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Abstract: Intact brittle rock can fail in 
tension even when all principal stresses are 
compressive. This is due to lateral expansion 
and extension strain when near to a free 
surface, caused by Poisson’s ratio. Exceeding 
tensile strength due to stress anisotropy and 
Poisson’s ratio are the fracture-initiating 
conditions around deep tunnels, not the 
increasing mobilization of compressive 
strength, commonly beyond 0.4 x UCS. In 
a related discovery, the limiting height of 
vertical cliffs and near-vertical mountain 
walls can also be explained using extension 
strain theory. The range of limiting heights 
of approximately 20m for cliffs in porous 
tuff to record 1,300m high mountain walls in 
granite are thereby explained. Tensile strength 
is the weakest link behind cliffs and ultra-
steep mountain walls. Sheeting joints can 
also be explained by extension strain theory. 
Maximum shear strength is the weakest link 
when stress levels are ultra-high, or when 
there is jointing and maximum slope angles 
is the issue. Here one can use Q-slope. The 
world’s highest mountains are limited to 8 to 
9km. This is due to non-linear critical state 
rock mechanics. It is not due to UCS.
Keywords: Deep tunnels, Cliffs, Mountains; 
Extension strain; Tensile strength; Shear 
strength

INTRODUCTION 
The lessons from fracturing in deep tunnels 

is the starting point for the ultra-simple cliff-
height and mountain wall-height equation 
which is introduced in this article. The 
observed and recently modelled fracturing 
behavior of deep tunnels in massive rock 
indicates that fracturing may be initiated by 
extensional strain over-coming the tensile 
limit, even when all stresses are compressive. 
This is possible due to the lateral expansion 
caused by Poisson’s ratio. A small-scale 
example of this is the acoustic emission that 

occurs due to micro-fracture initiation when 
testing intact rock cylinders in traditional 
uniaxial compression, where Poisson’s ratio is 
also at work. The commonly used parameter 
obtained from such tests is σc, the unconfined 
compression strength (commonly written 
as UCS). This might be 150MPa for granite 
but only 1.5MPa for weak porous tuff, the 
medium once used by Christian cliff-dwellers 
in Cappadocia, Turkey. The tuffs are so weak 
that there have been many historic cliff failures, 
which expose old dwellings and Christian 
churches at irregular intervals. The most 
basic strength parameter σc has traditionally 
been compared with the estimated maximum 
tangential (‘arching’) stress, to investigate if 
a deep tunnel will suffer fracturing or rock-
burst and need more support like sprayed 
concrete and rock bolts. A newly excavated 
tunnel results in a big contrast between the 
maximum tangential (‘arching’) stress (σθ) 
and the almost unloaded radial stress (σr). 
For elastic isotropic materials and a circular 
tunnel, the theoretical maximum tangential 
stress is three times the major principal stress 
(σ1) minus the minimum principal stress (σ2) 
acting in the same plane, at right angles to the 
tunnel. At 1,000m depth we might have σθ = 
3 x 30 - 15 = 75MPa, due to assumed in situ 
stresses σv (vertical) and σh (horizontal) of 30 
and 15 MPa. If we now compare the magnitude 
of σθ with the available uniaxial strength σc, 
say 150MPa for granite, then the ratio σθ/σc = 
75/150 = 0.5, will suggest from Figure 1 (and 
from Table 1) that fracturing and break-out 
may occur: i.e. more support is needed due to 
much increased SRF i.e. lower Q.
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Figure 1. The traditional assumption is that 
fracturing in a deep tunnel is limited if 
compressive strength is sufficient. Martin 
et al. 1998, and Grimstad and Barton, 1993 
have independently confirmed that when the 
stress/strength ratio σθ/σc ≥ 0.4±0.1, fracturing 
and break-out is likely, as illustrated here, to a 
depth of 2 to 3m. This ocurred in several large 
diversion tunnels in Brazil (Ita HEP, Barton 

and Infanti, 2004).

In the Q-system ratings for the stress 
reduction factor SRF, the rating is accelerated 
when passing a ratio σθ/σc of 0.4, as shown in 
Table 1. The numerous case records collected 
by Grimstad for the case of deep road tunnels 
in Norway, giving stress/strength ratios in 
the case of tunnels of up to 1.4km depth, are 
given in our illustrated Q-manual (Barton and 
Grimstad, 2014). Accelerated (i.e. increased) 

SRF values in the case of high stress give lower 
Q-values, and therefore the necessary heavier 
support (closer B c/c, thicker Sfr).

Table 1. The ‘accelerated’ SRF value used in 
the Q-system S(fr) update of Grimstad and 
Barton, 1993 when the estimated ratio of σθ/σc 

reaches and exceeds 0.4.

The common (but independently suggested) 
assumption by Grimstad and Barton, 1993 and 
by Martin et al. 1998 that σθ/σc ≥ 0.4 will result 
in ‘stress-induced’ fracturing, and the need 
for heavier tunnel support has recently been 
revisited. Research by co-author Shen using 
the fracture mechanics code FRACOD (Shen 
et al. 2013) shows that the assumed ‘high stress’ 
fracturing is actually initiated by extensional 
strain, causing the weakest link (tensile 
strength σt) to be exceeded first. Propagation 
by shearing may follow immediately if stress 
levels (or depth) are sufficient. Shearing may 
dominate at high stress or when a tunnel (or 
mine opening) is very deep, and even cause 
rock bursts, as propagation of fracturing in 
shear is unstable. (Shen and Barton, 2018). 
Figure 2 illustrates modes of fracturing seen 
or modelled in simulations of deep tunnels. 
Numerical modelling with the displacement 
discontinuity (DDM) based FRACOD code 
is also shown. This was a study specifically to 
see the effect of jointing on reducing the risk 
of rock-burst, due to dissipation of shear and 
tensile stresses with the help of the jointing. In 
deep rock tunnels, the presence of significant 
jointing appears to reduce the risk of fracturing 
and rock bursts, while in shallow tunnels, the 
presence of jointing, and of course faulting, 
increases the 
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Figure 2. Examples of ‘stress-induced’, or 
more correctly extension-strain induced 
fracturing, followed by propagation-in-shear. 
(Top) sandstone tunnel models, (middle) two 
real TBM tunnels from 1880 and 2009 (chalk 
marl and marble). The two FRACOD models 
simulate deep TBM excavations: intact or 

jointed granite.

risk of collapse, if insufficient tunnel support 
is applied. The FRACOD models shown in 
Figure 2 show 1,000m deep simulations with 
σ1 (horizontal) = 2 σ2 (vertical). The effect of jointing 
is to partly dissipate the fracturing of intact 
rock. (See numerous examples in Shen and 
Barton, 2018). Red fractures are tensile, green 
are shear, with respectively mode I and mode 
II fracture toughness. In the top of Figure 2 we 
see a physical model of intersecting log-spiral 
shear fracturing caused by boring into a highly-
stressed poly-axial (3D) flat-jack loaded cell of 
50 x 50x 50cm size, in a direction deviated to 
one principal stress. (Addis et al., 1990). The 
three-dimensional nature of the fracturing, 

with fracturing also ahead of the face, has 
been experienced in some deep TBM tunnels. 
In the middle of Figure 2 (left) the world’s first 
significant TBM tunnel is shown. This 2.2m 
diameter and nearly 1 km long tunnel was 
driven by a Beaumont TBM in 1880, using 
steam-power. The chalk marl of the adjacent 
Channel Tunnels, driven between the UK and 
France some 110 years later, has a uniaxial 
compressive strength σc of only 4 to 9MPa. 
The failure of the haunches in this pioneer 
pilot tunnel occurred where it passed under a 
70m high cliff with a consequent approximate 
2MPa increase of vertical stress. We can 
assume that the ratio of σθ/σc ratio would have 
exceeded 0.4 by a significant margin.

The TBM photograph showing complete 
tunnel collapse is the result of a tragic rock-
burst accident in a very deep TBM pilot tunnel 
of 5m diameter in China. This was bored 
in insufficiently strong, originally massive 
marble with σc of 70-120MPa. The tunnel 
depth was typically 1 to 2.5 km. All tunnels 
in this big hydropower project (Jinping II) 
finally saw the TBM-driven headrace tunnels 
replaced by slightly less hazardous drill-and-
blasting. In the latter, the highest tangential 
stresses are displaced a bit deeper into the 
surrounding rock due to the fracturing caused 
by the blasting.

FAILURE IN EXTENSION
Based on the extension-strain theory, 

which was promoted by Stacey, 1981, if the 
strain in a given direction becomes tensile 
and reaches a critical value, tensile fracturing 
will occur. A two-dimensional equation for 
expressing extension strain (in the lateral 
direction) is as follows:

ε3= [σ3 –νσ1] / E’    (1)

where ν is the Poisson’s ratio of the intact 
rock and E’ is the generalised term for Young’s 
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modulus (E). (While E’ = E for the plane stress 
condition; E’ = E/(1-v2) for plane strain, i.e. 
when no expansion in third dimension. 

According to Equation (1), tensile strain 
may occur in a stress field where both principal 
stresses are compressive due to Poisson’s 
effect. This explains why tensile fracturing 
can occur in the roof/wall of an underground 
opening, and also behind a cliff or mountain 
wall, where no tensile stress is expected. The 
only requirement will be that νσ1 > σ3, i.e. the 
disparity between the major principal stress 
(σ1) and the minor principal stress (σ3) needs 
to be high enough. This condition is met 
near to a tunnel wall, because the radial (= 
minor principal) stress becomes much lower 
than the tangential (= major principal) stress. 
Since Poisson’s ratio is frequently about 0.25, 
a location where the stress ratio σ1/ σ3 > 4 is 
required as an absolute minimum, but in fact 
sufficiently diverging principal stresses are 
required to generate significant lateral strain 
to cause tensile fracturing. The critical tensile 
strain for tensile fracturing to occur can be 
determined using the tensile strength of the 
rock. We can simply express this as:

εc = σt/E’    (2)

Using the critical tensile strain in Equation 
2 to replace ε3 in Equation 1 we obtain (by 
elimination of E’ from both sides of the 
new equation), the critical compressive (i.e. 
tangential) stress for tensile fracturing (or 
spalling) to occur:

Since σt/E’ = [ σ3 – νσ1] /E’ therefore: 

σ1(spalling) = (σt + σ3)/ν   (3) 

Considering that the confining stress σ3 is 
zero at the wall of an underground opening 
(and next to a cliff or mountain wall) then for 
rocks with, typically UCS ≈ 10σt and Poisson’s 
ratio ≈ 0.25, it means that tensile fracturing 

will start when the tangential stress reaches 
≈ 0.4 σc. This in fact is the simple arithmetic 
source of the ‘magic ratio’ (0.4±0.1) that we 
saw in Figure 1 following Martin et al. 1998, 
and confirming earlier observations of spalling 
and rock bursts in deep (or anisotropically 
stressed) Norwegian tunnels, as utilized by 
Grimstad and Barton, 1993 for quantifying 
SRF, the stress reduction factor, which is used 
to increase tunnel support via the rock mass 
classification Q-system.

NEW FORMULAE FOR VERTICAL 
CLIFFS
We will now leave the discussion of failure 

in deep tunnels, and concentrate on cliffs and 
mountain walls. We will also view evidence 
of extension strain fracturing in the form 
of planar sheet jointing from the world of 
rock climbing. Curved mountain slopes 
like the back of Yosemite’s Half Dome in 
California are not the only reason for sheeting 
joint development. Figure 3 shows some 
compelling evidence for the range of ‘cliff ’ 
heights apparently caused by the wide range 
of compression strength of rock. The world’s 
highest almost vertical mountain walls top 
out on either side of 1,300m. The probable 
record is 1,340m for Great Trango Tower in 
the Karakoram, Pakistan. We may expect 
(laboratory-scale) compressive strengths of 
100-150MPa for the granites in the highest 
walls, while in the case of Cappadocia’s 
ancient cliff dwellings in porous tuff in Turkey, 
the strength may be only 1MPa, limiting 
cliff heights to the frequently observed 15-
20m. The key to the huge range of heights 
illustrated in Figure 3 is that the tensile 
strengths of rocks may range from no more 
than 5-10MPa for exposed granite, down 
to 0.05-0.1MPa for exposed tuff. Numerous 
examples of the latter are given by Aydan and 
Ulusay, 2003. All tensile strengths tend to get 
downgraded by weathering during millennia 
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of thermal cycles, which may exceed a 70-
80°C annual range, and vary strongly even 
during one day. The big range of what are in 
fact ‘limited’ cliff and mountain-wall heights, 
can be roughly explained by comparing the 
assumed maximum vertical stress (the critical 
spalling stress in this case) with extensional 
strength σt /ν. To do this involves comparing 
cliff height and rock density, with the ratio of 
tensile strength and Poisson’s ratio. 

H critical = 100.σt /γν    (4) 

(where σt is tensile strength in MPa, γ is 
density in tons/m3, and ν is Poisson’s ratio).
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Figure 3. The left-side photographs are 
examples of extreme mountain walls in hard 
or very hard rock. a) Great Trango Tower, 
Karakoram, Pakistan: approx. 1,350m, b) 
Mirror Wall, Baffin Island, Canada: approx. 
1,200m, c) El Capitan granites, Yosemite: 950-
1,000m. d) West Temple sandstones, Zion, 
Utah: 650-700m, e) Beachy Head bedded 
chalk, England: 75-100m, f) Cappadocia tuff, 

Turkey: 15 to 20m. 

Note that the multiplier of 100 in equation 
4 is purely a function of convenience when 
using typical rock mechanics strength units, 
expressed in MPa. With strength in kN/
m2 and density in kN/m3 the ‘100’ can be 
dispensed with. With equation 4 in mind, one 
should refer to the worked examples in Table 
2, where realistic values are employed, for a 
wide spectrum of possible rock conditions, 
ranging from uniaxial compression strengths 
of 150MPa typical for hard granite, down 
to just 1.0MPa which might be typical for a 
weakened porous tuff, as found in the cliffs of 
Cappadocia, depicted at the bottom of Figure 
3.

Table 2. Examples of vertical height limits for 
near-vertical mountain walls and cliffs, over 
two orders of magnitude of rock strength, 

based on the application of equation 4.

In general, the ratio of compressive and 
tensile strengths for rock are in the range 
of 5 < σc/σt < 20. However, in Table 2, since 
(compared to tunnels), cliffs and mountains 
are exposed to weathering forever, we made 
relatively conservative estimates of tensile 
strength σt. The proposed σt/γν mechanism of 
extension failure has the effect of steepening 
and degrading mountain faces. The sketches 
and photographs presented in Figure 4 show 
several aspects of the extensional mechanism. 
Because tensile strength is slowly reduced 
nearest to an exposed cliff or mountain 
face by constant cycling of temperature and 
moisture, it becomes easier for slabbing to 
occur. With assumed microcracking and 
grain-scale ice pressures, one may surmise an 
effective increase in Poisson’s ratio, together 
with reduced near-surface tensile strength. 
If broadly correct, extension failure due to 
the σt/ν ‘mechanism’ would become easier 
with time. This is probably the true cause of 
the relative frequency of slabbing due to the 
‘constant’ propagation of sheet jointing. We 
will return to this subject later.
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Figure 4. Top: Sketches illustrating the 
extensional strain failure mechanism 
involving the overcoming of the extensional 
strength σt /ν. Also shown is the possibility of 
rock avalanche-scale basal shear failures, due 
to adverse tectonic structures. This is slightly 
developed at El Capitan in Yosemite, 1,000m 
in height (bottom-left), but apparently well 
developed at Holtanna, a 750m high monolith, 
in Dronning Maud’s Land, Antarctica (bottom-
right). (Here there may be an unintended but 
probable camera rotation of 5° - the Holtanna 
‘potential failure plane’ should probably be 

approximately 5° steeper.)

The estimation of basal shear strength 
could be based on a combination of the 
strength components shown in Figure 5, since 

a final ‘cascading’ of failure may be involved 
(i.e. not linear Mohr-Coulomb or non-linear 
Hoek-Brown ‘c + σn tan φ’, but more correctly 
‘c then σn tan φ’, as increasingly emphasized 
in some recent literature). Most likely: failure 
of remaining intact ‘bridges’, then shearing 
(or not) on these new, fresh, rough surfaces, 
then mobilization (or not) along the already 
established shear plane (or prior tectonic 
structure), and finally the limited strength 
of any clay-filled discontinuities or faults, 
displaying the lowest shear stiffness. (Barton, 
2013).

Figure 5. Representation of shear strength 
components in the form of laboratory tests, 
from Barton, 1999. Several components of 
strength may be involved when a large-scale 
body of rock is approaching failure. These 
linear approximations are often misleading 
when a significant range of stress is involved, 

as emphasized by Barton, 2013, 2016.

Although rock-surface curvature 
obviously helps for generating tensile stress as 
suggested by Martel, 2017, it is not a necessary 
condition for generating sheeting joints. The 
classic curved sheeting joints on ‘the back’ 
of Yosemite’s Half Dome have alternative 
means of development than the curvature, 
and indeed are remarkably planar up the 
750m vertical face. The planarity needs an 
explanation because sheeting joints are often 
completely planar over long distances, bot 
horizontally and vertically, as can be vouched 
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for by rock climbers, and as can be seen in 
thousands of rock-climbing photographs. 
Interesting sources here are the following: 
Davis, 2013, Honnold and Roberts, 2016 and 
Florine and Moye, 2016. For the case of the 
Cappadocia tuffs, careful studies by Aydan and 
Ulusay, 2003 and many others, have shown 
that temperature (freeze-thaw) cycling and 
moisture-content cycling have a degrading 
effect on compression and tensile strength. 
There is an effective annual temperature range 
of 70 to 80° C even in the shade, and this may 
even be increased for cliffs in direct sunlight. 
In the Alps, specifically the Matterhorn, the 
gradual degradation of the highest rock which 
is in almost permafrost conditions, has been 
nicely described by Weber et al., 2016.

SOIL MECHANICS 
FORMULATIONS ARE NOT 
APPROPRIATE FOR FAILURE OF 
INTACT BRITTLE ROCK
Concerning the question of limiting cliff 

and mountain wall heights it is appropriate to 
present and then check classic soil mechanics 
based solutions which at their simplest, involve 
a linear shear strength envelope defined by 
cohesion and friction (c and φ). The Coulomb 
shear strength assumption, with allowance 
for Terzaghi’s law of effective stress, assuming 
water pressure (u) along the failure plane, is 
as follows:

τ = c + (σn – u) tan φ   (5) 

Assuming a planar shear failure surface, 
dipping from the ground surface down to the 
toe of an imaginary vertical cliff, lowerbound 
and upperbound solutions can be obtained, 
based on limit equilibrium or limit theory 
analysis. Soils mechanics texts such as 
Verruijt, 2001 indicate the following range of 
solutions for critical heights of vertical cuts in 
soils i.e.Fig. 6. 

2c/γ tan(45°+φ/2) ≤ Hc ≤ 4c/γ tan(45°+φ/2) (6) 

Figure 6. Several approaches to the stability 
of a vertical cut appear in soil mechanics 
literature. The top example (a) shows the 
assumed equilibrium of three zones and gives a 
lowerbound solution. The bottom example (b) 
illustrates an upperbound solution involving a 
specific shear surface. After Verruijt (2001). 
The circular failure surface assumption was 

used by Fellenius, 1927.

Equation 6 gives a surprisingly large 
(2:1) range. Furthermore, because soil fails 
differently to intact rock, we find that the 
estimates of Hc if (erroneously) used for rock 
cliffs or mountain walls are, remarkably, from 
3 to 6 times in error, as indicated in the worked 
examples below. Note that a circular failure 
surface gives 3.85 for the multiplier. An exact 
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solution is elusive according to Verruijt, 2001, 
and matters do not get easier if non-linear 
shear strength is considered. The lower bound 
of equation 6 is usually attributed to Drucker 
and Prager, 1952 and is referred to as the static 
solution, in contrast to the ‘dynamic’ solution 
with multiplier ‘4’.

Concerning the trial evaluation of ‘soil 
mechanics’ formulations summarized in 
equation 6, we need to make appropriate 
estimates of cohesion. A lowerbound estimate 
of cohesion (c) for rock would be obtained 
most simply by assuming a straight-line, 
rather than a curved tangent between the 
uniaxial tension (σt) and uniaxial compression 
(σc) Mohr circles. The simple equation for the 
lowerbound cohesion intercept (c), derived 
from Mohr circle geometry, was given in 
Barton, 1976:

c = ½ (σc.σt)
1/2    (7) 

We can examine the foregoing formulations 
with examples of a moderately strong valley-
wall sandstone (UCS = 75 MPa) and a massive-
scale mountain-wall in granite (with UCS = 
150MPa). We will assume that σc/σt ≈ 15. (The 
expected laboratory-test range of σc/σt could 
range from 5 to 20: but 8 to 16 is more likely). 
The following strength assumptions are used:

1. Sandstone σc = 75MPa, σt = 5MPa c = 
½(75x5) 1/2 = 9.7MPa 

2. Granite σc = 150MPa, σt = 10MPa c = 
½(150x10) 1/2 = 19.4MPa 

The gradient (φ = internal friction angle) 
of the presently assumed straight line between 
the tensile and compressive strength Mohr 
circles, giving a lowerbound value of c is as 
follows: 

σc/σt=tan2(45°+φ/2)   (8) 

A friction angle φ of approximately 61° is 
indicated if σc/σt =15, as assumed. Using just 

the lowerbound soil mechanics solution given 
by equation 6, serious errors of mountain wall 
heights are evident. Note the following density 
assumptions: 25kN/m3 for sandstone, 27.5kN/
m3 for granite.

Sandstone ‘valley wall’ Hc = 2c/γ tan 
(45°+φ/2) Hc=2x9.7x1000/25 tan (45° + 30.5°) 
= 3,001m

Granite ‘mountain-wall’ Hc=2x19.4x1000/ 
27.5 tan (45°+ 30.5°) = 5,456m 

By comparison equation 4 (specifically 
applying to brittle rock) suggests Hc limits of: 

Sandstone: 100.σt /γν =100.5/2.5 x 0.25 
=800m Granite: 100.σt /γν =100.10/2.75 x 
0.25=1,456m 

We may note from these solutions for 
rock, using the new formulation involving 
extensional theory (equation 4) that the real 
cases depicted in Figure 3 are informing us 
that it is not realistic to reckon with ‘laboratory 
scale’ (i.e. unweathered, optimal samples) 
tensile strengths. These two mountain-wall 
estimates of 800 and 1,456m are perhaps 20-
30% too high, but much better than 300 or 
600% too high if erroneously trying to apply 
soil mechanics methods (equation 6). Note 
again the more sensible range of height limits 
given in Table 2.

PLANAR SHEETING JOINTS 
FROM EXTENSION STRAIN 
MECHANISMS
To conclude this section about a new 

method of estimating cliff and mountain-
wall heights, we can tentatively apply the σt /ν 
method to explain the origin of sheet jointing. 
Our seemingly almost fearless free-solo rock 
climbers, who are constantly climbing these 
planes, and finger-wedging up the related sub-
vertical crack systems. Statistics from well-
documented climbing routes in the Yosemite 
Valley given by Stock et al. 2012 indicate that 
‘slabbing’ or the fall of loosened sheeting 
joints is quite frequent. Indeed, there are 
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frequent reports of changed climbing routes 
due to their occurrence, perhaps as frequently 
as every decade.

Figure 7 is a good demonstration of the 
extreme planarity and smoothness that can be 
a common characteristic of sheet-jointing or 
exfoliation, in this case in Zion sandstone and 
the vertical (front) wall of Yosemite’s (Half 
Dome) granite. A curved surface, facilitating 
the tensile component, is not in fact a 
necessary condition for the development of 
sheet jointing, as argued in a comprehensive 
(two centuries) review by Martel, 2017. Note 
that the long sub-vertical cracks loved and 
indeed needed by rock climbers, are probably 
a large-scale expression of extensional 
fracturing in the perpendicular direction. An 
excellent example is shown in Figure 8, with 
Alex Honnold again free-soloing. 

Figure 7. Two famous free-solo rock climbers: 
Steph Davis and Alex Honnold on sheeting 
joints in Zion national park and in Yosemite 
national park (‘Thank God Ledge, Half-Dome) 
where Honnold made the first ever free-solo 
ascent. Refer to Davis, 2013, and Honnold and 
Roberts, 2016 for some remarkable examples 
of planar sheeting joints. Rock and mountain 
climbing, as shown in countless internet sites, 
is a particularly rich source of examples of rock 
exposures at all scales, for those interested in 

rock fracture mechanics principles.

MAXIMUM SLOPE ANGLES 
WHEN ROCK MASSES ARE 
JOINTED
This paper has so far treated rock masses 

as if they were intact or sparsely jointed, both 
in the case of the fracturing in deep tunnels, 
and in the case of the limiting heights of 
cliffs in weaker rock, and mountain walls in 
strong rock. If instead, jointing is present, it 
has been assumed not to significantly alter 
the extension strain fracturing mechanism. 
However, is doubtful that this assumption is 
generally valid, but it may be acceptable in the 
case of cliff failures in (horizontally) bedded 
rock, since the tensile failure planes would be 
at right-angles to such beds. See for instance 
the cliff-front failures in chalk, Figure 3e.
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Figure 8. Free-solo climber Alex Honnold on 
El Capitan. Extension fractures in the third 
dimension are the assumed origin. Such 
features may be hundreds of meters in extent 
and seem to be formed by mountain-induced 
stress (and strain) rather than being a part of a 

pre-existing major joint pattern.

Methods have recently been developed for 
selecting safe and maintenance-free rock slope 
angles in more general jointed conditions. The 
method is called Qslope, with general similarity 
to the Q-system for tunnels. In fact the first 
four parameters are unchanged, except for the 
use of oriented Jr/Ja ratios to allow for wedges 
formed with two joint sets having different 
Jr/Ja magnitudes, and therefore potentially 
different influences on instability. The method 
was introduced by Barton and Bar, 2015 and 
more recently described by Bar and Barton, 
2017 after the collection of more than 400 case 
records, mostly by co-author Neil Bar. 

As with the Q-system, the rock mass quality 
in Q-slope can be considered a function of 
three parameters, which are crude measures 
of:

1. Block size: (RQD/Jn).

2. Shear strength: (Jr /Ja) or average shear 
strength in the case of wedges (Jr /Ja)1 x (Jr 
/Ja)2.

3. External factors and stress: (Jwice /
SRFslope).

Barton and Bar, 2015 derived a simple 
formula for the steepest slope angle (β) not 
requiring reinforcement or support for slope 
heights less than 30m. This formula has now 
been extended to much larger slope heights:

β=20 log10 Qslope+65º   (10)
Equation 9 matches the central data for 

stable slope angles greater than 35° and less 
than 85°. From the Q-slope data, the following 
correlations are simple and easy to remember:

· Q-slope = 10 - slope angle 85°
· Q-slope = 1 - slope angle 65°
· Q-slope = 0.1 - slope angle 45°
· Q-slope = 0.01 - slope angle 25°
Numerous case records are illustrated in 

Figure 9. The following example from Bar 
and Barton, 2017 gives some insight into this 
simple method, and Figure 10 illustrates the 
concept for the case of open pit bench angles, 
obviously in jointed, as opposed to sparsely 
jointed rock.

A 30m high slope was excavated at an 
angle of 65° and failed shortly after. The wedge 
failure occurred in weak, moderately weathered 
sandstone (σc = 35MPa). The following Q-slope 
ratings were assigned during the back-analysis: 

RQD = 40-50%
Jn = 9
Set A: Jr = 1, Ja = 4, O-factor = 0.5
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Figure 9. The coloured areas indicate stable 
(green) and unstable (red). The case records 
show fairly consistent separation, with a 
transition zone (grey). Bar and Barton, 2017.

Set B: Jr = 3, Ja = 4, O-factor = 0.9
Set C: Release plane or tension crack that 

did not contribute to the overall shear strength 
of the wedge.

Jwice = 1 (desert environment, competent 
rock and generally stable structure where Set 
B has limited continuity). 

SRFa = 2.5 (slight loosening due to surface 
location), SRFb = 2.5, SRFc = N/A.

Based on the assigned ratings, Q-slope and 
β were estimated as follows:

Figure 10. An open-cast slope in Laos, showing 
increasing values of Qslope and slope angles, as 
greater depth and sounder rock is reached. Bar 

and Barton, 2017.

Q-slope suggested an angle of 51° 
would have resulted in a stable slope (i.e. 
approximately 15° shallower than excavated 
and consistent with kinematic analysis). 

MOUNTAIN HEIGHTS LIMIT OF 8 
TO 9KM 
Increasing the scale dramatically, one can 

tentatively suggest that the highest mountains 
of 8,000 and 9,000m are not due to the 
‘limited’ uniaxial compression strength as 
sometimes proposed, but are due to critical 
state, non-linear rock mechanics. The limiting 
strength is more likely to be given by the top 
(horizontal) part of a rock’s strongly curved 
shear strength envelope, or perhaps by the 
slightly lower brittle-ductile transition. Figure 
11 in fact demonstrates similar magnitude 
for the critical confining pressure and the 
magnitude of uniaxial compressive strength, 
such as 200 MPa, as shown by Singh et al. 
2011.

Note that the overall curvature of the 
suggested shear strength envelope (Figure 11) 
is somewhat greater than that of Hoek-Brown, 
which is presently one of the most used non-
linear strength envelopes for intact rock. 

The world’s highest mountains (14 peaks of 
8,000 to almost 9,000m height, with Everest at 
8,848m: Figure 12) cannot be limited by the 
uniaxial compression strength of rock. This is 
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because the rock strength would need to be 
the confined compression strength (σ1 in Figure 
11), since great depth is obviously involved 
where stress and strength are (almost) in 
equilibrium. The possible range of perhaps 
600 to 900MPa for the confined compressive 
strength of strong igneous or metamorphic 
rocks at 10km depth would support mountains 
of 20 to 30 km height.

Figure 11. The curved failure envelope for 
intact rock up to the critical state proposed 
by Barton, 1976. The critical state marks 
the location of the maximum possible shear 
strength for a given rock type. The uniaxial 
tensile (1) and uniaxial compression (2) Mohr 
circles are shown on the left, and provide 
the lower-bound estimate of cohesion c, that 
was utilized earlier. Singh et al. 2011, in a 
major review, have shown that the critical 
confining pressure is equal or close to, the 
uniaxial compression strength (see small blue 
arrow). Both the deviation from linear Mohr-
Coulomb, and the equation of the curved 
envelope are developed (by Singh et al. 2011, 

and by Shen et al. 2018).

The empirical evidence of millions of 
years is therefore violated if trying to use the 
(confined) compression strength of the rock, 
and rock mechanics principles are actually 
violated by those suggesting use of the 200-300 

MPa if referring to the use of uniaxial strength. 
The fourteen mountains in the exclusive 
8 to 9 km height class provide empirical 
evidence of total vertical stresses that might 
be as high as 9,000 x 3/100MPa = 270MPa, 
assuming a composite density as high as 3.0. 
If there could be a pore/joint water pressure 
as high as 50MPa (with some upper drainage 
into valleys assumed here), then tentative 
application of the law of effective stress brings 
us to a principal effective vertical stress of 
220MPa. This would apply in the lower part 
of a potential shear failure surface. However, 
we need to consider the shear stress generated 
by this effective vertical stress of 220MPa. On 
a nominal plane inclined at 45° this could be 
as low as 150MPa, considering round figures. 
In case of an elevated horizontal stress (i.e. k0 
> 1), equilibrium would be improved, and a 
higher mountain could be supported before 
reaching a shear strength limit.

Figure 12. Mount Everest at 8,848m (extract 
from Wikipedia photo). It is proposed that 
it’s maximum height is shear-strength limited, 
following a critical state rock mechanics limit, 

as shown in Figure 8.

CONCLUSIONS.
Tensile strength and Poisson’s ratio explain 

the limited maximum heights of cliffs and 
steep mountain walls, and the origin of 
planar sheeting joints. A range of maximum 
heights from 20m in tuff, 100m in chalk, 
650m in sandstone, to 1,300m in granite can 
be sensibly quantified by considering failure 
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caused by extensional strain and fracturing 
in tension in each case. There are parallels in 
the world of deep tunnels in hard rock. The 
widely quoted critical tangential stress of 0.4 
x UCS that may be reached by deep hard-rock 
tunneling should be replaced by the ratio σt/ν, 
i.e. initial tensile failure which is mobilized 
by extensional strain. These two ratios are 
numerically equivalent. Shear strength and 
tensile strength, ably assisted by Poisson’s ratio, 
are inevitably the weakest links in ‘high-stress’ 
structural geology and in the more typically 

‘low-stress’ processes in geomorphology, 
respectively. When rock masses are jointed the 
extension strain-induced failure mechanism 
may no longer apply, and stability has to be 
assessed by characterizing the properties 
of the jointing. The Qslope method is proving 
to be useful here. The highest mountains of 
8,000-9,000m are limited by maximum shear 
strength, not by compressive strength. The 
confined strength of competent mountain-
forming rock is several times too high.
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