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Abstract: The preparation of school schedules 
is a problem that occurs in many educational 
institutions around the world. From the 
mathematical approach, school schedules are 
considered NP-hard, since the computational 
time in searching for the solution can increase 
exponentially by increasing the number 
of variables, or by the complexity of the 
restrictions. Different strategies are reported 
in the literature to solve this problem; however, 
these do not guarantee finding the best 
solution or global optimum of the problem. 
This document establishes a validation of 
the three-stage assignment strategy that has 
been used in the solution of school schedules, 
whose results are characterized by obtaining 
good solutions in short times through the 
exact branching and bounding technique. 
Validation consists of demonstrating that 
the strategy reaches the global optimum in a 
school schedule problem.
Keywords: NP-Hard, School schedule, Staged 
strategy, Global optimal.

INTRODUCTION
The preparation of activity schedules is a 

problem that occurs in a wide variety of areas, 
particularly in educational institutions. Its 
difficulty lies in the large number of options 
that can be generated and choosing the best 
one, or one that meets all the needs of the 
institution, is a task that consumes a large 
amount of time, even in problems with a few 
subjects, classrooms. and teachers.

The development of a school schedule 
from a mathematical point of view is classified 
as an NP-hard problem due to the large 
number of combinations present, causing the 
computational time in searching for a solution 
to increase drastically (Bardadym, 1996; Even, 
Itai & Shamir, 1976).

Different strategies have been reported 
in the literature to solve school schedules, 
highlighting different methods that guarantee 

a good solution in short times, or the use of 
exact techniques in the search for the global 
optimum of the problem. 

The first works correspond to assignment 
models (Appleby, Blake & Newman, 1961; 
Csima & Gotlieb, 1964) and the graph 
coloring technique (De Werra, 1985; De 
Werra, Asratian & Durand, 2002; Welsh & 
Powell, 1967). 

On another side, various authors have 
chosen to use Mathematical Programming in 
the search for an optimal solution, highlighting 
PE Integer Programming (Lawrie,1969), 
PEB Binary Integer Programming (Arratia-
Martinez, Maya-Padron & Avila-Torres, 2021; 
Bakir & Aksop, 2008; b; Palma & Bornhardt, 
2020; Sánchez-Partida, Martínez-flores, 
Cabrera-Rios & Olivares-Benitez, 2017; Son & 
Ngan, 2021; Tripathy, 1984) and finally Mixed 
Integer Programming (PEM) & Mason, 2016; 
Lindahl, Sørensen & Stidsen,2018; Rappos, 
Thiémard, Robert & Hêche, 2022; Sørensen 
& Dahms, 2014; Tassopoulos, Iliopoulou & 
Beligiannis, 2020).

In recent years, other strategies have been 
used that have allowed good quality solutions 
to be achieved in less time to large problems; 
however, these do not guarantee the global 
optimum of the problem. The use of local 
search methods stands out (Demirović & 
Musliu, 2017; Goh, Kendall & Sabar, 2017; 
Rezaeipanah, Matoori & Ahmadi, 2021; 
Saviniec, Santos & Costa, 2017, 2018; Song, 
Liu, Tang, Peng & Chen, 2018), metaheuristic 
tabu search techniques (Goh et al., 2017; 
Lü & Hao, 2010; Saviniec et al., 2018) and 
genetic algorithms (Arias-Osorio & Mora-
Esquivel, 2020; Beligiannis, Moschopoulos & 
Likothanassis, 2009; Feng, Lee & Moon, 2017; 
Junn, Obit & Alfred, 2018; Khonggamnerd & 
Innet, 2009; Lin, Chin, Tsui & Wong, 2016; 
Niknamian, 2021; Raghavjee & Pillay, 2010; 
Rezaeipanah et al., 2021; Yigit, 2007), solutions 
based on minimal disturbance (Barták, Müller 
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& Rudová, 2003; Lindahl, Stidsen & Sørensen, 
2019; Phillips, Walker, Ehrgott & Ryan 2017), 
in addition to hyper-heuristics (Ahmed, 
Özcan & Kheiri, 2015; Junn, Obit, Alfred & 
Bolongkikit, 2019; Kheiri, Özcan & Parkes, 
2016) among others (Cruz-Rosales et al., 
2022; Esmaeilbeigi, Mak-Hau, Yearwood, & 
Nguyen, 2022; Mirghaderi, Alimohammadlo 
& Fotovvati, 2023; Wouda, Aslan & Vis, 2023).

In another solution approach, authors 
have chosen to develop the school schedule 
in two stages, which has allowed the number 
of variables used in mathematical modeling 
to be greatly reduced, speeding up the search 
for the solution. (Birbas et al., 2009; Lindahl 
et al., 2018; Sørensen & Dahms, 2014; Yasari, 
Ranjbar, Jamili & Shaelaie, 2019).

Recently Hernández et al. (2020a, 2020b) 
developed a strategy in preparing university 
schedules, which consists of decomposing the 
problem into three stages, which significantly 
reduces the number of binary variables, 
limiting the solution space. This strategy 
allows the exact branching and bounding 
technique to generate the optimal solution for 
each stage in short times, however, it is not 
demonstrated whether it reaches the global 
optimum of the problem. 

The main contribution of this document 
is the validation of the three-stage strategy 
proposed by Hernández et al. (2020a, 2020b) in 
obtaining the global optimum of the problem. 
To demonstrate whether it reaches the global 
optimum, it is considered to solve a school 
schedule through a single mathematical model 
with an exact technique, and then compare it 
with the solution achieved by the strategy in 
three stages in different instances. 

THREE-STAGE ALLOCATION 
STRATEGY
The number of combinations of a 

mathematical model with binary variables 
is 2n, where n is the number of variables. To 
limit the search space, the strategy evaluated 
in this study proposes solving the problem 
in stages, as other authors have done in the 
development of school schedules (Birbas et al., 
2009; Lindahl et al., 2018; Sørensen & Dahms, 
2014; Yasari et al., 2019), which has allowed 
the number of variables to be reduced. The 
study by Sørensen and Dahms (2014) shows 
the mathematical theoretical theorems that 
illustrate the advantages of working a binary 
problem in stages, substantiating the benefits 
of this strategy for its application in other 
cases of school schedules.

Unlike the studies mentioned in the 
previous paragraph, where a maximum of two 
stages were used, the strategy proposed by 
Hernández et al. (2020a, 2020b) considered 
the development of a university schedule in 
three of these, using binary variables from 
two indices. This strategy assigns each subject 
a time interval, a classroom and a teacher 
consecutively, through three mathematical 
models (see figure 1).

Table 1 shows a comparison between 
proposing a mathematical model to develop 
a university schedule, such as the studies 
presented in (Arratia-Martinez et al., 2021; 
Bakir & Aksop, 2008; Daskalaki et al., 2004; 
Palma & Bornhardt, 2020; Sánchez-Partida 
et al., 2017; Schimmelpfeng & Helber, 2007) 
which used PEB and exact techniques in 
the search for the solution, or the proposal 
developed by Hernández et al. (2020a, 2020b) 
of using three mathematical models, taking 
into account 126 subjects, 14 time intervals, 
9 classrooms and 21 teachers. As can be seen, 
when the modeling is decomposed into three 
stages, the number of variables is considerably 
reduced by 98.34% and it is only necessary 
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Figure 1: Decomposition of the original problem into three stages

Source: Hernández et al. (2020a)

1 Mathematical model 3 Mathematical models
Model 1 xijkl Model 1 xij Model 2 yik Model 3 zil

4-Index Binary Variable Binary variable 2-indices Binary variable 2-indices Binary variable 2-indices
i Subject 126 i Subject 126 i Subject 126 i Subject 126

j Time interval 14 j Time interval 14 k Classroom 9 l Teacher 21
k Classroom 9

Variables (i x j) 1,764 Variables (i x k) 1,134 Variables (i x l) 2,646
l Teacher 21

Total binary variables
(i x j x k x l)  333,396 Total binary variables  5,544

Table 1: Comparison of the number of variables between one and three mathematical models

Source: Hernández et al. (2020a)

to use two indices in each variable, greatly 
simplifying the complexity of the problem.

As in the works (Arratia-Martinez et 
al., 2021; Daskalaki et al., 2004), the three-
stage proposal uses subsets in each of the 
mathematical models, with the intention of 
separating subjects by group and interval of 
time, allowing modeling of certain constraints 
to be easier and reducing iteration between 
variables. In addition, coefficients are used in 
the objective function intentionally to speed 
up the search in binary variables.

VALIDATION OF THE 
ALLOCATION STRATEGY IN 
THREE STAGES
The validation of the three-stage strategy 

consists of demonstrating that it reaches the 
global optimum of the problem through the 
exact branching and bounding technique 
in a short time, compared to solving the 
problem in a single mathematical model. 
For which a school schedule problem was 
proposed in which it seeks to maximize the 

number of subjects to be assigned to a time 
interval, classroom and teacher considering 
the following restrictions:

•	 Each subject must not be assigned 
more than once.

•	 Per classroom in each time interval, 
only one subject can be assigned.

•	 Do not exceed the capacity of the 
classrooms (number of students).

•	 Only one subject can be assigned per 
time slot for each teacher.

•	 The maximum number of subjects per 
teacher must not be exceeded.

To validate the strategy, four mathematical 
models were designed. The first of them was 
established to solve the problem in a single 
step, allowing us to know the global optimum 
of the problem. Subsequently, the three 
mathematical models concerning each of the 
stages of the strategy appear, whose sequential 
resolution will generate the solution to the 
problem. The comparison of these solutions 
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in different instances will determine if the 
staged strategy reaches the global optimum of 
the problem.

NOMENCLATURE USED IN 
MATHEMATICAL MODELS

SETS
I Subjects I = {Course1, Course2 , ... , Course |i|}.
J Time intervals J = {T1, T2 , ... ,T|J|}.
K Classrooms K = {C1, C2 , ... ,C|K|}.
L Teachers L = {P1, P2 , ... ,P|L|}.

INDICES
i Subject i ∈ I.
j Time Interval j ∈ J.
k Classroom k ∈ K.
l Teacher l ∈ L.

SUBSETS
In ⊂ I Subjects assigned to time intervals n. n 
∈ {T1, T2 , ... ,T|J|}.

PARAMETERS
aijkl = Number of students of subject i in time 
interval j in classroom k of teacher l.
aik = Number of students of subject i in 
classroom k.
Classrooms avaliable =  Number of classrooms 
available. 
Classrooms capacityk = Maximum capacity of 
the number of students in the classroom k.
Subjects per teatcherl = Maximum number of 
subjects per teacher l.

BINARY VARIABLE USED IN THE 
MATHEMATICAL MODEL 1

xijkl

1 Subject i is assigned in time interval j, 
classroom k and teacher l.
0 Subject i is not assigned in time interval j, 
classroom k and teacher l.

BINARY VARIABLE USED IN 
MATHEMATICAL MODEL 2 - STAGE 
I

xij

1 Subject i is assigned in time interval j.
0 Subject i is not assigned in time interval j.

BINARY VARIABLE USED IN 
MATHEMATICAL MODEL 3 - STAGE 
II

yik

1 Subject i is assigned to classroom k.
0 Subject i is not assigned to classroom k.

BINARY VARIABLE USED IN 
MATHEMATICAL MODEL 4 - STAGE 
III

zil

1 Subject i is assigned to teacher l.
0 Subject i is not assigned to teacher l.

MATHEMATICAL MODEL 1: 
SUBJECT ASSIGNMENT-TIME 
INTERVAL-CLASSROOM-
TEACHER
Mathematical model 1 was designed to find 

the solution to the problem in a single step. 
Consider the assignment of subjects to a time 
interval, classroom and teacher, taking into 
account all the constraints of the problem.

	 (1)

Subject to:

	 (2)

	 (3)

   
(4)

	 (5)

	 (6)

	 (7)
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The Objective Function (1) seeks to 
maximize the number of subjects to be 
assigned in a time interval, classroom and 
teacher. The restrictions provide that:

•	 (2) Each subject must not be assigned 
more than once.

•	 (3) Only one subject can be assigned 
per classroom in a time interval.

•	 (4) It obliges not to exceed the capacity 
of the classrooms.

•	 (5) Only one subject can be assigned 
per time slot for each teacher.

•	 (6) The maximum number of subjects 
per teacher must not be exceeded.

MATHEMATICAL MODELING OF 
THE THREE-STAGE ALLOCATION 
STRATEGY

MATHEMATICAL MODEL 2 - STAGE 
I: SUBJECT ASSIGNMENT-TIME 
INTERVAL
Mathematical model 2 was established to 

generate the solution of stage I, which consists 
of the assignment of subjects with the time 
interval, taking into account the restrictions 
related to it.

	 (8)

Subject to:
	 (9)

	 (10)

	 (11)

The objective function (8) seeks to maximize 
the number of subjects to be assigned to a time 
interval. The restrictions consider that:

•	 (9) Each subject must be assigned in 
no more than one time slot. 

•	 (10) The subjects assigned per time 
interval must not exceed the number of 
available classrooms.

MATHEMATICAL MODEL 3- 
STAGE II: SUBJECT-CLASSROOM 
ASSIGNMENT
Mathematical model 3 was developed to 

obtain the solution of stage II, which consists 
of assigning the subject to the classroom, 
taking into account the restrictions of the 
problem.

	 (12)

Subject to:

	 (13)

	 (14)

	 (15)

The objective function (12) maximizes the 
number of subjects assigned to classrooms. 
For their part, the restrictions establish that:

•	 (13) Each subject must be assigned in 
no more than one classroom. 

•	 (14) Groups of students larger than 
their capacity must not be assigned to 
each classroom. 

MATHEMATICAL MODEL 4 – STAGE 
III: SUBJECT ASSIGNMENT-TEACHER
Mathematical model 4 was developed 

to generate the solution of stage III, which 
consists of assigning the subject with the 
teacher, taking into account the restrictions 
related to it.

	 (16)

Subject to:
	 (17)

	 (18)
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	 (19)

	 (20)

The objective function (16) seeks to 
maximize the number of subjects to be assigned 
to teachers. The restrictions determine that:

•	 (17) Each subject must be assigned to 
no more than one teacher.

•	 (18) In each time interval, no more 
than one subject must be assigned per 
teacher.

•	 (19) The maximum number of subjects 
per teacher must not be exceeded.

EXPERIMENTS
To validate the strategy in three stages in 

obtaining the global optimum, five instances 
were solved, considering different sizes of the 
problem in terms of the number of subjects, 
time intervals, classrooms and teachers as 
shown in table 2. 

Instance Subjects Timeslots Classrooms Teachers
1 4 2 2 2
2 8 4 2 2
3 32 8 4 6
4 40 8 5 7
5 48 8 6 8

Table 2: Instances considered in the 
experimentation

Source: self made

A computer with an AMD Ryzen 3 
processor, with 8 GB of RAM, using the 
Windows 10 Home system was used. The data 
matrices were programmed in Excel, which 
were linked to the Lingo 17 software where 
the mathematical models were captured 
and solved through the exact branching and 
bounding technique.

RESULTS
Table 3 shows the comparison between 

using a mathematical model and using the 
three-stage assignment strategy, considering 
the number of binary variables, restrictions, 
non-zeros, the optimal value and the search 
times for the solution in each one of the 
instances. The optimal value of model 1 
determines the objective that must be achieved 
in each of the models 2-4 corresponding to 
the staged strategy, to conclude that it found 
the global optimum of the problem. 

In all instances, the global optimum was 
obtained with the three-stage strategy, but 
with a significant decrease in the number of 
variables and the solution time, with respect 
to using a single mathematical model, as 
detailed in Table 4.

The three-stage strategy allows a reduction 
in the number of variables of up to 94%, 
significantly limiting the solution space, 
simplifying the time spent searching for the 
solution by up to 99% in the last instance.

Instance 1 Model Three 
stages Reduction

1
Binary 
variables 32 24 25%

Time <1 second <1 second 0%

2
Binary 
variables 128 64 50%

Time <1 second <1 second 0%

3
Binary 
variables 6,144 576 91%

Time 15 second <2 second 87%

4
Binary 
variables 11,200 800 93%

Time 23 second <2 second 91%

5
Binary 
variables 18,432 1,056 94%

Time 8 h 2 second +99%

Table 4: Reduction in the number of variables 
and solution time through the three-stage 

strategy

Source: self made
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Instance Model
 1

Three stages
Stage I

Model 2
Stage II
Model 3

Stage III
Model 4 Total

1

Binary variables 32 8 8 8 24
Restrictions 15 7 9 11 27
Non-zero 160 24 24 32 80
Optimal value 4 4 4 4
Time <1 second <1 second <1 second <1 second <1 second

2

Binary variables 128 32 16 16 64
Restrictions 27 13 17 19 49
Non-zeros 640 96 48 64 208
Optimal value 8 8 8 8
Time <1 second <1 second <1 second <1second <1 second

3

Binary variables 6,144 256 128 192 576
Restrictions 103 41 65 87 193
Non-zero 30,752 768 384 768 1,920
Optimal value 32 32 32 32
Time 15 second <1 second <1 second <1 second <2 second

4

Binary variables 11,200 320 200 280 800
Restrictions 128 49 81 104 234
Non-zeros 56,040 960 600 1120 2,680
Optimal value 40 40 40 40
Time 23 second <1 second <1 second <1 second <2 second

5

Binary variables 18,432 384 288 384 1,056
Restrictions 153 57 97 121 275
Non-zeros 92,208 1,152 864 1,536 3,552
Optimal value ----------- 48 48 48
Time 8 hours 1 second <1 second <1 second 2 second

Table 3: Comparison between a mathematical model and the three stages

Source: self made

CONCLUSIONS
This article presented the validation of the 

three-stage allocation strategy proposed by 
Hernández et al. (2020a, 2020b), in obtaining 
the global optimum of an NP-hard school 
schedule problem. The strategy proposes 
the decomposition of the problem into three 
mathematical models, greatly simplifying its 
complexity, which allows obtaining solutions 
in short times compared to solving the 
problem in a single step.

The validation of the strategy consisted 
of demonstrating that it reaches the global 
optimum of the problem through the exact 

technique of branching and bounding in short 
times, compared to solving the problem in a 
single mathematical model. 

Five instances were resolved. The three-
stage assignment strategy managed to find 
the global optimum of the problem with 
a significant reduction in the number of 
variables of up to 94%, reducing the search 
time for the solution by up to 99% compared 
to solving the problem in a mathematical 
model only.

For future research, it will be attractive 
to demonstrate whether the three-stage 
strategy manages to find the global optimum 
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of university schedules, where there are 
restrictions of greater complexity than those 
presented in this study. Furthermore, this 
strategy could be used in the solution of other 
NP-hard problems, with the intention of 
finding the global optimum.
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