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Abstract: The motivation behind 
this research is the great interest that 
nanofluids have received from scientists 
and researchers due to their exceptional 
thermal performance in heat transfer 
processes. Moreover, employing artificial 
intelligence and its various technologies 
to solve real-life problems. This research 
studies the two-dimensional stagnation 
point Carreau nanofluid flux (2D-SPCNFF) 
across a stretching sheet that is impacted by 
thermal radiation and Arrhenius activation 
energy. The mathematical formulation of 
the problem is signified through a nonlinear 
partial differential equations (PDEs) system 
that was diminished to a nonlinear ordinary 
differential equations (ODEs) system by 
applying the correspondence transformations. 
The ordinary differential equations ODEs 
are solved by employing the Lobatto IIIA 
method using the bvp4c package in MATLAB 
regarding different values of physical 
parameters. The solution of ODEs is used as 
a dataset with nftool technique in MATLAB 
to design a stochastic numerical approach by 
the Levenberg Marquardt backpropagation 
neural networks approach (LMB-NNA). The 
efficiency, consistency, and convergence of 
the proposed approach are illustrated by both 
graphical and numerical consequences using 
the mean squared error, histograms for error, 
and linear regression. The performance of the 
flux velocity, fluid temperature distribution, 
and fluid concentration of the flow under 
the effect of the mixed convection parameter, 
Hartmann number, Ecker number, activation 
energy parameter, radiation parameter, 
heat generating parameter, and reaction 
rate, is shown as a numerical solutions by 
LMB-NNA for 2D-SPCNFF problem. With 
rising heat generation parameter, radiation 
parameter, and Ecker number values, the 
temperature distribution grows. For the large 
rate of an activation energy parameter, the 

concentration increases.
Keywords: Nanofluid; Lobatto IIIA; 
Levenberg Marquardt; Activation Energy; 
Thermal Radiation. 

INTRODUCTION
Depending on many variables, the velocity 

of chemical reactions may vary and can be 
used to interpret the reaction mechanism and 
the whole process, such as activation energy. 
Arrhenius popularized the phrase “activation 
energy” in 1889. The least energy necessary 
for a chemical reaction to start is called 
activation energy. Chemical procedures, oil 
reserves, solar thermal systems, and water 
emulsification are the industries and fields 
that utilize activation energy. The chemical 
processes and activation energy characteristics 
of the magneto nanofluid were surveyed by 
(Mustafa et al. (2017)). A stretched surface 
was utilized by (Hayat et al. (2020)) to analysis 
the influence of an Arrhenius activation 
energy upon the flow of a 3D MHD nanofluid. 
Using thermal radiation, (Sajid et al. (2018)) 
examined the Maxwell Darcy-Forchheimer 
nanofluid flow impacted by the activation 
energy. (Kahn et al. (2020)) considered the 
effect of the Arrhenius activation energy 
upon the Casson nanofluid flux. (Alsaadi et al. 
(2020)) analyzed Williamson nanofluid flux 
with the impact of activation energy. (Bhatti 
et al. (2020)) conducted a study to examine 
the motion of gyrotactic microorganisms in 
a magnetized nanofluid through a porous 
plate that is impacted by activation energy 
on. The consequences of activation energy on 
2D nanofluid flux with heat and mass transfer 
were observed by (Kalaivanan et al. (2020)).

Thermal radiation is a form of 
electromagnetic radiation produced when 
particles in matter move due to their 
temperature. Thermal radiation is formed if 
thermal energy from the motion of charges 
in the material (protons and electrons) is 
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NOMENCLATURE

PDEs Partial differential equations SPCNFF stagnation point Carreau nanofluid flow

2D Tow-dimensional MSE Mean Squared Error 

LMBNNA Levenberg Marquardt backpropagation 
neural network approach ODEs Ordinary differential equations

M Hartmann number (u,v) Velocity components 

∈ Reaction rate B0 Magnetic parameter

E Activation energy parameter δ Heat generating parameter

λ Mixed convection parameter Ec Ecker number 

A Speed ratio vf Kinematic viscosity

(x,y) Cartesian coordinates Tw Surface temperature

Bi Biot number σ Electric conductivity

T Fluid temperature Uw Stretching velocity

Nt Thermophoresis R Radiation parameter 

θw Temperature ratio parameter Nu Local Nusselt number 

Ea Activation energy k Thermal conductivity

γ Chemical reaction constant ψ Stream function

N buoyancy ratio parameter λ1 Weissenberg number

f Dimensionless stream function αm Thermal diffusivity

Cw Surface volume fraction T∞ Ambient temperature

S Suction parameter U∞ Free stream velocity

Cf Skin friction coefficient φ Dimensionless concentration

Pr Prandtl number Nb Brownian motion 

Re Local Reynolds number ρ Fluid density

C Fluid concentration C∞ Ambient concentration

K1 Free stream velocity μ Dynamic viscosity

U0 reference velocity θ Dimensionless temperature

n Power law index τw Surface shear stress

Cp specific heat ƞ Dimensionless similarity variable

DB Brownian diffusion variable βt Thermal expansion coefficient

DT Thermophoretic diffusion factor βc Concentration expansion coefficient

qr Radiation heat flux Q0 heat generation co-efficient

m Dimensionless rate constant Sc Schmidt number

g Gravity λ* Time constant

ue constant reaction rate c Free streaming rapidity
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transformed into electromagnetic radiation. 
(Howell et al. (2020)) presented the main 
physics concepts underlying the phenomenon 
of thermal radiation. In a vertical wavy porous 
cavity, the impact regarding thermal radiation 
upon the bioconvection flux of nanofluid and 
oxytactic microorganisms was analyzed by 
(Hussain et al. (2022)). Nanofluid is simulated 
parametrically subject to thermal radiation 
through a porous shrinking/stretching sheet 
by (Bilal et al. (2022)). Entropy production 
in a nanofluid affected by thermal radiation 
and the Cattaneo-Christov model was studied 
numerically by (Waqas et al. (2022)). (Shaw 
et al. (2022)) studied the hydromagnetic flux 
of a Cross hybrid nanofluid that is influenced 
by linear, nonlinear, and quadratic thermal 
radiations.

In a fluid stream, a stagnation point is 
a place where the flux velocity is zero on 
the top of a submerged surface. (Ramzan et 
al. (2022)) exhibited the thermodynamics 
of the stagnation point flux regarding 
nanofluid. (Haq et al. (2022)) directed the 
examination of the stagnation point flux for 
the hydromagnetic nanofluid along a vertical 
sheet using a modified Chebyshev collocation 
approach. The heat flux of 2D fluid flow 
involving stagnation point stream was 
demonstrated by (Awan et al. (2022)). The 
heat transmission of electromagnetic fluid 
flow at the stagnation point was examined by 
(Bai et al. (2022)). 

A generalized Newtonian fluid whose 
viscosity depends on the shear rate known 
as Carreau fluid. Carreau first derived 
from molecular network theories to 
report rheological equations. The Carreau 
viscosity model helps characterize the flux 
performance of fluids in the extreme shear 
rate zone. The efficiency of nonhomogeneous 
heat production and the thermodynamics 
of a Carreau fluid flow along a nonlinear 
extending cylinder is analyzed by (Hussain et 

al. (2022)). (Rehman et al. (2022)) presented 
a theoretical analysis of heat transport 
in Magnetohydrodynamic thermally slip 
Carreau fluid. (Reedy et al. (2022)) performed 
a numerical investigation regarding Carreau 
fluid flux along a vertical microchannel 
porous through entropy production. 
(Qayyum et al. (2022)) investigated the 
analysis of a magnetohydrodynamic Carreau 
fluid flow influenced by the heat transfer 
across a stretched surface. (Shoaib et al. 
(2022)) studied the flow characteristics of the 
magnetohydrodynamic Carreau nanofluid 
model through a numerical intelligent 
computing algorithm. (Uddin et al. (2022)) 
inspected the thin film flux of Carreau 
nanofluid across an extended sheet by using 
the supervised neural network method. 

The first research using the word 
“nanofluid” was published in 1995 via (Choi & 
Eastman (1995)). A nanofluid is a combination 
of ethylene glycol, water, and other base fluids 
suspended with nanoscale particles. Due to 
their potential use in several industries, such 
as computer engineering, thermodynamic 
systems, solar energy, cooling procedures, 
heating methods, and thermoelectric devices, 
nanoparticles have attracted much interest. 
In a w-form tube under the influence of 
curvature, (Zaman et al. (2021)) examined 
blood flow as a non-Newtonian nanofluid. 
(Uddin et al. (2020)) laid the groundwork for 
the numerical solutions of magnetic blood 
nanofluid flow via a cylindrical tube. (Shoaib 
et al. (2022)) considered the flux properties 
and heat transmission across a stretched 
and rotating disk in an unsteady 3D hybrid 
nanofluid flow. By applying the Buongiorno 
model, (Hamid et al. (2021)) characterized 
the Cross-nanofluid flow toward a radially 
shrinking sheet. 

A new stochastic numerical approach 
for training the ANN is the Levenberg-
Marquardt back propagation neural network 
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approach LMBNNA, which may be used 
to solve fluid flow problems. To study the 
magnetohydrodynamic Casson nanofluid 
with the Darcy-Forchheimer law impacted by 
mass and heat transmission and the activation 
energy, (Shoaib et al. (2022)) employed 
Levenberg Marquardt backpropagation neural 
network approach. The Levenberg-Marquardt 
backpropagation neural network approach 
LMBNNA was used by (Ilyas et al. (2021)) 
to study the thermodynamic properties of 
several nanofluidic systems on stretched disks. 
The flux of the Maxwell nanofluid flow along a 
stretched and rotating surface under the effect 
of magnetic and nonlinear thermal radiation 
was considered by (Uddin et al. (2021)) using 
Levenberg-Marquardt backpropagated neural 
network approach.

The two-dimensional stagnation point 
Carreau nanofluid flux 2D-SPCNFF along 
a stretching sheet that is affected by thermal 
radiation and activation energy is numerically 
examined in this work using a new stochastic 
numerical approach depending upon 
Levenberg-Marquardt backpropagation 
neural networks approach LMBNNA through 
the MATLAB software by using nftool 
package. 

In section 2, the 2D-SPCNFF problem 
model is explained. Section 3 details the 
solution methodology for the innovative 
approach LMBNNA. The numerical and 
graphical results of LMBNNA and the 
impacts of various physical components on 
the performance of the flux velocity f '(ƞ), 
fluid temperature spreading θ(ƞ), and fluid 
concentration ϕ(ƞ) of the flux are discussed in 
Section 4.

PROBLEM FORMULATION
Consider the thermal radiation and 

activation energy impacts of an incompressible 
two-dimensional stagnating point Carreau 
fluid flux over a stretched surface. To evaluate 
flow, combined convection is employed. As 
shown in Figure 1, the flow happens in y > 
0; the surface velocity is uw = ax, a > 0, where 
x-axis is extended regarding the surface.

Assume that surface concentration, surface 
temperature, ambient concentration, and 
ambient temperature are Cw, Tw, C∞ and T∞, 
respectively.

For the flow model, the leading partial 
differential equations PDEs are (Ijaz Khan et 
al. (2020) & Hayat et al. (2017))

Figure 1. Flow diagram

 (1)

    (2)

(3)

 
 (4)
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The boundary conditions are

        (5)

 (6)

By using the dimensionless variables

  (7)

Equations (1)-(4) becomes

       (8)

 
 (9)

 
 (10)

With

 (11)

SOLUTION METHODOLOGY
The following steps describe the solution 

methodology.
Regarding various values of physical 

factors, including the mixed convection 
parameter (λ), Hartmann number (M), Ecker 
number (Ec), activation energy parameter 
(E), radiation parameter (R), heat generating 
parameter (δ), and reaction rate (∈) as 
shown in Table 1, the approximate solution 
for the tow-dimensional stagnation point 
Carreau nanofluid flow 2D-SPCNFF model 
is calculated by solving ODEs (8-10) with the 
boundary conditions (11-12).

The suggested Levenberg-Marquardt 
backpropagation neural networks approach 
LMBNNA is applied to analyze the numerical 
solution of the 2D-SPCNFF model using 
forty neurons, with 80% of the dataset being 

employed regarding training, 10% regarding 
validation, and 10% regarding testing in the 
MATLAB software through nftool package. 
Figure 2 displays a 2D-SPCNFF artificial 
neural network design.

The stability, accuracy, and convergence of 
the LMBNN approach are shown numerically 
and graphically in the next section using 
the mean squared error of performance, 
histograms for error, gradient value, and 
linear regression.

Displayed are the effects of various 
parameters on the performance of the flux 
velocity f(ƞ), fluid temperature spreading 
θ(ƞ), and fluid concentration ϕ(ƞ) functions, 
respectively.

Figure 3 represents all of the previous 
steps.

Figure 2. The designed scheme about artificial 
neural network regarding 2D-SPCNFF

Scenario Physical 
parameters

Case 
1

Case 
2

Case 
3

Case 
4

1 M 1 1.5 2 2.5
2 λ 0 0.1 0.2 0.3
3 Ec 0 1 2 3
4 R 0 0.3 0.6 0.9
5 δ 0 0.1 0.2 0.3
6 E 3 4 5 6

7 ∈ 0 0.2 0.4 0.6

Table : Several physical parameters values for 
2D-SPCNFF.

OUTCOMES AND DISCUSSION
The review about the numerical and 

graphical outcomes about the designed 
Levenberg-Marquardt backpropagation 
neural network approach LMBNNA regarding 
the stagnation point two-dimensional 
Carreau nanofluid flux model is covered in 
this section.
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Figure 4 and Table 2 provide the graphical 
and numerical findings of LMBNNA for 
cases of the Hartmann number M for the 
velocity f '. For case 3 of scenario 1 the greatest 
performance has a mean square error value 
of 10-9 at 176 iterations, according to Figure 
4(a). The LMBNNA is convergent through the 
gradient result is and the mu value is 10-10 as 
shown in Figure 4(b). Figure 4(c) illustrates 
the distribution of the error histogram as . The 
value R=1 in the regression analysis plot was 
displayed in Figure 4(d). The error behavior by 
function fit plot was presented in Figure 4(e).

The results of the LMBNN approach for the 
velocity function f ' with the case of the mixed 
convection parameter λ are shown in Figure 5 
and Table 3. In case 1 of scenario 2, the mean 
squared error of the performance was the least, 
reaching 10-8 after 252 iterations, as illustrated 
in Figure 5(a). The convergence of the 
LMBNNA using the mu and gradient values 
that were determined in Figure 5(b). Figures 
5(c,e) present the error analysis between the 
output and target of LMBNNA with both the 
error histogram and function fit plot. The 
stability of the LMBNNA is discussed in Figure 
5(d) using the linear regression analysis.

The findings of the LMBNN approach for 
scenario 3 with case 4 are provided in Table 
4 and Figure 6. Figure 6(a) shows a plot of 
the performance with the highest value being 
10-9 at 57 iterations. Figure 6(b) indicates 
that the mu parameter value is 10-10 and the 
gradient result is . The histogram distribution 
for error is examined in Figure 6(c) with 20 
bins. Figure 6(d) presents the value R=1 for 
training, testing, validation, and all processes 
in the linear regression. Figure 6(e) displays 
the function fit plot of LMBNNA.

For case 1 of scenario 4, Table 5 depicts the 
mean squared error about testing, training, 
and validation, gradient value, performance, 
number of epochs, mu parameter, and 
processing time.

Figure 7(a-e) shows the accuracy, 
convergence, and stability of the LMBNN 
approach for case 1 of scenario 4. The error 
between the target and output is in the error 
histogram plot, 10-4 in the function fit plot, 
and the value R=1 in the linear regression 
plot. The mean squared error of performance 
is 10-9 after 144 iterations, the gradient is, and 
the mu parameter is 10-11.

The numerical findings are provided in 
Table 6 for solving situations of the heat 
generating parameter δ for the temperature 
\theta, while the graphical outcomes 
are displayed in Figure 8. (a-e). The best 
performance is 10-8 at 75 epochs. According 
to the training state plot, the gradient value is 
and the mu value is 10-11. The error between 
the output and target is introduced by the 
error histogram plot is . The regression scheme 
represents the linear connection between the 
target data and output. In the function fit plot, 
the error is 10-4.

The analytical and graphical results about 
LMBNNA for solving the concentration 
function ϕ at the cases of the activation energy 
parameter E are given in Table 7 and Figure 
9. For case 4 of scenario 6, Figure 9(a) shows 
the maximum MSE performance is 10-11 at 
124 iterations. Figure 9(b) demonstrates that 
the gradient result is and the mu value is 10-12. 
The range of the error histogram is as shown 
in Figure 4(c). The linear regression plot of 
the LMBNNA being stable, as illustrated in 
Figure 9(d), has a value of R=1. Figure 9(e) 
displays the error through the function fit 
plot.

For the reaction rate with the concentration 
ϕ, the results of the LMBNN approach 
are displayed in Figure 10 and Table 8, 
respectively. For case 2 of scenario 7, the 
lowest mean square error reached 10-11 after 
159 iterations, as presented in Figure 10(a). 
Using the given mu and gradient values, 
Figure 10(b) illustrates the convergence of 
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Figure 3. Scheme of solution methodology for 2D-SPCNFF

Scenario Cases
Mean Squared Error

Performance Mu
Parameter Gradient Epochs Time

Training Validation Testing

S1
C1 8.32E-08 5.42E-08 9.75E-08 8.30E-08 1.00E-09 6.87E-05 447 7s
C2 4.14E-08 5.30E-08 5.14E-08 4.14E-08 1.00E-07 1.30E-04 389 6s
C3 3.91E-09 4.17E-09 8.58E-09 3.39E-09 1.00E-10 3.83E-07 182 3s
C4 5.84E-09 3.62E-09 8.22E-09 5.84E-09 1.00E-10 6.49E-06 344 5s

Table 2: Numerical findings of LMBNNA regarding scenario 1 about 2D-SPCNFF.

Scenario Cases
Mean Square Error

Performance Mu
Parameter Gradient Epochs Time

Training Validation Testing

S2
C1 9.66E-09 1.83E-08 1.72E-08 9.66E-09 1.00E-11 3.24E-06 258 4s
C2 1.05E-07 4.96E-08 6.98E-08 1.03E-07 1.00E-10 9.71E-05 235 4s
C3 3.83E-08 4.54E-08 7.28E-08 3.83E-08 1.00E-08 1.31E-06 565 11s
C4 4.81E-09 5.72E-09 8.02E-09 4.81E-09 1.00E-09 1.39E-06 241 4s

Table 3: Numerical findings of LMBNNA regarding scenario 2 about 2D-SPCNFF.
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Scenario Cases
Mean Square Error

Performance Mu
Parameter Gradient Epochs Time

Training Validation Testing

S3
C1 1.35E-09 2.45E-09 1.33E-09 1.35E-09 1.00E-09 1.59E-07 643 10s
C2 7.99E-08 8.38E-08 1.47E-07 7.89E-08 1.00E-10 3.85E-05 318 5s
C3 7.79E-08 5.45E-08 5,86E-08 7.79E-08 1.00E-10 1.28E-06 174 2s
C4 4.46E-09 5.66E-09 4.92E-09 3.50E-09 1.00E-10 1.29E-06 63 1s

Table 4: Numerical findings of LMBNNA regarding scenario 3 about 2D-SPCNFF.

Scenario Cases
Mean Square Error

Performance Mu
Parameter Gradient Epochs Time

Training Validation Testing

S4
C1 1.47E-10 1.78E-10 2.12E-10 1.47E-10 1.00E-12 9.96E-08 144 2s
C2 8.98E-08 6.59E-08 1,03E-07 8.92E-08 1.00E-09 3.07E-06 315 6s
C3 1.60E-08 2.11E-08 3.36E-08 1.60E-08 1.00E-09 3.10E-05 175 3s
C4 2.17E-07 4.19E-07 1.88E-07 2.15E-07 1.00E-09 1.55E-06 128 2s

Table 5: Numerical findings of LMBNNA regarding scenario 4 about 2D-SPCNFF.

Scenario Case
Mean Square Error

Performance Mu
Parameter Gradient Epochs Time

Training Validation Testing

S5
C1 3.27E-08 5.38E-08 4.18E-08 3.27E-08 1.00E-09 9.95E-09 101 1s
C2 4.42E-09 3.50E-09 5.91E-09 4.42E-09 1.00E-11 1.28E-05 81 1s
C3 2.01E-07 3.07E-07 2.37E-07 2.01E-07 1.00E-09 5.12E-05 325 5s
C4 9.83E-09 7.62E-09 7.84E-09 9.82E-09 1.00E-09 2.96E-05 242 4s

Table 6: Numerical findings of LMBNNA regarding scenario 5 about 2D-SPCNFF.

Scenario Case
Mean Square Error

Performance Mu
Parameter Gradient Epochs Time

Training Validation Testing

S6
C1 4.16E-12 3.92E-12 4.08E-12 4.16E-12 1.00E-12 8.89E-08 218 4s

C2 1.52E-12 1.92E-11 2.08E-12 1.51E-12 1.00E-12 9.95E-08 103 3s
C3 1.05E-12 1.46E-12 1.57E-12 1.05E-12 1.00E-12 9.61E-08 135 3s
C4 1.33E-12 1.36E-12 1.60E-12 1.33E-12 1.00E-13 9.82E-08 124 4s

Table 7: Numerical findings of LMBNNA regarding scenario 6 about 2D-SPCNFF.

Scenario Case
Mean Square Error

Performance Mu
Parameter Gradient Epochs Time

Training Validation Testing

S7
C1 2.38E-12 4.19E-12 6.34E-12 2.38E-12 1.00E-12 9.76E-08 86 1s
C2 9.63E-12 1.41E-11 1.45E-11 9.63E-12 1.00E-12 9.74E-08 159 2s
C3 1.23E-12 2.31E-12 1.88E-12 1.23E-12 1.00E-13 9.89E-08 129 2s
C4 9.35E-10 8.34E-10 9.59E-11 9.33E-11 1.00E-10 1.71E-08 135 2s

Table 8: Numerical findings of LMBNNA regarding scenario 7 about 2D-SPCNFF.
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the LMBNNA. The function fit plot and error 
histogram for the LMBNNA error analysis 
are shown in Figures 5(c,e). Figure 5(d) uses 
the output and target relationship formed 
by linear regression analysis to illustrate the 
accuracy of LMBNNA.

a) MSE of performance about case 3

b) Gradient plot about case 3

c) Error histogram plot about case 3 

d) Regression plot about case 3

e) Function fit plot about case 3
Figure 4. Graphical outcomes of LMSNN for 

case 3 of scenario 1 for 2D-RCNFF.

a) MSE of performance about case 1 
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b) Gradient plot about case 1

c) Error histogram plot about case 1 

d) Regression plot about case 1

e) Function fit plot about case 1

Figure 5. Graphical outcomes of LMBNNA 
for case 1 of scenario 2 for 2D-SPCNFF.

a) MSE of performance about case 4

b) Gradient plot about case 4
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c) Error histogram plot about case 4

d) Regression plot about case 4

e) Function fit plot about case 4

Figure 6. Graphical outcomes of LMBNNA 
for case 4 of scenario 3 for 2D-SPCNFF.

a) MSE of performance about case 1

b) Gradient plot about case 1

c) Error histogram plot about case 1 
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d) Regression plot about case 1

e) Function fit plot about case 1

Figure 7. Graphical outcomes of LMBNNA 
for case 1 for scenario 4 for 2D-SPCNFF.

a) MSE of performance about case 2

b) Gradient plot about case 2

c) Error histogram plot about case 2

d) Regression plot about case 2
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e) Function fit plot about case 2

Figure 8. Graphical outcomes of LMBNNA 
for case 2 of scenario 5 for 2D-SPCNFF.

a) MSE of performance about case 4

b) Gradient plot about case 4

c) Error histogram plot about case 4

d) Regression plot about case 4

e) Function fit plot about case 4

Figure 9. Graphical outcomes of LMBNNA 
for case 4 of scenario 6 for 2D-SPCNFF.
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a) MSE of performance about case 2

b) Gradient plot about case 2

c) Error histogram plot about case 2

d) Regression plot about case 2

e) Function fit plot about case 2

Figure 10. Graphical outcomes of LMBNNA 
for case 2 of scenario 7 for 2D-SPCNFF.

Figures 11-13 present the conduct of the 
flux velocity f '(ƞ) fluid temperature θ(ƞ), and 
fluid concentration ϕ(ƞ) with the effects of 
various values of physical factors such the 
mixed convection parameter (λ), Hartmann 
number (M), Ecker number (Ec), activation 
energy parameter (E), radiation parameter 
(R), heat generating parameter (δ), and 
reaction rate (∈).

The flux velocity is reducing for bigger value 
of the Hartmann number while it is growing 
for rising value of the mixed convection 
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parameter as displayed in Figure 11(a-b).
The temperature distribution is increasing 

regarding increasing value about the Ecker 
number, radiation parameter, and heat 
generating parameter as plotted in Figure 
12(a-c). 

The fluid concentration is increasing for 
large value of activation energy parameter 
while it is decreasing for growing value of 
reaction rate that are shown in Figure 13(a-b). 

(a). Behavior of f ' under impact M

(b). Behavior of f ' under impact λ

Figure 11. Behavior of flow velocity under 
impact Hartmann number and mixed 

convection parameter

(a). Behavior of θ under impact Ec

(b). Behavior of θ under impact R

(c). Behavior of θ under impact δ

Figure 12. Behavior of the temperature 
distribution under impact the Ecker number, 
radiation parameter, and heat generating 

parameter
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(a). Behavior of ϕ under impact ∈

(b). Behavior of ϕ under impact E

Figure 13. Behavior of the concentration under 
impact the reaction rate and activation energy 

CONCLUSION
The mathematical formulation of the 

two-dimensional stagnation point Carreau 
nanofluid flux 2D-SPCNFF subject to thermal 
radiation and activation energy is reviewed 
in this study by employing an innovative 
stochastic numerical technique dependent 
on a Levenberg Marquardt backpropagation 
neural networks approach LMBNNA. For 
the 2D-SPCNFF formulation, the nonlinear 
ordinary differential equations (ODEs) are 
found by simplifying the nonlinear partial 
differential equations (PDEs). The Lobatto 
IIIA technique would first solve ODEs for 
several physical factors to generate reference 

data. The convergence, stability, and 
accuracy of LMBNNA for 2D-SPCNFF are 
investigated using the mean squared error 
of performance, gradient results, mu values, 
histogram for error findings, and linear 
regression assessment. Under the influence 
of a wide range of different values about 
several physical parameters, the conduct of 
the flux velocity, fluid temperature, and fluid 
concentration is demonstrated.

The following is an overview about the 
study outcomes.

• In mean square error plots, the desired 
performance for the training, testing, 
and validation processes illustrates 
the stability of the suggested LMBNN 
approach. 

• The gradient and mu parameter 
values, which can be observed in training 
state plots, provide an illustration of 
the recommended LMBNN approach 
converges.

• The error histogram and function 
fit plots show the error analysis of the 
LMBNN approach.

• If the Hartmann number increases, 
the flux velocity decreases but it rises 
when the mixed convection parameter 
increases.

• With rising heat generation parameter, 
radiation parameter, and Ecker number 
values, the temperature distribution 
grows.

• For large rate of an activation energy 
parameter, the concentration increases, 
whereas regarding large values of the 
reaction rate, it decreases.

In future work, use the suggested LMBNN 
approach for a number of problems involving 
nanofluids influenced by an activation energy 
(Shahid et al. (2022); Azam et al. (2022); 
Shahid et al. (2022); Habib et al. (2022)).
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