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ABSTRACT: In recent years, the animal protein industry has grown significantly due to 
population expansion. However, this has increased animal waste generated during meat 
production processes. To address this issue, cellular agriculture is becoming a promising 
biotechnological approach to sustainable production. The aim is to reduce animal dependency 
and suffering by developing cell-based protein sources, derived from animal tissues through 
cell cultures. This technology is rapidly advancing to meet the challenge of feeding the world’s 
growing population a diet that is healthier, sustainable, animal-free, and environmentally 
friendly, and that generates minimal or no animal waste. This mini-review explores the advances 
and challenges in cell-based seafood production, highlighting the relevant methodologies for 
obtaining them from commercially important marine species and underscores the importance 
of developing alternative marine proteins with nutraceutical properties for the future.
KEYWORDS: alternative protein, cultivated meat, cellular agriculture, innovation.

TENDÊNCIAS EM FRUTOS DO MAR À BASE DE CÉLULAS: O USO DA 
BIOTECNOLOGIA PARA NUTRIÇÃO E SUSTENTABILIDADE

RESUMO: Nos últimos anos, o setor de proteína animal cresceu significativamente devido 
à expansão populacional. No entanto, isso resultou em um aumento dos resíduos animais 
gerados durante os processos de produção de carne. Para resolver esse problema, a 
agricultura celular está se tornando uma abordagem biotecnológica promissora para a 
produção sustentável. O objetivo é reduzir a dependência e o sofrimento dos animais por 
meio do desenvolvimento de fontes de proteína baseadas em células, derivadas de tecidos 
animais por meio de culturas de células. Essa tecnologia está avançando rapidamente para 
enfrentar o desafio de alimentar a crescente população mundial com uma dieta mais saudável, 
sustentável, livre de animais e ecologicamente correta, e que gere o mínimo ou nenhum 
resíduo animal. Esta mini-revisão explora os avanços e desafios na produção de frutos do 
mar com base em células, destacando as metodologias relevantes para a sua obtenção 
originada de espécies marinhas comercialmente importantes e ressalta a importância do 
desenvolvimento de proteínas marinhas alternativas com propriedades nutracêuticas no 
futuro.
PALAVRAS-CHAVE: proteína alternativa, carne cultivada, agricultura celular, inovação.

INTRODUCTION
The escalating global demand for animal-derived protein exacerbates the strain on 

ecosystems and biodiversity (FAO, 2018). Universal meat production significantly contributes 
to greenhouse gas emissions, with a substantial portion attributed to deforestation for grazing 
land (Steinfeld et al. 2006). Traditional agriculture is currently confronted with a formidable 
challenge. The consumption of animal protein and population growth exert pressure on 
biodiversity and deplete natural resources, thereby jeopardizing food security (Eibl et al. 
2021; Mc Carthy et al. 2018). 

Overfishing threatens marine biodiversity and food security, resulting in declines 
in seafood biomass and endangering animal populations with extinction (Palomares et 
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al. 2020). Over 15 years of exploitation, industrial fishing and fisheries are estimated to 
have reduced the ocean’s biomass content by 80% (Myers; Worm, 2003). The demand 
for seafood is expected to rise due to its high content of quality protein, vitamins, trace 
elements, polyunsaturated fatty acids and minerals (Hassan et al. 2020). 

Cultivated meat and seafood represent novel foods with the potential to offer an 
ethical, sustainable, and healthy protein source (Ong et al. 2021). Cell-cultured seafood 
production has the potential to alter several fundamental parameters considered constant 
in food production, including the generation of inedible excess tissue such as bones, 
blood, and skin, which are often discarded, leading to a negative environmental impact 
(Arvanitoyannis; Kassaveti, 2008). In addition to reducing environmental impact, cell-based 
food products can foster the development of local and autonomous markets by producing 
indirect environmental benefits. It can also shorten cycle times by streamlining supply 
chains and reducing production times from months to weeks to create functional foods 
(FAO; WHO, 2023).

As aquaculture transitions towards more intensive, controllable, and efficient 
systems, cell-cultured seafood production offers a new option to address the challenges 
associated with industrial aquaculture and marine fishing. This mini-review explores the 
opportunities and challenges in cell-based seafood production, addressing aspects such 
as marine cell culture, natural marine muscle tissue, and considerations regarding marine 
animals. We aim to summarize the trends and frontiers of cell-based food applied to seafood 
and to provide an overview of relevant methodologies for obtaining cells from commercially 
important marine invertebrate species. 

SEAFOOD AS A SOURCE OF NUTRACEUTICALS
Nutraceuticals are substances, either in whole or in part, delivered as dietary 

supplements or ingredients clinically proven to offer benefits, including prevention and 
treatment of diseases. Marine nutraceuticals specifically pertain to compounds derived from 
sea (Ande et al. 2017). These compounds encompass oils (from fish, algae, seal blubber, 
and shark liver), which are rich in long-chain omega-3 polyunsaturated fatty acids, as well 
as shark cartilage, chitin, chitosan, and associated products, enzymes, peptides, protein 
hydrolysates, vitamins A, D and E, and other products (Alasalvar; Shahidi; Quantick, 2002). 
These marine nutraceuticals possess numerous unique features not found in nutraceuticals 
obtained from terrestrial resources, thus attracting increasing attention (Suleria et al. 2015). 

Interest in seafood and other marine-derived compounds arises because most aquatic 
organisms have inherent mechanisms to survive hostile oceanic environments, including 
varying salinity, pressure, temperature, and illuminations. Most marine organisms produce 
several secondary metabolites that, while not directly involved in central physiological 
functions, contribute to their survival. They synthesize novel compounds with interesting 
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bioactivities, facilitating adaptation to these conditions (Venugopal, 2018). Nutraceuticals 
derived from seafood have already been recognized for their beneficial effects on human 
health, attributed to various physiological functions (McManus; Newton, 2011). Studies 
indicate that consuming seafood can reduce the risk of heart attack, stroke, obesity, and 
hypertension (Stanek et al. 2023; Giosuè et al. 2022; Riccardi, 2022; Anand et al. 2015). 
Seafood is low in saturated fat and higher in “heart healthful” polyunsaturated fat, including 
omega-3 fatty acids (Reames, 2012).

The Bivalvia class, which represents the shellfish, constitutes a significant food 
source and is part of the traditional diet of numerous cultures (Tabakaeva; Tabakaev, 
Piekoszewski, 2018). The nutritional value of these mollusks includes proteins and amino 
acids of high biological values, B-complex vitamins, saturated long-chain fatty acids, and 
minerals (Wright; Fan; Baker, 2018; Willer; Aldridge, 2020). The levels of saturated amino 
acids, omega-3 fatty acids, potassium, sodium, iron, and chlorine are higher in saltwater 
bivalves compared to freshwater bivalves (Moniruzzaman et al. 2021). Considering such 
nutritional composition, regular consumption of mollusks could improve immunity and 
reduce the risk of developing diseases (Chakraborty; Joy, 2020). The shells, soft tissues, 
and mucilage of mollusks are used in the pharmaceutical and food industry to develop 
medications for the treatment of various illnesses (Khan; Liu, 2019; Pissia, Matsakidou, 
Kiosseoglou, 2021; Lobine, Rengasamy; Mahomoodally, 2022). 

Among the critical seafood, decapod crustaceans, which include lobsters, shrimps, 
and crabs, stand out for their significant role in the human food supply and the global 
economy (Mahmood Ghafor, 2020; FAO, 2022). Besides their ecological importance to 
the environment, decapod crustaceans are relevant for human health, providing abundant 
protein and micronutrients for nutrition (Behringer; Duermit-Moreau, 2021). The high 
commercial value of these animals attracts agribusiness, food industries and the marine 
ornamental business (Calado et al. 2003). 

Aquaculture farming and fishing ensure a quality protein source for human 
consumption. Fish is a rich source of essential nutrients, including highly digestible 
proteins, vitamins A, and D3, trace minerals as iodine and selenium, and n-3 long-chain 
polyunsaturated fatty acids and its consumption is generally regarded as part of a healthy 
dietary pattern (Ramalho Ribeiro et al. 2019). In addition to their high nutritional value, fish 
proteins have functional properties such as water-holding capacity, gelling, emulsification, 
and textural properties. These characteristics play crucial roles in determining the textural 
attributes of these products, making them important quality parameters and strategic tools 
for cell-based sustainable biotechnology (Pal et al. 2018).
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ADVANCES IN CELL-BASED SEAFOOD
Given livestock production’s significant adverse impacts, establishing an in vitro 

meat production system is increasingly justified (Datar; Betti, 2010). Consumer demand for 
cellular meat production primarily arises from concerns about the environment and animal 
welfare. At the same time, secondary considerations include consumer and public health 
aspects of animal production and food security (Warner, 2019). 

Producing meat through tissue engineering and cell culture is not new. Initially, early 
attempts were concentrated in universities and other research units. Before Mark Post 
showcased the world´s first so-called lab-grown hamburger in late 2013 (Kupferschmidt, 
2013), NASA had invested in producing edible fish muscle protein in vitro. The goal was to 
send high quantities of nutritional food to space with the least possible volume. To achieve 
this, researchers isolated muscle cells from the dorsal muscle of Carassius fish as an initial 
step (Benjaminson; Gilchriest; Lorenz, 2002). 

Following the initial academic efforts, the concept of cell-based meat garnered 
attention in the food industry. Consequently, various startups related to the production of 
cell-based meat or the development of technologies enhancing its manufacture emerged, 
with many focusing on seafood (Table 1). While some focus has been on the biology 
and engineering required to optimize the manufacturing process, most of the debate has 
revolved around cultural, environmental, and regulatory considerations (Faustman et al., 
2020). As startups began to develop prototypes of structured foods, new regulatory concerns 
emerged. The first governmental approval for the commercialization of cell-based meat was 
granted by the Singapore Food Agency in late 2020, permitting Eat Just, a startup based in 
the United States, to sell cell-based chicken in Singapore (Southey, 2022).

Company’s Name Focus Location Year of Foundation
Fineless Foods Fish USA 2016
Wild Type Fish USA 2016
BlueNalu Seafood USA 2017
Avant Meats Seafood Hong Kong 2018
Shiok Meats Seafood Singapore 2018
ArtMeat Beef and Seafood Russia 2019
Bluu Biosciences Seafood Germany 2020
Cultured Decadence Seafood USA 2020
Magic Caviar Caviar Amsterdam 2020
Umami Bioworks Seafood Singapore 2020
Wanda Fish Fish Israel 2021
Mermade Seafood Seafood Israel 2021
Sustineri Piscis Fish Brazil 2023

Table 1: List of start-ups focusing on the production of cell-based seafood
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Market entry of cell-based food products may require authorization at various 
levels, encompassing processes such as a food safety assessment of the cell-based food 
product, approval of planned and implemented quality controls, assurance protocols for the 
production process, and adherence to approved labeling requirements for the products. 
The essential elements for a practical regulatory framework for cell-based food are still 
considered in many countries (FAO, 2022). In the Brazilian regulatory context, the Good 
Food Institute Brazil (GFI) has launched a regulatory study to identify potential adjustments in 
the current regulatory frameworks. Scientifically grounded arguments support this endeavor 
and involves engaging the country’s regulatory agencies (GFI, 2022). Recently, GFI Brazil 
published a Food Safety Plan for a cultivated meat burger, contributing to assessing safety 
aspects in cultivated meat production through applying the Hazard Analysis and Critical 
Control Points (HACCP) approach (Sant’Ana et al. 2023).

The recent evolution of cell culture techniques that facilitate the growth of edible 
animal tissue in vitro represents an example of potentially disruptive technology with many 
exciting aspects to consider (Van der Weele et al., 2019; Stephens; Sexton; Driessen, 2019). 
With the current advancement in technology, lab-grown meat, also known as cultured meat, 
is expected to significantly impact the food market in the future (Ismail; Hwang; Joo, 2020).

CHALLENGES IN CELL-BASED SEAFOOD
The absence of fish and marine invertebrate cell lines means that cell culture research 

is conducted using primary cells isolated from these animals. A primary cell culture is initiated 
directly from the tissue (Jedrzejczak-Silicka, 2017). The isolation process involved in primary 
culture allows for precise control over hormonal, substrate, and physical conditions, which 
can influence cell and tissue function (Hightower; Renfro, 1988). Muscle and fat cells are 
crucial cell types aiming for the final product. As some of these cells can be hard to isolate, 
precursors of these cell types, such as satellite cells, fibro-adipogenic progenitors, pre-
adipocytes, and mesenchymal stem cells, become strong candidates to be used as sources 
for the development of a cell-based seafood prototype (Bomkamp et al. 2023).

Isolation and Primary Culture
The techniques for obtaining primary cell cultures from seafood are similar to those 

used for mammals and other animals. Initially, the animal is sterilized with ethanol and 
anesthetized, after which the tissue of interest is removed under sterile conditions and 
subjected to a series of antibiotics to prevent microbial contamination. Subsequently, the 
desired tissue undergoes dissociation methods, such as enzymatic dissociation (Plotnikov, 
Karpenko; Odintsova, 2003; Oestbye; Ytteborg, 2019) or mechanical dissociation (Van der 
Merwe et al. 2010), to obtain a single-cell suspension for seeding in an appropriate culture 
medium.
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Alternatively, the explant method can be employed instead of the single-cell 
suspension. In this case, no enzyme is used, and the original tissue is minced into smaller 
pieces, which are then placed in culture flasks. Cells begin to migrate out of the tissue 
pieces and adhere to the surface of the culture flask (Freshney, 2010; Potts et al., 2020). 
Observations have been made of cell migration and growth from heart explants of the Indian 
Mud Crab Scylla serrata for over three weeks, demonstrating adherent cells with round, 
epithelioid‐like, and fibroblastic morphologies (Sivakumar et al. 2019).

Previous studies have reported protocols for cell sorting to establish primary 
monogenic cultures. Techniques utilizing density gradient media to separate cells by density 
have yielded significant results (Gong et al. 2008; Odintsova; Dyachuk; Nezlin, 2010; 
Nogueira et al. 2013), particularly for shrimp hepatopancreatic cells (Toullec et al. 1992). 
Koiwai et al. (2019) recently isolated crustacean hemocytes using lectins and magnetic-
activated cell sorting (MACS). 

Over the past 30 years, researchers have attempted to create primary cultures 
of various crustacean species, with shrimps being the most commonly studied. Methods 
have been described for culturing shrimp ovaries, lymphoid tissues, cardiac, nerve, 
hematopoietic, hepatopancreatic, and epidermal cells (Nadala; Lu; Loh, 1993; Luedeman; 
Lightner, 1992; Tapay et al. 1995; Chen; Wang, 1999; Kasornchandra et al. 1999; Maeda et 
al. 2004; Anoop et al. 2021). Other crustaceans, such as crabs and lobsters, have also been 
the focus of primary cell culture research (Fadool; Michel; Ache, 1991; Stepanyan, 2004; Li; 
Shields, 2007; Sashikumar; Desai, 2008; Deepika, Makesh; Rajendran, 2014; Sivakumar et 
al. 2019). Among the primary tissues developed, cardiac tissue (Owens; Smith, 1999) and 
ovaries (Fraser; Hall, 1999) have shown more promising results, remaining viable in culture 
for more extended periods.

Various types of bivalve mollusk tissues have been experimented with to initiate 
primary cell cultures. Heart (Cecil, 1969; Wen; Kou; Chen, 1993), mantle (Perkins; Menzel, 
1964), digestive glands (Le Pennec; Pennec, 2001), and gills (Gómez-Mendikute et al. 
2005; Cornet, 2006) have shown substantial results in the growth of primary cell cultures 
of bivalve mollusks. Similarly, embryonic tissue (Boulo et al. 2000) and hemolymph (Ji et 
al. 2017) have also demonstrated significant results. Among these tissue sources, cultures 
from embryonic tissues show better potential for proliferation than cells from adult tissues 
(Odintsova; Khomenko, 1991). 

Recent research has successfully cultivated adductor muscle cells of scallop 
Patinopecten yessoensis, obtaining fibroblast-like cells with multiple filopodia, similar to 
precursors of mature muscle cells in mammals. This was achieved using tissue explant 
methods and supplementing the medium with adductor muscle extract, fetal bovine serum, 
and supplements for insect cell culture (Suzuki et al. 2021).
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In vitro culture conditions for marine animal cells
Concerns regarding the culture conditions of mollusk cells have been addressed over 

the years. The growth medium commonly used for the cultivation of marine bivalve cells 
typically consists of a formulation of L-15 medium (Chen; Wang, 1999; Ladhar-Chaabouni 
et al. 2021) supplemented with soluble factors to enhance cell viability (Domart-Coulon et al. 
1994). Adding taurine, an amino acid found in bivalve hemolymph, to the medium regulates 
osmolarity and improves cell viability (Lange, 1963). Medium osmolarity, pH, and incubation 
temperature are adjusted based on the specific animal species and body part. Generally, 
the growth medium´s osmolarity must be like hemolymph’s (Odintsova; Khomenko, 1991), 
typically ranging between 760 to 1100mOsmol for bivalves. The temperature of incubation 
is also a variable parameter. While low incubation temperatures reduce the risk of culture 
contamination, temperatures below 15o C do not contribute to cell migration.

The substrate to which cells adhere has significant effects on culture viability. 
Attached cells often exhibit increased metabolic activity (Ben-Ze’ev; Farmer; Penman, 1980). 
A desirable substrate promotes cell attachment and spreading in vitro, and considering 
that muscle cells are anchorage-dependent, selecting a compatible substrate is vital for 
bivalve muscle cells. It has been demonstrated that poly-D-lysine with a molecular weight 
exceeding 100 kDa promotes conditions for attachment of bivalve heart muscle cells in vitro 
(Buchanananan et al. 1999).

Fish cell culture protocols are very similar to other established animal cell cultures, 
with some adaptations regarding incubation temperature and medium osmolality specific to 
different fish species (Fernandez et al. 1993). Commonly used growth media are Eagle’s 
Minimum Essential Medium (EMEM), Leibovitz Medium L-15 or Medium 199 (Fryer; 
Lannan, 1994). According to Wolf and Ahne (1982), the more commonly used and elaborate 
media include vitamins and amino acids, often supplemented with fetal bovine serum (FBS). 
FBS is a joint supplement used in various protocols for animal cell cultures, containing 
a mixture of amino acids, proteins, vitamins, hormones, and other nutrients and factors 
that support the growth and survival of animal cells in culture (Barnes; Sato, 1980). The 
typical supplementation proportion of medium with FBS is 10% of the total medium volume, 
although some cell lines grow satisfactorily with only 5% serum, albeit at slightly reduced 
growth rates. Eagle’s Minimal Essential Medium supplemented with fetal bovine serum is 
considered a versatile culture medium for mammals, birds, reptiles, amphibians, and fish cells 
(Lakra; Swaminathan; Joy, 2011) with appropriate adjustment in incubation temperatures. 
Unlike mammalian cell cultures, fish cells can thrive with infrequent subcultures (every 7-14 
days or more) and rarely require changes in growth medium between subcultures (Fryer; 
Lannan, 1994). 

The optimal growth temperature range reflects the donor fish species and its natural 
environment (Nicholson, 1989). The ease of growing fish cells at a lower temperature 
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compared to mammalian cells may provide cost benefits for cellular fish meat production. 
Moreover, blending tissue engineering with modern aquaculture techniques presents an 
attractive opportunity to utilize marine muscle cell culture for in vitro fish meat production 
(Goswami et al. 2022). 

Cell immortalization and cell stemness
Cells obtained from primary cell culture undergo only a limited number of cell divisions 

before entering a state of senescence, wherein they experience stable growth arrest. The 
use of primary culture for cell-based seafood production becomes unsustainable in the long 
term due to the necessity of maintaining a donor animal as a cell source. To address this 
issue, the immortalization of target cells for alternative food production is a necessary goal 
to achieve large-scale production. Cell immortalization disrupts the mechanisms responsible 
for reaching senescence (Soice; Johnston, 2021). 

Embryonic stem cells (ESC) represent a valuable repository of diverse cell 
morphotypes. Due to their plasticity, stem cells obtained from embryos, classified as 
totipotent cells, theoretically can differentiate into any cell type of the organism (Rippon; 
Bishop, 2004). Few researchers have achieved positive results in obtaining somatic cells 
from ESCs of marine animals under in vitro conditions (Table 2). These cells can undergo 
considerable differentiation, facilitated by supplementing the culture medium with specific 
factors (Holen; Kausland; Skjærven, 2010).

Species Embryonic 
stage

Cellular differentiation Reference

Sparus aurata (Fish) Morula neuron-like and epithelial-like Vergès-Castillo 
et al. 2021

Gadus morhua (Fish) Mid-blastula fibroblast-like and neuronal-
like

Holen, Kausland, e 
Skjærven, 2010

Mytilus trossulus (Mussel) Trochophore 
larvae

ciliated cells, muscle cells 
and neuron-like

Odintsova, Dyachuk, 
e Nezlin, 2010

Loteolabrax japonicus (Fish) Blastula neuron-like and muscle cells Chen, Sha, e Ye, 
2003

Macrobrachium rosenbergii 
(freshwater shrimp) Fertilized egg connective-tissue-like

morphology
Sudarshan et al. 

2024

Table 2: Cells obtained by differentiation of embryonic stem cells delivered from seafood animals

Cell lines are already available from seafood species. Establishing an immortalized 
lineage from bivalves has been a focal point for numerous researchers due to their social 
and ecological significance. Unsuccessfully, the only immortalized cell line originating from 
a mollusk species thus far is the embryonic delivery cell line provided by the freshwater 
snail Biomphalaria glabrata (Wang; Wang, 2019). Various transfection and cell hybridization 
techniques in crustaceans in shrimp cell culture are being explored as alternatives to 
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establish stable long-term cell lines, showing promising results (Ma; Zeng; Lu, 2017). 
Only three crustacean cell lines have been established, originating from the shrimp genus 
Penaeus. These cell lines are identified in the Cellosaurus database as OKTr-1 (RRID: 
CVCL_9U40), OKTr-23 (RRID: CVCL_9U41), and PmLyO-Sf9 (RRID: CVCL_A8SX). Both 
cell lines OKTr-1 and OKTr-23 were described by Tapay et al. (1995) and categorized as 
transformed cells originating from the shrimp lymphoid tissues cell line (Oka). Conversely, 
the PmLyO-Sf9 cell line was derived from the hybridization of sf9 cells from the insect 
Spodoptera frugiperda with the lymphoid tissue cells of the shrimp Penaeus monodon 
(Anoop et al. 2021; Sathyabhama et al. 2021).

Most fish cell lines are derived from tissues such as skin, gill, heart, liver, kidney, 
spleen, swim bladder, brain, etc. Embryos and fins are the most frequently utilized tissue 
sources for primary culture. After the ovary, the fin is the second most common tissue used 
for cultivation due to its high regenerative ability (Fryer; Lannan, 1994). An increasing number 
of marine fish cell lines are available, likely in response to the growing interest in testing viral 
load, examining water toxicology, and developing vaccines for farmed fish. However, few of 
these cell lines have been utilized to produce edible fish, apart from a study on producing 
fish-based proteins for space voyagers on long journeys (Benjaminson; Gilchriest; Lorenz, 
2002). Bairoch (2018) listed more than 139,500 cell lines in Cellulosaurus database, with 
about 856 being fish cell lines.

DISCUSSION 
Climate change, food supply shocks caused by pandemics, and population growth 

threaten the traditional food system. Satisfying the demand for meat in the future will be a 
challenge if we intend to maximize the use of agricultural resources and reduce greenhouse 
gas production (FAO, 2017). Therefore, disruptive food technologies will be necessary for 
a more resilient, sustainable, and adequate food system. In this perspective, it is required 
to consider the factors influencing consumer perceptions of new food technologies, leading 
to greater acceptance of them (Siegrist; Hartmann, 2020). Informed decisions must be 
made to achieve scalability, reduce costs, and navigate regulatory challenges effectively. In 
addition to the core food safety assessments, regulatory considerations may be necessary 
for other issues such as labeling, consumer preference/acceptance, and ethical or religious 
aspects of cell-based food products (FAO, 2022).

To discuss the relevant technical issues of cell-based food production, it is important 
to use clear and consistent terminologies that all the stakeholders can accept. Terminologies 
and labels are also necessary and direct means of communicating information to consumers 
(FAO, 2021). Fernandes et al. (2019) suggest that, despite a clustering of recurring and 
highly relevant terms, cultured meat is a subject that spans various areas of knowledge. 
Nomenclature can significantly impact consumer perception, marketing efforts and relevant 
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regulatory actions such as labeling. While consumer acceptance is critical to the industry’s 
success, the common or usual name chosen to label cell-based products must meet 
regulatory criteria, not just marketing needs (Hallman et al. 2023). A consistent nomenclature 
is crucial in bringing cultivated protein products to the commercialized market (Malerich; 
Bryant, 2022). A literature synthesis was conducted on various relevant terminologies 
by The Food and Agriculture Organization of the United Nations and the World Health 
Organization (FAO; WHO, 2023). The results showed that while some preferences differ 
among different sectors, “cell-based food” was less confusing, conveniently overarching, 
and generally well-accepted by consumers. However, it is essential to note that no term is 
100 percent scientifically correct.

Although the terminology is still under discussion, cellular agriculture and cell-based 
meats have been considered the future of foods. There has been considerable buzz with the 
launch of next-generation meat alternatives. This field’s growing excitement has prompted 
increasing research, value propositions, business investments, media coverage and 
discussion. Even so, crucial fundamental research to overcome key technical challenges 
must be carried out before cell-based meat production can be a reality. Alongside research 
progress, regulations and standardization of cell-based meat must keep up with the rapid 
progress in this field (Ong; Choudhury; Naing 2020). 

Cultured meat is a promising but early-stage technology with critical technical 
challenges, including cell source, culture media, mimicking the in vivo myogenesis 
environment, animal-derived and synthetic materials, and bioprocessing for commercial-
scale production (Stephens et al. 2018). Thus, one of the technical challenges of this 
technology is related to the use of animals and products derived from them. As Bhat et 
al. (2019) mentioned, cell-based meat does not involve slaughtering many animals. 
However, the initial source of cells and biopsies for starting cell cultures will certainly impact 
consumers’ perceptions and decisions. Legislation regarding cell sourcing and isolation 
may exist concerning the acquisition of biopsies from live or deceased animals, which could 
raise animal welfare concerns. Cell bank regulations are also in place in several countries 
(EMA, 1998; FDA, 2010). 

Besides, mass production of cell-based food utilizing traditional cell culture protocols 
will require hundreds of gallons of fetal bovine serum to produce a few pounds of meat. 
This implies the continuation of livestock production and an increase in animal exploitation. 
Due to ethical, environmental, and biological concerns, alternatives to fetal bovine serum 
or any animal-derived supplement for cell culture are needed. High-volume cell production 
in industrial bioreactors using serum-free medium is essential for commercial cultured 
meat manufacturing (Garrison et al. 2022). Numerous studies have focused on finding 
an optimal substitute for FBS. The use of fungi extracts (Benjaminson; Gilchriest; Lorenz, 
2002), microalgae extracts (Ng et al. 2020), or cyanobacteria (Jeong et al. 2021) has shown 
success in eliminating or significantly reducing the use of FBS in culture. Cell-based food 
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production may also generate new biological or chemical by-products and waste, subject to 
specific regulations such as environmental legislation. Furthermore, these by-products may 
be utilized in feed applications if they meet feed safety requirements (FAO, 2022). 

On the other hand, one potential future advantage of cell-based meats is the ability 
to design products with specific nutritional characteristics that are not typically achievable 
through conventional animal feeding approaches (Faustman et al. 2020). Cultivated meat 
technology can potentially disrupt the food industry; indeed, it is an inevitable reality. This 
new technology offers an alternative solution to address the environmental, health and 
ethical issues associated with the demand for meat products. The global market eagerly 
anticipates biotechnological advancements in the cultivated meat production chain (Santos 
et al. 2023).

A few years ago, cellular agriculture progressed with new research and publications 
to improve the selection of cell species and cell types to intensify cell-based meat production. 
Pressing issues such as global warming, environmental instability, and food security 
have propelled cell-cultured seafood into the spotlight (Rubio et al. 2019). The marine 
environment harbors many bioactive compounds with unique properties, offering significant 
potential for biotechnological applications (Boziaris, 2014). Seafood production from marine 
cell cultures represents a novel approach and an exciting opportunity for cellular agriculture. 
Cell-based seafood holds promising market penetration and sustainability potential, as it 
can produce meat from species that are challenging to cultivate in traditional aquaculture 
at competitive prices (Farzad, 2021). Consequently, the emergence of cell-based seafood 
industries has drawn the attention of aquaculture sectors. However, its market presence 
remains hypothetical due to consumer acceptance being contingent upon the approval of 
cell-based meat (Lindfors; Jakobsen, 2022). 

 Our mini-review of the relevant literature indicates that marine cell and tissue 
culture research has been largely overlooked. Recent advancements in cellular agriculture 
underscore the substantial environmental benefits that may result from substituting some 
industrially raised and processed meat with cultured meat alternatives. There are notable 
research gaps in marine cell culture that present valuable opportunities for further exploration 
(Munteanu et al. 2021; Rodríguez Escobar et. al. 2021). Cell-based meat represents a 
promising strategy that could offer tools for nutritional enrichment and sustainable seafood 
generation without the environmental impact associated with traditional methods (Azhar et 
al. 2023). 

The future generation of meat substitutes should focus on reducing saturated fat 
content and using fewer additives (Franca et al. 2023). Meanwhile, due to the advances 
in cultured meat technology worldwide and the slight emphasis that this area has received 
in no country, we may be missing significant opportunities in this market (GFI, 2022). 
According to Morais-da-Silva; Villar; Reis (2022), the potential of plant-based and cultivated 
meat production for creating new and high-skilled jobs has been highlighted. The impact of 
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novel food production systems on employment in conventional meat production may differ 
for each value chain stage. Technological advancements and investments in cultured meat 
research suggest that cultured meat will become a mainstream food commodity shortly 
(Post et al. 2020).
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