

Fundamentos da Ciência da Computação

Atena Editora
2019

Ernane Rosa Martins
(Organizador)

2019 by Atena Editora
Copyright da Atena Editora

Editora Chefe: Profª Drª Antonella Carvalho de Oliveira
Diagramação e Edição de Arte: Lorena Prestes e Geraldo Alves

Revisão: Os autores

Conselho Editorial
Prof. Dr. Alan Mario Zuffo – Universidade Federal de Mato Grosso do Sul

Prof. Dr. Álvaro Augusto de Borba Barreto – Universidade Federal de Pelotas
Prof. Dr. Antonio Carlos Frasson – Universidade Tecnológica Federal do Paraná

Prof. Dr. Antonio Isidro-Filho – Universidade de Brasília
Profª Drª Cristina Gaio – Universidade de Lisboa

Prof. Dr. Constantino Ribeiro de Oliveira Junior – Universidade Estadual de Ponta Grossa
Profª Drª Daiane Garabeli Trojan – Universidade Norte do Paraná

Prof. Dr. Darllan Collins da Cunha e Silva – Universidade Estadual Paulista
Profª Drª Deusilene Souza Vieira Dall’Acqua – Universidade Federal de Rondônia

Prof. Dr. Eloi Rufato Junior – Universidade Tecnológica Federal do Paraná
Prof. Dr. Fábio Steiner – Universidade Estadual de Mato Grosso do Sul

Prof. Dr. Gianfábio Pimentel Franco – Universidade Federal de Santa Maria
Prof. Dr. Gilmei Fleck – Universidade Estadual do Oeste do Paraná

Profª Drª Girlene Santos de Souza – Universidade Federal do Recôncavo da Bahia
Profª Drª Ivone Goulart Lopes – Istituto Internazionele delle Figlie de Maria Ausiliatrice

Profª Drª Juliane Sant’Ana Bento – Universidade Federal do Rio Grande do Sul
Prof. Dr. Julio Candido de Meirelles Junior – Universidade Federal Fluminense

Prof. Dr. Jorge González Aguilera – Universidade Federal de Mato Grosso do Sul
Profª Drª Lina Maria Gonçalves – Universidade Federal do Tocantins
Profª Drª Natiéli Piovesan – Instituto Federal do Rio Grande do Norte

Profª Drª Paola Andressa Scortegagna – Universidade Estadual de Ponta Grossa
Profª Drª Raissa Rachel Salustriano da Silva Matos – Universidade Federal do Maranhão

Prof. Dr. Ronilson Freitas de Souza – Universidade do Estado do Pará
Prof. Dr. Takeshy Tachizawa – Faculdade de Campo Limpo Paulista

Prof. Dr. Urandi João Rodrigues Junior – Universidade Federal do Oeste do Pará
Prof. Dr. Valdemar Antonio Paffaro Junior – Universidade Federal de Alfenas
Profª Drª Vanessa Bordin Viera – Universidade Federal de Campina Grande

Profª Drª Vanessa Lima Gonçalves – Universidade Estadual de Ponta Grossa
Prof. Dr. Willian Douglas Guilherme – Universidade Federal do Tocantins

Dados Internacionais de Catalogação na Publicação (CIP)
(eDOC BRASIL, Belo Horizonte/MG)

F981 Fundamentos da ciência da computação / Organizador Ernane Rosa
Martins. – Ponta Grossa (PR): Atena Editora, 2019.

Inclui bibliografia
ISBN 978-85-7247-157-2
DOI 10.22533/at.ed.572190703

1. Computação. I. Martins, Ernane Rosa.
CDD 004

Elaborado por Maurício Amormino Júnior – CRB6/2422

O conteúdo dos artigos e seus dados em sua forma, correção e confiabilidade são de
responsabilidade exclusiva dos autores.

2019
Permitido o download da obra e o compartilhamento desde que sejam atribuídos créditos aos

autores, mas sem a possibilidade de alterá-la de nenhuma forma ou utilizá-la para fins comerciais.
www.atenaeditora.com.br

APRESENTAÇÃO

A Ciência da Computação estuda as técnicas, metodologias e instrumentos
computacionais, visando automatizar os processos e desenvolver soluções com o uso
de processamento de dados. Este livro, possibilita conhecer os elementos básicos
desta ciência por meio do contato com alguns dos conceitos fundamentais desta
área, apresentados nos resultados relevantes dos trabalhos presentes nesta obra,
realizados por autores das mais diversas instituições do Brasil.

Assim, são abordando neste livro assuntos importantes, tais como: desenvolvimento
de sistema mobile utilizando as plataformas iOS e Android; desenvolvimento de protótipo
que trabalha em cenário real de sala de aula e na comparação de algoritmos usados
no reconhecimento facial; criação do jogo que explora a criptografia em um ambiente
de computação desplugada; construção de simulador que mostra especificamente
o comportamento do escalonador First-in First; apresentação de abordagem para
orquestração do conhecimento curricular em Ciência da Computação baseado nas
matérias do currículo referência para a Ciência da Computação e em estruturas
curriculares de cursos de graduação.

Espero que este livro seja útil tanto para os alunos dos cursos superiores de
Ciência da Computação quanto para profissionais que atuam nesta importante área
do conhecimento. O principal objetivo deste livro é ajudar na fascinante empreitada
de compreender a computação perante os mais diferentes desafios do século XXI.
Desejo a todos uma excelente leitura e que está obra contribua fortemente com o seu
aprendizado.

Ernane Rosa Martins

SUMÁRIO

CAPÍTULO 1 ..1

AGENDA DO BEBÊ MODELAGEM E DESENVOLVIMENTO DE UM
SISTEMA MOBILE PARA AUXILIAR PAIS

Lucilhe Barbosa Freitas Loureiro
Samuel da Cruz Santana
José Irahe Kasprzykowski Gonçalves

DOI 10.22533/at.ed.5721907031

CAPÍTULO 2 ... 19

AGILE PROJECT-BASED LEARNING TO COPE WITH THE COMPUTER
PROGRAMMING EDUCATION AT BRAZILIAN HIGHER EDUCATION: A RESEARCH
PROPOSAL

Alexandre Grotta
Edmir Parada Vasques Prado

DOI 10.22533/at.ed.5721907032

CAPÍTULO 3 ... 29

BIOMETRIA FACIAL PARA AVALIAÇÃO DE COMPETÊNCIAS ESSENCIAIS EM
UM AMBIENTE EDUCACIONAL: AVALIAÇÃO DO CASO DE SALA DE AULA NAS
UNIVERSIDADES

Rodrigo C. Menescal
Alexandre M. Melo

DOI 10.22533/at.ed.5721907033

CAPÍTULO 4 ... 40

CONSTRUÇÕES IDENTITÁRIAS DAS MULHERES NA COMPUTAÇÃO. IMAGENS,
APROXIMAÇÕES E DISTÂNCIAS

Pricila Castelini
Marília Abrahão Amaral

DOI 10.22533/at.ed.5721907034

CAPÍTULO 5 ... 50

CRIPTOLAB UM GAME BASEADO EM COMPUTAÇÃO DESPLUGADA E
CRIPTOGRAFIA

Débora Juliane Guerra Marques da Silva
Graziela Ferreira Guarda
Ione Ferrarini Goulart

DOI 10.22533/at.ed.5721907035

CAPÍTULO 6 ... 62

ESPAÇOS DO COMPUTAR: O HACKER E MAKER EM UMA PERSPECTIVA QUEER
Leander Cordeiro de Oliveira
Marília Abrahão Amaral

DOI 10.22533/at.ed.5721907036

CAPÍTULO 7 ... 78

MODELO DE SIMULAÇÃO PARA ESCALONAMENTO DE PROCESSOS NÃO
PREEMPTIVOS

Jhonatan Thálisson Cabral Nery
Franciny Medeiros Barreto
Joslaine Cristina Jeske de Freitas

DOI 10.22533/at.ed.5721907037

CAPÍTULO 8 ... 93

MÓDULO WEB DE INFERÊNCIA COM FUZZY PROPOSTA DE UM MÉTODO
DINÂMICO FACILITADOR DE INTERAÇÃO COM CLIENTE

Damianos Panagiote Sotirakis Oliveira
Lucas J. P. do Nascimento
Alexandre M. Melo
Álvaro L. R. Leitão

DOI 10.22533/at.ed.5721907038

CAPÍTULO 9 ... 108

POWER CONSUMPTION USING INTERNAL SENSORS: AN ANALYSIS FOR
DIFFERENT GPU MODELS

André Yokoyama
Vinicius Prata Klôh
Gabrieli Dutra Silva
Mariza Ferro
Bruno Schulze

DOI 10.22533/at.ed.5721907039

CAPÍTULO 10 ... 122

PROBLEMAS EM ABERTO NA COMPUTAÇÃO E NA MATEMÁTICA QUE
VALEM PRÊMIOS

Suzana Lima de Campos Castro
Ana Luisa Soubhia
Ronaldo Barbosa

DOI 10.22533/at.ed.57219070310

CAPÍTULO 11 ... 135

UM ALGORITMO PARA ENCONTRAR UM POLITOPO MAXIMAL DE VÉRTICES EM
Zn INSCRITO EM UMA HIPERESFERA EM Rn

Yuri Tavares dos Passos
Eleazar Gerardo Madriz Lozada

DOI 10.22533/at.ed.57219070311

CAPÍTULO 12 ... 141

UMA ABORDAGEM PARA ORQUESTRAÇÃO DO CONHECIMENTO COMO
SUPORTE AO PLANEJAMENTO CURRICULAR EM CIÊNCIA DA COMPUTAÇÃO

Anderson Felinto Barbosa
Ulrich Schiel

DOI 10.22533/at.ed.57219070312

CAPÍTULO 13 ... 157

UMA AVALIAÇÃO DA EFICIÊNCIA ENERGÉTICA DE UMA REDE DE SENSORES
SEM FIOS EM RELAÇÃO AO POSICIONAMENTO DO NÓ SINK

César Alberto da Silva
Melissa Bonfim Alcantud
Andrea Padovan Jubileu
Linnyer Beatryz Ruiz Aylon

DOI 10.22533/at.ed.57219070313

SOBRE O ORGANIZADOR ... 162

Fundamentos da Ciência da Computação Capítulo 9 108

CAPÍTULO 9

POWER CONSUMPTION USING INTERNAL
SENSORS: AN ANALYSIS FOR DIFFERENT GPU

MODELS

André Yokoyama
Laboratório Nacional de Computação Científica

Petrópolis – RJ

Vinicius Prata Klôh
Laboratório Nacional de Computação Científica

Petrópolis – RJ

Gabrieli Dutra Silva
Laboratório Nacional de Computação Científica

Petrópolis – RJ

Mariza Ferro
Laboratório Nacional de Computação Científica

Petrópolis – RJ

Bruno Schulze
Laboratório Nacional de Computação Científica

Petrópolis – RJ

ABSTRACT: GPUs has been widely used in
scientific computing, as by offering exceptional
performance as by power-efficient hardware. Its
position established in high-performance and
scientific computing communities has increased
the urgency of understanding the power cost
of GPU usage in accurate measurements. For
this, the use of internal sensors are extremely
important. In this work, we employ the GPU
sensors to obtain high-resolution power profiles
of real and benchmark applications. We wrote
our own tools to query the sensors of two NVIDIA
GPUs from different generations and compare

the accuracy of them. Also, we compare the
power profile of GPU with CPU using IPMItool.
KEYWORDS: Power, energy, GPU, HPC.

1 | INTRODUCTION

Scientific computing generally requires
huge processing power resources’ to perform
large scale experiments and simulations in
reasonable time. These demands have been
addressed by High Performance Computing
(HPC), allowing many scientific domains
to leverage progress. The design of high
performance supercomputers is on the
boundary of constant and significant changes.
With the arrival of petascale computing in 2008,
we see another potential paradigm shift in the
construction of parallel computing and the use
of hybrid designs employing heterogeneous
computational accelerators. In this context
are the architectures with reduced energy
consumption for improved energy efficiency,
such as ARM and GPGPU heterogeneous
computing.

However, despite the impressive theoretical
peak performance of petascale supercomputers,
several areas require more computational power,
like the exascale supercomputers expected for
the coming decade. For example, in the energy

Fundamentos da Ciência da Computação Capítulo 9 109

industry simulations, for different energy sources like wind energy, efficient combustion
systems for biomass and exploration geophysics in the oil and gas industry. For the
latter, seismic applications, as used in this work, are targets of this type of processing
(MENEZES et al., 2012). But, it is expected that to achieve exascale will require a nearly
30-fold increase in performance with only a 1.2-fold increase in power consumption
(ADHINARAYANAN; SUBRAMANIAM;FENG, 2016).

GPUs have become prevalent in HPC, as by offer exceptional performance,
especially for scientific applications highly parallelizable, like seismic applications, as
by power-efficient hardware. The position GPUs have established in high-performance
and scientific computing communities has increased the urgency of understanding
the power cost of GPU usage (BRIDGES; IMAM; MINTZ, 2016) (ADHINARAYANAN;
SUBRAMANIAM;FENG, 2016).

To attempt this urgency, the use of internal power sensors for more accuracy
power and energy measuring is a current area of research. But, this is not trivial, since
the documentation on these sensors is scarce. So, understand exactly how to obtain
power, and other measures of performance, for the GPU board is unclear. In addition,
as GPUs continue to evolve, understanding their power and performance profiles on
real applications is increasingly difficult (BRIDGES; IMAM; MINTZ, 2016).

In this work, extended from (FERRO et al., 2017), we performed experiments on
three computational environments: two of them based on X86-64 CPU architecture
with NVIDIA Tesla GPUs from different generations and the third one an ARM based
CPU with NVIDIA Pascal GPU Cores, and collect data from its internal sensors. We
wrote our own tools to query the sensors that enable a high-resolution power profiles of
GPU kernel functions and low overhead (SILVA et al., 2018). We compare the accuracy
of profiles via the NVIDIA Management Library (NVML) (NVIDIA, 2012) or IPMItool.
Also, we compare the power profile of GPU with CPU using IPMItool for a deeper
understanding. The experiments were conducted through either a benchmark from
Rodinia (CHE et al., 2009) and a real application of seismic area, used by the Brazilian
Oil Company. Understand the behavior of this application and its relation with the
energy consumption are among the objectives of this work.

2 | BACKGROUND

In this section, we present some background about approaches for monitoring
systems and power measurement in GPUs. The discussion of these concepts could be
very broad, however, we will only discuss some concepts that are closely related to this
research, as well, related works only focused on GPUs.

Power consumption of computer components can be obtained either for directly
or indirectly methods. Directly measurements could be made via internal or external
hardware sensors which periodically collect samples to estimate the power used

Fundamentos da Ciência da Computação Capítulo 9 110

during a time interval (BRIDGES; IMAM; MINTZ, 2016). An estimate of total energy is
calculated as the integral of the power over the execution time (BURTSCHER; ZECENA;
ZONG,2014). External power meters are connected between the power supply unit
and a component under investigation (BRIDGES; IMAM; MINTZ, 2016). Internal power
meters are obtained directly from built-in sensors, allowing users convenient access to
power data via profiling software by sampling.

According to (BRIDGES; IMAM; MINTZ, 2016), directly measuring power via
internal or external hardware sensors is considered the most accurate source of power
consumption information. However, external power meters are generally not suitable
for comprehensive power profiling, giving not accurate readings, especially in HPC
settings. Internal sensors, when available, can be used for more accurate measurement.
Besides accuracy, another advantages are that any expensive extra hardware is no
need and allow component level profiling. However, not all hardware has these internal
sensors and when there is, there is no standard feature nor consistency in accuracy
across different hardwares. So, in some cases there is a need, especially in the HPC
industry, for indirect methods (BRIDGES; IMAM; MINTZ, 2016).

Indirect measurements cover modeling and simulation techniques for power and
performance estimation. The modeling approach estimates the power consumption
using a model that correlates power with hardware performance counters. A great
number of works in the area of energy efficiency are focused on using models to
estimate power consumption (BURTSCHER; ZECENA; ZONG, 2014). Some limitations
to counter-based models are that the number and type of counters available being
not uniform across hardwares. So, there is a great variety of ways for accessing and
visualizing hardware counter data but, the models generally are hardware dependent.
Example of hardware monitoring software is the suite of profiling tools offered by NVIDIA
that enable capabilities for accessing, visualizing, optimizing, monitoring and profiling
applications and GPU hardware (NVIDIA, 2012).

In Section 3 we present some management and monitoring tools that use the
method of direct measurements via internal hardware and how we use them to develop
our way for power measurements.

3 | POWER MEASURING APPROACH

For each GPU model the sensor is different and enables a kind of measurement,
accuracy and requires an approach to collect the data from sensors. In this work, as
mentioned, we employ the GPU power sensors to obtain the energy consumption of
the tested applications. We wrote our own tools to query the sensors, via the IPMItool
for Tesla M2050 and NVML interface for Tesla K40, which implement a direct method by
sampling monitoring approach. For the Jetson TX2 we used a shell script routine using
architecture specific system calls to query the internal sensors directly. This kind of

Fundamentos da Ciência da Computação Capítulo 9 111

method periodically collect samples of the parameters. The power is obtained directly
from sensors, and the total energy is calculated as the integral of the power over the
execution time.

The Intelligent Platform Management Interface (IPMI) is a standard interface
for hardware management used by system administrators to control the devices and
monitor the sensors. For these, it is necessary the IPMI Controller called Baseboard
Management Controller (BMC) and a manager software (for example, IPMItool). It
provides an interface to manage IPMI functions in a local (in-band) or remote (out-of-
band) system.

We are using the IPMI, in-band, to monitor the temperature and power consumption
sensors by sampling methodology (both for CPU and GPU Tesla M2050). The IPMI
Controller is used to identify how the application influences power consumption and
increases the temperature. The driver included in our architecture is the OpenIPMI
Linux Kernel Driver (/dev/ipmi0) and the manager software adopted was IPMItool. To
collect these parameters, we are using with a sudo user following command: $ ipmitool
dcmi power reading.

To use the IPMItool with the above command and to select the desired parameters
(power and temperature), we developed a Shell-based tool to collect CPU data. This
tool also collects the CPU and Memory utilization rates through the Linux’s Top utility.
Since the tool runs in parallel with the monitors application, competing for the same
CPU resources, there is an overhead in this usage. This overhead was measured to be
about 2.5% of CPU utilization rate. To collect Tesla M2050 GPU data we developed only
a Shell monitoring script that queries the sensor readings, using IPMItool commands.

The NVIDIA profiling tools and APIs can be used to monitor and manage states
of the NVIDIA GPU devices. The NVIDIA Management Library (NVML) (NVIDIA,2012)
is an API, based on C language, for monitoring and managing states of NVIDIA
GPU devices, such as GPU utilization rate, running process, clock and performance
state, temperature and fun speed, power consumption and power management. The
nvmlDeviceGetPowerUsage function retrieves the power usage reading for the device,
in milliwatts, with an error of around the 5 watts. This is the power draw for the entire
board, including GPU, memory, among others (KASICHAYANULA et al., 2012).

The NVIDIA System Management Interface (NVSMI) (NVIDIA,2017) is a command
line program that allows the system administrators to query, with appropriate privileges,
states of the GPU devices. Its functions are provided by the NVML library. By using the
NVSMI it is possible to collect some of the same parameters as those obtained with our
tool and with the sampling approach. However, when using NVSMI a much wider range
of parameters is collected, which could result in overhead. In addition, since NVSMI is
a high level utility, the rate of sampling power usage is very low (1 Hz). Such sampling
rate might not be enough to notice the change in power, unless the kernel is running
for a very long time.

For these reasons, we developed a CUDA C-based tool, using the NVML

Fundamentos da Ciência da Computação Capítulo 9 112

functions, to collect only the following parameters: Device name, Memory (Free, Used,
Total), Utilization Rate (Memory, GPU), Power Consumption (W) and Temperature (C).
In addition, this tool uses two threads: one thread responsible for launching, on GPU
devices, the application to be monitored and another thread to collect by sampling,
those parameters. So, an important feature of this tool is related to overhead, since
the second thread only runs on CPUs, which does not impact the execution of the
application on GPUs, the overhead is almost zero.

This NVML based monitoring application was developed with the intent of
maximizing the sampling rate in order to increase the accuracy of the measurements,
particularly for applications with small kernels. For this purpose the monitoring
application only queries for the necessary parameters and the sampling rate is not
fixed at a preset value. During the tests we observed a sampling rate of about 500 Hz,
which provided some good measurements for the application used during the tests.
This measurements, as well as the details of the methodology used to collect them, will
be presented in the next section.

4 | EXPERIMENTAL EVALUATION

The experimental evaluation was developed using three computational
environments with GPUs. The Santos Dumont Supercomputer (http://sdumont.lncc.
br/machine.php?pg=machine - SDumont) uses the Tesla K40 GPUs and 2 CPUs
Intel Xeon E5-2695v2 Ivy Bridge, with 12 real cores 2,4GHZ, 64GB of memory. The
ComCiDis cluster uses the Tesla M2050 and 2 CPUs Intel(R) Xeon X5650 with 6 real
cores 2.67 GHz each, 24 GB of memory. Details of Tesla M2050 and Tesla K40 are in
Table 1. The third environment is the NVIDIA Jetson TX2, with a dual-core Denver 2
and quad-core A57 ARM CPUs and 256 NVIDIA Pascal CUDA Cores (GPU), it has 8
GB 128 bit LPDDR4 memory with 59.7 GB/s of bandwidth.

Table 1. Details of the two GPU models used in the experiments.

Fundamentos da Ciência da Computação Capítulo 9 113

The main application used in the experiments is an acoustic test implemented
and used by Oil and Gas Industry. This is a 3D Wave Propagation which simulates the
propagation of a single wavelet over time by solving the acoustic wave propagation
equation. This equation is solved by using finite differences that have a high degree of
parallelization, given the interdependence between the data (MENEZES et al., 2012).
The program was written in standard C and CUDA and spreads computation over a
single CPU and a single GPU. For the experiments with 3D Wave Propagation were
used different input sizes, described in Table 2. The Size ID corresponds to different
sizes of the problem, which represents the discretization of the domain on a 3D grid.
The X, Y and Z correspond to the size of the problem on the three axis and the MB line
is the size of memory used for each group of the input size problem.

Table 2. Input sizes used in experiments with 3D Wave Propagation.

In some experiments, particularly to compare CPU and GPU measurements with
IPMItool, we used the LUD benchmark from Rodinia (CHE et al., 2009). We choose this
kernel to perform a set of experiments with more controlled results and also that could
be executed in both GPU (CUDA version) and CPU (OpenMP). LUD is an algorithm
to calculate the solutions of a set of linear equations that decomposes a matrix as
the product of a lower triangular matrix and an upper triangular matrix to achieve a
triangular form that can be used to solve a system of linear equations easily. In this
work, we presented results for matrix size of 16384.

5 | METHODOLOGY

Since the IPMItool requires sudo permission it was used only on our own
cluster (ComCiDis). It was the only way to get power and temperature reading for the
Tesla M2050, since it doesn’t have the built-in sensors. The measurement data are
collected using a shell script that repeatedly queries the sensor readings, using the
IPMItools commands. The output of the queries are written in an output file. To collect
the data, the monitoring script is launched 30 seconds before the application to be
monitored. This padding allows us to establish the baseline of power drain when only
the monitoring script is running, and by querying the sensors manually. We can get
the idle power drain (the amount of power been consumed by the system) when no
application is running. This information allows us to estimate the real energy consumed
by the application by removing the overhead (in power drain) caused by the monitoring

Fundamentos da Ciência da Computação Capítulo 9 114

script. The experiments performed on ComCiDis cluster with CPU, followed the same
methodology to collect the data.

For the experiments on SDumont, only NVML based monitoring application was
used, since we don’t have sudo permission to use IPMItool. K40 has built-in sensors,
that no need sudo for temperature and power readings. These sensors have a higher
precision than those read by the IPMItool and we can get a much more accurate amount
of energy. Nevertheless, as we can’t use the IPMItool, we are unable to get the total
energy consumed by the entire computing node.

As mentioned in Section 3, the NVML based monitoring application uses 2
threads, the first one queries the sensors of all GPUs installed in the computing node
and write the readings in an output file, the second thread is responsible for launching
the application that’s been evaluated, it is also responsible for signaling the monitoring
thread to stop collecting data. The monitoring thread starts collecting data as soon as
it is launched and only stops when signaled by the second thread. This thread starts
the application 30 seconds after the monitoring thread starts, and signal the stop 30
seconds after the end application. This 30 seconds padding allows us to establish a
baseline consumption while all the GPUs in the node are in the idle state.

5.1 Results On GPUs

In this section we present and discuss results of the experiments highlighting some
aspects of power profiles obtained from internal sensors. The results were obtained
using the NVML based monitoring application for SDumont and IPMItool, while running
the 3D Wave Propagation application.

The graphs of Figures 1 to 3 present the results for problem size G (the largest
size that could be performed in all three environments) in SDumont, ComCiDis and
Jetson TX2. In Figure 4 is the L size only in SDumont. It was too large to execute in the
other two, since this application requires the entire problem to be loaded to the GPU
memory and problem size L uses about 11.2 GB, which is too large for the 2.65 GB of
the ComCiDis’ Tesla M2050 and 7.8 GB of the Jetson TX2.

The parameters collected and presented in Figures 1 and 4 are the memory and
GPUs usage, power and temperature, for each device (device 0 and 1). In Figure
2 due the IPMItool limitation, there are only the temperatures of each CPU (CPU1
Temp, CPU2 Temp) and GPU (GPU1 Temp, GPU2 Temp) and Power. In Figure 3 the
parameters are, the power drain and temperature of the whole device, of the GPU,
of the CPU and of the Memory, due to the low consumption of the device the power
readings are collected in MW while in the other two it is collected in W.

The power levels collected by the monitoring application are the individual power
levels for each GPU with a sampling rate around 500 Hz, while the IPMItool collects the
total power used by the whole computing node with a rate between 1 and 3 Hz. For the
Jetson TX2 the monitoring script reads the sensors with a frequency of 1 Hz to prevent
or at least minimise the overhead caused by the monitoring script.

Fundamentos da Ciência da Computação Capítulo 9 115

Figures 1, 2 and 3 display the results for the problem size G on SDumont,
ComCiDis and Jetson TX2. The average time for this size in SDumont was 4 minutes
and 12 seconds, consuming 36802 J (30,520 J of the computing GPU and 6,281 J
of the idle GPU). For the ComCiDis it was 6 minutes and 32 seconds, more than 1.5
times longer and consuming 101703 J (2.76 times more than SDumont’s K40). For the
Jetson TX2 the time was 14 minutes 26 seconds almost 3.5 times compared to the
SDumont but with a consumption of 6791.799 J (about 0.18 times the consumption of
the SDumont’s K40). The peak of the power drain observed in the ComCiDis by GPUs
was of 290 W, but it stays at 250 W most of the time. For SDumont the peak was about
160 W for the two GPUs together (134 W for de GPU when it was processing and 26
W for the GPU idle). For the Jetson TX2 the peak was 9.04 W.

Figure 1: Results for problem size G on SDumont collected by the NVML based monitoring
application.

Figure 2: Results for problem size G on the ComCiDis collected by the IPMITool application.

Fundamentos da Ciência da Computação Capítulo 9 116

In Figure 1 we can observe a high level of fluctuation on the power readings (GPU
Power 0). In this graph it is possible to see, particularly looking at the GPU and memory
usage for the running device (Memory usage 0 and GPU Usage 0), that the pattern
of increase and decrease in usage matches that of the power readings, with only the
power reading showing a steady increase over time. This could be related to the GPU’s
temperature and this behavior has been observed also in (BURTSCHER; ZECENA;
ZONG,2014).

Figure 3: Results for problem size G on the Jetson TX2 collected by internal sensors.

Looking at the behavior of the application for the size G (Figures 1, 2 and 3), there
is a significant drop in the power readings in regular intervals. This happens because
the application has pauses in the processing, in regular intervals, to take “snapshots”
(copying the data from the GPU memory to the CPU memory). During this time the
GPU goes into a idle state, but ready to run a new kernel. In this state, the power drain
is higher than a completely idle GPU. What we can see in the graphs is that during this
pauses in the processing, the temperature drops as expected. But, when the application
resumes the processing, the temperature rises faster than in the previous sequence
o kernels. Also, the temperature gets higher, as can be seen in Figure 1, than the
maximum temperature observed in the last sequence, being about 2 degrees higher
than in the first sequence. In addition to that, it also gets to that temperature faster. This
increase in the temperature could be contributing to the increase in power drain, but it
could also be caused by it. We need to perform more tests in order to properly verify
this behavior, including the execution of tests after pre-heating the GPU, or super-
cooling it.

Fundamentos da Ciência da Computação Capítulo 9 117

Figure 4: Results for the problem size L, executed on SDumont and collected by the NVML
based monitoring application.

Analyzing the results for the largest execution size L in SDumont (Figure 4), it is
possible to see some behavior seen also in the graphs for the G size. For example,
the steady increase in the power readings over time, as well for the temperature, and
the “stop-and-go” behavior, similar for the G size. Although there is also a high level of
fluctuation on the usage of the GPU cores and memory, the range of the fluctuation is
shorter than that seen in the problem size G. In this case, the readings have a higher
concentration, at 99% usage for the GPU and 39% for the memory. We also can see the
fluctuation on the power readings, but the range is very narrow, almost negligible. The
L size took 22 minutes and 50 seconds to complete, consuming 200,740 J (166,496 J
of the computing GPU and 34,244 J of the idle GPU).

Table 3 summarizes the results for all experiments. For the problem size G the
SDumont had the best time and energy to solution of the two X86-64 environments,
the ARM based environment had the worst time to solution of the three but the best
energy to solution consuming slightly more than one sixth of the energy consumed by
the SDumont GPUs.

 Table 3. Time and Energy to Solution on GPUs.

5.2 Results - CPU x GPU

Here, we will present the results obtained in ComCiDis cluster using both the
IPMItool based monitoring application for CPU and the script for GPU (the same used

Fundamentos da Ciência da Computação Capítulo 9 118

in the experiments presented in Section 4.1. In this experiments we used the application
LUD for problem size of 16384, with OpenMP and CUDA parallel models.

Figure 5 displays the results using the OpenMP parallel model in CPU. The
average execution time was about 2 minutes and 54 seconds with the sampling rate
between 1 and 3 Hz. There are two intervals of 30 seconds, one before T1 and another
after T3. In these intervals (`padding’), only the monitoring tool was running to establish
the baseline of power drain. The average of the power drain was of 170 W with an
energy consumption of 29,240 J and the average of the power consumption measured
with the monitoring tool running was of 182 W. So, the monitoring tool increased the
power consumption by 12 W, with an energy consumption of 2,064 J. The energy
consumption was calculated only when the application was running.

The LUD application started in T1 and finished in T3. While the application was
running, it is possible to note two steps: i) between T1 and T2 the application was
loading the matrix (serial region of code) and the average of power consumption was
of 218 W - power consumption increase of 36 W - with an energy consumption of 2,916
J, and ii) between T2 and T3, the application was solving the problem (OpenMP region
of code), the average of power consumption was of 298 W - increase of 116 W - with
an energy consumption of 10,556 J. The rise in temperature in the CPU(0), when the
application was loading the matrix, indicates that only that CPU was executing the
process. Between the interval T2 and T3 the parallel region of the code is started and
both CPUs were executing the process. So, it is possible to observe the rise of the
temperature in both CPUs and the peak of the power consumption and CPU utilization
rate.

Figure 5: Results for the ComCiDis CPU collected by the IPMItool based monitoring application.

Table 4 compares the results for the energy and power consumption by system,

Fundamentos da Ciência da Computação Capítulo 9 119

monitor and application, while the application was running on serial and parallel region
of the code. In the column System, can be observed that the power consumption by
the GPU system was greater than by the CPU system, increased by GPU devices.
For the application (App), it’s possible to note that power consumption on serial region
was much smaller than on parallel region for either CPU and GPU. Even the power
consumption on parallel region in the GPU was greater than in the CPU. Although
the power consumption was greater, given the execution time of the application, the
energy-to-solution in the parallel region in CPU was smaller than for GPU. The power
consumptions by the monitors (Monitor) were the same for both CPU and GPU, but
the energy consumptions were different because the execution time on GPU was less
than on CPU.

 Table 4. Results for the ComCiDis’ CPU and GPU.

6 | FINAL CONSIDERATIONS

In this work were analysed three directly measuring methods via internal sensor
for two generations of NVDIA GPUs and for the ARM based NVIDIA Jetson TX2.
Also, we compare the power profile of GPU with CPU using IPMItool for a deeper
understanding of this method. For this we developed two monitoring tools, based on
NVML and IPMItool.

Analyzing the results obtained with three monitoring approaches, as well as for
different computational environments, it is possible to make some observations. With
regard to different generations of sensors, and consequently the available sensors to
measure temperature and energy, the precision of K40 in relation to M2050 is very
high. This can be clearly observed by visually comparing the graph of Figures 1 and
2, even though the graph for the M2050 had to be compressed to fit within the same
width of the graph for the K40 (since it the time to solution of the M2050 was 1.5 times
longer), where the profiling power is much coarse-grained, it is not so clear seen in the
graph of the Jetson TX2 execution (Figure 3) due to a higher compression, but still
visible. Also, the refreshing rate for K40 is very faster and its idle power drain is about
25 W against 60 W for M2050, indicating the improvement in the energy saving of the
newer generations.

Regard the monitoring applications, the sampling rate for NVML based monitoring
application is much higher, reaching 500 Hz versus only 3 Hz for IPMItool. Thus, the
accuracy of the power profile obtained with the NVML based application is much higher

Fundamentos da Ciência da Computação Capítulo 9 120

with incurred overhead of almost zero for the execution time and the power measured
for GPU. Another advantage is that this method does not need sudo user to query the
sensors, in order to enable the monitoring of environments that have high restrictions to
access, like SDumont. Using the IPMItool based monitoring it was possible to compare
the power consumption and estimate the energy consumption for GPU and CPU. The
accuracy is the same for both architectures, since IPMItool query the same kind of
sensors. The power profile is not so accurate, as demonstrated in results and there
is an overhead about 2.5% of CPU utilization rate. Despite these limitations, in some
cases its use is still a nice option, like in generations of GPUs that do not have built-in
sensors. Besides that, this monitoring method allows to analyse the power profile, for the
same application, in different architectures and parallel models. The major limitation is
the need for sudo user. For the Jetson we used a shell script using architecture specific
system calls to query the sensors directly both because of the availability of the system
calls as well as to minimise the overhead caused by a more complex application, since
the ARM CPU are much more limited compared to X86-64, for that same reason we
choose a sampling rate of 1Hz.

In general, for the X86-64 architecture, both monitoring tools were feasible for
our studies on energy consumption of the applications. However, we conclude that the
best option could be a monitoring tool that combines the two monitoring tools, since the
NVML measures only the individual power levels for each GPU and IPMItool measures
only the total power used by the whole computing node. Thus, it would be possible to
develop a more accurate monitoring.

As future works we plan to develop this hybrid monitoring tool, to execute tests with
a multi-GPU version of the real application and also to perform multiple experiments,
similar to those presented using IPMItool, however, using different times of application
launches in relation to the launch time of the monitor.

ACKNOWLEDGMENTS

This work has received partial funding from the European Union’s Horizon 2020
Programme (2014-2020) and from Brazilian Ministry of Science, Technology, Innovation
and Communication through the RNP under the HPC4E Project, grant agreement n
689772 and from the CNPq and CAPES. The authors would also like to thank CENPES/
Petrobras.

REFERÊNCIAS
ADHINARAYANAN, V.; SUBRAMANIAM, B.; FENG, W. CHUN. Online power estimation of
graphics processing units. In: 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing, CCGrid 2016, Cartagena, Colômbia, May 16-19, 2016. [S.l.]: IEEE Computer Society,

Fundamentos da Ciência da Computação Capítulo 9 121

2016. p. 245–254. ISBN 978-1-5090-2453-7/16.

BRIDGES, R. A.; IMAM, N.; MINTZ, T. M. Understanding gpu power: A survey of profiling,
modeling, and simulation methods. ACM Comput. Surv., ACM, New York, NY, USA, v. 49, n. 3, p.
41:1–41:27, set. 2016. ISSN 0360-0300. Disponível em: <http://doi.acm.org/10.1145/2962131>.

BURTSCHER, M.; ZECENA, I.; ZONG, Z. Measuring gpu power with the k20 built-in sensor.
In: Proceedings of Workshop on General Purpose Processing Using GPUs. New York, NY, USA:
ACM, 2014. (GPGPU-7), p. 28:28–28:36. ISBN 978-1-4503-2766-4. Disponível em: <http://doi.acm.
org/10.1145/2576779.2576783>.

CHE, S. et al. Rodinia: A benchmark suite for heterogeneous computing. In: IISWC. [S.l.]:IEEE,
2009. p. 44–54. ISBN 978-1-4244-5156-2.

FERRO, M. et al. Analysis of gpu power consumption using internal sensors. In: Anais do XVI
Workshop em Desempenho de Sistemas Computacionais e de Comunicação . São Paulo - SP:
Sociedade Brasileira de Computação (SBC), 2017.

KASICHAYANULA, K. et al. Power aware computing on gpus. Application Accelerators in High-
Performance Computing, Symposium on, IEEE Computer Society, Los Alamitos, CA, USA, v. 00, p.
64–73, 2012. ISSN 2166-5133.

MENEZES, G. S. et al. Energy estimation tool fpga-based approach for petroleum industry.
In: Proceedings of the 2012 41st International Conference on Parallel Processing Workshops.
Washington, DC, USA: IEEE Computer Society, 2012. (ICPPW ’12), p. 600–601. ISBN 978-0-7695-
4795-4. Disponível em: <http://dx.doi.org/10.1109/ICPPW.2012.88>.

NVIDIA. NVML API Reference Manual. [S.l.], 2012. Disponível em: <http://developer.download.nvidia.
com/assets/cuda/files/CUDADownloads/NVML/nvml.pdf>.

NVIDIA. Nvidia system management interfaces. 2017. Disponível em: <”https://developer.nvidia.
com/nvidia-system-management-interface”>.

SILVA, G. D. et al. Smcis: um sistema para o monitoramento de aplicações científicas em
ambientes hpc. In: Anais do XIX Simpósio em Sistemas Computacionais de Alto Desempenho
(WSCAD 2018). Sociedade Brasileira de Computação (SBC). São Paulo, 2018. p.277–288. Disponível
em: http://www2.sbc.org.br/wscad/current/anais/anais-wscad-2018.pdf.

Fundamentos da Ciência da Computação Sobre o Organizador 162

SOBRE O ORGANIZADOR

Ernane Rosa Martins - Doutorado em andamento em Ciência da Informação com
ênfase em Sistemas, Tecnologias e Gestão da Informação, na Universidade Fernando
Pessoa, em Porto/Portugal. Mestre em Engenharia de Produção e Sistemas pela
PUC-Goiás, possui Pós-Graduação em Tecnologia em Gestão da Informação pela
Anhanguera, Graduação em Ciência da Computação pela Anhanguera e Graduação em
Sistemas de Informação pela Uni Evangélica. Atualmente é Professor de Informática do
Instituto Federal de Educação, Ciência e Tecnologia de Goiás - IFG (Câmpus Luziânia),
ministrando disciplinas nas áreas de Engenharia de Software, Desenvolvimento de
Sistemas, Linguagens de Programação, Banco de Dados e Gestão em Tecnologia da
Informação. Pesquisador do Núcleo de Inovação, Tecnologia e Educação (NITE).

