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Abstract: Photovoltaic energy has emerged as 
an extremely attractive alternative for electricity 
generation, especially with advancements in 
control systems that facilitate its integration 
with electrical applications. However, despite 
careful planning in the placement and fixing 
of panels, shading is inevitable in various 
circumstances due to space limitations and 
obstacles such as clouds, buildings, trees, 
and snow. This article aims to anticipate the 
energy production of photovoltaic systems 
under partial shading conditions. Energy loss 
in such conditions is addressed using bypass 
diodes, and artificial neural networks are 
implemented to predict power output. Three 
key parameters are trained for this prediction, 
enabling a more accurate estimation of energy 
generation under shading conditions.
Keywords: photovoltaic systems, partial 
shading, power predicting, artificial neural 
network.

INTRODUCTION
Currently, the world is facing a high 

demand for energy due to the increasing 
population. Most of the energy used to supply 
the growing population comes from fossil 
fuels. However, this resource is depleting and 
causing atmospheric pollution, among other 
problems. To address these issues, renewable 
energy sources such as solar, wind, and fuel 
cells are being utilized. Among renewable 
energy sources, energy is predominantly being 
produced from photovoltaic solar systems due 
to the large amount of solar energy available 
to meet humanity’s increasing energy needs. 
Energy production based on photovoltaic 
systems has gained popularity, and awareness 
of this is high among countries in general. As 
a result, governments provide grants aimed at 
technological developments to significantly 
reduce the cost per watt of photovoltaic 
systems [12].

Despite some technological improvements, 
there are still challenges in photovoltaic energy 
output, such as low conversion efficiency, 
depending on variable irradiation and 
temperature conditions. The main problems 
that disrupt energy generation in photovoltaic 
systems are losses due to divergence in the 
electrical characteristics of photovoltaic 
panels. Photovoltaic system mismatch results 
from the manufacturing systems employed, 
module aging, poor soldering links, and 
irregular irradiation conditions or partial 
shading. Of these, partial shading conditions 
have created detrimental consequences in 
terms of the photovoltaic system’s performance 
efficiency [12].

Even though panels are placed and fixed 
after careful planning, shading is inevitable in 
many circumstances due to space constraints 
and issues such as clouds, buildings, trees, and 
snow. Additionally, inadequate maintenance 
can lead to dust accumulation on the panels, 
creating an irregular response to radiation. 
The electrical performance characteristics of 
shaded panels differ from those of unshaded 
panels, resulting in a lack of photovoltaic 
efficiency that increases with the intensity of 
the shade. Photovoltaic energy generation 
is reduced by this mismatch, and improving 
photovoltaic output in such circumstances is 
a critical task since the decrease in production 
is not only related to the shaded area but also 
depends on various other issues such as array 
formation, shade intensity, and the position 
of the shaded panel in the photovoltaic array 
[12].

Photovoltaic energy systems have become a 
very attractive option for generating electricity, 
especially with advancements in control systems 
used to integrate such systems with electrical 
applications. Additionally, the correlation 
between the loads of most energy systems and 
the energy generated from photovoltaics makes 
it an efficient option used to power larger loads 
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during the day. Numerous developments in 
photovoltaic systems have been introduced to 
increase their efficiency and reduce the cost of 
generated energy by using new and modified 
materials or improving the performance of the 
power converter.

A condition where the complete modules 
of a photovoltaic array do not receive the same 
solar irradiance is known as a partial shading 
condition. Partial shading conditions are 
inevitable, especially in solar systems installed 
in urban areas and areas where low-moving 
clouds are common. If the control system 
cannot detect and react to this situation, the 
photovoltaic system will deviate from the 
optimal operating mode [7].

Photovoltaic systems comprise several 
photovoltaic modules connected in parallel or 
series to achieve the required output voltage 
and current supply capacity. The efficiency of 
the output can be negatively affected when 
these modules are subject to non-uniform 
irradiance, as in the case of partial shading 
of the photovoltaic system. The extent of the 
case depends on the system architecture, the 
implementation of the shading scheme, or the 
number of bypass diodes integrated into the 
photovoltaic modules. Partial shading occurs 
due to the occlusion of the sun by objects such 
as buildings, trees, and other elements. Under 
partial shading conditions, a photovoltaic 
module may receive different levels of solar 
irradiance compared to other in the array, 
resulting in a complex and multi-peak P-V 
output characteristic curve [13].

If a panel of a photovoltaic system is partially 
shaded, the shaded panel would consume 
the power produced by the other panels and 
dissipate heat. Under this condition, the 
current of the series-connected panel will 
be reduced to the same as the shaded panel’s 
current. To address this issue, bypass diodes 
can be interconnected in parallel with each 
photovoltaic module; these diodes will be 

reverse biased with uniform solar radiation. In 
contrast, these diodes will be forward-biased 
and draw current from the solar panel under 
the shading effect. Although the shaded part 
of the panels will be protected from damage, 
the photovoltaic energy output is not optimal 
[11].

In typical situations, power-voltage (P-
V) and current-voltage (I-V) graphs show a 
single maximum peak, but in cases of partial 
shading, the curve presents multiple peaks. 
Therefore, it is crucial for the designer to select 
the optimal value and employ maximum 
power point tracking (MPPT) to capture the 
maximum available power [11].

A photovoltaic array consists of multiple 
cells connected in series. By inserting a bypass 
diode, each string of cells transforms into 
individual substrings. These substrings are 
connected in parallel, creating a path that 
allows current to flow even in the presence 
of partial shading. In photovoltaic systems 
employing bypass diodes to enhance energy 
efficiency, artificial neural networks are used 
to accurately predict energy generation [8].

The ability of artificial neural networks to 
predict energy production in photovoltaic 
systems affected by partial shading has been a 
topic of intensive research in the past decade. 
This interest stems from the critical need to 
maximize the efficiency of these systems 
in urban and natural environments where 
physical obstacles are inevitable [9].

A study conducted by [5] used neural 
networks to predict the power output of 
photovoltaic systems under different weather 
conditions. The researchers trained neural 
network models using historical data that 
included variables such as solar intensity, 
temperature, and degree of shading. The 
results demonstrated that neural networks 
could accurately predict power fluctuations, 
outperforming other predictive models such 
as regression and support vector machines.
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In [14] a study is presented on the use of 
artificial neural networks (ANN) to model the 
energy production of photovoltaic solar panels. 
It describes in detail the methodology used 
to develop and train the ANN model, which 
includes the collection and preprocessing of 
data on solar irradiation, ambient temperature, 
module temperature, wind speed, and 
relative humidity. The study evaluates the 
ANN model’s performance by comparing 
it with other traditional approaches such 
as multiple linear regression models and 
power law models. The results indicate that 
Zeng’s proposed ANN model offers greater 
accuracy in energy output predictions, with 
a coefficient of determination (R²) and mean 
absolute error (MAE) that significantly 
surpass traditional methods. Additionally, 
the article highlights the ANN model’s ability 
to capture the inherent non-linearity in solar 
energy production, contributing to better data 
adaptation and greater reliability in diverse 
scenarios. The work concludes that using ANN 
in modeling photovoltaic panel energy is not 
only viable but also highly effective, suggesting 
its implementation as a standard tool in solar 
energy system management and optimization.

On the other hand, [2] focused on developing 
a deep neural network to dynamically adjust 
the operating parameters of photovoltaic 
systems in response to real-time detected 
shading variations. Their research showed 
that adjusting system parameters based on 
neural network predictions could increase 
energy production by up to 15% compared to 
systems that did not use adaptive adjustments.

In [6], an artificial neural network was used 
to develop a highly accurate energy production 
prediction model for solar panels. This study 
used a self-developed feedforward neural 
network model employing the rectified linear 
unit activation function. Weather, climate, and 
solar irradiation data collected over the past 
year at a residential location were used to train 

the models. The model’s performance was 
identified based on minimum mean absolute 
error, mean squared error, and maximum 
linear correlation coefficient. Additionally, 
the current self-developed ANN model was 
consistent with other experimental results 
and theoretical analyses of solar energy.

In the study [4], artificial neural networks 
(ANN) and regression models are used to 
predict the energy production of photovoltaic 
modules, analyzing the effects of climatic 
conditions and operating temperature on the 
estimated production. The models are based 
on six days of experimental data, creating a 
comprehensive dataset. After preprocessing the 
data, suitable attributes were selected as inputs, 
considering features such as solar irradiation, 
ambient and module temperature, wind speed, 
and relative humidity, while energy generation 
was used as the target. From this data, the impact 
of the training algorithm on the ANN model’s 
predictive performance was investigated. The 
results indicate that solar irradiation, ambient 
and module temperature are crucial factors in 
predicting energy generation from photovoltaic 
modules, as they are strongly correlated with 
photovoltaic energy production. Additionally, 
it was found that the Levenberg-Marquardt 
algorithm was the most effective for training. 
The ANN model demonstrated superior 
accuracy compared to the developed multiple 
linear regression models.

METHODOLOGY
Figure 1 illustrates the equivalent electrical 

circuit of a photovoltaic cell. In this diagram, 
a current source, denoted as Ipv, represents 
the current generated by solar radiation. 
Additionally, the presence of a diode is 
shown along with two resistors: Rs in series 
arrangement and Rsh in parallel configuration. 
Rs reflects the losses associated with contacts 
and connections, while Rsh represents the 
diode’s leakage current [10].
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Figure 1. Model of a photovoltaic cell

By applying Kirchhoff ’s voltage and current 
law to the circuit depicted in Figure 2, we can 
derive the current generated (Ipv) by the solar 
panel, as expressed in equation (1) [3]:

	 (1)
Given that Ish represents the current losses 

in the parallel resistor, given by:

	 (2)
The diode current Id is given by equation 3:

	 (3)
Substituting equations (2) and (3) into (1) 

results in:

	 (4)
where Iph is the photogenerated current, Io 

is the diode’s reverse saturation current, q is the 
electron charge (1.6 x 10-19 C), Vpv is the solar 
cell voltage, K is the Boltzmann constant (1.38 
x 10-23 J/K), Tc is the operating temperature 
of the cell, and A is the diode ideality factor, 
which distinguishes the behavior between a 
silicon cell and a germanium cell, depending 
on the solar cell manufacturing technology.

The photogenerated current varies as a 
function of the solar radiation and the cell 
temperature present during measurement, as 
described in equation (5).

	 (5)

where R is the solar radiation measured 
at the instant, Rref is the solar radiation under 
standard conditions (1000 W/m²), Iref is the 
photogenerated current under reference 
conditions taken as the short-circuit current 
(Isc = Iref), UIsc is the short-circuit current 
temperature coefficient, and TcRef is the 
operating temperature of the cell under 
standard conditions (298°K). The diode’s 
reverse saturation current also depends on the 
temperature, which is described in equation 
(6).

	 (6)
where IoRef is the reverse saturation current 

under reference conditions and Eg is the 
semiconductor’s bandgap energy. This energy 
provides an idea of the ease with which an 
electron can move from the valence band to 
the conduction band. It is necessary for the 
photons incident on the junction to have an 
energy greater than the material’s bandgap 
energy value to produce the photoelectric 
effect in the semiconductor material. The 
optimal value to maximize the absorption of 
the solar spectrum at sea level is around 1.5 
eV. The current IoRef is defined according to 
equation (7).

	 (7)
To obtain appropriate voltage and current 

for different applications, several solar cells 
are interconnected in series or parallel to form 
a photovoltaic module, which in turn can be 
interconnected with others to form what is 
known as a photovoltaic array. Therefore, 
the equation for a photovoltaic cell described 
in (4) is augmented with the coefficients Np, 
which is the number of modules in parallel, 
and Ns, the number of cells in series, so that 
the current-voltage characteristic equation of 
a solar panel is denoted in equation (8) [1].
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       (8)
Equation (8) is simplified because the 

shunt resistance does not affect the efficiency 
of a solar cell, as the resistance tends to be very 
large or infinite, so it can be assumed that Rsh = 
∞. However, the series resistance significantly 
affects the cell’s behavior; therefore, the 
equation becomes:

	 (9)
Equation (9) is a detailed representation 

of how a solar cell converts light energy 
into electrical current, considering both 
the intrinsic characteristics of the cell and 
the external conditions that affect it. The 
implementation will be carried out in 
Matlab’s Simulink, as it allows for complex 
and dynamic simulations, especially in 
real-time, in addition to having an intuitive 
graphical interface and advanced analysis and 
visualization tools.

SIMULATION OF DATA FOR 
NEURAL NETWORK TRAINING
Partial shading occurs when only a portion 

of a solar panel or module is covered, while 
the rest remains exposed to direct sunlight. 
This phenomenon can be caused by objects 
such as trees or buildings casting shadows 
on the panel or due to installation at an angle 
that allows part of the panel to be obstructed 
by another. The effect of this shading on the 
solar panel’s performance is significant, as 
the shaded section generates less electricity 
than the illuminated section. Since the solar 
cells in a panel are interconnected in series, 
even minimal shading can reduce the voltage 
across the entire panel and negatively impact 
its energy efficiency.

To better understand the potential impact 
on energy production, different partial 
shading conditions are simulated. For this, 
two photovoltaic panels connected in parallel, 
each with 60 cells, are considered. Different 
irradiances are applied to each section of the 
panels, as shown in Figure 2.

Figure 2. Schematic diagram of 120 PV array

To conduct the simulation for obtaining the 
voltage, current, and power data that will be 
used to train the neural network, the Simulink 
block model is utilized to represent each 
section of the solar panel. Each block can have 
adjustable parameters such as temperature, 
the number of solar cells, and irradiation 
conditions. In this model, partial shading 
is defined by adjusting the solar irradiation 
parameters for certain panels or sections of 
panels. Additionally, controlled switches are 
included to activate the bypass diodes when 
a drop in efficiency of certain sections of the 
panel due to shading is detected, as shown in 
Figure 3.
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Figure 3. Simulink model of the photovoltaic system

DEVELOPMENT OF THE NEURAL 
NETWORK
An artificial neural network is a parallel 

distributed processor formed by simple 
processing units (neurons) that stores 
experiential knowledge and makes it available 
for use. Knowledge is acquired by the network 
through a learning process, and the connection 
weights between neurons, known as synaptic 
weights, are used to store this knowledge. The 
procedure used for the learning process is 
called the training algorithm, whose function 
is to modify the synaptic weights of the 
network in an orderly manner to achieve a 
desired design objective.

Multilayer Perceptron (MLP) are an 
extension of simple perceptron and are used 
to solve more complex problems that cannot 
be addressed by individual perceptron. These 
networks consist of multiple layers of neurons, 
each connected to the next layer, allowing for 
the representation and learning of non-linear 
functions. The structure of a multilayer neural 
network is described as follows:

1.	 Input Layer: This layer receives the 
input features or variables. Each node 
in the input layer represents a feature 
of the data.

2.	 Hidden Layers: Between the input layer 
and the output layer, there are one or 
more hidden layers. These layers are 
responsible for capturing non-linear 
relationships in the data. Each neuron 
in a hidden layer applies an activation 
function to a linear combination of the 
outputs from the previous layer.

3.	 Output Layer: This layer produces the 
final output of the network, which 
can represent a classification (in the 
case of classification problems) or 
a continuous value (in the case of 
regression problems).

The objective of training a neural network 
is to establish values for the weight vector 
so that the error made when evaluating the 
training examples is minimized. Once these 
weights are calculated, the network is ready 
to be tested with other test patterns that it 
has not been trained on. The goal of this new 
testing is to see how the network behaves 
when the inputs are different from those used 
for training.

When training a neural network with 
specific training examples and attempting to 
minimize the error to minimal levels, there is 
a risk of over-specializing the network, which 
will perform optimally with the examples it 
was trained on, but for examples it has not 
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been trained on, considerable errors may 
occur. This leads to the conclusion that while it 
is necessary to minimize the error, overfitting 
should be avoided as it results in a loss of 
generalization.

The sigmoid function is used as the 
activation function, which is one of the most 
commonly used activation functions in 
artificial neural networks. It is a non-linear 
function that limits the input values to a 
range between 0 and 1. As the input increases, 
the output tends to 1, and for lower values, 
it approaches 0. This activation function is 
crucial for handling complex patterns and 
solving complicated problems in neural 
networks.

The sigmoid function is characterized 
by having a steeper slope around the input 
value of 0, which facilitates fast learning by 
allowing quick adjustments in the network’s 
weights. However, it faces the challenge of 
the vanishing gradient problem when the 
output values are high, reducing the slope to 
almost zero and consequently slowing down 
the learning rate. This problem can limit the 
effectiveness of deep neural networks.

Additionally, the sigmoid function 
experiences saturation when the output values 
approach the extremes of 0 or 1, reducing the 
slope to nearly zero and minimizing weight 
updates during training. This phenomenon 
poses an obstacle in learning as the network 
deepens.

The use of non-linear functions is essential 
in artificial neural networks because linear 
functions are insufficient for solving highly 
complex problems. By employing non-linear 
activation functions such as the sigmoid, 
neural networks can effectively learn and 
model intricate patterns, enabling them to 
tackle a wide range of challenges.

In the output layer, a linear function is 
used, which causes the output to vary directly 
in proportion to the input. Since it is a linear 

transformation, even when connecting multiple 
linear layers, the relationship remains a 
single linear function. Therefore, successively 
using linear functions does not increase the 
expressive capacity of the neural network nor 
facilitate the learning of complex patterns 
effectively. Hence, including linear transfer 
functions in the hidden layers of structures 
like the multilayer perceptron does not add 
significant value. However, in situations where 
the predicted values are real numbers, such as 
in regression tasks, the linear transfer function 
can be appropriate and improve performance 
as an activation function.

The Levenberg-Marquardt algorithm is 
used to train artificial neural networks, being 
particularly useful in non-linear least squares 
optimization problems. This algorithm acts as 
a training function that updates the weights 
and bias values in neural networks through 
an optimization process. The MLP network 
consists of an input layer, two hidden layers, 
and an output layer. The output hj of the j-th 
neuron in the hidden layer is calculated as 
follows:

	 (10)
where 𝑤𝑖𝑗 are the weights from the input 

layer to the hidden layer, bj is the bias of the 
hidden layer, and 𝑓 is the activation function 
for each hidden layer. The output of the neural 
network is expressed as:

	 (11)
An MLP is structured such that the output 

of one hidden layer is fed as input to the next 
hidden layer or to the output layer. Therefore, 
each layer has its own bias value, as it is related 
to all the variables of the previous layer, and 
there are weightings for the variables between 
two consecutive layers. The structure of the 
artificial neural network used in the simulation 
is illustrated in Figure 4.



9
Journal of Engineering Research ISSN 2764-1317 DOI https://doi.org/10.22533/at.ed.3174182421067

Figure 4. Structure of the neural network

RESULTS
Figure 5 presents a set of graphs showing 

the performance curves of solar panels under 
different shading conditions. These graphs 
represent the power output under various 
solar irradiation conditions. Each graph shows 
a clear pattern where power increases, reaches 
a peak, and then falls sharply, which is typical 
in partial or intermittent shading situations. 
As observed in Figure 5, the actual P-V curve 
is compared to the neural network prediction 
curve, showing the output power predictions 
generated by the neural network based on 
voltage, irradiance, and power inputs. It is 
important to note that the areas where the 
neural network predictions diverge from the 
actual values are not significantly large; if there 
are divergences, they may indicate issues with 
the model under certain input conditions or 
problems with the input data itself. A separate 
validation set is used to evaluate the model’s 
performance before applying it to the test set. 
This helped to better generalize and avoid 
overfitting.

The interpretation of regression analysis 
results can be facilitated using scatter plots, 
as shown in Figure 6. These plots graph the 
relationship between the actual and predicted 
values, allowing for a visual assessment of 
how close the data points are to the regression 
line. If the points cluster around this line, it 
indicates that the model effectively predicts 
the relationship between the observed and 
estimated values. The regression line in the 
graph, whose slope can indicate the predictive 
accuracy of the model through correlation, 
reflects the relationship between the actual and 
predicted values. A slope close to 1 suggests 
a highly accurate model, where there is a 
high match between the actual and predicted 
values. The clustering of points around the 
line is also a desirable indicator of accuracy.

Figure 6. Scatter Plot of Training Data Fit

The Mean Squared Error (MSE) is a metric 
that calculates the average of the squares of 
the errors, i.e., the average of the squared 
differences between the values predicted by 
the model and the actual values, as illustrated 
in Figure 7. In the context of training a neural 
network, the MSE functions as a loss function 
that the network attempts to minimize by 
adjusting its parameters (weights and biases). 
Analyzing the MSE, a consistent decrease 
is observed, indicating that the network is 
effectively learning from the training data and 
adjusting its parameters to reduce the error.
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Figure 5. Actual P-V curves vs. neural network generated P-V curves

Figure 7. MSE of the Predictive Model

CONCLUSIONS
Using neural networks for power prediction 

in photovoltaic systems with partial shading 
has several significant advantages. First, these 
networks can dynamically adjust to changes 
in shading conditions and continue to provide 
accurate predictions. Second, compared 
to traditional prediction methods, neural 
networks are often more effective in handling 
nonlinear and complex data, such as those 
present in systems with partial shading.

As observed in the figures, this behavior 
is desirable in most model training scenarios 

because it suggests that the model will 
generalize well when faced with new, unseen 
data (assuming no overfitting and that the 
data are representative). This indicates that 
the network is effectively learning from the 
training data. As more examples are processed 
during iterations (epochs), the network 
adjusts its internal parameters to better align 
predictions with actual values.

The implementation of neural networks 
in the management of photovoltaic systems 
not only improves accuracy in power 
prediction but also aids in optimizing energy 
consumption and reducing operational costs. 
Moreover, businesses and households can 
enhance their energy planning and reduce 
the risk of equipment damage through better 
management of load variations caused by 
shading.

The ability to accurately predict photovoltaic 
energy production allows grid operators and 
energy planners to make more informed 
decisions regarding the integration of 
renewable energy into the energy matrix. This 
has direct implications for long-term planning 
and policies aimed at increasing the share of 
renewable energy in the market.
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