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APRESENTAÇÃO

A Ciência da Computação estuda as técnicas, metodologias e instrumentos 
computacionais, visando automatizar os processos e desenvolver soluções com o uso 
de processamento de dados. Este livro, possibilita conhecer os elementos básicos 
desta ciência por meio do contato com alguns dos conceitos fundamentais desta 
área, apresentados nos resultados relevantes dos trabalhos presentes nesta obra, 
realizados por autores das mais diversas instituições do Brasil.

Assim, são abordando neste livro assuntos importantes, tais como: desenvolvimento 
de sistema mobile utilizando as plataformas iOS e Android; desenvolvimento de protótipo 
que trabalha em cenário real de sala de aula e na comparação de algoritmos usados 
no reconhecimento facial; criação do jogo que explora a criptografia em um ambiente 
de computação desplugada; construção de simulador que mostra especificamente 
o comportamento do escalonador First-in First; apresentação de abordagem para 
orquestração do conhecimento curricular em Ciência da Computação baseado nas 
matérias do currículo referência para a Ciência da Computação e em estruturas 
curriculares de cursos de graduação.

Espero que este livro seja útil tanto para os alunos dos cursos superiores de 
Ciência da Computação quanto para profissionais que atuam nesta importante área 
do conhecimento. O principal objetivo deste livro é ajudar na fascinante empreitada 
de compreender a computação perante os mais diferentes desafios do século XXI. 
Desejo a todos uma excelente leitura e que está obra contribua fortemente com o seu 
aprendizado.

Ernane Rosa Martins
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CAPÍTULO 9

POWER CONSUMPTION USING INTERNAL 
SENSORS: AN ANALYSIS FOR DIFFERENT GPU 

MODELS 
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Laboratório Nacional de Computação Científica
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ABSTRACT: GPUs has been widely used in 
scientific computing, as by offering exceptional 
performance as by power-efficient hardware. Its 
position established in high-performance and 
scientific computing communities has increased 
the urgency of understanding the power cost 
of GPU usage in accurate measurements. For 
this, the use of internal sensors are extremely 
important. In this work, we employ the GPU 
sensors to obtain high-resolution power profiles 
of real and benchmark applications. We wrote 
our own tools to query the sensors of two NVIDIA 
GPUs from different generations and compare 

the accuracy of them. Also, we compare the 
power profile of GPU with CPU using IPMItool.
KEYWORDS: Power, energy, GPU, HPC.

1 |  INTRODUCTION

Scientific computing generally requires 
huge processing power resources’ to perform 
large scale experiments and simulations in 
reasonable time. These demands have been 
addressed by High Performance Computing 
(HPC), allowing many scientific domains 
to leverage progress. The design of high 
performance supercomputers is on the 
boundary of constant and significant changes. 
With the arrival of petascale computing in 2008, 
we see another potential paradigm shift in the 
construction of parallel computing and the use 
of hybrid designs employing heterogeneous 
computational accelerators. In this context 
are the architectures with reduced energy 
consumption for improved energy efficiency, 
such as ARM and GPGPU heterogeneous 
computing.

However, despite the impressive theoretical 
peak performance of petascale supercomputers, 
several areas require more computational power, 
like the exascale supercomputers expected for 
the coming decade. For example, in the energy 
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industry simulations, for different energy sources like wind energy, efficient combustion 
systems for biomass and exploration geophysics in the oil and gas industry. For the 
latter, seismic applications, as used in this work, are targets of this type of processing 
(MENEZES et al., 2012). But, it is expected that to achieve exascale will require a nearly 
30-fold increase in performance with only a 1.2-fold increase in power consumption 
(ADHINARAYANAN; SUBRAMANIAM;FENG, 2016).

GPUs have become prevalent in HPC, as by offer exceptional performance, 
especially for scientific applications highly parallelizable, like seismic applications, as 
by power-efficient hardware. The position GPUs have established in high-performance 
and scientific computing communities has increased the urgency of understanding 
the power cost of GPU usage (BRIDGES; IMAM; MINTZ, 2016) (ADHINARAYANAN; 
SUBRAMANIAM;FENG, 2016).

To attempt this urgency, the use of internal power sensors for more accuracy 
power and energy measuring is a current area of research. But, this is not trivial, since 
the documentation on these sensors is scarce. So, understand exactly how to obtain 
power, and other measures of performance, for the GPU board is unclear. In addition, 
as GPUs continue to evolve, understanding their power and performance profiles on 
real applications is increasingly difficult (BRIDGES; IMAM; MINTZ, 2016).

In this work, extended from (FERRO et al., 2017), we performed experiments on 
three computational environments: two of them based on X86-64 CPU architecture 
with NVIDIA Tesla GPUs from different generations and the third one an ARM based 
CPU with NVIDIA Pascal GPU Cores,  and collect data from its internal sensors. We 
wrote our own tools to query the sensors that enable a high-resolution power profiles of 
GPU kernel functions and low overhead (SILVA et al., 2018). We compare the accuracy 
of profiles via the NVIDIA Management Library (NVML) (NVIDIA, 2012) or IPMItool. 
Also, we compare the power profile of GPU with CPU using IPMItool for a deeper 
understanding. The experiments were conducted through either a benchmark from 
Rodinia (CHE et al., 2009) and a real application of seismic area, used by the Brazilian 
Oil Company. Understand the behavior of this application and its relation with the 
energy consumption are among the objectives of this work.

2 |  BACKGROUND 

In this section, we present some background about approaches for monitoring 
systems and power measurement in GPUs. The discussion of these concepts could be 
very broad, however, we will only discuss some concepts that are closely related to this 
research, as well, related works only focused on GPUs.

Power consumption of computer components can be obtained either for directly 
or indirectly methods. Directly measurements could be made via internal or external 
hardware sensors which periodically collect samples to estimate the power used 
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during a time interval (BRIDGES; IMAM; MINTZ, 2016). An estimate of total energy is 
calculated as the integral of the power over the execution time (BURTSCHER; ZECENA; 
ZONG,2014). External power meters are connected between the power supply unit 
and a component under investigation (BRIDGES; IMAM; MINTZ, 2016). Internal power 
meters are obtained directly from built-in sensors, allowing users convenient access to 
power data via profiling software by sampling.

According to (BRIDGES; IMAM; MINTZ, 2016), directly measuring power via 
internal or external hardware sensors is considered the most accurate source of power 
consumption information. However, external power meters are generally not suitable 
for comprehensive power profiling, giving not accurate readings, especially in HPC 
settings. Internal sensors, when available, can be used for more accurate measurement. 
Besides accuracy, another advantages are that any expensive extra hardware is no 
need and allow component level profiling. However, not all hardware has these internal 
sensors and when there is, there is no standard feature nor consistency in accuracy 
across different hardwares. So, in some cases there is a need, especially in the HPC 
industry, for indirect methods (BRIDGES; IMAM; MINTZ, 2016).

Indirect measurements cover modeling and simulation techniques for power and 
performance estimation. The modeling approach estimates the power consumption 
using a model that correlates power with hardware performance counters. A great 
number of works in the area of energy efficiency are focused on using models to 
estimate power consumption (BURTSCHER; ZECENA; ZONG, 2014). Some limitations 
to counter-based models are that the number and type of counters available being 
not uniform across hardwares. So, there is a great variety of ways for accessing and 
visualizing hardware counter data but, the models generally are hardware dependent. 
Example of hardware monitoring software is the suite of profiling tools offered by NVIDIA 
that enable capabilities for accessing, visualizing, optimizing, monitoring and profiling 
applications and GPU hardware (NVIDIA, 2012).

In Section 3 we present some management and monitoring tools that use the 
method of direct measurements via internal hardware and how we use them to develop 
our way for power measurements.

3 |  POWER MEASURING APPROACH

For each GPU model the sensor is different and enables a kind of measurement, 
accuracy and requires an approach to collect the data from sensors. In this work, as 
mentioned, we employ the GPU power sensors to obtain the energy consumption of 
the tested applications. We wrote our own tools to query the sensors, via the IPMItool 
for Tesla M2050 and NVML interface for Tesla K40, which implement a direct method by 
sampling monitoring approach. For the Jetson TX2 we used a shell script routine using 
architecture specific system calls to query the internal sensors directly. This kind of 
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method periodically collect samples of the parameters. The power is obtained directly 
from sensors, and the total energy is calculated as the integral of the power over the 
execution time.

The Intelligent Platform Management Interface (IPMI) is a standard interface 
for hardware management used by system administrators to control the devices and 
monitor the sensors. For these, it is necessary the IPMI Controller called Baseboard 
Management Controller (BMC) and a manager software (for example, IPMItool). It 
provides an interface to manage IPMI functions in a local (in-band) or remote (out-of-
band) system. 

We are using the IPMI, in-band, to monitor the temperature and power consumption 
sensors by sampling methodology (both for CPU and GPU Tesla M2050). The IPMI 
Controller is used to identify how the application influences  power consumption and 
increases the temperature. The driver included in our architecture is the OpenIPMI 
Linux Kernel Driver (/dev/ipmi0) and the manager software adopted was IPMItool. To 
collect these parameters, we are using with a sudo user following command: $ ipmitool 
dcmi power reading.

To use the IPMItool with the above command and to select the desired parameters 
(power and temperature), we developed a Shell-based tool to collect CPU data. This 
tool also collects the CPU and Memory utilization rates through the Linux’s Top utility. 
Since the tool runs in parallel with the monitors application, competing for the same 
CPU resources, there is an overhead in this usage. This overhead was measured to be 
about 2.5% of CPU utilization rate. To collect Tesla M2050 GPU data we developed only 
a Shell monitoring script that queries the sensor readings, using IPMItool commands.

The NVIDIA profiling tools and APIs can be used to monitor and manage states 
of the NVIDIA GPU devices. The NVIDIA Management Library (NVML) (NVIDIA,2012) 
is an API, based on C language, for monitoring and managing states of NVIDIA 
GPU devices, such as GPU utilization rate, running process, clock and performance 
state, temperature and fun speed, power consumption and power management. The 
nvmlDeviceGetPowerUsage function retrieves the power usage reading for the device, 
in milliwatts, with an error of around the 5 watts. This is the power draw for the entire 
board, including GPU, memory, among others (KASICHAYANULA et al., 2012).

The NVIDIA System Management Interface (NVSMI) (NVIDIA,2017) is a command 
line program that allows the system administrators to query, with appropriate privileges, 
states of the GPU devices. Its functions are provided by the NVML library. By using the 
NVSMI it is possible to collect some of the same parameters as those obtained with our 
tool and with the sampling approach. However, when using NVSMI a much wider range 
of parameters is collected, which could result in overhead. In addition, since NVSMI is 
a high level utility, the rate of sampling power usage is very low (1 Hz). Such sampling 
rate might not be enough to notice the change in power, unless the kernel is running 
for a very long time.

For these reasons, we developed a CUDA C-based tool, using the NVML 



Fundamentos da Ciência da Computação Capítulo 9 112

functions, to collect only the following parameters: Device name, Memory (Free, Used, 
Total), Utilization Rate (Memory, GPU), Power Consumption (W) and Temperature (C). 
In addition, this tool uses two threads: one thread responsible for launching, on GPU 
devices, the application to be monitored and another thread to collect by sampling, 
those parameters. So, an important feature of this tool is related to overhead, since 
the second thread only runs on CPUs, which does not impact the execution of the 
application on GPUs, the overhead is almost zero.

This NVML based monitoring application was developed with the intent of 
maximizing the sampling rate in order to increase the accuracy of the measurements, 
particularly for applications with small kernels. For this purpose the monitoring 
application only queries for the necessary parameters and the sampling rate is not 
fixed at a preset value. During the tests we observed a sampling rate of about 500 Hz, 
which provided some good measurements for the application used during the tests. 
This measurements, as well as the details of the methodology used to collect them, will 
be presented in the next section.

4 |  EXPERIMENTAL EVALUATION 

The experimental evaluation was developed using three computational 
environments with GPUs. The Santos Dumont Supercomputer (http://sdumont.lncc.
br/machine.php?pg=machine - SDumont) uses the Tesla K40 GPUs and 2 CPUs 
Intel Xeon E5-2695v2 Ivy Bridge, with 12 real cores  2,4GHZ, 64GB of memory. The 
ComCiDis cluster uses the Tesla M2050 and 2 CPUs Intel(R) Xeon X5650 with 6 real 
cores 2.67 GHz each, 24 GB of memory. Details of Tesla M2050 and Tesla K40 are in 
Table 1. The third environment is the NVIDIA Jetson TX2, with a dual-core Denver 2 
and quad-core A57 ARM CPUs and 256 NVIDIA Pascal CUDA Cores (GPU), it has 8 
GB 128 bit LPDDR4 memory with 59.7 GB/s of bandwidth.

    

Table 1. Details of the two GPU models used in the experiments.
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The main application used in the experiments is an acoustic test implemented 
and used by Oil and Gas Industry. This is a 3D Wave Propagation which simulates the 
propagation of a single wavelet over time by solving the acoustic wave propagation 
equation. This equation is solved by using finite differences that have a high degree of 
parallelization, given the interdependence between the data (MENEZES et al., 2012). 
The program was written in standard C and CUDA and spreads computation over a 
single CPU and a single GPU. For the experiments with 3D Wave Propagation were 
used different input sizes, described in Table 2. The Size ID corresponds to different 
sizes of the problem, which represents the discretization of the domain on a 3D grid. 
The X, Y and Z correspond to the size of the problem on the three axis and the MB line 
is the size of memory used for each group of the input size problem.

  

Table 2. Input sizes used in experiments with 3D Wave Propagation.

In some experiments, particularly to compare CPU and GPU measurements with 
IPMItool, we used the LUD benchmark from Rodinia (CHE et al., 2009). We choose this 
kernel to perform a set of experiments with more controlled results and also that could 
be executed in both GPU (CUDA version) and CPU (OpenMP). LUD is an algorithm 
to calculate the solutions of a set of linear equations that decomposes a matrix as 
the product of a lower triangular matrix and an upper triangular matrix to achieve a 
triangular form that can be used to solve a system of linear equations easily. In this 
work, we presented results for matrix size of 16384.

5 |  METHODOLOGY

Since the IPMItool requires sudo permission it was used only on our own 
cluster (ComCiDis). It was the only way to get power and temperature reading for the 
Tesla M2050, since it doesn’t have the built-in sensors. The measurement data are 
collected using a shell script that repeatedly queries the sensor readings, using the 
IPMItools commands. The output of the queries are written in an output file. To collect 
the data, the monitoring script is launched 30 seconds before the application to be 
monitored. This padding allows us to establish the baseline of power drain when only 
the monitoring script is running, and by querying the sensors manually. We can get 
the idle power drain (the amount of power been consumed by the system) when no 
application is running. This information allows us to estimate the real energy consumed 
by the application by removing the overhead (in power drain) caused by the monitoring 
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script. The experiments performed on ComCiDis cluster with CPU, followed the same 
methodology to collect the data.

For the experiments on SDumont, only NVML based monitoring application was 
used, since we don’t have sudo permission to use IPMItool. K40 has built-in sensors, 
that no need sudo for temperature and power readings. These sensors have a higher 
precision than those read by the IPMItool and we can get a much more accurate amount 
of energy. Nevertheless, as we can’t use the IPMItool, we are unable to get the total 
energy consumed by the entire computing node.

As mentioned in Section 3, the NVML based monitoring application uses 2 
threads, the first one queries the sensors of all GPUs installed in the computing node 
and write the readings in an output file, the second thread is responsible for launching 
the application that’s been evaluated, it is also responsible for signaling the monitoring 
thread to stop collecting data. The monitoring thread starts collecting data as soon as 
it is launched and only stops when signaled by the second thread. This thread starts 
the application 30 seconds after the monitoring thread starts, and signal the stop 30 
seconds after the end application. This 30 seconds padding allows us to establish a 
baseline consumption while all the GPUs in the node are in the idle state.

5.1 Results On GPUs

In this section we present and discuss results of the experiments highlighting some 
aspects of power profiles obtained from internal sensors. The results were obtained 
using the NVML based monitoring application for SDumont and IPMItool, while running 
the 3D Wave Propagation application.

The graphs of Figures 1 to 3 present the results for problem size G (the largest 
size that could be performed in all three environments) in SDumont, ComCiDis and 
Jetson TX2. In Figure 4 is the L size only in SDumont. It was too large to execute in the 
other two, since this application requires the entire problem to be loaded to the GPU 
memory and problem size L uses about 11.2 GB, which is too large for the 2.65 GB of 
the ComCiDis’ Tesla M2050 and 7.8 GB of the Jetson TX2.

The parameters collected and presented in Figures 1 and 4 are the memory and 
GPUs usage, power and temperature, for each device (device 0 and 1). In Figure 
2 due the IPMItool limitation, there are only the temperatures of each CPU (CPU1 
Temp, CPU2 Temp) and GPU (GPU1 Temp, GPU2 Temp) and Power. In Figure 3 the 
parameters are, the power drain and temperature of the whole device, of the GPU, 
of the CPU and of the Memory, due to the low consumption of the device the power 
readings are collected in MW while in the other two it is collected in W.

The power levels collected by the monitoring application are the individual power 
levels for each GPU with a sampling rate around 500 Hz, while the IPMItool collects the 
total power used by the whole computing node with a rate between 1 and 3 Hz. For the 
Jetson TX2 the monitoring script reads the sensors with a frequency of 1 Hz to prevent 
or at least minimise the overhead caused by the monitoring script.
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Figures 1, 2 and 3  display the results for the problem size G on SDumont, 
ComCiDis and Jetson TX2. The average time for this size in SDumont was 4 minutes 
and 12 seconds, consuming 36802 J (30,520 J of the computing GPU and 6,281 J 
of the idle GPU). For the ComCiDis it was 6 minutes and 32 seconds, more than 1.5 
times longer and consuming 101703 J (2.76 times more than SDumont’s K40). For the 
Jetson TX2 the time was 14 minutes 26 seconds almost 3.5 times compared to the 
SDumont but with a consumption of  6791.799 J (about 0.18 times the consumption of 
the SDumont’s K40). The peak of the power drain observed in the ComCiDis by GPUs 
was of 290 W, but it stays at 250 W most of the time. For SDumont the peak was about 
160 W for the two GPUs together (134 W for de GPU when it was processing and 26 
W for the GPU idle). For the Jetson TX2 the peak was 9.04 W.

Figure 1: Results for problem size G on SDumont collected by the NVML based monitoring 
application.

Figure 2: Results for problem size G on the ComCiDis collected by the IPMITool application.
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In Figure 1 we can observe a high level of fluctuation on the power readings (GPU 
Power 0). In this graph it is possible to see, particularly looking at the GPU and memory 
usage for the running device (Memory usage 0 and GPU Usage 0), that the pattern 
of increase and decrease in usage matches that of the power readings, with only the 
power reading showing a steady increase over time. This could be related to the GPU’s 
temperature and this behavior has been observed also in (BURTSCHER; ZECENA; 
ZONG,2014).

Figure 3: Results for problem size G on the Jetson TX2 collected by internal sensors.

Looking at the behavior of the application for the size G (Figures 1, 2 and 3), there 
is a significant drop in the power readings in regular intervals. This happens because 
the application has pauses in the processing, in regular intervals, to take “snapshots” 
(copying the data from the GPU memory to the CPU memory). During this time the 
GPU goes into a idle state, but ready to run a new kernel. In this state, the power drain 
is higher than a completely idle GPU. What we can see in the graphs is that during this 
pauses in the processing, the temperature drops as expected. But, when the application 
resumes the processing, the temperature rises faster than in the previous sequence 
o kernels. Also, the temperature gets higher, as can be seen in Figure 1, than the 
maximum temperature observed in the last sequence, being about 2 degrees higher 
than in the first sequence. In addition to that, it also gets to that temperature faster. This 
increase in the temperature could be contributing to the increase in power drain, but it 
could also be caused by it. We need to perform more tests in order to properly verify 
this behavior,  including the execution of tests after pre-heating the GPU, or super-
cooling it.
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Figure 4: Results for the problem size L, executed on SDumont and collected by the NVML 
based monitoring application.

Analyzing the results for the largest execution size L in SDumont (Figure 4), it is 
possible to see some behavior seen also in the graphs for the G size. For example, 
the steady increase in the power readings over time, as well for the temperature, and 
the “stop-and-go” behavior, similar for the G size. Although there is also a high level of 
fluctuation on the usage of the GPU cores and memory, the range of the fluctuation is 
shorter than that seen in the problem size G. In this case, the readings have a higher 
concentration, at 99% usage for the GPU and 39% for the memory. We also can see the 
fluctuation on the power readings, but the range is very narrow, almost negligible. The 
L size took 22 minutes and 50 seconds to complete, consuming 200,740 J (166,496 J 
of the computing GPU and 34,244 J of the idle GPU).

Table 3 summarizes the results for all experiments. For the problem size G the 
SDumont had the best time and energy to solution of the two X86-64 environments, 
the ARM based environment had the worst time to solution of the three but the best 
energy to solution consuming slightly more than one sixth of the energy consumed by 
the SDumont GPUs.

                        Table 3. Time and Energy to Solution on GPUs.

5.2 Results - CPU x GPU

Here, we will present the results obtained in ComCiDis cluster using both the 
IPMItool based monitoring application for CPU and the script for GPU (the same used 
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in the experiments presented in Section 4.1. In this experiments we used the application 
LUD for problem size of 16384, with OpenMP and CUDA parallel models.

Figure 5 displays the results using the OpenMP parallel model in CPU. The 
average execution time was about 2 minutes and 54 seconds with the sampling rate 
between 1 and 3 Hz. There are two intervals of 30 seconds, one before T1 and another 
after T3. In these intervals (`padding’), only the monitoring tool was running to establish 
the baseline of power drain. The average of the power drain was of 170 W with an 
energy consumption of 29,240 J and the average of the power consumption measured 
with the monitoring tool running was of 182 W. So, the monitoring tool increased the 
power consumption by 12 W, with an energy consumption of 2,064 J. The energy 
consumption was calculated only when the application was running.

The LUD application started in T1 and finished in T3. While the application was 
running, it is possible to note two steps: i) between T1 and T2 the application was 
loading the matrix (serial region of code) and the average of power consumption was 
of 218 W - power consumption increase of 36 W - with an energy consumption of 2,916 
J, and ii) between T2 and T3, the application was solving the problem (OpenMP region 
of code), the average of power consumption was of 298 W - increase of 116 W - with 
an energy consumption of 10,556 J. The rise in temperature in the CPU(0), when the 
application was loading the matrix, indicates that only that CPU was executing the 
process. Between the interval T2 and T3 the parallel region of the code is started and 
both CPUs were executing the process. So, it is possible to observe the rise of the 
temperature in both CPUs and the peak of the power consumption and CPU utilization 
rate.

Figure 5: Results for the ComCiDis CPU collected by the IPMItool based monitoring application.

Table 4 compares the results for the energy and power consumption by system, 
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monitor and application, while the application was running on serial and parallel region 
of the code. In the column System, can be observed that the power consumption by 
the GPU system was greater than by the CPU system, increased by GPU devices. 
For the application (App), it’s possible to note that power consumption on serial region 
was much smaller than on parallel region for either CPU and GPU. Even the power 
consumption on parallel region in the GPU was greater than in the CPU. Although 
the power consumption was greater, given the execution time of the application, the 
energy-to-solution in the parallel region in CPU was smaller than for GPU. The power 
consumptions by the monitors (Monitor) were the same for both CPU and GPU, but 
the energy consumptions were different because the execution time on GPU was less 
than on CPU.

 

                  Table 4. Results for the ComCiDis’ CPU and GPU.

6 |  FINAL CONSIDERATIONS

In this work were analysed three directly measuring methods via internal sensor 
for two generations of NVDIA GPUs and for the ARM based NVIDIA Jetson TX2. 
Also, we compare the power profile of GPU with CPU using IPMItool for a deeper 
understanding of this method. For this we developed two monitoring tools, based on 
NVML and IPMItool.

Analyzing the results obtained with three monitoring approaches, as well as for 
different computational environments, it is possible to make some observations. With 
regard to different generations of sensors, and consequently the available sensors to 
measure temperature and energy, the precision of K40 in relation to M2050 is very 
high. This can be clearly observed by visually comparing the graph of Figures 1 and 
2, even though the graph for the M2050 had to be compressed to fit within the same 
width of the graph for the K40 (since it the time to solution of the M2050 was 1.5 times 
longer), where the profiling power is much coarse-grained, it is not so clear seen in the 
graph of the Jetson TX2 execution ( Figure 3 ) due to a higher compression, but still 
visible. Also, the refreshing rate for K40 is very faster and its idle power drain is about 
25 W against 60 W for M2050, indicating the improvement in the energy saving of the 
newer generations.

Regard the monitoring applications, the sampling rate for NVML based monitoring 
application is much higher, reaching 500 Hz versus only 3 Hz for IPMItool. Thus, the 
accuracy of the power profile obtained with the NVML based application is much higher 
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with incurred overhead of almost zero for the execution time and the power measured 
for GPU. Another advantage is that this method does not need sudo user to query the 
sensors, in order to enable the monitoring of environments that have high restrictions to 
access, like SDumont. Using the IPMItool based monitoring it was possible to compare 
the power consumption and estimate the energy consumption for GPU and CPU. The 
accuracy is the same for both architectures, since IPMItool query the same kind of 
sensors. The power profile is not so accurate, as demonstrated in results and there 
is an overhead about 2.5% of CPU utilization rate. Despite these limitations, in some 
cases its use is still a nice option, like in generations of GPUs that do not have built-in 
sensors. Besides that, this monitoring method allows to analyse the power profile, for the 
same application, in different architectures and parallel models. The major limitation is 
the need for sudo user. For the Jetson we used a shell script using architecture specific 
system calls to query the sensors directly both because of the availability of the system 
calls as well as to minimise the overhead caused by a more complex application, since 
the ARM CPU are much more limited compared to X86-64, for that same reason we 
choose a sampling rate of 1Hz.

In general, for the X86-64 architecture, both monitoring tools were feasible for 
our studies on energy consumption of the applications. However, we conclude that the 
best option could be a monitoring tool that combines the two monitoring tools, since the 
NVML measures only the individual power levels for each GPU and IPMItool measures 
only the total power used by the whole computing node. Thus, it would be possible to 
develop a more accurate monitoring.

As future works we plan to develop this hybrid monitoring tool, to execute tests with 
a multi-GPU version of the real application and also to perform multiple experiments, 
similar to those presented using IPMItool, however, using different times of application 
launches in relation to the launch time of the monitor.
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