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Abstract: In order to assist rural producers 
in managing market risk, the Federal 
Government’s Minimum Price Guarantee 
Policy [PGPM] allows subsidizing premiums 
from sales option contracts in hedging 
operations for agricultural products. The 
objective of this study was to analyze the 
effectiveness of pricing models in evaluating 
out-of-the-money put options on corn 
futures contracts in the Brazilian market. The 
Black, Binomial and Least Squares Monte 
Carlo [LSM] models were tested, combined 
with historical, implicit and deterministic 
volatility forecasters. The premiums obtained 
by the different models were compared to 
those actually practiced in the market. The 
Black model, followed by the Binomial, both 
combined with implied volatility, presented 
the smallest deviations in relation to real 
market premiums, according to the mean 
absolute percentage error [MAPE] criterion, 
as well as the smallest dispersions, measured 
by the square root of the root mean square 
error [RMSE]. The LSM method underpriced 
options far out of the money when combined 
with any of the volatility estimators analyzed. 
When combined with historical volatility, the 
models under analysis proved to be less accurate 
and less precise. The deterministic volatility 
estimator of the Generalized Conditional 
Autoregressive Heteroscedasticity model 
[Garch] presented intermediate performance. 
The results corroborated the wide use of the 
Black model, which demonstrated the best 
performance in the precision and accuracy 
criteria, among the option pricing models 
analyzed, especially when associated with 
implied volatility.
Keywords: options, Binomial model, Black, 
Monte Carlo least squares, volatility.

INTRODUCTION
Market risk, arising from the volatility of 

agricultural prices, constitutes a source of 
uncertainty regarding the income of rural 
producers.

Market risk management can be carried out 
in “hedge” operations, when agents assume, 
in the financial market, a position opposite 
to that in the physical market, protecting 
themselves against adverse movements in asset 
prices. Hedge operations with agricultural 
derivatives are set up in the off-season, when 
expectations are formed, and the position is 
closed at harvest time. 

In operations supported by the Minimum 
Price Guarantee Policy, referred to in Decree-
Law Number 79, of 1966, Law Number 8,427, 
of 1991, provides for the granting of a bonus 
equivalent to a percentage of the premium 
paid on the acquisition of option contracts for 
sale on national or international commodity 
and futures exchanges.

The option contract is the instrument by 
which the holder transfers the price risk to the 
writer, upon payment of a premium, in order 
to ensure the right, but not the obligation, 
to buy (“call”) or sell (“put”) the asset at the 
established price, at a future date.

The definition of the minimum price 
considers factors that influence the domestic 
and foreign markets and production costs. 
According to the Theory of the Firm, revenue 
equivalent to the average variable cost ensures 
the continuity of production in the short 
term. The break-even point is reached when 
sales revenue covers the operational cost of 
production, which also includes fixed costs.

Corn, a “commodity” traded on commodity 
and futures exchanges, is also a typical family 
farming crop, used in animal feed and ethanol 
production. According to the United States 
Department of Agriculture (Wasde/USDA) 
Supply and Demand Report, from Mar. 2024, 
Brazil is the third world producer of corn, 
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with a harvest of 116 million tons, in 2023/24, 
equivalent to 9.5% of the world total, behind 
only the United States and China. 

BAIDYA and CASTRO (2001) analyzed the 
convergence of the Binomial model. ARAÚJO 
and BAIDYA (2004) evaluated the sensitivity 
of the Monte Least Squares method to the 
number of simulations, discretization and the 
regression function. GABE and PORTUGAL 
(2004) compared implicit and deterministic 
volatility forecasters. POON and GRANGER 
(2005) compiled 93 comparative volatility 
studies. SALIBY et al. (2007) evaluated 
descriptive sampling in reducing variance in 
Monte Carlo Simulation in option pricing. 
SAITO and ROCHMAN (2008) compared 
numerical options pricing methods.

COELHO et al. (2009) evaluated the 
performance of the Black Model in options on 
Arabica coffee futures. TONIN and COELHO 
(2012) tested numerical methods in pricing 
options on Arabica coffee futures. SOUZA et 
al. (2014) analyzed the term structure of the 
volatility of options on CME Group soybean 
futures. CHATEAU (2014) and MAIA et al. 
(2014) evaluated options under skewness 
and excess kurtosis. SILVA and MAIA (2014) 
evaluated volatility predictors in soybean 
futures contracts. MAIA et al. (2014) studied 
volatility smoothing using the Corrado and 
Su model. PONTES and MAIA (2017) tested 
Black’s model in pricing options on cattle 
futures.

Aiming at formulating income guarantee 
policies for producers, studies are needed on 
the performance of pricing models for options 
on agricultural “commodities” traded in the 
Brazilian market.

The present study analyzed the adherence 
of options pricing models on agricultural 
product futures in the Brazilian market, 
compared to the real premiums observed 
in the market. Black’s analytical model and 
the numerical methods of the Binomial 

Tree and Monte Carlo Least Squares were 
evaluated, combined with historical, implicit and 
deterministic volatility predictors.

The analysis was conducted on a put option 
on corn futures, American type, out-of-the-
money, listed on B3.

The study aims to answer the questions: i) 
Among the models analyzed, which provided 
the best estimator of market premiums? ii) 
Is there a significant difference between the 
theoretical premiums estimated by the models 
under analysis and the market premiums 
during the contracting period? iii) Which 
pricing model presented the best precision 
and accuracy indicators? iv) Which volatility 
estimator presented the best precision and 
accuracy indicators?

MATERIAL AND METHODS
Black’s analytical model and the numerical 

models of the Binomial Tree and Monte Carlo 
Least Squares were tested, associated with the 
historical volatility estimators of the asset’s log-
returns, the instantaneous implied volatility 
of market premiums and the deterministic 
volatility of the Autoregressive model. of 
Conditional Heteroscedasticity [Garch].

The producing region considered was 
Londrina, in the North of Paraná, where corn 
is planted from September to December, and 
harvesting takes place from January to May. 
Therefore, the put option contract on corn 
futures expiring in March 2022, at harvest 
time, was chosen.

Considering the hedge operation lasting 
between 60 and 90 days, the contracting 
window was defined in the period of December 
16th. 2021 to 15 january 15, 2022, in the initial 
phase of culture development. 

The prices of future contracts, the Esalq corn 
indicator in the Campinas region, a reference 
for B3, and the prices paid to producers in 
the North of Paraná were collected from the 
Cepea database for the last 12 months of the 
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contract duration, between the second half of 
March 2021 and the first half of March 2022. 
These series are shown in figure 1:

Figure 1: Corn grain prices between March 16, 
2021 and March 15, 2022

Source: Original research data

The closing prices of premiums were 
collected from the Bloomberg platform in the 
61 trading sessions throughout the duration of 
the contract, from December 16th. 2021 to 15 
Mar. 2022, for the put option with an exercise 
price of R$95.00 on the corn futures contract 
expiring in March 2022 (CRDN2).

The future series were consolidated into a 
single continuous series, considering the price 
of the open contract with the nearest maturity, 
according to the procedure adopted by Souza 
(2013).

The series of market premiums for the put 
option with an exercise price of R$95.00 on the 
corn futures contract expiring in March 2022 
is described in the graph shown in Figure 2:

Figure 2: Corn put option premiums 
K=R$95.00 expiring in March. 2022

Source: Original research data

The log-return series of the underlying 
futures contract is obtained by the equation (1):

	 (1)
where, rt is the log-return of the asset 

underlying the option contract on the current 
date, ln designates the Neperian logarithm, 
and Pt and Pt-1 represent the closing prices of 
the underlying futures on the current date and 
the previous business day, respectively. 

Figure 3 presents the series of log-returns 
of the corn futures contract in the twelve 
months prior to expiration, in the period from 
March 16th. 2021 to March 15, 2022.

Figure 3: Log-returns of the B3 corn futures 
contract expiring in March 2022

Source: Original research data

The base differential (basis) consists of 
the price discount in the producing region in 
relation to the spot indicator in the reference 
region for the Exchange, or the price of the 
futures contract with the nearest expiration, 
considered a “proxy” of the indicator in the 
region. of reference. This difference varies 
throughout the year between the harvest and 
off-season periods, which is called basis risk. 
The base differential is calculated by equation 
(2):

	 (2)
where, B is the base differential between the 

producing region and the reference region, S 
is the spot price in the producing region, and 
F is the quote of the futures contract with the 
nearest expiration or the product indicator in 
the reference region.
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The revenue to be guaranteed to the 
producer, corresponding to the strike price 
of the put option, must cover the production 
cost, plus the maximum basis premium, 
obtained by equation (3): 

	 (3)
where, K is the exercise price of the 

put option, COP is the operational cost of 
production, and B is the base differential 
between the producing region and the 
reference place for the exchange, where the 
goods will be delivered.

The basis was estimated by the maximum 
difference between the product prices in the 
North of Paraná and the Esalq corn indicator, 
surveyed in the Campinas region, a reference 
for the B3, in the twelve months prior to the 
due date on March 15th. 2022. Thus, the base 
differential considered was R$16.93 per bag. 

The operational cost of producing high-
tech direct planting corn, according to a 
Conab survey in March 2022 in Londrina - PR, 
was R$77.72 per 60 kg bag. Adding the basis 
premium of R$16.93, the result is R$94.65, the 
price to be guaranteed to the producer in the 
operation. Therefore, the exercise price (K) of 
the put option was chosen as R$95.00 per bag.

This is an out-of-the-money option, with 
the exercise price being lower than the price 
of the underlying future during the contract 
period, December 16th. 2021 to january 15, 
2022.

The risk-free discount rate adopted in the 
calculations was the reference for the Central 
Bank’s Special Securities Settlement and 
Custody System - Selic, which varied from 
9.25% to 10.75% throughout the contracting 
period.

PRICING MODELS
The Black model (BLACK, 1976) is derived 

from the well-known Black-Scholes model 
(BLACK and SCHOLES, 1973) for evaluating 
European options. However, instead of a 
cash asset, a futures contract appears as 
the underlying. Due to its simplicity, it has 
established itself as the option pricing model 
most used by traders around the world.

Black’s model assumes the same 
simplifications as the original Black-Scholes 
model. Considers that underlying prices 
behave according to a geometric Brownian 
movement with log-normal distribution, 
that log-returns follow a normal distribution, 
independent and identically distributed [iid], 
assumes constant risk-free interest rate and 
volatility, exercise only at maturity, absence of 
arbitration, dividends and transaction costs.

However, the stylized facts of Black’s 
model do not appear in practice. As found 
by JANKOVÀ (2018), the price series are 
not exactly log-normal and the log-returns 
deviate from the Gaussian curve, presenting 
asymmetry, heavy tails and a large number of 
“outliers”.

By not recognizing variations in volatility 
over time, or the “smile” effect, which refers 
to the increase in volatility as the strike 
price moves away from the price of the 
underlying asset, the Black model tends to 
underprice options deeply within or out of 
money or long-term maturity. It also tends to 
underprice American options by not pricing 
the possibility of early exercise (HULL and 
WHITE, 1987), in addition to neglecting 
transaction costs and arbitration.

While in the original Black-Scholes model, 
only the exercise price is discounted to present 
value at the risk-free interest rate, in the 
Black model, both the exercise price and the 
quotation of the underlying futures contract 
are discounted to present value.
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The call option premium is estimated by 
the Black model using equation (4):

	 (4)
where, F is the quote of the underlying 

futures contract, K is the exercise price, T 
is term to maturity, r is the risk-free annual 
interest rate in continuous compounding, 
and N indicates the cumulative normal 
distribution function. The parameters d1 and 
d2 also depend on volatility: σ, single variable 
not directly observable. With d1 and d2 given 
by the equations (5) e (6):

	 (5)

	 (6)
where, N(d1) represents the “delta” of the 

call option, that is, the change in the premium 
depending on the change in the price of the 
underlying asset, and N(d2) is the probability 
of exercising the call option, or the probability 
that the price of the underlying asset exceeds 
the strike price.

The put option premium is obtained by the 
“put-call” parity, by equation (7): 

	 (7)
where, F is the price of the underlying 

future, K is the exercise price, T is term to 
maturity, r is the risk-free annual interest rate 
in continuous compounding.

From equations (4) and (7), the premium 
of the put option at the same exercise price is 
given by the equation (8):

	 (8)
where, F is the price of the underlying 

futures contract, K is the exercise price, T 
is term to maturity, r is the risk-free annual 
interest rate, N indicates the cumulative 
normal distribution function, and the 
parameters d1 and d2 are given by equations 
(5) and (6), respectively:

Numerical methods, such as Binomial and 
Monte Carlo Least Squares, allow pricing of 
American options, with the possibility of early 
exercise. However, they present a “tradeoff ” 
between computational cost and convergence, 
which depends on the complexity of the 
base function, the discretization of time and 
the volume of simulations (ARAÚJO and 
BAIDYA, 2004).

The Binomial Model (1979) or CRR, by 
COX, ROSS and RUBINSTEIN, consists of 
a discrete-time approximation of the price 
movement of the underlying asset, which 
represents a stochastic process in continuous 
time.

The model assumes that the price of 
the underlying asset moves in discrete and 
uniform time intervals, up or down, according 
to a binomial distribution. Where p is the 
risk-neutral probability of the price moving 
upwards by a specific factor: u, and 1-p is the 
probability that the price will move below a 
factor of d.

In the CRR model, the probability p is 
defined so that the binomial distribution 
simulates the geometric Brownian movement 
of the price of the underlying asset, by 
equation (9): 

	 (9)
where u and d are the factors that move the 

price up and down, respectively, r is the risk-
free interest rate in continuous capitalization 
and t is the discrete time interval, measured in 
years of 252 business days.

The upward movement factor u is given by 
equation (10): 

	 (10)
where, σ is the volatility and t are the 

discretization interval.
The downward movement factor d is the 

inverse of u, given by the equation (11):  

	 (11)
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where u is the upward movement factor.
The binomial tree is formed by “nodes” 

representing the underlying prices at each 
discrete time interval, between the valuation 
date and the option expiration, in each of the 
possible asset price trajectories.

Figure 4 represents a binomial tree of three-
time frames and the prices of the underlying 
asset at each node:

Figure 4: Binomial Tree

Source: Original research data

The recombinant property of the binomial 
tree, when an upward movement followed 
by a downward movement is equivalent to 
a movement downward and then upward, 
at the same intensities, allows the price to 
be estimated at each node, in each price 
trajectory, starting from the valuation date 
to maturity (“forward”), by equations (12) or 
(13), respectively, depending on whether the 
underlying is a spot asset or futures contract:

	 (12)

	 (13)
where, S0 or F0 is the price of the underlying 

spot asset or futures contract, respectively, on 
the valuation date,  Sn or Fn is the price of the 
underlying spot asset or futures contract at the 
node considered, u and d, they are the factors 
that move the price up or down, respectively, 
nu and nd, they refer to the number of price 

movements up and down, respectively, to the 
node considered, r is the risk-free interest rate, 
t is the discretization interval and n designates 
the discretization interval.

The expected value of the option, at 
each node, is calculated moving recursively 
(“backward”), from the final nodes at 
expiration, until it converges at the first node 
at the valuation date.

The expected value of the option at each 
final node, at expiration, will be the intrinsic 
value, given by equations (14) or (15), for a 
call or put option, respectively, or zero, if the 
option ends out of the money:

	 (14)

	 (15)
where, K is the exercise price and Fn, is the 

price of the underlying at the respective node.
At nodes prior to expiration, the expected 

value of the American option is the greater of 
the immediate exercise value and the binomial 
(or continuation) value, or zero, if the option 
is out of the money, given by equations (16) 
or (17):

	 (16)

	 (17)
where, Cn and Pn designate the value of 

the call or put option, respectively, at the 
node considered, cn and pn are the immediate 
exercise values ​​of the call or put option, at the 
node and Bn is the binomial value at the node.

At each node, the binomial value is 
recursively calculated, which results from the 
average of the values ​​of the two subsequent 
nodes weighted by the respective probabilities 
p and 1-p, according to equations (18) or (19):

       (18)

       (19)
where, Bn is the binomial value of the 

option at the node, r is the risk-free interest 
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rate in continuous capitalization, t is the 
discretization interval, (one day, converted to 
years of 252 business days), p and 1-p are the 
probabilities that the price of the underlying 
asset will rise or fall, respectively, Cn+1up 
and Cn+1down are the expected values ​​of the 
call option at subsequent nodes if the price 
moves up or down, and Pn+1up and Pn+1down 
are the expected values ​​of the put option at 
subsequent nodes if the price rises or falls, n 
designates the discretization interval.

For European options, as early exercise is 
not permitted, the expected value in nodes 
prior to expiration will always be the binomial 
value.

The Least Squares Monte Carlo Method, 
“Least Square Monte Carlo” [LSM], proposed 
by LONGSTAFF and SCHWARTZ (2001), is 
a discrete-time approximation of the continuous-
time Brownian movement of underlying 
asset prices. The method predicts, using least 
squares regressions, the continuation value of 
an American option in the moments before 
expiration, comparing it to the exercise value 
at that moment.

The use of larger discretization intervals, 
simplified polynomial functions and a smaller 
volume of simulations, in order to reduce the 
computational cost, harm the convergence 
of the LSM method (ARAÚJO and BAIDYA, 
2004).

The price trajectories of the underlying 
future, according to a Geometric Brownian 
Movement, were obtained by Monte Carlo 
Simulation, using equation (20): 

	 (20)
where, Fn+1 and Fn are the prices of the 

underlying asset on the date: n+1, and the 
current date n, respectively, μ is the average 
of the log-returns over the period, σ is the 
volatility, t is the discretization interval (one 
day, converted into years of 252 working 
days), and ε is a probability belonging to the 

normal distribution, represented by a random 
number between 0.001 and 0.999.

Ten thousand price trajectories of the 
underlying futures contract were simulated. 
According to the law of large numbers, the 
Monte Carlo method requires a large volume 
of simulations for better convergence. However, 
through sensitivity analysis, ARAÚJO and 
BAIDYA (2004) concluded that ten thousand 
price trajectories would be sufficient for 
convergence, and the subsequent increase 
in the number of simulations did not result 
in a significant improvement in the model’s 
accuracy.

Aiming to improve convergence, the 
technique of variance reduction by antithetical 
variables was used, through pairs of negatively 
correlated random numbers, belonging to the 
same probability distribution.

Therefore, ε is a random number between 
0 and 1, the antithetical number will be: 1-ε.

T﻿he optimal exercise, at time n, on path 
i, only occurs if the option is in the money 
and if the value of the anticipated exercise 
exceeds the expected value of continuation, 
conditioned on the fact that the option has 
not yet been exercised. The method is applied 
recursively, from due date to valuation date.

At expiration, the value of the option in 
each path i, in which it is exercised, will be the 
intrinsic value, or zero, if the option ends out 
of the money, according to equations (21) or 
(22), for a call or call option. sale, respectively:

	 (21)

	 (22)
where, cni or pni is the premium of the call 

or put option, at expiration, in path i, Fni  is 
the price of the underlying futures contract, 
at expiration, on path i, K is the exercise price, 
n identifies the discretization interval, and 
i identifies the price path of the underlying 
asset.
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In the moments before expiration, the 
value of the option, at an instant n of a path 
i, will be the early exercise value, if this is 
greater than the expected continuation value, 
or, otherwise, the continuation value, or zero, 
if the option is out of the money at time n 
and at subsequent times on path i, given by 
equations (23) or (24), for call or put options, 
respectively:

	
	 (23)

	
	 (24)

where, (Fni - K) ou (K - Fni) represents 
the exercise value of the call or put option, 
at time n of path i,  Fni  is the price of the 
underlying future at time n of the way: i, K 
is the exercise price, r is the risk-free interest 
rate in continuous compounding, t is the 
discretization interval (one day, converted into 
years of 252 business days), e-rtc(n+1)i  or e-rtp(n+1)

i is the continuation value of the call or put 
option, respectively, c(n+1)i  or p(n+1)i, represents 
the value of the option at time n+1, on path 
i, n indicates the discretization range and E 
[Yni|Xni] is the expected value of continuation 
at time n, on the way: i.

The vector of continuation expected 
values E[Yn|Xn] at time n, is obtained by least 
squares polynomial regression of the vector 
of continuation values: Yn, depending on the 
price vector of the underlying asset Xn. 

The regression is performed only on the 
paths in which the option is in the money 
at time n. The convergence of the method 
depends on this.

The vector of the prices of the underlying 
future, at time n, is given by equation (25):

	 (25)

where, Xn is the vector of underlying prices 
at time n, and Fni are the coefficients of the 
underlying prices at time n, on the way: i, with 
i ranging from one to m.

The vector of Continuation values: Yn is 
formed by the coefficients of future cash flows 
discounted at time n, by equations (26) or 
(27), for call or put options, respectively:

	 (26)

	 (27)
where, r is the risk-free interest rate in 

continuous capitalization, t is the discretization 
interval in years, c(n+1) i or p(n+1)i, is the value of 
the call or put option at the next moment: n+1 
on the way: i, n designates the number of the 
discretization interval, and i is the asset’s price 
path, ranging from 1 to m.

In the regression, a third-degree 
polynomial was used, defined as a function 
of the moment in which the coefficient of 
determination: R2 stopped growing. As a 
rule, the higher the polynomial degree of the 
regression, the better the precision, or the 
lower the standard deviation of the theoretical 
premiums (ARAÚJO and BAIDYA, 2004). 

The coefficients of the expected 
continuation values ​​at time n on each path: i, 
were calculated using the regression equation 
of Yn in function of Xn. They are only used in 
regression, the ways: i in which the option is 
in the money at time n, proceeding recursively 
until the valuation date.

At each time n, the option’s expected 
premium is calculated by taking the average 
of the option’s value across all paths i, ranging 
from 1 to m, by equations (28) or (29), for call 
or put options, respectively:

	 (28)

	 (29)
where, cn or pn is the value of the call or put 

option at the moment: n, cni or pni is the value 
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of the option at the moment: n on the way: i, 
obtained by equations (23) and (24).

VOLATILITY PREDICTORS
The volatility of financial time series varies 

according to a term structure, generally 
decreasing with the reduction of uncertainty 
as maturity approaches. 

Volatility presents an asymmetrical 
behavior, greater when prices are falling and 
lower when they are rising, in addition to forming 
“clusters” (conglomerates), alternating periods 
of greater or lesser volatility depending on 
market stability. In the case of options, there 
is also the “smile” effect, characterized by an 
increase in the volatility of premiums as the 
exercise price moves away from the price of 
the underlying asset.

Due to its simplicity, the most used future 
volatility predictor is historical volatility, 
estimated by the standard deviation of log-
returns between the valuation date and 
maturity. However, historical volatility does 
not capture the term structure or the smile 
effect.

Old data is less relevant for predicting 
the future behavior of financial series. Thus, 
in each trading session, historical volatility 
was estimated based on the business days 
remaining until expiration, multiplying by the 
root of 252 to obtain the annualized volatility, 
using equation (30):

	 (30)
where, σ is the annualized historical 

volatility, t is the trading date, ranging from 
1 to n, n is the number of days left until due 
date, rt is the log-return of the asset on the 
trading date, and r̄  is the average of the log-
returns over the period considered.

The instantaneous implied volatility of the 
option premium incorporates all available 
information and current market expectations 
about the behavior of premiums at the next 

moment, but little explanatory power over 
the option’s maturity period. (GABE and 
PORTUGAL, 2004).

Due to the non-linearity of Black’s 
formula, it is not possible to invert it in order 
to analytically obtain the implied volatility 
of the option premium, requiring the use of 
numerical methods. (Turitto, 2013).

The implied volatility of the option 
premium was estimated, by approximation, 
by the Newton-Raphson iterative algorithm, 
based on the instantaneous volatility of the 
market premium at the previous moment 
and the sensitivity of the option premium to 
changes in volatility, designated as “Vega”., by 
the equation (31):

	 (31)
where, σi e σi+1 are the implied volatilities in 

the last iteration and the next iteration, Pm is 
the premium observed in the market, Pσi is the 
premium calculated by Black’s equation based 
on the volatility in the previous instant (σi), 
υσi is the sensitivity of the option premium to 
changes in volatility, called “Vega”, given by 
equation (32):

	 (32)
where, F is the price of the underlying 

futures, r is the risk-free interest rate in 
continuous compounding on an annual basis, t 
is the unit of time in years, and N’(d1) is the first 
derivative of d1, calculated by the equation (33):

	 (33)
where, d1 is obtained from Black’s Formula, 

by equation (5).
The initial estimate of implied volatility 

(σ0
2) was obtained from the volatility term 

structure, as a function of the exercise price 
(K), on the Bloomberg platform.

Three iterations were performed, considering 
the rapid convergence of the Newton-Raphson 
algorithm.
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The Autoregressive Conditional Heteros-
cedasticity model [Garch], proposed by EN-
GLE (1982) and generalized by BOLLERSLEV 
(1986), describes the conditional, instanta-
neous, time-dependent volatility, different 
from the unconditional volatility, estimated 
based on the entire series of returns.

The Garch model captures stylized facts 
from the log-return series, such as volatility 
clusters, non-Gaussianity, stationarity, linear 
independence and quadratic autocorrelation, 
giving greater weight to recent observations. 
Extensions to the model describe volatility 
asymmetries (Egarch), or non-stationarity of 
the data series (Igarch).

The Garch (p, q) model admits that the log-
return series is stationary, considers the mean, 
variance and autocorrelation to be constant, 
without trends or seasonality, and assumes 
that the covariances depend only on the lag 
between observations.

The Garch (1,1) model, with a lag for both the 
quadratic log-returns (q) and the autoregressive 
term (p), has proven to be sufficient to explain 
the volatility of most financial series.

The conditional variance of the Garch 
model (1,1) is obtained by the equation (34):

	 (34)
where, σt

2, is the conditional variance at 
the current time, r2

t-1, is the first lag of the 
quadratic log-return, α is the coefficient of 
the moving average term, σ2

t-1 is the first lag of 
the conditional variance, β is the coefficient of 
the autoregressive term and ω is the weighted 
term, given by the equation (35):

	 (35)
where, VL is the unconditional, long-run 

variance, and ϒ is the conditional variance 
weighting coefficient.

Due to the stationarity of log-returns, the 
sum of the weighting parameters of the Garch 
model (1,1) corresponds to unity, according 
to equation (36):

	 (36)
where, α is the coefficient of the moving 

average term, β is the coefficient of the 
autoregressive term and γ is the weighting 
coefficient of the unconditional variance term 
in the Garch (1,1) model.

From equations (35) and (36), the 
unconditional variance is obtained by 
equation (37):

	 (37)
where, α is the coefficient of the moving 

average term, β is the coefficient of the 
autoregressive term and ω is the unconditional 
variance term.

The parameters: α, β and ω are adjusted by 
likelihood, so that the calculated values ​​and 
those extracted from the conditional variance: 
σt

2, results as close as possible. 
The known elements: α and β, the parameter 

ϒ is obtained by equation (36).
The likelihood function, to be maximized, 

is given by the equation (38):

	 (38)
where, σt is the conditional volatility, σt

2 is 
the conditional variance and r2

t is the quadratic 
log-return of the underlying asset.

According to GABE and PORTUGAL 
(2004), conditional volatility σt is a “one step 
ahead” predictor of instantaneous volatility. 
Annualized conditional volatility is obtained: 
σty, by the equation (39):

	 (39)
where σt is the conditional volatility. And 

the unconditional, long-term, annualized 
volatility is obtained by the equation (40):

	 (40)
Where VL, is the unconditional, long-run 

variance.
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PERFORMANCE METRICS
Performance metrics allow classifying 

different models according to accuracy and 
precision criteria.

Accuracy refers to the position deviation 
between the estimated values ​​in relation 
to the observed values, measured by the 
Mean Absolute Error [MAE] and the Mean 
Absolute Percentage Error [MAPE], defined 
by equations (41) and (42), respectively:

	 (41)

	 (42)
where, yi is the observed value, ŷi is 

the estimated value, e n is the number of 
observations.

Accuracy measures the dispersion between 
estimated and observed values, measured by 
the Root Mean Square Error [RMSE], given 
by the equation (43):

	 (43)
where, yi is the observed value, ŷi is the 

estimated value, and n is the number of 
observations.

RESULTS AND DISCUSSION
Table 1 presents the observed premiums 

and the theoretical premiums estimated by 
the models under analysis, throughout the 
contracting period: 

Table 2 shows the results of the tests applied 
to the estimated premiums:

The Shapiro-Wilk and Jarque-Bera tests 
rejected the normality of the log-return series 
for a significance level “α” of 0.05. The non-
Gaussianity of log-returns is not captured by 
the Black model, but only by the deterministic 
volatility models of the Garch family. 

The Durbin-Watson test rejected the 
hypothesis of independence of the log-return 
series, for a significance level “α” of 0.05. 
The Ljung-Box test indicated weak linear 

dependence of log-returns, weak significant 
first-order autocorrelation and absence of 
significant higher-order autocorrelation. 
These conditions are compatible with the 
application of the Garch model.

The Bartlett test rejected the hypothesis of 
constant variance of log-returns, indicating 
the heteroscedasticity of the series over time. 
Constant variance is a simplification assumed 
by the Black model and historical volatility, 
which gives equal weight to all observations. 
The term structure of volatility is captured by 
implicit, or instantaneous, and deterministic 
volatility estimators, which give greater weight 
to recent observations.

The Augmented Dickey-Fuller [ADF] test 
rejected the presence of a unit root, concluding 
that the series was stationary. According to 
PINHO et al. (2017), log-return series are 
generally stationary, although price series are 
normally non-stationary. If the assumption 
of stationary returns was violated, the use 
of the integrated Igarch extension would be 
required.

The Shapiro-Wilk and Jarque-Bera tests 
rejected the hypothesis of normality of 
premiums observed in the twelve months 
prior to maturity. The normality hypothesis 
was rejected for the Black models combined 
with historical volatility, Binomial combined 
with implied volatility and LSM combined 
with deterministic volatility.

The Bartlett test rejected the homogeneity 
of variances between the series of observed 
real premiums and theoretical premiums 
estimated by the Black, Binomial and LSM 
models, combined with historical, implicit 
and deterministic volatilities, in all cases.

If the assumptions of normality and 
homogeneity of variances are violated, 
parametric tests such as Student’s “t” and 
Snedecor’s “F” lose significance, requiring the 
application of non-parametric tests.

The Mann-Whitney and Kruskal Wallis 
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Table 1: Premiums estimated by pricing models and volatility estimators
Source: Original Survey Results

Note: Put option on corn futures. March 2022.
Exercise price: K = 95.

Table 2: Hypothesis tests: estimated premiums inrelation to observed premiums.
Source: Original research results
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non-parametric tests rejected the hypothesis 
of equality of medians between the series 
of premiums estimated by the LSM model, 
combined with historical, implicit and 
Garch volatility estimators, and the series 
of premiums observed in the contracting 
period, with significance “α” of 0.05. The 
same occurred in relation to the Binomial 
model, combined with historical volatility. 
The equality of the medians was not rejected 
for the theoretical premiums of the Black 
model, combined with any of the volatility 
estimators, and Binomial, associated with 
Garch volatilities.

Table 3 presents the performance metrics 
of the pricing models combined with volatility 
models, compared to the observed premiums:

Table 4 classifies the pricing models 
combined with volatility estimators according 
to the accuracy and precision criteria.

Black’s model, combined with historical 
and implied volatility estimators, presented 
the best performance in the accuracy and 
precision criteria. With deterministic 
volatility, it achieved the best performance 
in the precision criterion and intermediate in 
accuracy.

TONIN and COELHO (2012) verified 
the good performance of the Black model 
in comparison to numerical methods in 
evaluating options with different maturity 
periods and degrees of “moneyness”. 
COELHO et al (2009) concluded that the 
Black model was adhered to in evaluating out-
of-the-money options.

The Binomial model, combined with 
historical or implied volatility estimators, 
showed intermediate performance in 
the accuracy and precision criteria. With 
deterministic volatility, it surpassed the Black 
and LSM models in the precision criterion, 
with intermediate performance in terms of 
accuracy.

COELHO et al (2009) and SAITO and 
ROCHMAN (2008) verified good results 
regarding accuracy and precision indicators 
for the Binomial model.

The LSM method underpriced the 
premiums, in any case, and performed poorly 
in the accuracy and precision criteria, with 
the historical, implied and Garch volatility 
estimators. In the case under analysis, the 
low temporal discretization, the low number 
of simulations and the simplified polynomial 
function imposed severe conditions on the 
use of the LSM method.

As the LSM method uses for least squares 
regressions only the price trajectories in which 
the option is in the money, its convergence was 
impaired in the case under analysis, due to the 
reduced number of remaining trajectories. 
Conversely, SAITO and ROCHMAN (2008) 
confirmed the good performance of the 
method, despite the high computational cost.

The simplifications assumed by pricing 
models undermine their adherence. The 
hypothesis of fully efficient markets does not 
arise in practice, there is always asymmetry 
of information and arbitrage and theoretical 
risk-neutral interest rates normally differ 
from those practiced by agents depending on 
the risk of the underlying asset.

Table 5 classifies volatility estimators 
according to accuracy and precision criteria.

Implied volatility, associated with the 
Black and Binomial models, resulted in the 
best accuracy and precision indicators, but 
presented poor performance when applied to 
the LSM method.

POON and GRANGER (2005) concluded 
that implied volatility is the best predictor 
of future volatility. GABE and PORTUGAL 
(2004) and SOUZA et al (2014) verified the 
efficiency of implied volatility in short-term 
forecasting. TONIN and COELHO (2012) 
found the good performance of implied 
volatility compared to historical volatility.
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Table 3: Performance of pricing and volatility models
Source: Original Survey ResultsNote: Put option on the corn futures contract with expiration date in 

March 2022. (CRDN2)

Table 4: Performance of pricing models
Source: Original Research Results

Rating 1: GoodNote 2: Intermediate
Grade 3: Unsatisfactory

Table 5: Performance of volatility estimators
Source: Original Research Results

Rating 1: Good
Note 2: Intermediate

Grade 3: Unsatisfactory

The deterministic volatility of the Garch 
model applied with the LSM method showed 
good performance in accuracy and precision, 
and intermediate performance when associated 
with the Binomial model. With Black’s model, 
it demonstrated intermediate performance in 
accuracy and poor performance in precision.

GABE and PORTUGAL (2004) concluded 
that the volatility of the Garch model is the 
best predictor of future volatility throughout 
the option’s maturity, as it captures volatility 
“clusters”. POON and GRANGER (2005) 
found that Garch volatility proved to be an 
adequate predictor of future volatility over the 
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term of the option. However, PONTES and 
MAIA (2017) concluded that deterministic 
volatility overpriced premiums in the Black 
model.

Historical volatility, associated with the 
Binomial model, showed poor performance 
in the accuracy and precision criteria, but 
intermediate performance when applied 
to the LSM method. With Black’s model, it 
demonstrated poor performance in accuracy 
and intermediate performance in precision.

PONTES and MAIA (2017) found 
that historical volatility underpriced the 
theoretical premiums of the Black model. 
TONIN and COELHO (2012) found a 
significant difference between the premiums 
calculated using historical volatility and the 
observed premiums, particularly for options 
very in or out of the money, as they do not 
capture the smile effect and the term structure 
of volatility. POON and GRANGER (2005) 
concluded that historical volatility can be a 
satisfactory predictor of future volatility for 
at-the-money or close-to-the-money options 
when data is widely available.

The lack of liquidity of contracts listed 
on B3 amplifies the fluctuation in premiums, 
lengthening the difference between the best 
purchase offer and the lowest sales price 
(“bid-ask spread”), negatively affecting the 
performance of volatility models (NAVARRO 
et al, 2022).

CONCLUSIONS
The Black model, combined with implied 

volatility, presented the best performance 
according to the precision and accuracy 
criteria, the Binomial model obtained an 
intermediate performance and the LSM 
model presented a weaker performance.

The wide dissemination of Black’s model 
impacts investors’ decisions and ends up 
influencing real market premiums.

Better adherence to the Binomial model 
was expected, as it prices the possibility of 
early exercise of American options.

The LSM method did not prove to be 
adherent in pricing out-of-the-money options, 
underpricing the premiums, considering that 
the regressions are only carried out on the 
trajectories in which the option is exercised, 
harming the convergence of the method in 
the case under analysis.

As expected, historical volatility underpriced 
out-of-the-money option premiums by 
not capturing the smile effect nor the term 
structure of volatility.

Implied volatility presented the best 
indicators of accuracy and precision, deterministic 
volatility from the Garch model achieved 
intermediate performance and historical 
volatility demonstrated weaker performance.

Better performance was expected from the 
deterministic volatility predictor of the Garch 
model, as it could capture volatility “clusters”.

The main contribution of the study was to 
demonstrate that the theoretical premiums of 
the Black model, especially when combined 
with implied volatility, presented the best 
performance in the precision and accuracy 
criteria compared to numerical methods, 
corroborating its wide use.

Further studies will be able to deepen 
knowledge about the pricing of options in 
the Brazilian market in different situations, 
focusing on purchase and sale options, 
different agricultural “commodities”, pricing 
models and volatility forecasters, involving 
sensitivity analyzes of parameters such 
as degree of “moneyness” and time until 
maturity.
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