

## Vanessa Campana Vergani de Oliveira (Organizadora)

## A Evolução do Design Gráfico

Atena Editora 2019

#### 2019 by Atena Editora

Copyright © da Atena Editora

Editora Chefe: Prof<sup>a</sup> Dr<sup>a</sup> Antonella Carvalho de Oliveira Diagramação e Edição de Arte: Lorena Prestes

Revisão: Os autores

#### Conselho Editorial

Prof. Dr. Alan Mario Zuffo - Universidade Federal de Mato Grosso do Sul Prof. Dr. Álvaro Augusto de Borba Barreto - Universidade Federal de Pelotas Prof. Dr. Antonio Carlos Frasson - Universidade Tecnológica Federal do Paraná Prof. Dr. Antonio Isidro-Filho - Universidade de Brasília Profa Dra Cristina Gaio - Universidade de Lisboa Prof. Dr. Constantino Ribeiro de Oliveira Junior - Universidade Estadual de Ponta Grossa Profa Dra Daiane Garabeli Trojan – Universidade Norte do Paraná Prof. Dr. Darllan Collins da Cunha e Silva - Universidade Estadual Paulista Prof<sup>a</sup> Dr<sup>a</sup> Deusilene Souza Vieira Dall'Acqua – Universidade Federal de Rondônia Prof. Dr. Eloi Rufato Junior - Universidade Tecnológica Federal do Paraná Prof. Dr. Fábio Steiner - Universidade Estadual de Mato Grosso do Sul Prof. Dr. Gianfábio Pimentel Franco - Universidade Federal de Santa Maria Prof. Dr. Gilmei Fleck - Universidade Estadual do Oeste do Paraná Prof<sup>a</sup> Dr<sup>a</sup> Girlene Santos de Souza - Universidade Federal do Recôncavo da Bahia Profa Dra Ivone Goulart Lopes - Istituto Internazionele delle Figlie de Maria Ausiliatrice Profa Dra Juliane Sant'Ana Bento - Universidade Federal do Rio Grande do Sul Prof. Dr. Julio Candido de Meirelles Junior - Universidade Federal Fluminense Prof. Dr. Jorge González Aguilera - Universidade Federal de Mato Grosso do Sul Prof<sup>a</sup> Dr<sup>a</sup> Lina Maria Goncalves – Universidade Federal do Tocantins Profa Dra Natiéli Piovesan – Instituto Federal do Rio Grande do Norte Prof<sup>a</sup> Dr<sup>a</sup> Paola Andressa Scortegagna – Universidade Estadual de Ponta Grossa Profa Dra Raissa Rachel Salustriano da Silva Matos - Universidade Federal do Maranhão Prof. Dr. Ronilson Freitas de Souza - Universidade do Estado do Pará

Prof. Dr. Ronilson Freitas de Souza – Universidade do Estado do Pará
Prof. Dr. Takeshy Tachizawa – Faculdade de Campo Limpo Paulista
Prof. Dr. Urandi João Rodrigues Junior – Universidade Federal do Oeste do Pará
Prof. Dr. Valdemar Antonio Paffaro Junior – Universidade Federal de Alfenas
Profa Dra Vanessa Bordin Viera – Universidade Federal de Campina Grande
Profa Dra Vanessa Lima Gonçalves – Universidade Estadual de Ponta Grossa
Prof. Dr. Willian Douglas Guilherme – Universidade Federal do Tocantins

### Dados Internacionais de Catalogação na Publicação (CIP) (eDOC BRASIL, Belo Horizonte/MG)

E93 A evolução do design gráfico [recurso eletrônico] / Organizadora Vanessa Campana Vergani de Oliveira. – Ponta Grossa (PR): Atena Editora, 2019.

Formato: PDF

Requisitos de sistema: Adobe Acrobat Reader.

Modo de acesso: World Wide Web.

Inclui bibliografia

ISBN 978-85-7247-196-1

DOI 10.22533/at.ed.961191803

1. Artes gráficas. 2. Desenho (Projetos). 3. Projeto gráfico (Tipografia). I. Oliveira, Vanessa Campana Vergani de.

CDD 741.6

Elaborado por Maurício Amormino Júnior - CRB6/2422

O conteúdo dos artigos e seus dados em sua forma, correção e confiabilidade são de responsabilidade exclusiva dos autores.

#### 2019

Permitido o download da obra e o compartilhamento desde que sejam atribuídos créditos aos autores, mas sem a possibilidade de alterá-la de nenhuma forma ou utilizá-la para fins comerciais. <a href="https://www.atenaeditora.com.br">www.atenaeditora.com.br</a>

#### **APRESENTAÇÃO**

Um pensamento, um cérebro em funcionamento constante e intenso, uma ebulição de sentimentos, tentando entender o que estava acontecendo e como poderia sobreviver. O design surgiu para adaptar de forma radical todas as áreas. Veremos ao decorrer desse livro, as diferentes formas de como o ele interage, como permeia de forma sutil e as vezes escancarada todos as questões da nossa vida.

O processo pode parecer complexo, porém é simples: diante de um problema, o ele elabora hipóteses e toma uma decisão que geram coisas que nos protegem, alimentam ou nos elevam. Essa é a capacidade de tornar tangível uma intenção de transformação. O designer imagina, projeta e desenvolve os mais variados processos para materializar pensamentos, criar o artificial, aquilo que se opõe ao natural. O design é a medida do homem na natureza.

O design se entranhou na evolução do homem, como uma habilidade tão essencial que nem percebemos a sua presença. O design amparou o homem a arquitetar linguagem e códigos pelos quais nós nos expressamos. A criatividade humana encontrou no design a sua ferramenta favorita e incorporou-a nas mais diversas disciplinas.

Este livro pretende fortalecer o design, colaborando para a maior aventura exploratória da humanidade que somente começou: o conhecimento do cérebro como fonte de riquezas inesgotáveis.

VANESSA CAMPANA VERGANI DE OLIVEIRA.

#### **SUMÁRIO**

| CAPÍTULO 11                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 21ST CENTURY GRAPHIC DESIGN IN EVOLUTION: FROM ELECTRON MICROSCOPE TO DIGITAL IN ARCHITECTURE                                                                            |
| Alberto T. Estévez                                                                                                                                                       |
| DOI 10.22533/at.ed.9611918031                                                                                                                                            |
| CAPÍTULO 219                                                                                                                                                             |
| A NARRATIVA VISUAL EM LIVROS ÁGRAFOS                                                                                                                                     |
| José Salmo Dansa de Alencar                                                                                                                                              |
| Luiz Antonio Luzio Coelho                                                                                                                                                |
| DOI 10.22533/at.ed.9611918032                                                                                                                                            |
| CAPÍTULO 3                                                                                                                                                               |
| BENEFÍCIOS DA UTILIZAÇÃO DE PROTÓTIPOS DE BAIXA FIDELIDADE NO DESENVOLVIMENTO DE JOGOS                                                                                   |
| João Gabriel Guedes Pinheiro                                                                                                                                             |
| DOI 10.22533/at.ed.9611918033                                                                                                                                            |
| CAPÍTULO 447                                                                                                                                                             |
| DA PROTOTIPAGEM AO DIY: CRIAÇÃO DE MOBILIÁRIO DE BAIXO CUSTO A PARTIR DE MODELAGEM E FABRICAÇÃO DIGITAIS                                                                 |
| Micke Rogério Gomes                                                                                                                                                      |
| Sérgio de Lima Saraiva Junior<br>Diogo Ribeiro Carvalho                                                                                                                  |
| DOI 10.22533/at.ed.9611918034                                                                                                                                            |
|                                                                                                                                                                          |
| CAPÍTULO 5                                                                                                                                                               |
| DESIGN DE SISTEMAS DINÂMICOS DE INFORMAÇÃO: "MODELO DE RELAÇÕES" PARA PROMOVER A RESILIÊNCIA E COMBATER A SUPREMACIA DO INDIVÍDUO PRODUTOR SOB O INDIVÍDUO INTERPRETADOR |
| José Neto de Faria                                                                                                                                                       |
| DOI 10.22533/at.ed.9611918035                                                                                                                                            |
| CAPÍTULO 671                                                                                                                                                             |
| DESIGN E EDUCAÇÃO: UMA ESTRATÉGIA INTERDISCIPLINAR PARA A ESCRITA MANUAL CURSIVA NA ERA DOS NATIVOS DIGITAIS                                                             |
| Juliana Oliveira Guimarães<br>Sérgio Antônio Silva                                                                                                                       |
| DOI 10.22533/at.ed.9611918036                                                                                                                                            |
| CAPÍTULO 782                                                                                                                                                             |
| DISPOSITIVOS ESTRATÉGICOS DE DESIGN SOCIAL EM PROCESSOS DE CONSTRUÇÃO DE IDENTIDADE LOCAL                                                                                |
| Anna Lúcia dos Santos Vieira e Silva                                                                                                                                     |
| Emilio Augusto Gomes de Oliveira<br>Carlos Eugênio Moreira de Sousa                                                                                                      |
| Filipe Garcia Macambira                                                                                                                                                  |
| Lara Dias Monteiro Josino                                                                                                                                                |
| Vitor Vieira Araújo  DOI 10.22533/at.ed.9611918037                                                                                                                       |
|                                                                                                                                                                          |

| CAPITULO 896                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------|
| EDIFICAÇÃO MODULAR: ESTUDO DE CASO E PROTÓTIPO DE UM SISTEMA CONSTRUTIVO DE CÓDIGO ABERTO UTILIZANDO PROTOTIPAGEM RÁPIDA            |
| Cristiana Griz                                                                                                                      |
| Natalia Queiroz Carlos Nome                                                                                                         |
| DOI 10.22533/at.ed.9611918038                                                                                                       |
| CAPÍTULO 9113                                                                                                                       |
| ESPAÇOS LIVRES DE USO PÚBLICO DA REGIONAL GRANDE IBES, MUNICÍPIO DE VILA VELHA – ES                                                 |
| Larissa Leticia Andara Ramos<br>Rhaiani Vasconcellos de Almeida Trindade<br>Suzany Rangel Ramos<br>Luciana Aparecida Netto de Jesus |
| DOI 10.22533/at.ed.9611918039                                                                                                       |
| CAPÍTULO 10129                                                                                                                      |
| EXPLICITANDO A ESTRUTURA DO PRÉDIO EM MODELOS BIM                                                                                   |
| José Luis Menegotto                                                                                                                 |
| DOI 10.22533/at.ed.96119180310                                                                                                      |
| CAPÍTULO 11146                                                                                                                      |
| HABITAÇÃO PARA TODOS: UMA APLICAÇÃO DA GRAMÁTICA DA FORMA E SINTAXE ESPACIAL<br>PARA ANÁLISE DE HABITAÇÃO DE INTERESSE SOCIAL       |
| Elton Cristovão da Silva Lima<br>Leticia Teixeira Mendes                                                                            |
| Cristiana Maria Sobral Griz                                                                                                         |
| DOI 10.22533/at.ed.96119180311                                                                                                      |
| CAPÍTULO 12159                                                                                                                      |
| O DEBATE SOBRE A CASA SIMPLES A PARTIR DOS ESCRITOS DE LINA BO BARDI                                                                |
| Maria Izabel Rêgo Cabral Virgínia Pereira Cavalcanti Evandro Alves Barbosa Filho                                                    |
| DOI 10.22533/at.ed.96119180312                                                                                                      |
|                                                                                                                                     |
| O GERENCIAMENTO DE CACHORROS ABANDONADOS ATRAVÉS DO DESIGN DE SERVIÇO                                                               |
| PROJETO CÃO CUIDADO                                                                                                                 |
| Mariana Aparecida Schiavon Gilberto Almeida Junior                                                                                  |
| DOI 10.22533/at.ed.96119180313                                                                                                      |
| CAPÍTULO 14181                                                                                                                      |
| ORGANIZAÇÕES EM REDE, ECOSSISTEMAS CRIATIVOS E DESIGN ESTRATÉGICO PARA                                                              |
| PRODUZIR ÎNOVAÇÃO                                                                                                                   |
| Felipe Kanarek Brunel                                                                                                               |

DOI 10.22533/at.ed.96119180314

| CAPÍTULO 15194                                                                                  |
|-------------------------------------------------------------------------------------------------|
| PROJETANDO O ARCHBRICKS, UM JOGO DE BLOCOS DE MONTAR: DO DESIGN GRÁFICO À FABRICAÇÃO DIGITAL    |
| Frederico Braida                                                                                |
| Janaina Mendes de Castro                                                                        |
| Cheyenne Azevedo Barros<br>Izabela Ferreira e Silva                                             |
| Icaro Chagas da Silva                                                                           |
| Luiz Antônio Rozendo Pereira                                                                    |
| Isabela Ruback Cascardo de Almeida                                                              |
| Laís de Almeida Freitas Moraes                                                                  |
| Rafael Henriques Campos Dias                                                                    |
| DOI 10.22533/at.ed.96119180315                                                                  |
| CAPÍTULO 16                                                                                     |
| REFERÊNCIAS DIGITAIS PARA VISUALIZAÇÃO DE POSSIBILIDADES DE ORGANIZAÇÃO DO ESPAÇO ARQUITETÔNICO |
| Felipe Etchegaray Heidrich                                                                      |
| DOI 10.22533/at.ed.96119180316                                                                  |
| CAPÍTULO 17215                                                                                  |
| TRANSMEDIA STORYTELLING APPLIED TO DESIGN FOR EDUCATION                                         |
| Luisina Palavecino<br>Gustavo Porta                                                             |
| DOI 10.22533/at.ed.96119180317                                                                  |
| SOBRE A ORGANIZADORA226                                                                         |

## **CAPÍTULO 4**

# DA PROTOTIPAGEM AO DIY: CRIAÇÃO DE MOBILIÁRIO DE BAIXO CUSTO A PARTIR DE MODELAGEM E FABRICAÇÃO DIGITAIS

#### Micke Rogério Gomes

Pontifícia Universidade Católica de Minas Gerais, Brasil mickegomes7@gmail.com

#### Sérgio de Lima Saraiva Junior

Pontifícia Universidade Católica de Minas Gerias, Brasil saraivalima.sergio@gmail.com

#### **Diogo Ribeiro Carvalho**

Pontifícia Universidade Católica de Minas Gerais, Brasil diogo.pucminas@gmail.com

ABSTRACT: This paper discusses the potential of digital fabrication for assisting people in building low cost furniture. It is analyzed what motivates people to join the "Do-it-Yourself" culture, and proposes the construction of a desk from reused materials, combined with joints and components that are digitally designed and become available online. Finally, the paper discusses the possibilities of digital fabrication to adapt to a context that is not inserted in the industrial environment and highlights the research potentials to increase the user autonomy.

**KEYWORDS**: Modelagem digital; Prototipagem rápida; Fabricação digital; Design resiliente; *Do* 

it yourself.

#### **INTRODUÇÃO**

O presente trabalho traz as primeiras observações acerca do projeto de pesquisa fomentado pelo Programa de Bolsas de Iniciação Científica (PROBIC) da Pontifícia Universidade Católica de Minas Gerais (PUC Minas), que intitula este artigo. Está inserido nas atividades do Laboratório de Experimentação em Fabricação Digital – (LEFAD), bem como do grupo de pesquisa CNPq - Estética e Materialidade.

Pretende investigar a criação e confecção de mobiliários a partir de experimentos projetuais de modelagem e prototipagem por deposição de material fundido (FDM) com ênfase na forma, estrutura e construção. Segundo Bernardo e Cabral (2014) a manufatura capitalista voltada para a produção em massa, dispõe de uma variedade bastante limitada, com soluções padronizadas e repetitivas - isso se aplica à indústria moveleira. Com um perfil tão rígido grande parte da população acaba ficando restrita a apenas duas escolhas: improvisação ou mobiliário por encomenda. Outra questão levantada pelos autores é a baixa flexibilidade dos projetos; os mobiliários nem sempre possibilitam adaptações. Este modo de fazer e

pensar o projeto desestimula a autonomia tanto do cliente final quanto da mão de obra reprodutiva.

Nesse cenário é fato que a indústria não consegue satisfazer as aspirações de quem necessita de um mobiliário específico, mas não dispõe de capital suficiente. A falta de flexibilidade pode ser entendida como um dos principais problemas quando se analisa a produção de móveis em larga escala. O problema dessa baixa variedade é que os consumidores, tanto de classe média como de classes menos afortunadas, têm uma oscilante diversidade de necessidades que por vezes, os produtos ofertados por esses ramos não conseguem atender. Projetos abertos e flexíveis, por não serem usuais, acabam aumentando os custos de produção. Os móveis planejados como não são pensados em larga escala possuem um alto valor. Tal situação exclui uma grande parcela da população, lhes restando, apenas, a improvisação.

Investigar novos modos de projetar e fabricar mobiliários é a indagação que move a pesquisa na busca por satisfazer a hipótese a ser verificada: a fabricação digital, especialmente a impressão 3D, pode oferecer meios e soluções para aumentar a autonomia dos usuários e a flexibilidade dos projetos de móveis atuais?

#### **ALTERNATIVA DIY**

A cultura DIY (Do It Yourself ou faça você mesmo), ficou conhecida com a difusão global das informações e ideias individuais, fruto do boom da internet nas primeiras décadas deste século — que passou a propor novas maneiras de produzir objetos e conectá-los em rede. Fato é que seja por sustentabilidade, exercício criativo, baixo custo, democratização do acesso aos bens, entre outros motivos, cada vez mais pessoas dedicam parte de seu tempo à produção de algum tipo de artefato. De acordo com Nunes (2010), a causa de as pessoas gostarem da sensação de tornarem real uma ideia, é a razão pela qual muitas delas se dedicam à produção das suas próprias soluções. Com a otimização das ferramentas CAD (Projeto Auxiliado por Computador e CAM (Manufatura Auxiliada por Computador) - como fresadoras CNC, impressoras 3D e cortadoras a laser - bem como a propagação de espaços de produção compartilhada como os FabLabs, FreeFarms e ToolLibraries, o pensamento de projeto alcançou um novo patamar que possibilita um acesso à fabricação digital mais democrático, o que favorece a digitalização dos objetos e da arquitetura. (Magri, 2015).

As máquinas de impressão 3D - principal ferramenta deste estudo - mais tradicionais que utilizam plásticos PLA e ABS como insumos, têm sido utilizadas fundamentalmente como ferramentas para produção de protótipos. A pesquisa propõe o alargamento dessa condição para a fabricação digital e busca verificar a possibilidade da impressão com PLA - material biodegradável, compostável e reciclável - como alternativa para criar componentes construtivos - particularmente junções e conectores - que associados a outros materiais - como madeira de reuso, tubos, barras, cabos de vassoura, dentre outros - podem promover a autonomia do usuário, desde a escolha

48

e criação do design à sua fabricação e montagem.

Durante o *openhouse* (evento aberto para vestibulandos) do *Singapure University of Tecnology and Design* (SUTD), o curso de Arquitetura apresentou o vMesh - um pavilhão composto por conectores fabricados digitalmente e barras de alumínio. Liderado pelos professores Raspall e Bañión (2016), o projeto conta com aproximadamente cinco metros de altura em alguns pontos e porte de quatorze metros. Um exemplo claro de como os parâmetros de impressão podem colaborar para o desempenho dos conectores fabricados, abrindo novas perspectivas para aplicação da impressão 3D diretamente em componentes arquitetônicos funcionais com escalas cada vez maiores.

#### **DESCRIÇÃO DO EXPERIMENTO**

Para investigar as questões levantadas, optamos por criar um experimento que se desenvolveu da seguinte forma: (i) selecionar mobiliários de estudo e materiais que apresentassem potencial para fabricação de móveis. O intuito desta primeira etapa é selecionar um objeto que nos sirva de demonstrativo e que consiga simular um móvel com dimensões reais e que seja resistente o bastante para suportar cargas consideráveis; (ii) modelagem, fabricação e testes de resistência física dos conectores e do móvel construído. No segundo estágio além de modelar, fabricar digitalmente e montar o mobiliário em questão, iremos submetê-lo a testes de resistência mecânica à compressão com o intuito de verificar a qualidade dos conectores produzidos e do conjunto montado e, finalmente; (iii) disponibilizar para download um manual com orientações de montagem, bem como o conjunto de modelos digitais produzidos, por meio de plataformas online como o site thingiverse.com — Digital Designs for Physical Objects. Disponibilizar o manual e os conectores de forma comentada, ajuda a ampliar o repertório disponibilizado atualmente na internet e contribui para o fortalecimento da cultura maker.

Por fim, espera-se com esse estudo, verificar se a fabricação digital - sobretudo a impressão 3D - pode se adaptar a um contexto que não esteja inserido no ambiente industrial e, também, criar meios que favoreçam a autonomia dos usuários na produção de mobiliários mais adequados à sua realidade no que diz respeito à sua utilização e significação.

#### **ANÁLISE DOS RESULTADOS:**

(i) O mobiliário selecionado para o estudo foi uma mesa. O projeto privilegiou um objeto que apresentasse facilidades no processo de montagem, permitindo ao usuário final combinar os conectores criados, com os materiais que estivessem à disposição. Durante o processo de criação alguns conectores foram modelados digitalmente em concomitância à pesquisa por materiais até a chegada ao produto executado (Figura

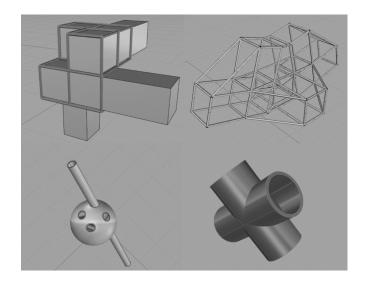



Figura 1: conectores de estudos preliminares modelados com auxílio do software Rhinoceros.

Os materiais escolhidos para o protótipo foram tábuas e sarrafos de madeira pinus pois, além da grande disponibilidade desse tipo de insumo na região de Belo Horizonte, custo acessível e possibilidade de aproveitamento de material descartado (reuso) - o que se aplica a este trabalho - essas peças são comercializadas com padronização de dimensões (05, 07 e 10cm de espessura) o que facilita a confecção de conectores.

(ii) O processo de criação e modelagem das peças se desenvolveu com o auxílio do software SketchUp; plataforma intuitiva que oferece uma extensa biblioteca de plugins e modelos 3D, além de fornecer uma versão gratuita que possibilita qualquer alteração nos conectores. A escolha por um software com uma interface amigável potencializa a autonomia do usuário final. A confecção das junções foi feita em impressora 3D com bico de diâmetro 0,4mm para filamento PLA de 1,75mm e resolução/altura da camada de 300 a 100 microns. Para definição morfológica das junções que constituem a mesa, foram consideradas premissas como resistência, direcionamento e estabilidade que determinaram a forma de cada peça de maneira lógica (Figura 2).

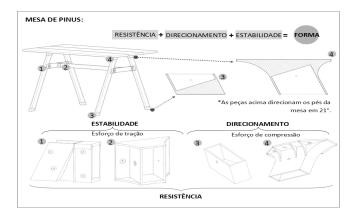



Figura 2: esquema de montagem da mesa e posicionamento dos conectores / esforço sofrido por cada conector tipo (CT).

Para fabricação dos conectores foram utilizados os mesmos parâmetros de impressão (preenchimento: 05%, espessura das paredes: 02 perímetros, altura das camadas: 0,19mm, sem necessidade de gerar suportes) configurados diretamente no *software* da impressora 3D CL1 - *Cliever Studio*. Tais critérios foram definidos de modo a produzir elementos resistentes com otimização do tempo de trabalho da máquina. Para maior clareza, os conectores criados foram classificados como Conector Tipo (CT), e organizados numericamente (01 a 04) de acordo com sua forma e função dentro do projeto, definindo as seguintes nomenclaturas: CT01, CT02, CT03 e CT04 (Figura 3).

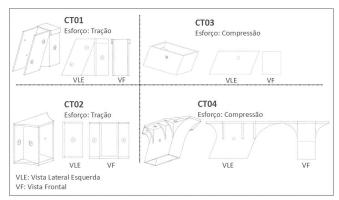



Figura 3: conectores Tipo (CT).

Com os componentes impressos foi possível estimar a média de custo para fabricação; baseado custo do insumo para impressora 3D em um *FabLab* na cidade Belo Horizonte, que cobra à comunidade externa apenas o material consumido.

De acordo com a cotação, o valor médio de PLA = R\$ 15,00/100g, temos:

CT01: 29g/unidade (04 unidades) = 116g;

CT02: 14g/unidade (02 unidades) = 28g;

CT03: 13g/unidade (04 unidades) = 52g;

CT04: 31g/unidade (04 unidades) =124g

Logo, a quantidade de material gasto corresponde a 320g, com custo médio de R\$48,00 para fabricação de todos os conectores necessários para construção da mesa proposta. Vale ressaltar que as madeiras utilizadas na montagem são provenientes de reuso caracterizando, neste caso, custo nulo com tábuas e sarrafos. Para esse projeto foram utilizadas 03 peças de tábua de pinus (115x25x02cm) que formam o tampo e 09 peças de sarrafo de pinus com as seguintes dimensões: 04 peças de 75x05x02cm para os pés, 02 peças de 35x05x02cm para o travamento transversal, 01 peça de 75x05x02cm para o travamento longitudinal e por fim 02 peças de 75x05x02cm para estruturar o tampo da mesa (Figura 4).



Figura 4: produto final. À esquerda: composição final do produto. À direita: detalhe em foto dos conectores CT04, CT01 e CT03 ordenados de cima para baixo.

Para análise comparativa foram realizados orçamentos e cotações para simular a aquisição dos mesmos materiais usados - tábuas e sarrafos de pinus - em lojas especializas, bem como a aquisição de uma mesa com dimensões aproximadas comercializadas em lojas populares, também, aquisição de uma mesa sob encomenda (Tabela 1 e Tabela 2).

| COTAÇÃO 01: AQUISIÇÃO DE TÁBUAS E SARRAFOS DE PINUS*                |                           |                                       |                             |  |
|---------------------------------------------------------------------|---------------------------|---------------------------------------|-----------------------------|--|
| MATERIAL                                                            | Lj 01: Casa da<br>Madeira | Lj 02: Risso Madeiras<br>e Construção | Lj 03: Santos Ma-<br>deiras |  |
| Tábua Pinus<br>(30x300cm)                                           | R\$ 16,80                 | R\$ 15,95                             | R\$ 28,13                   |  |
| Sarrafo Pinus<br>(05x300cm)                                         | R\$ 2,80                  | R\$ 4,62                              | R\$ 3,29                    |  |
| * Cotação realizada em 18/07/2017 pela página web dos fornecedores. |                           |                                       |                             |  |

Tabela 1: cotação de materiais para construção da mesa.

|                                                | A SIMPLES 04 LUGARES<br>x80cm)* | ORÇAMENTO MESA PLANEJADA<br>(115x90cm) EM MADEIRA* |
|------------------------------------------------|---------------------------------|----------------------------------------------------|
| LOJA 01: Ponto Frio<br>(Cd.: 10356192)         | R\$ 299,00                      |                                                    |
| LOJA 02: Casas<br>Bahia<br>(Cd.:11418981)      | R\$ 269,00                      | LOJA: Nova Lima Planejados<br>R\$ 509.00           |
| LOJA 03: Maga-<br>zine Luiza (Cd.:<br>0857167) | R\$ 279,99                      |                                                    |
| * Cotação em 19/07/2017 pelas lojas online.    |                                 | * Orçamento em 16/07/2017 em loja especializada    |

Tabela 2: cotação de compra de mobiliário referência / orçamento de móvel planejado.

Após a montagem do objeto, foram realizados dois testes com o intuito de mensurar a resistência física da mesa e seus componentes. O primeiro teste avaliou se a mesa teria capacidade de suportar cargas próximas aos valores recomendados por fabricantes de mesas similares comercializadas no mercado - 75kg em média. Para este estudo foram colocadas sobre o tampo da mesa diversas anilhas metálicas que possuíam massa total de 85 kg (Figura 5). Nesse teste a mesa suportou a carga

apresentando boa estabilidade, sem demonstrar nenhum sinal de rompimento, flambagem ou esforço sobressalente.



Figura 5: teste de carga com anilhas. Na imagem é possível ver 02 anilhas de 10kg, 10 anilhas de 05kg e 06 anilhas de 2,5kg, totalizando 85kg.

Posterior ao teste de carga com anilhas metálicas, os conectores que sofrem ação compressiva (CT03 e CT04) foram submetidos a um ensaio de compressão com o auxílio de uma prensa hidráulica, objetivando contabilizar os limites de carga máxima suportado por cada unidade destes elementos.

Durante o ensaio, o conector CT03, que apoia e direciona a madeira do pé da mesa, obteve o limite de 8,46kN como carga máxima. O conector CT04, que é fixado no tampo da mesa e interliga essa região à estrutura do pé, obteve limite de carga em 12,85kN.

Ao realizar a conversão desses resultados de acordo com a 2ª Lei de Newton, temos que:

$$F = m \times a$$
 eq.1

Onde: F= força ou carga máxima, dada em Newton

m= massa, dada em kg

a= aceleração da gravidade de valor 9,81 m/s<sup>2</sup>

Para o conector CT03, tem-se como carga máxima:

Carga máxima = 
$$\frac{8.46 \times 10^3 \text{ N}}{9.81 \text{ m/s}^2}$$
 = 862,38 kg

Para o conector CT04, tem-se como carga máxima:

Carga máxima = 
$$\frac{12.85 \times 10^3 \text{ N}}{9.81 \text{ m/s}^2}$$
 = 1309,88 kg

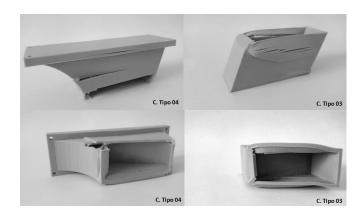



Figura 6: conectores CT03 e CT04 após teste de limite de carga com auxílio de prensa hidráulica.

Durante a avaliação e conforme a imagem acima, foi possível perceber que o material PLA quando submetido a cargas maiores tende a sofrer acentuada deformação (sobretudo nas paredes do componente) até atingir o limite de carga e romper nas regiões onde a espessura de material depositado é menor.

(iii) A disponibilização dos componentes criados e do manual com instruções de montagem está sendo feita através de plataformas digitais, como o site thingiverse. com - *Digital Designs for Physical Objects*. A liberação do material tem o objetivo de tornar a tecnologia desenvolvida acessível, fortalecer a cultura *maker*, incentivar o movimento DIY (faça você mesmo), aumentar a autonomia do usuário e ajudar a ampliação do repertório já disponível na internet.

#### **CONSIDERAÇÕES FINAIS**

Embora a pesquisa esteja em fase inicial de estudos e tenha potencial de desenvolvimento e obtenção de resultados mais expressivos, foi possível verificar que os conectores criados com os parâmetros de impressão descritos, apresentaram ótima resistência estrutural e de carga se considerarmos o objeto planejado. Com essas percepções é possível prever de forma bastante otimista que a depender do contexto a ser aplicado, a impressão 3D tem capacidade para superar a fronteira da prototipagem e avançar na fabricação de produtos finais.

No experimento proposto ficou evidente a versatilidade da impressão 3D no que tange sua adequação a um cenário fora do ambiente industrial. Os adeptos ao movimento *maker*, podem se valer de espaços de produção compartilhada, como os *FabLabs*, para gerarem quantos conectores forem necessários; o que exclui a necessidade de investimento em equipamentos de fabricação digital. Além disso, o custo efetivo para a execução de projetos, como a montagem da mesa a R\$48,00, por exemplo, além de viabilizar as necessidades específicas do produtor por um valor inferior ao do mercado, ainda incentiva a adesão de cada vez mais pessoas ao movimento DIY (faça você mesmo). Essa parametrização, nas ideias de Magri (2015, p. 165), "cria mais um laço emocional entre o usuário e o produto, uma vez que ele

define a forma do seu móvel".

A liberação dos arquivos online além de aumentar a autonomia do usuário, amplia a possibilidade de customização, e favorece a construção do que lhe é necessário a partir de materiais condizentes a sua realidade. Ainda, desafia questões de autoria e se insere no contexto do pensamento computacional e das plataformas abertas de informação. Desta forma o trabalho se aproxima do tema central do congresso: design resiliente.

#### **APONTAMENTOS FUTUROS**

Vale ressaltar o potencial de avanço da pesquisa ao melhorar a eficiência, a compreensão estrutural e diminuir os custos para a geração dos conectores. Estudos sobre otimização topológica já estão em curso, assim como toda uma nova série de mobiliários com emprego de novos materiais que não apenas madeira.

#### **AGRADECIMENTOS:**

À PUC Minas – FAPEMIG que favorece o desenvolvimento deste estudo por meio do PROBIC (Programa de Bolsas de Iniciação Científica);

Ao Laboratório de Experimentação e Fabricação Digital (LEFAD) por dispor dos equipamentos necessários para experimentação, bem como aos técnicos Thiago Corlaite e André Figueiredo pelo suporte e orientações prestados.

Aos técnicos e ao Laboratório de Simulações em Engenharia Mecânica por viabilizarem os testes de limites de carga máxima dos conectores;

Às demais bolsistas de iniciação científica Jéssica Ribeiro, Júlia Campos e Tamirez Silveira pelos debates agregadores acerca da fabricação digital;

Ao FabLab Newton por fortalecer a cultura *maker* na cidade de Belo Horizonte;

À Thirza Lima por sempre colaborar para as coisas acontecerem de uma forma melhor.

#### **REFERÊNCIAS**

Bernardo, M. V., Cabral, S. (2014). Fabricação digital e variedade fora do contexto industrial. Blucher Design Proceedings, 1(20), 320-323. Montevideo.

Magri, P.H. (2015). A digitalização do design de mobiliário no Brasil: panorama e tendências. Tese de Mestrado. Faculdade de Arquitetura e Urbanismo da Universidade de São Paulo, São Paulo.

Nunes, V.C. (2010). DIY: Uma nova estratégia de design de produto virada para o "faça você mesmo". Tese de Mestrado. Faculdade de Arquitetura da Universidade Técnica de Lisboa, Lisboa.

Orciuoli, A. (2017). O impacto das tecnologias de fabricação digital nos processos de design. Revista AU, nº 183. São Paulo.

Oxman, R.; Oxman, Robert. (2010). The New Structuralism: Design, Engineering and Architectural

Technologies. [S.I.]: Academy Press. v. 80, n. 4, july/aug.

Picon, A. (2010). Digital Culture in Architecture: an introduction for the design professions. Basel: Birkhauser. 224p

Wamoto, L. (2009). Digital Fabrications: Architectural and Material Techniques. New York: Princetown Architectural Press.

#### **SOBRE A ORGANIZADORA**

VANESSA CAMPANA VERGANI DE OLIVEIRA. Bacharel Desenho Industrial, habilitação em Projeto de Produto, pela Universidade Presbiteriana Mackenzie, São Paulo- SP. Especialista em Design de Interiores, pela Universidade Positivo. Trabalha na área de Design de Mobiliário, Arquitetura com ênfase em projetos de Interiores residenciais e comerciais. Foi Diretora do Departamento de Patrimônio, da Secretaria de Cultura e Turismo, da Prefeitura Municipal de Ponta Grossa, PR de 2011 a 2013. Professora assistente no CESCAGE/ Faculdades Ponta Grossa, Coordenadora do curso de Arquitetura e Urbanismo - CESCAGE/ Faculdades Ponta Grossa de 2015à 2018, sócia do escritório Forma Arquitetura e Design.

226

Agência Brasileira do ISBN ISBN 978-85-7247-196-1

9 788572 471961