989 1.875139 1.855233 1.855119
19 1.4922565 2.1230803 2.622052 2.546591 2.545178
20 1.5707964 3.1210234 -898387 -299459.5 -300000

Table 5: It shows the results in each iteration of equation (22).

RESULTS AND ANALYSIS
It is important to mention that if the step sizeis 

too large, the program may not take certain 
values at which a significant alteration in the 
solution must be observed. This is because the 
approximation grows too quickly, outpacing the 
computer’s representation capacity. In this case, 
the program will indicate an “overflow” at the 
upper and lower extremes, or will report that 
the value is outside the allowed range.

CONCLUSIONS
The Runge-Kutta method is consolidated 

as a fundamental tool to address problems 
of ordinary differential equations with initial 
conditions, offering approximate solutions 
with high reliability.

Its ability to generate accurate and stable 
results makes it an attractive option for a 
wide range of applications. Application 5 in 
Figure 5 clearly exemplifies the superiority of 

the Runge-Kutta method. As the complexity 
of the problem increases, as seen in Figure 6, 
when the slopes grow rapidly, these methods 
provide erroneous approximations, in general 
these methods fail.

To further strengthen the approach, it 
is proposed to implement an additional 
constraint:append to the algorithm that 
evaluates two slopes y'=f(t,y), given one has 
for a depending on the problem taking two 
consecutive iterations. If the difference between 
these slopes exceeds an established threshold, 
the algorithm must take corrective measures, 
such as reducing the step size or adjusting the 
approximation strategy. If the methods are 
increased too much, a good approximation will 
not be obtained. y1,y2 |f(t,y2)-(t,y1)|≤εε>0)

This constraint would allow the methods 
to adapt to situations where slopes experience 
drastic changes, guaranteeing the reliability 
and accuracy of the solutions even in complex 
scenarios.



12
International Journal of Exact Sciences ISSN 2966-1153 DOI https://doi.org/10.22533/at.ed.153112401077

REFERENCES
• Arora, G., Joshi, V., & Garki, I. S. (2020). Developments in Runge–Kutta Method to Solve Ordinary Differential Equations 
https://www.researchgate.net/publication/340027249_Developments_in_Runge-Kutta_Method_to_Solve_Ordinary_
Differential_Equations. 

• Hubbard, J. H., Habre, S. S., and  West, B. (2001). The Convergence of and Euler Approximation of an Initial Value Problem Is 
Not Always. Mathematical Association of America, 108(4), 326-335. 

• Kamruzzaman, Md., & Nath, M. C. (2018). A Comparative Study on Numerical Solution of Initial Value Problem by Using 
Euler’s Method and Ruge-Kutta Methodo. Journal of Computer and Mathematical Sciences, 9, 493-500. 

• Nurujjaman, Md. (2020). Enhanced Euler’s Method to Solve First Order Ordinary Differential Equations with Better Accuracy. 
Journal of Engineering Mathematics & Statistics, 4(1), MANTECH Publicationes. 

• Youssef, I. K., & El-Arabawy, H. A. (2007). Picard iteration algorithm combined with Gauss–Seidel technique for initial value 
problems. Applied Mathematics and Computation, 190(1), 345-355. 

• Zhang, L., & Guan, T. (2018). Comparison of several Numerical Algorithms for Solving Ordinary Differential Equation Initial 
Value Problem. Advances in Computer Science Research, 78, ATLASNTIS PRESS.

https://www.researchgate.net/publication/340027249_Developments_in_Runge-Kutta_Method_to_Solve_Ordinary_Differential_Equations
https://www.researchgate.net/publication/340027249_Developments_in_Runge-Kutta_Method_to_Solve_Ordinary_Differential_Equations

