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ABSTRACT: Gypsum (calcium sulfate) for 
agricultural uses is a source of essential 
nutrients for plants (calcium and sulfur) and 
a soil and root environment conditioner in 
surface and subsurface soil layers. Applying 
gypsum to the soil reduces physical, 
chemical, and biological losses. Gypsum is 
primarily available as mined (sedimentary 
rocks) or as a by-product of industrial 
processes (e.g., acid manufacturing), 
food protein production (lacto-gypsum), 
or pollution control systems (e.g., flue 
gas desulfurization gypsum). Many plant 
nutrients in the soil can be managed by 

applying gypsum alone or in combination 
with other components such as lime and 
organic amendments. Surface-applied 
gypsum improves nutrient distribution in the 
soil profile and reduces aluminum saturation 
in no-tillage cropping systems. There are 
multiple and simultaneous benefits of 
applying gypsum to the soil that may be 
responsible for increasing plant resistance 
to stresses (biotic and abiotic plant diseases) 
and increasing plant biomass, grain, fibers, 
and extract yields in traditional extensive 
agroenvironments or organic cultivation. 
However, the use of gypsum in agriculture 
depends on its availability and shipping costs 
compared to the expected soil and yield 
responses. When gypsum is economically 
viable, significant advances in yields and the 
overall efficiency of the production process 
can be achieved in various crops and soil 
conditions. The aim of this chapter is not 
to exhaustively cover all gypsum-related 
topics but to address concepts and studies 
that will (i) review the recent literature on 
the effects of gypsum application in the soil-
plant-environment system; (ii) present the 
gypsum recommendation methodologies 
and considerations; (iii) discuss studies 
and cases of gypsum uses in different soils 
and environmental conditions; (iv) suggest 
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ways of managing gypsum to efficient and sustainable agriculture, and (v) present themes to 
be studied and explored to advance the knowledge of this agricultural tool. The information 
presented in this chapter is intended for farmers, researchers, natural sciences students, 
agricultural management consultants, environmental regulators, and agricultural gypsum 
producers and traders.
KEYWORDS: calcium sulfate, calcium, sulfur, soil parameters, plant nutrition, crop 
management, efficient food production, eco-friendly agriculture

The sustainability of a growing human population depends on the sustainability of 
agriculture. Food, feed, fibers, and fuel from crop plants must consider preserving and 
improving healthy environments and their ecological services. Therefore, agriculture must 
be conducted according to adequate technical principles and precise farming management. 
The correct amount and time of fertilizer applications for crop production are essential for 
enhanced results and reduced environmental impacts.

Modern techniques for field fertilization include using highly efficient fertilizers and 
soil conditioners (products that affect soil physical, chemical, and biological attributes) to 
supply crop plants during their cycle. Agricultural gypsum is a fertilizer and a soil conditioner, 
and despite its underuse for farming, it is among the most important nutritional amendments 
used for crop production worldwide.

GYPSUM ORIGINS
Concentrated gypsum (CaSO4, or calcium sulfate) contains about 23.3% calcium, 

18.6% sulfur, and minor amounts of other elements; however, for agricultural purposes, 
hydrated gypsum (CaSO4 × 2H2O, or gypsum) is more available to the farmers. The 
production of hydrated gypsum starts with gypsum natural rock (Deer et al., 1966), which is 
grounded and heated (190-200 ºC) to remove more than two-thirds of its water content. This 
less hydrated mined gypsum is a neutral salt containing approximately 79% calcium sulfate 
and 21% water, and it is a moderately soluble (2.5 g L-1) and a relatively common mineral 
(Curi et al., 1993; Chen and Dick, 2011; Wang and Yang, 2018). Anhydrite (anhydrous 
gypsum) is another natural rock available as a gypsum source; however, the hardness and 
low reactiveness make it less economically attractive.

The world’s top five mined gypsum producers are the USA (22 million tons), China, 
Iran, Turkey, and Thailand (Crangle Jr., 2021). Brazil produces about 3 million tons of mined 
gypsum (Crangle Jr., 2021), and 80 mines have been exploring this resource recently 
(IBRAM, 2020), mainly concentrated in the north, northwest, and central-west sides of the 
country (van Raij, 2008). Gypsum for agricultural uses is also available as (i) a by-product of 
phosphoric, hydrofluoric, and citric acid production, (ii) a by-product of the pollution-control 
processes (e.g., neutralization of sulfuric acid and flue-gas desulfurization), and minor (iii) 
from dairy whey side streams (Alcordo and Rechcigl, 1993; Zoca and Penn, 2017; Bondi et 
al., 2021).
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The gypsum by-product of the manufacture of phosphoric acid from the sulfuric acid 
attack on rock phosphate is named phosphogypsum (van Raij, 2008; Vitti et al., 2008). 
This sort of gypsum is widely available and may have impurities such as small proportions 
of phosphorus, potassium, magnesium, sodium, boron, fluorine, silicon, iron, aluminum, 
heavy metals, and radionuclides depending on the gypsum rock composition and geological 
origins (Alcordo and Rechcigl, 1993), but the calcium and sulfur relative concentrations still 
very similar among the types of mined gypsum available (van Raij, 2008).

BENEFITS AND EFFECTS OF GYPSUM USE
The positive results of gypsum application to the soil-plant-environment system are 

long known (Mayer, 1768; Crocker, 1922; Brasil et al., 2020). The first studies to highlight 
the positive effects of gypsum on agriculture in Brazil were reported by Malavolta et al. 
(1979) - which indicated crop improvements and higher root development in high-sodium 
soils - and by Ritchey et al. (1980) - which stated that single superphosphate and gypsum 
application resulted in (i) increased soil calcium contents, (ii) lower subsoil aluminum sa 
turation, and (iii) improved maize (Zea mays) root development.

Ritchey et al. (1980) also highlighted that the leaching of soil bases such as potassium 
and magnesium could occur as the gypsum rate increases and that the improvements 
generated by the gypsum application are not exclusively due to the calcium sulfate as a 
source of calcium and sulfur. Syed-Omar and Sumner (1991) observed that exchangeable 
magnesium was reduced throughout the first 0.525 m soil layer, while no reduction in 
exchangeable potassium was observed below the 0.225 m soil layer. Their study indicates 
magnesium is more susceptible to leaching loss than potassium after surface gypsum 
application (2, 5, or 10 Mg ha-1). It was also suggested that surface‐applied gypsum be used 
as a soil ameliorant along with proper management of magnesium and potassium fertilizers.

Gypsum dissociates into calcium cation (Ca2+) and sulfate anion (SO4
2-) in soil solution. 

The calcium added to the soil complex displaces other cations, such as magnesium (Mg2+), 
potassium (K+), and aluminum (Al3+). These displaced cations react with the sulfate anion 
and originate less phytotoxic forms of aluminum and neutral ionic pairs (cation + SO4

2), such 
as MgSO4 and K2SO4, which are highly mobile ionic pairs in the soil profile (Carvalho and 
van Raij, 1997).

The magnesium leaching caused by gypsum application can be even more damaging 
to plant development if other soil nutrition strategies are not appropriately implemented. 
A plant magnesium deficiency in the Brazilian Cerrado was potentialized by gypsum 
application to a newly opened area (summer of 2023/2024) for grain cropping (Pádua Jr., A. 
L. – data not previously published). The affected area was treated with 3 Mg ha-1 of calcitic 
lime (45-55% CaO, 1-4.99% MgO) 90 days before maize sowing and 1 Mg ha-1 de gypsum 
60 days before maize sowing. The soil magnesium content in the 0-0.2 m soil layer was 
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also low (0.4 cmolc dm-3). However, the recommendation for magnesium-poor soils where 
gypsum is needed is the application of dolomitic lime (25-35% CaO, ≥ 5% MgO). Dolomitic 
lime (2 Mg ha-1) was applied to only one section of the cropping area. The plants from where 
calcitic lime was applied presented leaf symptoms of magnesium deficiency (Figure 1).

Figure 1. Maize plants from where calcitic lime and gypsum were applied presented leaf yellowing 
due to magnesium deficiency (A). B. Initial maize leaf symptom of magnesium deficiency (interveinal 

chlorosis). 

Source: Pádua Jr, A. L.

Such a condition of maize plants responding to low magnesium availability was 
caused by (i) the excess of calcium cations from lime and gypsum application, (ii) the 
increased cation leaching potential generated by gypsum application, and (iii) the low soil 
magnesium content. Thus, in this case, gypsum potentialized the abiotic stress caused by 
the soil magnesium shortage. Magnesium sulfate (9% magnesium) was applied via foliar 
to reduce damage to the crop yield. Still, a nutritional soil repositioning of magnesium must 
be done before the next crop season. The effects and recommendations on soil cation 
management and the joint application of gypsum and lime will be further discussed.

Moreover, gypsum application does not provide only calcium and sulfur; other 
nutrients are added with gypsum application (Alcordo and Rechcigl, 1993). According to 
van Raij (2008), some gypsums can add up to about 1 kg ha-1 of boron for each 2 Mg ha-1 of 
gypsum applied to the cropping system. Boron is essential for root system growth, cell wall 
formation, and root expansion in the soil volume.

The regular gypsum positive effects include calcium and sulfur source in superficial 
and deeper soil profiles but also have positive effects on soil physical, chemical, and 
biological conditioning; reclaimed soils; reduced damage caused by subsoil acidity 
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(exchangeable aluminum) and pollutants on plant growth; increased the abundance of soil 
microorganisms; improved nutrient redistribution and its plant-use-efficiency in soil profile; 
enhanced seedling, shoot, and root development; lower nutrient losses in agricultural 
biological waste composting; increased rainfall absorption; lower soil particle dispersion; 
improve soil stability; lower surface crust formation, runoff, and soil erosion (Ritchey et al., 
1980; Ritchey et al., 1995; Toma et al., 1999; Martins et al., 2002; Soratto and Crusciol, 
2008; Chen and Dick, 2011; Cañadas et al., 2014; Batte and Forster, 2015; Qayyum et al., 
2017; Zoca and Penn, 2017; Bossolani et al., 2018; Cuervo-Alzate and Osorio, 2020; Qu et 
al., 2020; Charlo et al., 2022; Goiba et al., 2023; Garbowski et al., 2023; Jin et al., 2023; Li 
et al., 2023; Niaz et al., 2023; Outbakat et al. 2023; Robinson et al., 2023; AbouRizk et al., 
2024). Gypsum can also have other purposes and be carbonated with carbon dioxide (CO2) 
to sequester it from the atmosphere; one megagram or one ton of hydrated gypsum can 
react with about 0.26 Mg of CO2 and form lime (Wang et al., 2021).

About three decades ago, Wallace (1994) presented many reasons why gypsum 
is essential for agriculture maintenance on many soils. The main advantages of gypsum 
application to the soil include accumulating more soil organic matter and aggregate stability, 
improved water drainage into the soil, prevention, and correction of soil sodicity, and faster 
seed emergence. The author also highlighted that gypsum is an industrial waste product 
available at a relatively low cost in many locations.

Some agricultural areas may still be far from a gypsum source. The beneficial 
soil-plant-environment returns of gypsum must be considered before gypsum acquisition 
since shipping costs can be restrictive. The expenses of gypsum benefits naturally include 
purchasing the material, transporting it from industry to the crop area, and spreading it on 
the soil (Chen and Dick, 2011). Despite its many benefits, the commercial-scale use of 
gypsum still depends on its logistics and investment return compared to the yield responses 
achieved with its application, the cost/benefit ratio (Shainberg et al., 1989).

The review of Rashmi et al. (2018) resumed many of the impacts of gypsum 
application to crops, especially oilseed crops such as soybean (Glycine max) and mustard 
(Brassica juncea). The authors presented gypsum’s fertilizer and soil conditioner roles 
and gypsum’s impacts on plant biometrics, chemical composition, crop yield, and soil 
parameters. Although, as pointed out by Chen and Dick (2011), most farmers are unfamiliar 
with the field application of gypsum and consequently have not seen the gypsum benefits. 
Thus, there is a considerable lack of knowledge about the best management practices for 
using gypsum as an agricultural amendment.

Moreover, the soil chemical balancing for plants requires regular applications of 
minerals containing calcium, such as limestone (lime calcium carbonate, CaCO3) and 
gypsum, to achieve cation balance on the soil exchange sites (Brock et al., 2020). The base 
cation saturation ratio of 13:2:1 (calcium, magnesium, and potassium contents, respectively) 
is usually indicated as a reference to support optimum crop development (Chaganti and 
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Culman, 2017). However, optimum crop development has been observed in commercial 
crop areas in Brazil for base cation saturation ratios of 8-10:3:1 (Pádua Jr., A. L. - personal 
information). Potassium luxury uptake by plants and reduced phosphorus deficiency are 
also observed in soils with chemically balanced cation saturation ratios (Kopittke and 
Menzies, 2007).

Gypsum can even be used as a phosphorus sorbing and retaining material in soils 
(Penn and Bryant, 2006; Bryant et al., 2012; McGrath et al., 2013; Endale et al., 2014; Penn 
and McGrath, 2014; Watts et al., 2021; Mao et al., 2022; Ekholm et al., 2024), reducing 
its losses up to about 66% (Murphy and Stevens, 2010; Kumaragamage et al., 2022). 
King et al. (2016) reported that the surface application of flue gas desulfurization gypsum 
(FGDG) (further discussed) considerably reduced dissolved reactive phosphorus and total 
phosphorus concentrations and loadings in drainage waters (runoff and tile solutions). 
Favaretto et al. (2012) also reported that gypsum application reduces water pollution by 
phosphorus but increases soil ammonium (NH4

+) mobility. It is worth noting that the effects 
of gypsum application on soils and crops could take several years before demonstrable 
benefits (Farina and Channon, 1988; McKibben, 2012), but these effects can last for years 
(Toma et al., 1999).

The combination of gypsum with other materials frequently outcomes improved 
results. Tubail et al. (2008) reported that combining FGDG with organic waste (nitrogen-
rich streams) results in a product with decreased nitrogen potential loss and reduced odors 
associated with ammonia volatilization during the composting process. Bossolani et al. 
(2020), after a long-term study, reported that the combined application of lime (13.04 Mg ha-

1) and gypsum (10 Mg ha-1) increased soil fertility and biological nitrogen fixation to an 
extended level. These authors also reported (i) reduced soil nitrification and denitrification in 
maize rhizosphere intercropped with Ruzi grass (Urochloa ruziziensis), (ii) altered nitrogen 
cycle genes in the soil biota, (iii) reduced aluminum saturation, (iv) balanced micronutrient 
availability (especially manganese), (v) improved calcium and magnesium availability in 
soil, (vi) increased nitrogen acquisition and (vii) increased maize grain yield.

However, the effectiveness of the benefits from gypsum application depends 
significantly on the physical and textural qualities of the gypsum reaching the field. Factors 
such as particle size, humidity, purity, and impurities play crucial roles in influencing the 
overall impact of gypsum effects on soil properties, plant growth, and yield responses. The 
moisture content of the gypsum to be applied must be low, and the gypsum material must 
be dry enough to be handled without clumping together due to high water content. Gypsum 
moisture content between 10 and 22% presents no significant physical limitations for field 
application [Paolinelli et al. (1986) in van Raij (2008) p. 34]. Occasionally, gypsum can arrive 
in the cropping area excessively wet (Figure 2), especially during high gypsum demands by 
crop management agendas.
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Figure 2. Excessively wet phosphogypsum. Saturated load was dripping calcium sulfate solution (A) 
from a mass in the back of a truck (B) that was unloaded as a compacted material (C and D) physically 

inappropriate for field application.

Source: Guareschi, G.
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Such a situation of excessive water content in gypsum constitutes two significant 
problems besides losing gypsum’s overall agronomic efficiency: (i) wet gypsum cannot be 
homogeneously applied over the field using regular mechanical spreaders, and (ii) after wet 
gypsum dries, it becomes a hard solid material that needs to be grounded and sieved again 
before its application.

LESS EXPRESSIVE GYPSUM EFFECTS
Numerous reports of improvements in the soil system and crop yield increments 

are not always detected or consistent due to variations in soil type, crop species, and 
prevailing climate conditions. These observations challenge the identification of the precise 
improvements responsible for yield increases since many simultaneous physical and 
chemical interactions occur in soil (Zoca and Penn, 2017). Thus, it is more reasonable to 
understand crop yield improvements (when they occur) due to the synergic effects of the 
gypsum application to the soil-plant-environment system (Shainberg et al., 1989).

The improvements generated by the gypsum application are not always consistent 
and present mixed effects on soil, plant, and environmental parameters (Churka Blum 
et al., 2013; Tirado-Corbala et al., 2013; Buckley and Wolkowski, 2014; Bortolanza and 
Klein, 2016; Chaganti et al., 2019; Sun et al., 2019; Brignoli et al., 2021; Popp et al. 2021). 
For example, Adams et al. (2022) found that the surface runoff in grassland systems was 
reduced - regardless of management (grazing or hay) - by pasture aeration (spike aerator) 
following broiler litter application (5.6 Mg ha-1), especially when compared to surface-
broadcast traditional practices; however, the authors observed that gypsum application did 
not affect soil infiltration rates.

Kost et al. (2018) studied the effects of FGDG and mined gypsum application on soil, 
plant, and water parameters across ten sites distributed in the USA (Alabama, Arkansas, 
Indiana, New Mexico, North Dakota, Ohio, and Wisconsin states) via a data meta-analysis. 
The authors found relatively few significant effects of gypsum applications on the response 
variables. Some crop yield responses to gypsum were detected in some sites, but the 
overall results indicated no significant differences between the gypsum sources and the 
untreated control. Additionally, Charlo et al. (2020) reported that maize yield and plant 
biometric attributes were not influenced by gypsum or K2O doses; they also reported that 
gypsum caused cation (potassium and magnesium) displacement to deeper soil layers (0.2-
0.4 m), which was not enough to improve maize responses.

Gypsum application usually reduces the adverse effects of polluted soils on plants. 
However, Dubrovina et al. (2021) found no effect on alleviating metal phytotoxicity in the 
contaminated soil they studied [O horizon (forest litter) and A horizon (mineral soil)]. Instead, 
gypsum increased the concentrations of soluble metals in the soil solution and enhanced 
the metal plant uptake. The calcium cations from solubilized gypsum possibly displaced 
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the metals in the exchangeable soil complex, making them more available to the plants 
and increasing the environmental hazard; thus, gypsum was ineffective and considered 
inappropriate as a soil remediation method to ameliorate soils polluted by metals. Argüello 
et al. (2022) also found limited effects of gypsum in cadmium-contaminated soils cultivated 
with cacao and, in some cases, even increased cadmium dissolution and plant-available by 
forming cadmium sulfate (CdSO4) complexes.

GYPSUM AS BY-PRODUCT
Using industrial residues for soil amelioration and crop production can be a sustainable 

practice, and it has become of great interest in recent years. By-products from treated slags, 
such as yellow gypsum (Ali and Shahram, 2007; Ashrit et al., 2016; Ashrit et al., 2020; 
Prakash et al., 2020; Laxmanarayanan et al., 2022), and from pollution-control processes, 
such as the FGDG (Baligar et al., 2011; Watts and Dick, 2014; Wang and Yang, 2018) have 
demonstrated significant and positive results for the soil-plant-environment system. The 
yellow gypsum is produced from the Linz-Donawitz slag treated with concentrated sulfuric 
acid and neutralized with lime. The product (yellow gypsum) has about 87.98% of gypsum, 
plus other important nutrients such as iron (3.53%), silicon (1.79%), magnesium (0.78%), 
phosphorus (0.37%), titanium (0.15%), and other trace elements (Ashrit et al., 2015). The 
FGDG is primarily produced during the wet sulfur removal from fuel combustion gases in 
thermal power facilities, coal-fired power generation industries, smelters, and large-scale 
boilers (Koralegedara et al., 2019; Liu et al., 2021). Therefore, yellow gypsum and FGDG 
are mainly used in countries where their production is abundant, like China, the USA, India, 
and Germany.

The FGDG delivers similar benefits to the soil-plant-environment system as the 
gypsum from other origins (e.g., mined, by-product of acids production, dairy whey side 
streams). Reports of positive FGDG effects, even in long-term studies, are regular. Such 
effects include plant macro and micronutrients fertilization, reclaiming soil physicochemical 
attributes and polluted soils, stimulation of soil microbiota activity and ecological services, 
control of soil and nutrient erosions, improved plant development, and increased crop yield 
(Dick et al., 2006; Baligar et al., 2011; Watts and Dick, 2014; Marchis et al., 2016; Panday 
et al., 2018; Wang and Yang, 2018; Wang et al., 2021; USEPA, 2023). Zhao et al. (2019) 
studied the physical-chemical attributes and heavy metal contaminations after 17 years 
of FGDG application on sandy loam soil. After that period, the authors observed (i) an 
increased occurrence of soil macroaggregates (> 250 μm), (ii) no significant differences in 
the soil heavy metal contents (arsenic, cadmium, chromium, copper, mercury, nickel, lead, 
and zinc), and (iii) the soil reclamation effect caused by FGDG on sodic soils persisted and 
extended to deep soil layers.
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FGDG can also be applied as an encapsulated or non-encapsulated soil amendment 
(Codling, 2017; Koralegedara et al., 2019). Additionally, FGDG typically presents a small and 
uniform size, with more than 95% of the particle sizing less than 150 microns, but it can be 
processed to form large-sized granules (Chen and Dick, 2011). However, gypsum produced 
from pollution-control processes may contain calcium carbonate, calcium sulfite, quartz 
(SiO2), heavy metals, and other impurities that must be analyzed for safe environmental use 
before agricultural application (Chen and Dick, 2011; Wang and Yang, 2018; Koralegedara et 
al., 2019; Kong et al., 2023); therefore, for the environmentally responsible use of FGDG, it 
is necessary to accurately determine the contents of elements (plant nutrients or pollutants) 
in its composition (Chen and Dick, 2011; USEPA, 2023).

Chen et al. (2014) studied FGDG and mined gypsum application across many soils 
in the USA (Ohio, Indiana, Alabama, and Wisconsin states) to determine gypsum’s ability 
to affect the concentration of trace elements (arsenic, barium, cobalt, chromium, copper, 
molybdenum, nickel, niobium, lead, antimony, selenium, strontium, vanadium, and zinc) 
in soils and earthworms. The authors found that (i) only mercury was slightly increased in 
some soils and earthworms when FGDG was applied; (ii) in some soils that received FGDG, 
selenium in earthworms was higher than in the untreated control but not higher than in 
mined gypsum treatment, and (iii) the bioaccumulation factor (ratio of element concentration 
in earthworm and element concentration in soil) where FGDG was applied were similar, or 
lower, to the untreated control and mined gypsum.

Additionally, Lee et al. (2007) indicated that the autumn surface application of 
FGDG in no-tillage systems managed before spring cropping would allow enough time for 
oxidation and dissolution reactions without causing significant negative effects on the soil 
biota. Thus, when properly managed and applied at the correct periods, FGDG represents 
a considerable input into agricultural systems.

GYPSUM ON SOIL ATTRIBUTES
The soil’s physical characteristics are also essential for sustainable plant development. 

The soil infiltration rate (solution flux through a surface area per time) and water storage 
are usually improved by gypsum application (McIntyre et al., 1982; Truman et al., 2010; 
Muller et al., 2012; Zoca and Penn, 2017; Crusciol et al., 2019). The effects of gypsum on 
soil infiltration and water storage capacity originated from the flocculation and aggregation 
of subsoil components and improved root development. A developed root system also 
increases subsoil aggregation and reduces soil compaction; thus, gypsum, more precisely, 
calcium in gypsum, can minimize soil dispersion (Summer et al., 1990; Norton, 2008). As 
previously mentioned, gypsum can prevent soil surface crusting and reclaim calcareous 
non-sodic soils (Amezketa et al., 2005).
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According to the Soil Science Society of America (1997), gypsum should be used 
as a calcium source in sodic soils, while the Brazilian legislation (Brasil, 2006) considers 
gypsum a soil sodicity corrector (sodium saturation reducer) and soil conditioner (soil 
attribute improver). These effects reduce soil erosion and improve water bodies’ quality, 
particularly when applying gypsum with other management techniques. Soil aggregation 
induced by gypsum and polysaccharide (glucose) amendments can be enhanced (Walia et 
al., 2018). Such improved soil aggregation is usually attributed to the glucose gluing activity 
and the gypsum (calcium) binding-stabilizing activity.

Additionally, reports of positive effects of gypsum application on soil physics - soil 
structure (Tirado-Corbalá et al., 2019), water infiltration and drainage (Jayawardane and 
Blackwell, 1986; Tirado-Corbalá et al., 2013; Watts and Dick, 2014), bulk density (Buckley 
and Wolkowski, 2014), penetrometer resistance (Ellington, 1986) - are regular and important 
to the cropping system and raise the interest in the regular use of gypsum (Zoca and Penn, 
2017; Rashmi et al., 2018). Gypsum is also used to reclaim sodic soils and to improve 
soil water infiltration decreased by low electrolyte concentration (Oster, 1982). However, 
the magnitude of soil and crop responses to gypsum application is affected by multiple 
variables such as soil characteristics, the history of the cropping area (previous agricultural 
practices), and crop variety (Shainberg et al., 1989). Despite many favorable reports in the 
literature, gypsum value is still poorly disseminated among farmers.

Gypsum is occasionally reported to change soil pH, especially soil water pH, either 
increasing or decreasing it (Farina and Channon, 1988; Shamshuddin and Ismail, 1995; 
Caires et al., 2006; Chen and Dick, 2011; Zoca and Penn, 2017; Tavakkoli et al., 2021). 
However, the range of soil pH changes caused by gypsum is modest and usually of a low 
extent (0.2-0.3 pH units). The soil pH response to the gypsum application is the product of 
the reactions between the gypsum and soil components. The replacement of hydrogen and 
aluminum in the cation exchange capacity (CEC) with calcium, the replacement of hydroxyl 
(OH-) with sulfate (SO4

2-), the precipitation of the solid soil phase, the ion-pair formation, and 
the self-liming effect are some of the gypsum reactions able to affect the soil pH significantly 
(Sumner, 1993). These reactions depend on the soil mineralogy and CEC ion composition, 
and the magnitude of each response dictates the influence of gypsum on soil pH (Zoca and 
Penn, 2017). However, when soil pH is high, presenting a soil pH of low acidity to alkaline 
conditions, the lime application is usually avoided. Thus, gypsum becomes an option for 
calcium and sulfur sources without significantly changing the soil pH in the soil profile.

Many areas worldwide present degraded soils or soil with severe chemical and 
physical limitations, raising concerns about food security (Kopittke et al., 2019; Agim et al., 
2021; Kraamwinkel et al., 2021). Most of those degraded soils are highly weathered tropical 
soils, which need corrections to become highly crop-productive and sustainable. The soil 
acidity (low soil pH) is corrected with lime (CaCO3 and MgCO3). Still, the lime’s beneficial 
effects are regularly limited to the soil layer of incorporation (usually up to 0.2 m deep) or the 
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first centimeters if applied to the soil surface (usually up to 0.1 m deep). However, Fontoura 
et al. (2019) reported that the lime application to the soil surface of a moderately acidic 
Oxisol under no-tillage rapidly lowered the subsoil acidity up to 0.6 m deep in the soil profile. 
Other studies also reported the effects of lime and gypsum surface application in deep soil 
layers (Crusciol et al., 2019; Besen et al., 2021a).

The time needed for gypsum reaction in soil and significant effects arising from its 
application depends on regular factors but are not limited to soil type, gypsum granulometry, 
soil temperature, and gypsum way of application (on the soil surface, soil incorporated, and 
dissolved in irrigation). Table 1 presents a study done with gypsum application in an Oxisol 
(60% clay) cultivated with soil tillage and cropped with maize in 2013 (Pádua Jr., A. L. – 
data not previously published). Basic soil analysis was performed every 0.2 m up to 1 m 
depth before and after four months of gypsum (6 Mg ha-1) application. The gypsum rate was 
applied on the soil surface 40 days before maize sowing.

Soil pH SOM Phosphorus Calcium Sulfur CEC V m

layer (CaCl2) (dag dm-3) (mg dm-3) (cmolc.dm-3) (mg dm-3) (cmolc.dm-3) (%) (%)

(m) t0 4 m t0 4 m t0 4 m t0 4 m t0 4 m t0 4 m t0 4 m t0 4 m

0-0.2 4.4 5.4 3.2 3.3 2.2 1.8 2.2 4.5 2.5 6.4 8.1 8.7 49 75 5 2

0.2-0.4 4.0 4.8 2.3 2.1 0.7 1.2 1.1 2.9 1.2 34.4 7.9 8.5 30 52 32 4

0.4-0.6 3.9 4.7 1.5 1.7 0.5 0.7 0.6 2.3 0.7 18.1 6.9 7.5 22 45 50 11

0.6-0.8 4.0 4.5 1.1 1.4 1.0 0.7 0.6 1.4 1.0 10.7 6.3 6.6 20 32 50 19

0.8-1 4.0 4.4 1.1 1.0 0.2 0.6 0.5 1.4 1.4 5.3 6.2 6.7 18 31 57 32

SOM: soil organic matter; CEC: cation exchange capacity; V: soil base saturation; m: soil aluminum 
saturation. Source: Pádua Jr., A. L.

Table 1. Basic soil chemical analysis at different soil layers before (t0) and four months (4 m) after 
gypsum (6 Mg ha-1) application in a Haplorthox (Oxisol).

The gypsum application increased the contents of calcium, sulfur, and bases in the 
soil, reducing aluminum saturation in all the soil layers evaluated (Table 1). The maize grain 
yield observed raised from 6,600 kg ha-1 (control no gypsum) to 10,200 kg ha-1 (6 Mg ha-1), 
indicating that applying gypsum about 40 days before sown is enough for the presented 
situation to cause significant increments to maize grain productivity. Interestingly, during the 
soil sampling in this soil tillage area, it was possible to demonstrate that only four months 
was enough for gypsum to run through the soil profile from the soil surface to depths up to 
1 meter (Figure 3).
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Figure 3. Deposit of solubilized gypsum in the 0.8-1 m soil layer four months after its application to a soil 
tillage area. Soil sample extracted with the aid of a Dutch auger. 

Source: Pádua Jr., A. L.

Even in no-tillage cropping systems, the benefits of recent gypsum applications 
could be observed in soybean crops, especially in tropical soils. The gypsum application 
(3 Mg ha-1) 60 days before soybean sowing improved nutrient distribution in the soil profile, 
raised grain yield, and increased residual effect of lime and gypsum for the succeeding crop 
seasons in Oxisol (Pádua Jr., A. L. – data not previously published). The gypsum application 
increased soybean grain yield by about 240 to 720 kg ha-1.

Another soybean study in Oxisol presented the positive effects of gypsum (2 Mg 
ha1) - applied 40 days after lime application (2 Mg ha-1) and 20 days before soybean sowing 
- on some soil cations contents in deep soil layers (Pádua Jr., A. L. – data not previously 
published). Calcium and magnesium soil contents and aluminum saturation are compared 
between the year of gypsum application (2015) and two years after (Figure 4).
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Figure 4. Soil calcium, magnesium, and aluminum contents in deep soil layers of an Oxisol in the year 
of gypsum application (2 Mg ha-1) and two years after. 

Source: Pádua Jr., A. L.

The increased soil aluminum saturation at the 0.2-0.4 m soil layer in 2017 is probably 
due to a boosted soybean root system cropped in the area. The gypsum application 
improved soil attributes in deeper soil layers and enhanced deeper root development 
conditions. This robust soybean root system would naturally absorb more soil cations and 
compensate for such extra absorption by exudating more hydrogen ions (H+) in the soil 
solution. The increased H+ availability reduced soil pH and increased aluminum availability 
and its saturation in soil. In the 0.8-1 m soil layer, the drop in the soil aluminum saturation 
was very expressive. It reflected the consequences of the arrival of solubilized soil cations 
from the gypsum applied above. In this soil depth (0.8-1 m), the influence of the soybean 
root system is lower than the effect of soil cation arrival from gypsum application, thus 
reducing the soil aluminum saturation.
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Additionally, the greater volume of roots produced in the soil profile due to gypsum 
application increases soil phosphorus contents and cation exchange capacity over time 
after root decomposition.

GYPSUM AND LIME
The low lime solubility (about 172 times lower than gypsum) and the lack of soil 

disturbance in areas under no-tillage cropping systems reduce the effectiveness of the lime 
benefits to the soil profile when applied to the soil surface. In the Brazilian tropical soils, 
gypsum application frequently occurs from July to October, usually 40-60 days after lime 
and before routine fertilization and sowing. Still, no defined criteria for joint gypsum and 
lime application or the exact time for application is considered. This circumstance raises the 
need for studies including lime and gypsum (more soluble) in the soil surface to improve 
subsoil conditions for root systems development.

The interaction of gypsum and lime on soil attributes and crop yields is reported 
in the literature, especially but not exclusively for no-tillage cropping systems where the 
amendments must be applied to the soil surface (Caires et al., 2011a; Pauletti et al., 2014; 
Crusciol et al., 2016; Costa and Crusciol, 2016; Dalla Nora et al., 2017; Zoca and Penn, 
2017; Fontoura et al., 2019; Anderson et al., 2021a). However, the results of the gypsum 
and lime interaction are occasionally contrasting.

In a no-tillage cropping system, the subsoil acidity is of significant concern since 
lime application to the soil surface could not solve this problem in deep soil layers. Due to 
the higher solubility and movement (deeper penetration) in the soil profile of the calcium-
sulfate pair, the gypsum application can potentially reduce the subsoil acidity (aluminum 
saturation) (Ritchey et al., 1980; McBride, 1994; Zoca and Penn, 2017). The increment 
in exchangeable calcium (cation concentration effect) and sulfate [aluminum precipitation 
- Al2(SO4)3] reduces the toxic aluminum effects in subsoil layers (Shainberg et al., 1989; 
Zambrosi et al., 2007).

According to Vitti and Mazza (2002), gypsum application to sugarcane (Saccharum 
officinarum) cropping areas must occur immediately after lime application, and the positive 
results are more expressive in Oxisols and quartz sand soils. However, according to Demattê 
(2005), the best efficiency of the gypsum reactions and effects in the soil is achieved three to 
six months after lime application. The author also exposed that such a procedure (gypsum 
three to six months after lime application) is counterproductive (timely) and suggested that 
good results are still observed when lime is applied before gypsum (two operations) and 
then incorporated.

Crusciol et al. (2019) evaluated the effects of lime (2.7 Mg ha-1) and gypsum (2.1 
Mg ha-1) on (i) soil (sandy clay loam) attributes, (ii) plant nutrition, (iii) forage dry matter and 
crop yield, (iv) estimated cattle meat production, and (v) economic issues, and concluded 
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that the surface application of lime plus gypsum is essential for food production in acid soils 
under no-tillage in tropical agriculture. The authors reported that (i) lime increased soil pH, 
reduced the exchangeable acidity (H+ + Al3+) and the relative concentration of aluminum up 
to 0.6 m soil depth; (ii) gypsum increased calcium contents through the soil profile; (iii) lime 
(with or without gypsum) improved the nutrient acquisition by the crops cultivated in rotation; 
(iv) lime and gypsum raised the forage dry matter yield and crude protein concentration of 
palisade grass (Urochloa brizantha); (v) estimated meat production of the joint application 
(lime + gypsum) was 26% higher than lime alone and 225% higher than the untreated 
control, and (vi) increased the economic performance during four cropping seasons. The 
authors also emphasized that lime and gypsum applied one day apart can generate positive 
agronomic and economic results; however, the usual recommendation is to apply lime first 
to the soil, then gypsum application later or in the next crop season.

Field empirical experience has shown that crop responses to gypsum application in 
tropical soils occur more expressively when applied in alternated years with lime application 
–gypsum application in the first year, lime application the next year, and follows successively 
alternating fertilizers (Pádua Jr., A. L. - personal information). Moreover, Besen et al. (2024) 
reported that applying lime and gypsum to the soil surface is preferable in no-till cropping 
areas for improved soybean and wheat performance.

The combined application of lime and gypsum can also be an adequate alternative 
to supply calcium and magnesium in deep soil layers of stabilized no-tillage systems (> 10 
years without significant soil tillage), especially in drylands. However, in irrigated areas, 
the conditions are different. In general, artificial watering over time improves the subsoil’s 
chemical and physical properties and helps build the attributes along the soil profile. Thus, 
crops in areas artificially irrigated can be less responsive to gypsum applications.

Additionally, gypsum is more effective than lime for sodic soil reclamation as it 
increases the concentration of electrolytes in the soil solution and displaces sodium with 
calcium within the structure of the clay components (Oster, 1982; Raine and Loch, 2003). 
Many agricultural amendments [e.g., rice (Oryza sativa) straw, press mud (residue from 
sugarcane juice filtration), cow manure, combined organic residues, biochar, beneficial 
microorganisms, and phytohormones] have also been applied with gypsum to improve 
sodium removing, salt-leaching efficiency, soil biological properties, reclaim degraded 
lands, and crop yield (Kilpatrick, 2012; Schultz et al., 2017; Yamika et al., 2018; Ahmed et 
al., 2020; Basak et al., 2021; Bello et al., 2021; Rezapour et al., 2021; Yahya et al., 2022; 
Xu et al., 2023).

Zhao et al. (2019) studied buried layers of maize straw (6, 12, and 18 Mg ha-1) 
and soil incorporated (0-0.2 m) FGDG (0.75 Mg ha-1) on soil attributes and sunflower 
grain yield. Generally, the combined application (buried straw and incorporated gypsum) 
reduced soil pH and exchangeable absorption percentage. It increased the soil’s electrical 
conductivity and grain yield (17.4% in the first year, 20.4% in the second year). The authors 
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also concluded combining organic residue and FGDG reduces soil salinity and sodicity. 
Moreover, gypsum application with Atriplex halimus (sea orache, Mediterranean saltbush, 
and a phytomedicine) can reclaim highly saline-sodic clay loam soils (Gharaibeh et al., 
2011). The application of gypsum with compost (mix of plant and animal residues) and 
nanoparticles of manganese and selenium also improved some chemical and physical soil 
properties, water productivity, and yield of fava beans (Vicia faba) in salt-affected soil (Amer 
et al., 2023). The joint utilization of gypsum with lignin sludge as an organomineral fertilizer 
has also been a viable way to sustainably place gypsum, improve forest cultivation, and 
reclamation of disturbed lands, slopes of highways, and landfills of solid municipal waste 
(Matveeva et al., 2022).

CROP RESPONSES TO GYPSUM
Calcium is a low-mobility nutrient in plants and can not be mobilized from older tissues 

and redistributed in the plant via the phloem (Hanger, 1979; White and Broadley, 2003). Once 
calcium is associated with a compound within the plant structures, its relocation is slow, if 
at all, from one part of the plant to another. Fruits, for example, are at the end of the xylem 
transport system and are prone to receiving less calcium than other plant organs (Tonetto 
de Freitas and Mitcham, 2012; Song et al., 2018). Therefore, calcium must constantly be 
available to the roots (Chen and Dick, 2011); consequently, the crop responses, especially 
the yield responses, are prone to be sensitive to gypsum, a calcium source.

However, such yield responses are related to improved soil calcium and sulfur 
content increases and/or reductions in the subsoil layers’ toxic aluminum (Al3+) saturation. 
Additionally, the yield responses are frequently observed after enough time (months) of 
gypsum application to allow dissolved gypsum to be leached down into the subsoil layers 
(Sumner, 1993). However, Caires et al. (2011b) found a positive maize yield response to 
gypsum application in Oxisol right in the first year of application but no yield response to the 
soybean subsequently cropped.

In their chapter, Zoca and Penn (2017) concluded that all gypsum sources could 
generate positive crop yield responses and reduce the negative effects of stressful 
conditions. However, the authors highlighted that the impacts of gypsum application 
(positive or negative) must be evaluated for each specific objective, region (soil type and 
rainfall regime), crop species, and cultivation system. Rashmi et al. (2018) also concluded 
that gypsum could positively and negatively impact the soil-plant-environment system and 
that oilseed crops do not have a suitable recommendation for different soil types, climates, 
crop species, and cropping systems.

Despite some contrasting results, the positive effects also present a variety of ranges, 
going from substantial increases to a slight decrease in grain yield. In this sense, Pias et 
al. (2020) performed a meta-analysis comprising 129 harvests of six different crop species, 
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including barley, maize, rice, wheat (Triticum sativum), soybean, and white oat (Avena 
sativa), to identify the conditions under which grain yield responds to gypsum application in 
no-tillage areas (Figure 5).

Figure 5. Mean effects (%) of gypsum application on crop grain yield in no-till soils in each primary study 
included in the meta-analysis. Error bars represent 95% confidence intervals of the means. The number 

of observation pairs and the total number of crop harvests (environment × year) included in each 
category are shown in parentheses. 

Source: Pias et al. (2020)
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Pias et al. (2020) found that (i) increased grain yield is very plausible (77-97%) 
when gypsum was applied to soils with aluminum saturation exceeding 5% in the 0.2-0.4 
m soil layer - the decreased subsoil aluminum toxicity caused by the gypsum application 
allowed improved grain yields - (ii) the average increments in grain yield were 14 and 
7% for cereal crops grown under water deficiency or not, respectively, and (iii) gypsum 
application should be avoided if aluminum saturation is below the critical thresholds since 
gypsum can cause excessive magnesium leaching across the soil profile. The authors also 
observed that soybeans positively responded to gypsum, even in areas with water deficit 
and aluminum saturation greater than 10%. The probability of a positive response was 
88%, and the average yield increase was 12%. Such meta-analysis indicated that gypsum 
increased grain yield, decreased it, or presented no appreciable effect in 57, 5, and 38% of 
the evaluated studies, respectively.

Therefore, plant responses to gypsum application can be highly variable. For 
example, annual crops such as maize, wheat, and soybean, in general, present improved 
but extensively variable grain yield results (Dalla Nora et al., 2017; Soratto & Crusciol, 
2008). Other studies do not reveal any positive gypsum effect on grain yield, maintaining 
similar results to the control (no-gypsum) (Marchesan et al., 2017; Fontoura et al., 2019), 
and there are studies even reporting minor drops in grain yield (Somavilla et al., 2016).

The variations in many reported results could be justified, in most cases, by the 
influence of other variables such as plant species and varieties, the time after gypsum 
application, gypsum application rates, soil chemical, physical, and biological properties, 
and climate (e.g., rainfall rates, average temperature) affecting the reports. Zoca and Penn 
(2017) also presented an excellent survey on agronomic gypsum studies varying from 
gypsum significantly improving soil attributes, crop performance, and yield results to no 
positive results.

The improvements in crop yield due to gypsum application are difficult to define, and 
delineating the exact positive effects besides a nutrient source due to many physical and 
chemical changes co-occurring in the soil is challenging. However, the impact of gypsum 
on soil characteristics and crop responses is primarily positive. It results from the synergic, 
accumulative, and additive effects of each potential change to the soil-plant-environment 
system caused by gypsum application.

GYPSUM TO GRAINS CROPS
In a long-term study (58 months), Caires et al. (2006) observed that (i) gypsum 

improved the subsoil chemical conditions, (ii) raised soil pH (0.01 mol L-1 CaCl2), calcium, 
and sulfur contents, but also (iii) caused magnesium leaching in the soil profile. However, 
the authors could not identify a gypsum effect on soybean grain yield, but gypsum improved 
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soybean grain quality, presenting higher protein, sulfur, phosphorus, potassium, and 
calcium contents. The authors concluded that applying gypsum to no-tillage soybean crops 
is important to produce high-quality seeds.

The residual effects of lime and gypsum application (3.71 or 7.42 Mg ha-1) on clayey 
soil and the grain yield of soybean and wheat in southern Brazil were studied by Besen et 
al. (2021a). The studied area has been cultivated under no-tillage since 1975. The authors 
found after 48 months of gypsum application that (i) aluminum contents decreased until 0.6 
m soil depth if lime was incorporated (0.2 m) and until 0.3 m soil depth if lime was applied to 
the soil surface; (ii) lime incorporation reduced soil organic matter content in the surface soil 
layer; (iii) superficial lime application increased the magnesium contents in the 0.4-0.6 m 
soil layer; (iv) 7.42 Mg ha-1 had a pronounced residual effect in subsoil layers but increased 
the vertical displacement of magnesium and potassium contents, and (v) soybean and 
wheat yields were not affected by the soil base saturation variations. Therefore, the authors 
concluded that the standard gypsum rate (3.71 Mg ha-1) provided the best results and 
highlighted that the benefits of superficial gypsum application extend beyond surface soil 
layers in clayey soil from subtropical environments. Applying gypsum to the soil surface is 
also preferable to preserve the benefits of a continuous no-tillage cropping system.

Da Costa et al. (2016) reported different soil organic matter and soybean yield 
results. They found that (i) lime (2 Mg ha-1) application, with or without gypsum (2.1 Mg ha1), 
can increase soil organic matter accumulation in the long term, and (ii) application of lime 
associated with gypsum to soil surface increased soybean and sorghum (Sorghum bicolor) 
calcium absorption and their respective grain yields. The authors also found that the subsoil’s 
sulfur residual effects were observed after five years of gypsum application. In another study 
on sorghum, Charlo et al. (2022) reported that gypsum effectively increases soil calcium 
content by 60.5% in the 0-0.2 m soil layer and 34% in the 0.2-0.4 m soil layer. The authors 
also observed that (i) the highest gypsum dose studied (4,000 kg ha-1) increased the soil 
availability of phosphorus and sulfur by 32.5 and 681%, respectively, and (ii) the nutrients 
increments would improve the crop’s resistance to drought stress. Such improved nutrient 
availabilities mainly result from (i) the ions added to the soil with the gypsum application and 
(ii) the ion displacements in the soil complex caused by the added ions.

A noteworthy study was published by Fontoura et al. (2019), where they evaluated 
the surface gypsum and liming application on the chemical properties of four soil layers (0-
0.1, 0.1-0.2, 0.2-0.4, and 0.4-0.6 m) in two periods 10 years apart (1 and 11 years after lime 
and gypsum application). Between the first and eleventh year of the experiment, 26 crops 
were cultivated [10 soybean crops, four white oats, three maize, three wheat, three barley 
(Hordeum vulgare), and three forage radish (Raphanus sativus)] under a no-tillage cropping 
system. The authors found (i) no synergic effect of gypsum and lime on soil chemical 
properties, crop yield, and most leaf-tissue macronutrients; (ii) yield increments were minor 
for cereals (4%) than for soybean (14%) and were limited to just 25% of cereal crop seasons, 
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and 40% for soybean; (iii) in the short term, gypsum raised more the exchangeable calcium 
content to 0.6 m soil depth than lime, but the latter presented more reductions in the soil 
acidity and extended residual effect (improved soil conditions for extended period), and (iv) 
the lime application to the soil surface under no-tillage lowered the subsoil acidity up to 0.6 
m in the first year after its application, and improved soybean grain yield.

Fleuridor et al. (2021) indicated no yield improvements for maize, alfalfa (Medicago 
sativa), or alfalfa-mixed grasses after two years of gypsum application. However, gypsum 
consistently increased sulfur concentrations in soil and crop tissues as soon as five 
months after each gypsum application. In the short term, the authors also observed that 
gypsum did not affect mineralizable soil carbon, penetrometer resistance, or unsaturated 
hydraulic conductivity. However, the second gypsum application reduced the soil protein 
and magnesium contents; the authors also reported magnesium leaching. Magnesium and 
potassium leaching to subsoil layers is regularly reported in the literature on gypsum and 
soil attributes. Therefore, planning magnesium and potassium fertilization before gypsum 
application must be considered as a way to improve soil fertility deeper in the soil profile.

In the long-term observations, Caires et al. (2011a) observed a residual effect on the 
subsoil sulfur content of an oxidic soil. After eight years of gypsum application, the sulfate 
concentrations in the subsoil were still high. After 7-10 years of surface-applied gypsum 
(no-tillage), maize grain yield improved, but soybean grain yield did not. The authors also 
reported that using gypsum in no-till systems is interesting when maize is frequently grown 
in crop rotations.

Additionally, it is essential to state that the residual effect of gypsum in the soil-plant-
environment is unseparated from the soil attributes. Different soil characteristics (chemical, 
physical, and microbiological aspects) affect the extension of gypsum residual. Other 
significant factors that influence the gypsum residual include (i) the physical and chemical 
characteristics of the soil B horizon, (ii) the occurrence of impediments in lower soil layers, 
(iii) soil organic matter content, and (iv) the predominant soil structure.

De Moura et al. (2018) studied maize crop response in an Argisol (soil classified as 
Argisol in the Brazilian soil classification system) after five years of gypsum application and 
combinations with the residues of leguminous plant species [Gliricidia sepium (gliricidia) and 
Acacia mangium (acacia)]. They found that the mixed application of leguminous residues, 
urea, and gypsum (6 or 12 Mg ha-1) reduced soil penetration strength and increased soil 
calcium content, soil organic matter, maize leaf area index, plant nitrogen amounts, and the 
maize grain yield. The authors concluded that managing gypsum and leguminous residues 
in humid tropic agrosystems is an appropriate strategy to improve maize productivity and 
crop sustainability.

Regarding the soil incorporation of such soil amendments, Besen et al. (2021b) 
evaluated lime incorporation approaches (incorporated or superficial) and the effect 
of reapplied lime and gypsum on soil chemical properties and grain yield of wheat and 
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maize in southern Brazil. Similar to other studies, the authors reported that (i) incorporating 
lime reduces soil acidity (increasing soil pH and reducing available aluminum), increases 
calcium and magnesium contents, and decreases the organic matter content in the revolved 
soil surface; (ii) gypsum increases sulfur and calcium availability in deeper soil layers; (iii) 
high gypsum rates (> 7.42 Mg ha-1) reduce the magnesium content in the surface layer; (iv) 
lime associated with gypsum and applied to the soil surface resulted in the highest wheat 
and maize yields indicating that the benefits of the continuous no-tillage system could be 
maintained. Besen et al. (2021b) also indicated the increasing sulfur content as the main 
factor for increased crop yields. Additionally, reductions in aluminum saturation in deeper 
soil layers were a common effect of the gypsum application to wheat, soybean, and maize 
(Rampim et al., 2011; Nora et al., 2014)

Also, on wheat, Rawat et al. (2020) studied the plant development (plant emergence, 
tillers per square meter, biometrics, yield) after applying nano-sized gypsum in silty clay 
loam soil and found positive results. The treatments that reduced the regular mineral 
fertilization (75%) plus nano-sized gypsum presented similar or superior plant development 
to the complete regular mineral fertilization (100%). Such treatments generated up to 25% 
economy compared to the recommended rates of mineral fertilizer with no grain yield 
penalty. Abbas et al. (2023) observed no noticeable impact of gypsum rate on the straw 
yield; however, the authors also observed that 3 Mg ha-1 of gypsum improved soil moisture 
conservation, nutrient uptake, and wheat grain yield with less input cost.

GYPSUM TO SUGARCANE CROP
Gypsum and lime ratios and application methods (incorporated, superficial, or 

applied in-furrow) in sugarcane were studied by Morelli et al. (1987) after 6 and 18 months 
of the application of the treatments. They concluded that (i) lime effectiveness was limited to 
the soil layer near the soil surface, regardless of incorporation method; (ii) gypsum improved 
base saturation and reduced aluminum saturation up to 0.75 m deep in the soil profile; (iii) 
calcium and magnesium saturation reduced in the second evaluation (18 months), and (iv) 
gypsum alone or with lime resulted in greater sugarcane yields than lime alone. A similar 
conclusion was pointed out by Lorenzetti et al. (1992).

Morelli et al. (1992) reported increased soil calcium contents and base saturation 
in deep soil depths after 18 months of gypsum application in another sugarcane study. 
The same was not observed when only lime was applied. The authors also reported that 
(i) the best calcium and magnesium distribution in the soil profile and the most prominent 
base saturation were observed when gypsum and lime were combined; (ii) the application 
of gypsum alone (without lime) caused magnesium leaching to deep soil layers; (iii) the 
combined application of gypsum and lime resulted in greater sugarcane yields than each 
one alone, and (iv) the highest sugarcane root biomass and yield - after four sugarcane 
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harvests - were observed when 4 Mg ha-1 of lime were applied with 2 Mg ha-1 of gypsum.
Crusciol et al. (2017) studied the surface application of gypsum with silicate, or 

lime, on sugarcane yield and the amendment of subsoil acidity in a 12-month study. The 
subsurface soil layer (0.2-0.4 m) presented reduced aluminum saturation and increased 
calcium, magnesium, potassium contents (base saturation), and sulfur contents with the 
surface gypsum application. The association of gypsum with silicate, or lime, increased 
sugarcane stalk, bagasse, trash yield, and energy yield; however, applying gypsum in 
association with silicate leads to the most superior profitability.

The dolomitic lime and gypsum surface application in green sugarcane ratoon 
was studied by Rossato et al. (2017) after 12 months of the treatment’s application. They 
concluded that gypsum acted as a subsurface conditioner and contributed to the liming 
benefits of surface lime application to reach deeper soil layers. This deepening of the soil 
improvements caused by the gypsum and lime application allowed the development of 
the sugarcane root system to greater depths. It generated increments in sugarcane stalk, 
bagasse, trash yield, and sugar yield. However, the authors also indicated that gypsum 
might lead to the leaching of magnesium and potassium into deep soil layers.

Araújo et al. (2019) studied the influence of gypsum (5 Mg ha-1) on soil carbon up to 
2 m depth of an Oxisol. The carbon accumulation, its relationships with the soil’s chemical 
properties, and the development of the sugarcane root system were evaluated next to the 
seventh sugarcane cut (87 months after gypsum application). The authors reported (i) 
increased calcium and sulfur contents and reduced aluminum saturation in the soil profile, 
which were responsible for the improved sugarcane root system development, and (ii) 
increased carbon sequestration in the deeper soil layers (1-2 m), where the leading supplier 
of soil acidity were the sugarcane roots.

GYPSUM TO OTHER CROPS
All living plants need calcium, sulfur (macronutrients found in gypsum), and other 

essential nutrients to complete their cycle. Crop plants of high productivity continuously 
need those nutrients and other beneficial nutrients in balanced proportions to develop 
and produce fully. Thus, several other crops present significant responses to the gypsum 
application. Most observed results are positive, highlighting the benefits of regular gypsum 
use and management for crop production and improved yield.

In coffee (Coffea arabica), the contents of soil calcium, magnesium, and potassium 
and their sulfate (SO4

2-) ionic pair along the soil profile (0-2.4 m deep) were evaluated by 
Ramos et al. (2013). The authors studied an Oxisol 16 months after gypsum application and 
reported that (i) 96% of ionic potassium (K+) in soil solution was at 0.35 to 0.45 m in its free 
form; (ii) the predominant leached chemical species occurred in the free forms (Ca2+, Mg2+, 
K+, SO4

2-), and (iii) the content of the chemical species of calcium and magnesium sulfate 
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was higher than the potassium sulfate chemical specie.
Anikwe et al. (2016) found that the combined application of lime (5 Mg ha-1) and 

gypsum (2.5 Mg ha-1) to an Ultisol improved soil physicochemical properties and cassava 
(Manihot esculenta) yield. The authors argued that the calcium applied via lime and gypsum 
flocculated the soil particles, enhancing the soil’s physical attributes and pH, soil infiltration 
and aeration, soil phosphorus availability, and plant nutrient uptake for improved cassava 
growth. Corroborating the results observed by Anikwe et al. (2016), the effects of lime on 
soil physics are already known and usually affect soil flocculation, density, aggregates, and 
porous structure (Auler et al., 2019; Conradi et al., 2020).

Magnesium sources such as kieserite (standard magnesium source for agriculture 
- MgSO4.H2O), ground magnesium limestone [CaMg(CO3)2], and magnesium-rich synthetic 
gypsum (an industrial by-product that has > 70% of gypsum, 17.1% of magnesium hydroxide, 
4.3% of calcium hydroxide, 2.3% of calcium carbonate, and pH 8.8) were evaluated in oil palm 
(Elaeis guineensis) by Ayanda et al. (2020). The authors concluded that the magnesium-rich 
synthetic gypsum is a viable soil conditioner for fertilizing and liming the soil. This source 
satisfied oil palm plants’ calcium and magnesium requirements like other sources. Such a 
magnesium-improved gypsum would minimize the magnesium-induced deficiency caused 
by the magnesium-leaching potential when conventional gypsum sources are applied.

In eucalyptus (Eucalyptus sp.) seedlings, Gabriel et al. (2018) reported that lime 
decreased soil acidity and improved plant development; however, the authors also noted 
that the gypsum effect on the variables evaluated was insignificant and highlighted that 
gypsum could reduce seedling growth if excessive rates are applied. Ferreira et al. (2020) 
assessed the eucalyptus development for 36 months after applying up to 9.6 Mg ha-1 of 
gypsum and reported no benefits to the dendrometric growth. The authors discussed the 
lack of plant response to gypsum benefits (source of calcium, sulfur, and a soil conditioner). 
They indicated a combination of factors responsible for the results’ non-significance, such 
as soil type, eucalyptus tolerance to soil acidity, agronomic management, and climatic 
conditions.

Other perennial crops, such as turfgrasses, need corrections and supplementations 
in deep soil layers to achieve full development. Such improvements in deep soil layers 
can not be reached only with lime, especially when tilling is not an option (e.g., gardens 
and golf courses). Schlossberg et al. (2006) reported amelioration of the subsoil attributes 
up to 0.6 m deep after two years of soil surface gypsum application (10.6 or 20 Mg ha-1). 
Thus, gypsum was a necessary soil amendment to manage macronutrients and potential 
soil acidity. The authors also reported that the turfgrass beneficial growth responses to the 
gypsum application vary among species.

Many horticultural crops, for example, presented improved yield, quality, shelf life, 
and profitability when gypsum is applied (Korcak, 1993; Brown, 2018; Lantzke, 2018; 
Santos et al., 2020; Charlo et al., 2021; Watts et al., 2021). Even crop production in soilless 
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growth media can benefit from gypsum. Media containing FGDG and organic composts 
have provided excellent plant production with no harmful environmental results (Chen 
and Dick, 2011). Bardhan et al. (2005) studied tomato (Lycopersicum esculentum) and 
wheat development in a low-cost, high-quality growth media for nursery, greenhouse, and 
landscape industries. The authors reported (i) improved plant growth (35 days after planting) 
for the tested media growth containing gypsum compared to the commercial media brand, 
and (ii) no toxic elements were detected in excess in the media solution leachates or the 
plant tissue evaluated.

Plants that exhibit rapid growth rates and are multipurpose, such as hemp (Cannabis 
sativa) and hops (Humulus lupulus) – both from the Cannabaceae botanical family – will 
positively respond to adequate fertilization and soil management (Brooks et al., 1961; Duke, 
1983; Cannoy, 2015; Anderson et al., 2021b; Rehman et al., 2021). Industrial by-products 
applied as crop fertilizers and soil conditioners have also been tested for hemp production. 
Zielonka et al. (2017) studied the effects of sewage sludge (with and without gypsum) on 
hemp photosynthetic performance. The authors reported increased chlorophyll content in 
the leaves; however, this effect varied among hemp varieties. In hops, the gypsum benefits 
are long known (Mayer, 1768); however, no specific recommendation for calcium or sulfur 
rates has been reported yet (Gingrich et al., 2000; HĀPI, 2019). In these cases, where there 
is a lack of information regarding gypsum rate, the use of soil parameters - as indicated by 
other researchers for gypsum recommendations (Ernani et al., 1992; Sousa et al., 1992; 
van Raij et al., 1997; Sousa and Lobato, 2004; Sousa et al., 2007; Guimaraes et al., 2015; 
Pauletti and Motta, 2017; Tiecher et al., 2018) - is the most appropriated approach of 
determining a gypsum rate to be applied.

PLANT DISEASE RESPONSES TO GYPSUM
As highlighted here, gypsum is primarily a source of calcium and sulfur, especially 

in subsoil layers, which can provide adequate nutrition to improve the plant root system, 
absorption of nutrients, and natural disease control. Some reports of gypsum success 
management in controlling plant diseases have been published in the literature. The plant 
protection enhanced by gypsum application is probably related to improved calcium and 
sulfur plant nutrition, besides the soil improvements already mentioned.

Calcium is an essential factor for cell wall and membrane stability (structural functions) 
but also a secondary messenger in many physiological processes (signaling functions) that 
include the plant’s responses to stresses via calcium-dependent proteins (Lecourieux et al.; 
2006; Zheng et al., 2013; Thor, 2019). Sulfur plays an essential role in plant development 
by being a structural constituent of critical macro-biomolecules (amino acids, proteins, and 
oils) that regulate many processes regarding plant tolerance to environmental stresses 
(Zenda et al., 2021). Additionally, sulfur positively interacts with soil nitrogen, phosphorus, 
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and microorganisms, improving soil health.
Walker and Csinos (1980) evaluated the effects of gypsum application on peanut 

(Arachis hypogaea) yield, kernel grade, and pod rot (Pythium myriotylum and/or Rhizoctoniu 
solani) damage in five peanut varieties in a sandy loam soil for three consecutive years. The 
authors detected reductions in pod rot severity, increments in kernel calcium content, and 
peanut yield for all cultivars as the gypsum rate increased. In watermelon (Citrullus lanatus), 
the rising rates of calcium applied as gypsum also reduced the incidence of blossom-end 
rot. This abiotic disease is caused by calcium deficiency, and the symptom is characterized 
by increasing dark rotten spots at the end of the watermelon fruit (Scott et al., 1993).

Narasimhan et al. (1994) studied the foliar applications of calcium sulfate, magnesium 
sulfate, ammonium molybdate, soil gypsum applications (500 kg ha-1), and fungicide 
(carbendazim) application to manage sheath rot (Sarocladium oryzae) in rice. The sheath 
rot incidence was assessed 20 days after the treatment’s application and was counted as 
the percentage of tillers affected by the disease. The gypsum application to the soil or the 
foliar fungicide application presented similar results regarding the management of sheath 
rot and grain yield increase. The authors also observed that all gypsum treatments reduced 
the incidence of sheath rot in rice, but this did not always translate into yield gains. However, 
Zahra and Sarwar (2015) found positive effects of gypsum and potassium silicate on rice 
yield parameters (plant height, productive tillers, straw, grain yield, and total biomass). The 
same authors also highlighted that the role of gypsum was more prominent than that of 
potassium silicate in improving the rice yield.

Messenger et al. (2000) reported that the application of gypsum reduced root rot 
(Phytophthora cinnamomi) in avocado (Persea americana) seedlings regardless of good 
or poor soil drainage. The authors highlighted that (i) the gypsum reduced the negative 
effect of root rot on the entire avocado seedling and root weight; (ii) seedlings grown in 
gypsum-amended soil were more resistant to root rot; (iii) reductions in root rot infection 
were not caused by avocado growth, improved root resistance, or reduced cell-membrane 
permeability in the roots, and (iv) the root rot infection was not profoundly affected by poor 
soil drainage when high gypsum rates were applied.

According to Fernando et al. (2021), gypsum is an important soil amendment to 
enhance plant growth, protection, and onion (Allium cepa) production. The authors reported 
that the best results for anthracnose (Colletotrichum spp.) control (non-occurrence of tip-
burning or bulb rot) and onion bulb yield were observed when gypsum application was split 
in two (50 kg ha-1 at planting and 50 kg ha-1 two weeks after). This result indicates that a 
more constant nutrient availability by splitting the fertilizer rate is an adequate strategy to 
improve plant performance and sanity.

Applying gypsum (8 Mg ha-1) on Mombaça grass (Panicum maximum cv. Mombaça) 
also generated significant improvements, increasing plant fresh-biomass, seed production, 
and root system volume in an Oxisol. Additionally, the sulfur in gypsum reduced leaf spot 
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occurrence and severity (Bipolaris maydis) (Figure 6).

  

Figure 6. Incidence of leaf spot (Bipolaris maydis) on Mombaça grass (Panicum maximum). A: control 
treatment (no gypsum applied). B: gypsum treatment (8 Mg ha-1).

Source: Pádua Jr., A. L.

GYPSUM AGRICULTURAL RATE RECOMMENDATIONS
Many of the gypsum interactions with the soil are known, and the results expected 

from its application are relatively well described, at least for the short-term experience with 
gypsum; however, the method of gypsum recommendation varies for different purposes and 
circumstances (van Raij, 2010). The positive effects of gypsum application in soil and plants 
are usually expected to occur when (i) root penetration is limited by available aluminum or low 
calcium contents in subsurface soil layers and when (ii) soil compaction can be alleviated by 
reducing the dispersion of clays in the soil. Ritchey et al. (1995) also indicated that (i) soils 
under periodic drought (water stress) or (ii) excessive rainfall (increased nitrogen leaching) 
and (iii) areas where the application of calcium can decrease the subsoil acidity are areas 
prone to present improved plant results from the gypsum application. Soils of dystrophic, 
dystrophic alic, aluminic, and acric characteristics are also prone to respond positively to 
gypsum application (Santos et al., 2018).

Gypsum application is standard for soil and crop management in many tropical soils, 
such as Brazil. Different methods of gypsum recommendations for crop production and soil 
conditioning are presented, and all of them are adequate for defined scenarios. However, a 
unique method for determining suitable gypsum application rates for all soils and cropping 
systems is unavailable. Many gypsum recommendations are based on empirical experiences 
and ranges of rate responses to gypsum. For example, Koske et al. (2005) reported for 
many Louisiana (USA) soils that if soil analysis indicates low calcium contents and soil pH 
of low acidity to alkaline, then 2,441 to 3,906 kg of gypsum should be added per hectare and 
incorporated by soil tillage before tomato planting in greenhouse areas.

Other imprecise recommendations include soil and medium ameliorations in 
greenhouses, nurseries, landscapes, and sports fields. These recommendations are usually 
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based on the same soil attributes considered for field crops; however, the rates applied to 
those specific places are generally higher to reduce the frequency of gypsum application 
(Chen and Dick, 2011). In most tropical soils, the regular gypsum rate recommendations for 
no-tillage (no soil disturbance) cropping systems are established on the subsoil contents of 
calcium, aluminum, sulfur, and phosphorus, the clay content, and the CEC. Those regular 
gypsum rate recommendations were naturally developed for conventional tillage cropping 
systems. However, Guimaraes et al. (2015) found a strong correlation between grain yield 
increase in no-tillage cropping areas and calcium saturation (78-84%) at 0-0.1 m soil depth. 
The authors used a machine learning technique and concluded that calcium saturation 
in the effective CEC, instead of aluminum saturation, is essential to estimate gypsum 
requirements in no-tillage cropping areas.

However, when the exchangeable calcium content is 0.5 cmolc dm-3 or lower and/
or subsoil aluminum saturation is 20% or greater, significant positive responses to the soil 
and crop plants are expected, according to Sousa and Lobato (2004), Sousa et al. (2007), 
and Pauletti and Motta (2017). Other recommendations are based on different variables. 
Demattê (1986) presented a gypsum recommendation for sugarcane crops based on the 
average soil CEC and soil base saturation (Table 2) in the 0-0.4 m layer of dystrophic sandy 
soil. The author also observed the (i) rise of soil base saturation in deep soil layers and (ii) 
14 Mg ha-1 more sugarcane produced (three cuts average) when 2 Mg ha-1 of gypsum was 
applied to ratoon sugarcane.

CEC
(mmol dm-3)

V
(%)

Gypsum rate
(Mg ha-1)

< 30
< 10 2

10 - 20 1.5
20 - 35 1

30 - 60
< 10 3

10 - 20 2
20 - 35 1.5

60 - 100
< 10 3.5

10 - 20 3
20 - 35 2.5

Table 2. Approximated gypsum rate according to the cation exchange capacity (CEC) and soil base 
saturation (V).

Source: Demattê (1986).

Oliveira et al. (2007) recommended gypsum application to sugarcane crops when 
the soil calcium contents are below 0.4 cmolc dm-3 and the aluminum saturation is bigger 
than 20% in the 0.2-0.4 m soil layer. The authors recommended gypsum based on a fraction 
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of the recommended lime rate for sugarcane multiplied by a correction factor according to 
the soil layer: G = (LR×0.3) × (SL/0.2), where G is the rate of gypsum to be applied (Mg ha-

1), LR is the lime recommendation (Mg ha-1) for the respective area, and SL is the soil layer 
depth interval that will be conditioned (m).

Vitti et al. (2005) also studied the application of gypsum to the sugarcane crop. The 
authors presented that if the calcium content is lower than 0.5 cmolc dm-3, or the aluminum 
content is higher than 0.5 cmolc dm-3, or the aluminum saturation is higher than 30%, or 
the base saturation is lower than 30% in the subsoil layer (0.2-0.4 m), then, significant 
effects of gypsum applications are expected to happen to the sugarcane crops. The gypsum 
recommendation proposed by Vitti et al. (2005) depends on the soil base saturation and 
CEC: G = ((V2 – V1) × CEC)/50, where G is the rate of gypsum to be applied (Mg ha-1), V2 
and V1 are the desired and the actual soil base saturation (%), respectively, and CEC is the 
cation exchange capacity (cmolc dm-3).

The harmful subsoil conditions of low calcium content and acidity generate poor root 
system penetration, especially when exchangeable aluminum is highly available. These can 
be considered the most detrimental conditions for plant development and yield. Gypsum can 
help solve those limitations to improve plant development. According to Lorenzi et al. (1997), 
soils presenting less than 0.4 cmolc dm-3 of calcium and/or aluminum saturation greater than 
40% are significantly responsive to gypsum application. The gypsum recommendation in 
these soils was also based on the soil clay content: G = 6 × clay, where G is the rate of 
gypsum to be applied (kg ha-1), and clay is its amount (g kg-1) in the subsoil layer (0.2-0.4 m).

Alvarez et al. (1999) indicated that if the calcium content is lower than 0.4 cmolc dm-3, 
or the aluminum content is higher than 0.5 cmolc dm-3, or the aluminum saturation is higher 
than 30% in the subsoil layer (0.2-0.4 or 0.3-0.6 m), then the positive effects of gypsum 
applications are expected to happen to the crops and soils. The gypsum recommendation 
is based on soil texture and varies from 0-400 kg ha-1 (0-15% clay) to 1200-1600 kg ha-1 
(60-100% clay).

According to Sousa et al. (2001), the gypsum rate for soils cultivated with pasture can 
be recommended based on the soil clay content and soil texture when gypsum is intended 
as a soil conditioner and based on the sulfur content when gypsum is designed as a sulfur 
source. The gypsum rate estimated from the soil clay content is calculated as G = 50 × clay, 
where G is the rate of gypsum to be applied (kg ha-1), and clay is its amount (% or dag kg1) in 
the subsoil layer (0.4-0.6 m). According to soil texture, the gypsum recommendation varies 
from 700 kg ha-1 (sandy soils) to 3,200 kg ha-1 (clayey soils). The residual effects of gypsum, 
recommended according to soil clay content or texture, can last at least five years.

The gypsum recommendation to supply sulfur to the plants is based on the average 
soil sulfur contents in the 0-0.4 m soil layer (Sousa et al., 2001). To soils with low sulfur 
contents (≤ 4 mg dm-3), the gypsum rate is G = 10 × clay, where G is the rate of gypsum to 
be applied (kg ha-1), and clay is its amount (% or dag kg-1) in the soil. To soils with medium 
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sulfur contents (5-9 mg dm-3), the gypsum rate is G = 5 × clay. The residual effects of 
gypsum, recommended according to soil clay content or texture, can last at least two years. 
When the soil sulfur content is high (≥ 10 mg dm-3), no gypsum application is needed unless 
the area is intended for pasture establishment or recovery and the soil sulfur content is 
lower than 4 mg dm-3 in the first 0.2 m of the soil profile.

Pias et al. (2019) also argued that (i) the no-tillage cropping system altered the 
soil sulfur dynamics, (ii) the emergence of high-yield crop varieties, (iii) the application of 
low-concentration sulfur fertilizers, and (iv) the reduction in atmospheric sulfur depositions 
makes the recommendation for sulfur fertilizers a priority since positive responses are 
expected, especially when the soil analysis (0-0.2 m depth) is below 7.5 mg dm-3.

Sousa and Lobato (2004) also indicated that if the calcium content is 0.5 cmolc dm-3 
or lower and/or subsoil aluminum saturation is 20% or greater, and the gypsum rate is for 
an annual crop, then it can be estimated as G = 50 × clay, where G is the rate of gypsum to 
be applied (kg ha-1), and clay is its amount (% or dag kg-1) in the subsoil layer (0.2-0.4 m); 
if the gypsum rate is for a perennial crop, then it can be estimated as G = 75 × clay, where 
G is the rate of gypsum to be applied (kg ha-1), and clay is its amount (% or dag kg-1) in the 
subsoil layer (0.2-0.4 m)

According to Sousa et al. (1992), the study of subsoils in Cerrado (Savanna-like biome 
presenting weathered acid soils) indicated that significant responses to gypsum application 
might occur when subsoil exchangeable calcium contents below 0.1 cmolc kg-1, regardless 
of subsoil aluminum content. The authors also showed that when soil calcium contents 
exceed the plant’s needs, the aluminum content dictates the occurrence of significant 
gypsum effects. In these conditions, significant soil and plant responses are expected to 
happen when aluminum saturation contents are above 65% and lower responses when 
aluminum saturation is below 35%. Sousa et al. (1992) presented a formula to determine 
gypsum recommendation also based on the soil clay content: G = 17 + 6.508 × clay, where 
G is the rate of gypsum to be applied (kg ha-1), and clay is its amount in the subsoil layer (g 
kg-1). Moreover, acid soils with low CEC were reported to be similarly responsive to gypsum 
application (Demattê, 1992), including Oxisols, oxidic Ultisols, and low-CEC acid Inceptisols 
and Entisols. Sousa et al. (1992) also suggested using remaining phosphorus to indicate 
the gypsum rate; the extreme rate values varied from about 0.453 to 0 Mg ha-1 for 30 to 60 
mg dm-3 of phosphorus and from 1.680 to 0.720 Mg ha-1 for 0 to 19 mg dm-3 of phosphorus.

Despite the many options, some inconsistencies regarding the gypsum 
recommendations and rates have been pointed out. Pivetta et al. (2019) evaluate cotton 
root development in an Oxisol related to aluminum and calcium activity and speciation in 
the soil solution as affected by gypsum rates based on soil clay content. The authors found 
that (i) the cotton root growth was more related to soil properties such as calcium content, 
aluminum saturation, base saturation, ratio calcium-effective cation exchange capacity, 
and ratio aluminum-calcium than to soil solution attributes, and (ii) that the current gypsum 
recommendations based on soil clay content are underestimating the gypsum rates needed 
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by the cotton crop.
Lately, Caires and Guimarães (2018) suggested a method for estimating gypsum 

rates based on the increase in calcium saturation to 60% in the effective CEC (eCEC = soil 
base sum + aluminum) at the subsoil layer (0.2-0.4 m). Over 10 years, the authors studied 
the effects of gypsum application on maize, soybean, wheat, and barley and, through an 
algorithm approach to regressions, proposed G = (0.6 × eCEC – Ca) × 6.4, where G is the 
rate of gypsum to be applied (Mg ha-1), eCEC is the effective cation exchange capacity 
(cmolc dm-3), and Ca is the exchangeable soil calcium (cmolc dm-3). The gypsum rates 
recommended by this method were closer to those associated with maximum economic 
yield than those indicated by other methods based on subsoil clay content, which is currently 
used in Brazil. Thus, the proposed method can be efficiently utilized when subsoil acidity is 
an important growth-limiting factor.

Therefore, among many gypsum rate recommendations for most agricultural 
situations, the selection of an appropriate rate usually depends on the contents of 
exchangeable ions (e.g., calcium, aluminum, sulfur, phosphorus), soil type, clay content, 
soil CEC and eCEC, base saturation, cropping system, rainfall regime, and the purpose 
of gypsum application (Sousa et al., 2001; Chen and Dick, 2011; Kost et al., 2014). The 
soil morphology is another variable that could be considered in the definition of adequate 
gypsum management, especially the rate of gypsum application and the moment of its 
reapplication. As reported by Cooper & Vidal-Torrado (2005), there are soil horizons, for 
example, characterized by extended development of structural pores (macropores), which 
favor water conduction processes (higher hydraulic conductivity), and less development of 
textural pores (micropores), reducing water retention in the horizon. Such conditions would 
affect the dynamic of gypsum results in soil and the time of its residual effect on plants.

In subtropical regions, gypsum application is still not a common practice. The 
knowledge of its effect on the soil-plant-environment system is less detailed, with no well-
established parameter to decide for gypsum application. However, Tiecher et al. (2018) 
found significant and positive results with gypsum application when aluminum saturation 
was above 10% and calcium content was below 3 cmolc dm-3 in subtropical subsoil layer 
(0.2-0.4 m) under no-tillage cropping system. Under these subsoil conditions (aluminum 
saturation > 10%, calcium < 3 cmolc dm-3), maize and winter cereals grain yield increased 
by about 16 and 19%, whether the soil was water-deficient or not. Soybean grain yield only 
increased (27%) when gypsum was applied to soils of high subsurface acidity and water 
deficiency. The authors also highlighted that high gypsum rates (6-15 Mg ha-1) are applied 
to soils with low aluminum saturation and high calcium contents that may cause reductions 
in grain yield due to induced potassium and magnesium deficiency.

Additionally, Ernani et al. (1992) studied the application of gypsum to clayey soils 
with high CEC in temperate regions of regular rain distribution. The calcium contents in the 
studied soils were high, well above the level where calcium deficiencies would be expected. 
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Consequently, the authors observed low to no positive responses from the gypsum 
application, indicating the importance of identifying the subsoil characteristics that would 
positively respond to the gypsum application.

GYPSUM DOSAGE ERRORS
The under and overestimation of the gypsum rates can occur when soils present 

specific conditions with thick A or A-E horizons (over 0.4 m thick) – arenic and thick arenic 
soils – and soils with B horizons with high contents of available aluminum and clay. Therefore, 
the traditional methodologies for gypsum recommendation presented here might not reflect 
the adequate gypsum rate to deliver the expected soil-plant-environment benefits. In Oxisol 
and Nitosol soils (weathered soils with different B horizon attributes) of similar texture, the 
gypsum recommendation based on soil clay content might not meet the plant’s requirements 
for its full development or the expected soil improvements.

In Nitosols, the water flow through soil layers is reduced by the occurrence of clay 
films and soil structure of subangular to prismatic blocks (B nitic) (Cooper and Vidal Torrado, 
2005; Grego et al., 2011). The lower drainage of these soils increases the gypsum residual 
effects compared to the Oxisols (weak subangular blocky structure, with or without the 
granular structure, and no or faint clay film), thus affecting gypsum effects due to similar 
gypsum recommendations for soils of similar clay contents. Figure 7 exemplifies the 
differences observed between distinct soils cropped with soybeans.

Figure 7. The residual effect of gypsum fertilization (4 Mg ha-1 applied 4 years before the picture register 
in the summer of 2022) in a Nitosol and Oxisol. 
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Source: Fachinetto, G. K.

The suggestion for situations where soil parameters affect the reaction of gypsum is 
to evaluate soil in more profound depths. Predicting adequate gypsum rates thus requires 
information about soil attributes that can reach 1 meter or deeper. Soil information from 
deep soil layers helps to understand the limitations and improvements needed for high 
gypsum efficiency and crop performance.

GYPSUM HANDLING AND APPLICATION
Gypsum (mined or FGDG) is not combustible or explosive and is not expected to 

produce any hazards under regular everyday use. No specific individual protection equipment 
is usually required for gypsum handling under ordinary conditions; still, always consult the 
current regulatory guidelines and policies before taking and storing any substance. However, 
a valid recommendation is to avoid, as much as possible, breathing gypsum dust, which 
may irritate in contact with the eyes, respiratory tract, throat, and skin. Gypsum is usually 
stored in the open at a strategic point that facilitates its future distribution in the cropping 
areas; however, when gypsum is stored in a closed-covered structure, enough ventilation 
must be provided to control airborne dust when generated.

Summarized gypsum rate recommendations, time of application, and method of 
application are presented by Chen and Dick (2011). The authors also recommended (i) 
annual gypsum application when gypsum is intended to be a nutritional source of calcium 
and sulfur and (ii) split gypsum application if high rates are required. In this latter situation, 
the initial gypsum rate should be higher to remediate the restrictive soil situation, and the 
subsequent rates should be for maintenance and annually applied. The gypsum application 
can be made any time of the year; however, its application during autumn and winter is 
usually the most common practice. The gypsum application in those seasons permits (i) the 
application after crops are harvested, (ii) soil drying, which implies lower damage caused 
by the drive of heavy spreading equipment across the field, and (iii) allows enough time for 
gypsum-soil reactions to provide the gypsum benefits to the next crop season.

As indicated here, there are many gypsum recommendation methods. At the same 
time, there is a lack of a reliable way of defining gypsum rates and frequency of application 
for many situations. This lack presents a potential difficulty for farmers, researchers, and 
consultants when determining adequate gypsum management. For those without a gypsum 
recommendation for a specific situation, we suggest consistent literature research (e.g., 
scientific papers, book chapters, bulletins, regional technical circulars, and advertisements) 
for particular soil conditions, climate, and crops intended to be cultivated. Then, identify the 
closest and most successful reports as references for a gypsum management strategy.

After the definition of gypsum management (rates and frequency of application), the 
method to use gypsum will depend on its granulometry (finer granulometry means faster 
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reaction in soil), gypsum source, and the urgency for its benefits. Crushed or powdered 
gypsum provides the same benefits as pelletized gypsum (granular form). However, 
pelletized gypsum offers important benefits such as (i) improved handling (pellets are easier 
to handle, store, transport, and apply; also, powdered gypsum has a great potential to 
clump together, clogging equipment and increasing maintenance requirements); (ii) better 
distribution (powdered gypsum is dusty and often becomes windblown reducing the precision 
of its application; also, pellets move quickly through standard spreading equipment), and, 
(iii) reduced product loss (powdered gypsum result in a significant amount of product losses 
due to its dusty origin which makes it easy to fly away from the targeted area). Conversely, 
pelletized gypsum might need extended time for its complete solubilization reaction in soil 
due to its low solubility. When deciding on powdered gypsum, avoiding its application during 
intense windy days is recommended to reduce material losses.

Gypsum is usually spread over the soil’s surface in no-tillage cropping areas, or 
gypsum is incorporated downward into the subsoil. Gypsum incorporation is less frequent 
in tropical areas (hot, rainy areas). Gypsum incorporation is also an alternative to avoid and 
decrease gypsum erosion by wind and water; however, soil turning to incorporate gypsum, 
or any crop input is a pricy activity. Additionally, this soil management reduces the soil’s 
water-holding capacity due to de-structuring during the soil incorporation process, which 
lowers the plant’s resistance to occasional drought stress. Still, when soil turning is needed, 
many doubts arise regarding the frequency and cost-benefits of such activity together (or 
not) with gypsum management.

Nevertheless, dry-material spinners or drop spreaders regularly apply gypsum to the 
soil surface. Gypsum can also be dissolved in irrigation water if it is a fine powder (0.074 
mm in size or smaller) for fast gypsum results in soil and uniform gypsum application (Chen 
and Dick, 2011). However, avoid foliar applications with gypsum and other agrochemicals, 
as they tend to form precipitates when the foliar spray solution dries on the plant’s surfaces. 
This dried spray solution covers the plants with a thin film of gypsum, potentially blocking a 
fraction of sunlight and reducing the photosynthesis efficiency.

GYPSUM KNOWLEDGE GAPS AND FUTURES RESEARCH
Considering the points discussed here and the fact that the application of agricultural 

gypsum is still not a regular practice in many regions worldwide, we understand that to 
improve its usage, we must primarily stimulate and support public policies about the benefits 
of adequate gypsum management. These policies must reach the crop production system 
with technical criteria and initial professional support, especially to the smaller farmers who 
generally are the least benefited from technologies that seek sustainability in agriculture.

Even with all the research on the effects and benefits of gypsum application to the 
agricultural complex - including soil dynamics, plant physiology, environmental safety, and 
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economic thresholds - many critical issues are still not fully understood (Watts and Dick, 
2014; Dalla Nora et al., 2017; Pias et al., 2020). Some aspects of the gypsum’s long-term 
effects on (i) soil organic matter; (ii) nitrogen, magnesium, and phosphorus dynamics in soil; 
(iii) lime joint application and management; (iv) doses and frequency of regular fertilizer 
application; (v) the time needed to achieve significant results from the gypsum application; 
(vi) the economic value of gypsum crop management on yield (cost-benefits), and (vii) the 
environmental services are not well comprehended and need to be elucidated.

Additionally, other agricultural technologies are being developed and implemented to 
improve crop productivity (yield per area) and the sustainability of the agricultural activity, and 
indeed, they will affect the soil and plant responses and the agronomic recommendations 
for gypsum management. Such improved technologies include (i) smart fertilizers (e.g., 
slow and controlled release fertilizers, bioformulated fertilizers, nanofertilizers, beneficial 
nutrients) developed to enhance nutrient use efficiency and crop yield with low impacts on 
the natural environment (Raimondi et al., 2021; Karthik and Maheswari, 2021; Tayade et 
al., 2022; Verma et al., 2022; Abiola et al., 2023; Areche et al., 2023; Chakraborty et al., 
2023); genetic engineering and genome editing techniques of crop plants to improve their 
resistance to stresses and use-efficiency of agricultural amendments (Jan and Shrivastava, 
2017; Mackelprang and Lemaux, 2020; Clouse and Wagner, 2021; Lebedev et al., 2021; 
Raza et al., 2022); large-scale application of artificial lights (light supplementation) to field 
crops (Lemes et al., 2021), and digitalization-integration-robotization plus AI (artificial 
intelligence), DL (deep learning) and blockchain of agriculture (Krithika, 2022; Srivastava, 
et al., 2022; Adamides and Edan, 2023; Ali et al., 2023; Mahibha and Balasubramanian, 
2023; Cheng et al., 2023; Mesías-Ruiz et al., 2023; Okolie et al., 2023; Wakchaure et al., 
2023; Zeng et al., 2023) are emerging and represent some of the most recent advances for 
modern sustainable and productive agriculture.

Overall, we can assure you that gypsum is very important to maintain and improve soil 
health and its functionality for high crop nutrition and yield performance. Gypsum and other 
technologies can also lower production costs, reduce the negative impacts of agriculture on 
the natural and social environment, and increase world food safety.
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