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Abstract: Artificial satellites are used in 
various activities, among which we can 
mention: space exploration, carrying out 
experiments in a micro gravity environment, 
geodynamic studies, climate monitoring, 
etc. This way, artificial satellites have made it 
possible to move the horizon of observations 
to distances unattainable from our planet, but 
for measurements made through satellites to 
be conveniently used, it is essential that their 
orbits and altitudes are known, at each instant, 
with precision. suitable for the purposes 
of the mission for which the satellite was 
planned. Hence the need to construct special 
theories or methods, generally adapted to 
specific missions. Based on this premise, in 
this present work, using Lagrange’s planetary 
equations, variations in orbital elements 
of lunar satellites due to the non-uniform 
mass distribution of the Moon are analyzed, 
considering some coefficients associated with 
harmonics of lower order and degree than 
9, for some initial conditions. Approximate 
analytical solutions are compared with the 
numerical integration of equations for some 
astrodynamics simulations, among which 
are carried out through programs created 
in Python language, to calculate variations 
in orbital elements, considering simplified 
models for the perturbations.
Keywords: Artificial satellites. Astrodynamics. 
Lunar satellites.

INTRODUCTION
Artificial satellites have made it possible 

to move the horizon of observations to 
distances unattainable from our planet and 
are used in various activities, including: space 
exploration, carrying out experiments in a 
micro-gravity environment, geodynamic 
studies, climate monitoring, study of the 
atmosphere and the earth’s magnetic field, 
as a link in telecommunications, military 
applications, etc.

Artificial lunar satellites began to be placed 
into orbit initially in the 1960s during the 
Cold War period and the Space Race, more 
precisely by the Soviet Union on March 31, 
1966 within a series of lunar missions called 
Luna, when it launched the first satellite 
artificial lunar called Luna 10. Following the 
success of the mission, several others were 
carried out in succession, such as the missions 
called Change carried out by China, and are 
still ongoing with the Change 5 mission. 
There are more countries that carry out lunar 
missions, and many of them involve satellites 
destined to orbit the moon for various 
research reasons, and this arouses interest and 
curiosity in many academic areas generating 
new areas of related research.

Within such a context, so that 
measurements made using satellites can be 
conveniently used, it is essential that their 
orbits and attitudes are known, at all times, 
with precision appropriate to the purposes 
of the mission for which the satellite was 
planned. Hence the need to construct special 
theories or methods, generally adapted to 
specific missions.

When studying the potential of an artificial 
satellite around the Moon using Legendre 
polynomials, it is observed that the order of 
magnitude of some coefficients associated 
with the order and degree of the polynomials 
are not hierarchically proportional to the 
order and degree of the polynomials. For 
example, unlike the case of Earth, the order of 
the coefficient associated with C22 is only one 
tenth smaller than the coefficient associated 
with J2; also, as an example, the order of 
magnitude of the coefficient associated with 
J9 is greater than the order of magnitude of 
the coefficient associated with J3. This makes 
the behavior of the orbital movement of lunar 
satellites, in some aspects, different from the 
behavior of the orbital movement of artificial 
Earth satellites.
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OBJECTIVE
This project aims, using Lagrange’s 

planetary equations and concepts of celestial 
mechanics, to analyze the variations in orbital 
elements of lunar satellites due to the non-
uniform mass distribution of the Moon, 
considering some coefficients associated with 
harmonics of lower order and degree than 
9, for some initial conditions. Approximate 
analytical solutions are compared with the 
numerical integration of the equations for 
some simulations carried out entirely in the 
Python language.

DEVELOPMENT
The initial concepts for understanding and 

carrying out this work begin with the 2-body 
problem, a theory of general mechanics 
related to Keplerian movements.

BODY PROBLEM
Given an inertial system with origin 

coordinates 0, we have 2 material points with 
masses m1 and m2, respectively, located at 
points P1 and P2. According to Newton’s Law, 
such bodies attract each other according to 
the equation:

Where G is the universal gravitational 
constant and r, modulus of r→, is the distance 
from Pi.e. Pj. We want to determine the 
movement of P1 and P2 and for this we have 
the following equations:

From these, a system of 6 second-order 
differential equations, or 12 first-order 
differential equations, is formed, which 
requires 12 integration constants for its 

complete solution.
We have the vector equation that describes 

such movement of P1 in relation to P2 is given 
by:

Being:

These equations form a system of order 
6 that, to solve it, it is necessary to use the 
integrals of the center of mass, to arrive at the 
final radius equation:

Being:

Like this,

Note that r is an equation of a conic in 
polar coordinates with P being the semi 
latusrectum, a is the semi major axis, e is 
the eccentricity of the conic, (φ − ω) is the 
angle polar, and E and C are constants where 

Therefore, if E < 0 and e < 1, the conic 
will be an ellipse and is the premise for the 
parameters worked on in this project.

KEPLERIAN ORBITAL ELEMENTS
In celestial mechanics there is a set of 6 

parameters that describe an orbital movement, 
also called Keplerian orbital elements, of 
which we can mention in the elliptical case: 
the semi-major axis of the orbit (a), that is, 
the distance from the center of the ellipse 
to the perihelion; eccentricity of the orbit 
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Figure 2.1 - Coordinate system in the 2-body problem.

Source: Kuga et al., 2008.

Figure 2.2 – Orbital elements of a celestial body.

Source: Wikipedia, Orbital Elements.

                   
Figure 2.3 - Sector Harmonics.          Figure 2.4 - Zonal Harmonics.          Figure 2.5 - Tesseral Harmonics.

            Source: Kuga et al., 2011.              Source: Kuga et al., 2011.                  Source: Kuga et al., 2011.

Figure 2.4 - Zonal and Sectoral Harmonics

Source: Carvalho et al. (2011)
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(e), which represents the ratio between half 
the distance between the foci and the semi-
major axis; orbital inclination (i) measures 
the angle between the reference plane and 
the orbital plane; the pericenter argument (ω) 
is the angle measured in the body’s orbital 
plane between the ascending node and the 
pericenter, corresponding to its direction of 
rotation; the right ascension of the ascending 
node (Ω), or ascending node longitude, is the 
ecliptic longitude of the ascending node of the 
orbit; and, finally, the average anomaly (M) 
is the conversion to angle at the time of the 
body’s passage through periastron.

We also have that ‘a’, ‘e’ and ‘i’ are called 
metric variables, and ‘ω’, ‘Ω’ and ‘M’ as the 
angular variables.

GRAVITATIONAL POTENTIAL
Be it an artificial satellite under the 

gravitational potential force of a central 
body, and orbiting a body with non-uniform 
distribution of mass, the following expression 
for the gravitational potential is considered 
(Morando, 1974):

                      
(2.9)

Where µ is the gravitational constant, r 
represents the distance between the satellite 
and the center of mass of the body with non-
uniform distribution of mass, Jn, Jn, m and 
λn, m are elements of the central body, ae is 
the equatorial radius of the body central, the 
indices nor represent the degree and order 
of the associated Legendre polynomial, Pn, 
m are the associated Legendre polynomials, 
and the angles ϕ and λ represent latitude and 
longitude in angles.

Below are three examples of harmonics in 
spherical bodies: sectoral, zonal and tesseral. 

Zonal harmonics are polynomials of degree n, 
being m = 0 and independent of the longitude 
λ, the zonal harmonics divide the sphere into 
positive and negative sectors and have degrees 
n = m, and the tesseral harmonics have cosmλ 
functions and degree 2m.

In this project, the following zonal 
coefficients of J are used2 to J6 for the moon, 
also highlighting the importance of the 
elements J7, which is still under development, 
and the sectoral harmonic C22.

LAGRANGE PLANETARY 
EQUATIONS
Lagrange’s planetary equations allow you to 

determine the speed and location of a celestial 
body in an orbit, and are described in terms 
of the previously mentioned Keplerian orbital 
elements:

The expressions that contain  and , 
in this case, are called short equations period, 

and those containing  and , are 
called long period. The proposal this project 
involves only long-period equations, but 
the importance of short-period equational 
elements is highlighted for a more elaborate 
study of disturbances.
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PERTURBATION FUNCTIONS
Below are the disturbance functions as 

a function of the zonal harmonics J2 to J6 
and the C22 harmonic of the moon used 
throughout this research, obtained from the 
scientific article Planetary Satellite Orbiters: 
Applications for the Moon (Carvalho et al., 
2011):

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

It is necessary to mention that the equation 
for RJ7 is in the development process by the 
author and, as RC22 contains short period 
terms, it was not used in the development 
process in this study.

ANGULAR ELEMENT VARIATIONS
The expressions for the variation of 

angular elements used as parameters in the 
development of the graphics shown during 
the following topics were published by B. 
Morando (1974):

    (2.22)

              (2.23)

        (2.24)
Where n represents the average movement 

in degrees per day of the celestial body, with 
 is the initial value of the 

longitude at the ascending node, ω0 is the 
initial value of the pericenter argument and 
M0 is the initial value of the mean anomaly. 
All values of the constants used in the 
calculations of such equations, as well as the 
results obtained, are contained in Parameters 
1 and 2 shown in the following topic.

SIMULATIONS AND RESULTS
Firstly, with the equations of the previously 

mentioned perturbation functions, a program 
in Python language was created to calculate the 
partial derivatives of each of them considering 
each zonal harmonic J1 to J6. Note that in RJ2 
there is no constant ω and a, so the derivatives 
of ∂RJ2/∂ω and ∂RJ2/∂a will result in 0.

∂R/∂i result for RJ2:

                                         (2.25)
∂R/∂e result for RJ2:

                              (2.26)
∂R/∂ω result for RJ3:

              (2.27)
∂R/∂a result for RJ3:

                 (2.28)
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∂R/∂i result for RJ3:

                                                      (2.29)
∂R/∂e result for RJ3:

                                   (2.30)
∂R/∂ω result for RJ4:

                                                                                 (2.31)
∂R/∂a result for RJ4:

                                (2.32)
∂R/∂i result for RJ4:

      (2.33)
∂R/∂e result for RJ4:

                         (2.34)
∂R/∂ω result for RJ5:

(2.35)
∂R/∂a result for RJ5:

      (2.36)
∂R/∂i result for RJ5:

(2.37)
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∂R/∂e result for RJ5:

(2.38)
∂R/∂ω result for RJ6:

  (2.39)
∂R/∂a result for RJ6:

    (2.40)
∂R/∂i result for RJ6:

  (2.41)
∂R/∂e result for RJ6:

   (2.42)

After calculating the partial derivatives of 
the disturbance functions, it was possible to 
complete the Lagrange equations (2.16) to 
(2.21) for each harmonic Jn as shown below:

Lagrange equation dΩ/dt for J2:

                                        (2.43)
Lagrange equation from/dt to J2: 0.

Lagrange equation dω/dt for J2:

(2.44)
Lagrange equation dM/dt for J2:

                        (2.45)
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Lagrange equation di/dt for J2: 0
Lagrange equation dΩ/dt for J3:

                                                            (2.46)
Lagrange equation from/dt to J3:

                                                                                                   (2.47)
Lagrange equation dM/dt for J3:

    (2.48)
Lagrange equation dω/dt for J3:

                                              (2.49)
Lagrange equation di/dt for J3:

                                                                                    (2.50)
Lagrange equation dΩ/dt for J4:

                (2.51)
Lagrange equation from/dt to J4:

                                                                                              (2.52)
Lagrange equation dω/dt for J4:

     (2.53)
Lagrange equation dM/dt for J4:

    (2.54)
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Lagrange equation di/dt for J4:

(2.55)
The comparison graphs generated continue 

up to harmonic J4, so the Lagrange equations 
for J5 and J6 will not be necessary.

After calculating the period ne of the 
variations of the angular elements, 2 parameters 
were considered for the calculations of the 
integrals based on the Lagrange equations, 
parameter 1 considers the constant a1 = radius 
of the Moon + 50 km and a2 = radius of the 
Moon +100km, as well as the eccentricities e1 
= 0.01 and e2 =0.02.

We have that parameters 1 are: n: 26.05130 
rad/day = 1492.629541 degrees per day, Ω: 
-0.25286, ω: 0.60222, M: - 0.12313 and i: 30 
degrees. Thus, the following graphs were 
obtained:

Figure 1 - Average Anomaly Graph with J2.

Source: Author’s production.

Figure 1 - Longitude Graph on the Ascending 
Node with J2.

Source: Author’s production.

Figure 2 - Perigee Argument Graph with J2.

Source: Author’s production.

For the J3 zonal harmonics, we obtained:

Figure 2.6 – Average Anomaly with J3.

Source: Author’s production.

Figure 2.7 – Perigee Argument with J3.

Source: Author’s production.
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Figure 2.8 – Eccentricity with J3.

Source: Author’s production.

Figure 2.9 – Longitude of the Ascending Node 
with J3.

Source: Author’s production.

Figure 2.10 - Tilt with J3.

Source: Author’s production.

For the J4 zonal harmonics, we have:

Figure 2.11 – Average Anomaly with J4.

Source: Author’s production.

Figure 2.12 – Perigee Argument with J4.

Source: Author’s production.

Figure 2.13 - Eccentricity with J4.

Source: Author’s production.
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Figure 2.14 - Slope with J4.

Source: Author’s production.

Figure 2.15 – Longitude of the Ascending 
Node with J4.

Source: Author’s production.

Then it is known that the parameters 2 
obtained are n: 25.69440 rad/day = 1472.180677 
degrees per day, Ω: -0.23615, ω: 0.56242, M: 
-0.11488 and i: 30 degrees. This way, we obtain:

Figure 2.16 - Average Anomaly with J2 for parameters 2.

Source: Author’s production.

Figure 2.17 - Longitude of the Ascending Node 
with J2 for parameters 2.

Source: Author’s production.

Figure 2.18 – Perigee argument with J2 for 
parameters 2.

Source: Author’s production.

Figure 2.19 - Average Anomaly with J3 for 
parameters 2.

Source: Author’s production.
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Figure 2.20 - Pericenter argument with J3 for 
parameters 2. 

Source: Author’s 

Figure 2.21 - Eccentricity with J3 for 
parameters 2. 

Source: Author’s production.

Figure 2.22 - Slope with J3 for parameters 2.

Source: Author’s production.

Figure 2.23 - Longitude at the Ascending Node 
with J3 for parameters 2. 

Figure 2.24 - Average Anomaly with J4 for 
parameters 2.

Source: Author’s production.

Figure 2.25 - Pericenter argument with J4 for 
parameters 2.

Source: Author’s
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Figure 2.26 - Eccentricity with J4 for 
parameters 2.

Figure 2.27 - Slope with J4 for parameters 2.

Source: Author’s production. 

Figure 2.28 - Longitude at the Ascending Node 
with J4 for parameters 2. 

Source: Author’s production.

CONCLUSION
It is verified through this study that the 

influences on the disturbances considering 
the zonal harmonics become noticeably large 

from J3 onwards, with J4 being the harmonic 
that most influenced the orbits, mainly in 
relation to the degrees of inclination and the 
eccentricity of the orbit. Such results produced 
are only for the separate harmonics, and lead 
us to believe that J5, J6 and C22 result in even 
greater influences on satellites orbiting the 
Moon, and such hypotheses can be studied 
with subsequent studies.

Furthermore, in addition to studying 
the influence of harmonics separately, for 
a more complete and clear result on all 
the disturbances studied in the orbits, the 
sum of the harmonics must be taken into 
consideration, when calculating the graphs 
in order to obtain greater understanding 
regarding the influence that the harmonics 
together perform on the orbit in question.
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