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Abstract: Artificial satellites are used in
various activities, among which we can
mention: space exploration, carrying out
experiments in a micro gravity environment,
geodynamic studies, climate monitoring,
etc. This way, artificial satellites have made it
possible to move the horizon of observations
to distances unattainable from our planet, but
for measurements made through satellites to
be conveniently used, it is essential that their
orbits and altitudes are known, at each instant,
with precision. suitable for the purposes
of the mission for which the satellite was
planned. Hence the need to construct special
theories or methods, generally adapted to
specific missions. Based on this premise, in
this present work, using Lagrange’s planetary
equations, variations in orbital elements
of lunar satellites due to the non-uniform
mass distribution of the Moon are analyzed,
considering some coeflicients associated with
harmonics of lower order and degree than
9, for some initial conditions. Approximate
analytical solutions are compared with the
numerical integration of equations for some
astrodynamics simulations, among which
are carried out through programs created
in Python language, to calculate variations
in orbital elements, considering simplified
models for the perturbations.

Keywords: Artificial satellites. Astrodynamics.
Lunar satellites.

INTRODUCTION

Artificial satellites have made it possible
to move the horizon of observations to
distances unattainable from our planet and
are used in various activities, including: space
exploration, carrying out experiments in a
micro-gravity —environment, geodynamic
studies, climate monitoring, study of the
atmosphere and the earth’s magnetic field,
as a link in telecommunications, military
applications, etc.

Artificial lunar satellites began to be placed
into orbit initially in the 1960s during the
Cold War period and the Space Race, more
precisely by the Soviet Union on March 31,
1966 within a series of lunar missions called
Luna, when it launched the first satellite
artificial lunar called Luna 10. Following the
success of the mission, several others were
carried out in succession, such as the missions
called Change carried out by China, and are
still ongoing with the Change 5 mission.
There are more countries that carry out lunar
missions, and many of them involve satellites
destined to orbit the moon for various
research reasons, and this arouses interest and
curiosity in many academic areas generating
new areas of related research.

Within such a context, so that
measurements made using satellites can be
conveniently used, it is essential that their
orbits and attitudes are known, at all times,
with precision appropriate to the purposes
of the mission for which the satellite was
planned. Hence the need to construct special
theories or methods, generally adapted to
specific missions.

When studying the potential of an artificial
satellite around the Moon using Legendre
polynomials, it is observed that the order of
magnitude of some coefficients associated
with the order and degree of the polynomials
are not hierarchically proportional to the
order and degree of the polynomials. For
example, unlike the case of Earth, the order of
the coefficient associated with C22 is only one
tenth smaller than the coeflicient associated
with J2; also, as an example, the order of
magnitude of the coefficient associated with
J9 is greater than the order of magnitude of
the coeflicient associated with J3. This makes
the behavior of the orbital movement of lunar
satellites, in some aspects, different from the
behavior of the orbital movement of artificial
Earth satellites.
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OBJECTIVE

This project aims, using Lagrange’s
planetary equations and concepts of celestial
mechanics, to analyze the variations in orbital
elements of lunar satellites due to the non-
uniform mass distribution of the Moon,
considering some coefficients associated with
harmonics of lower order and degree than
9, for some initial conditions. Approximate
analytical solutions are compared with the
numerical integration of the equations for
some simulations carried out entirely in the
Python language.

DEVELOPMENT

The initial concepts for understanding and
carrying out this work begin with the 2-body
problem, a theory of general mechanics
related to Keplerian movements.

BODY PROBLEM

Given an inertial system with origin
coordinates 0, we have 2 material points with
masses m and m,, respectively, located at
points P, and P,. According to Newton’s Law,
such bodies attract each other according to
the equation:

P;—P;
73

fi, = —Gmym, 2.1)

Where G is the universal gravitational
constant and r, modulus of t, is the distance
from P._e. Pj. We want to determine the
movement of P, and P, and for this we have
the following equations:
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From these, a system of 6 second-order
differential equations, or 12 first-order
differential equations, is formed, which
requires 12 integration constants for its

complete solution.
We have the vector equation that describes
such movement of P, in relation to P, is given

by:

L

r= — =

=1

(24)

=

Being:

These equations form a system of order
6 that, to solve it, it is necessary to use the
integrals of the center of mass, to arrive at the
final radius equation:

P
"= recosto—m) (26)
Being:
c2 2
P=I=a(1—e) (2.7)
Like this,
szc
e = #—2 -1 (2.8)

Note that r is an equation of a conic in
polar coordinates with P being the semi
latusrectum, a is the semi major axis, e is
the eccentricity of the conic, (¢ — w) is the

angle polar, and E and C are constants where

13
C=r2pe¢E=-72-%
2 T

Therefore, if E < 0 and e < 1, the conic
will be an ellipse and is the premise for the
parameters worked on in this project.

KEPLERIAN ORBITAL ELEMENTS

In celestial mechanics there is a set of 6
parameters that describe an orbital movement,
also called Keplerian orbital elements, of
which we can mention in the elliptical case:
the semi-major axis of the orbit (a), that is,
the distance from the center of the ellipse
to the perihelion; eccentricity of the orbit
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Figure 2.1 - Coordinate system in the 2-body problem.
Source: Kuga et al., 2008.

Pi

Figure 2.2 — Orbital elements of a celestial body.
Source: Wikipedia, Orbital Elements.

Figure 2.3 - Sector Harmonics. Figure 2.4 - Zonal Harmonics. Figure 2.5 - Tesseral Harmonics.
Source: Kuga et al., 2011. Source: Kuga et al., 2011. Source: Kuga et al., 2011.
Coefficients
Iz +2.070 x 10™*
Ts +4.900 x 1076
Js +8.000 x 107
Is -3.600 x 10°°
Je -1.100 x 1076
J7 -2.870 x 107°
Cyp +2.447305 x 107

Figure 2.4 - Zonal and Sectoral Harmonics

Source: Carvalho et al. (2011)




(e), which represents the ratio between half
the distance between the foci and the semi-
major axis; orbital inclination (i) measures
the angle between the reference plane and
the orbital plane; the pericenter argument (w)
is the angle measured in the body’s orbital
plane between the ascending node and the
pericenter, corresponding to its direction of
rotation; the right ascension of the ascending
node (Q), or ascending node longitude, is the
ecliptic longitude of the ascending node of the
orbit; and, finally, the average anomaly (M)
is the conversion to angle at the time of the
body’s passage through periastron.

We also have that @, ‘@ and 1’ are called
metric variables, and ‘w, ‘Q0’ and ‘M’ as the
angular variables.

GRAVITATIONAL POTENTIAL

Be it an artificial satellite under the
gravitational potential force of a central
body, and orbiting a body with non-uniform
distribution of mass, the following expression
for the gravitational potential is considered
(Morando, 1974):

UZE[I‘Z”ZJ”—Z’:fusen¢>+ii—""’":"e
r

r n=2 n=2 m=l1 r

b, . (seng)cosm(A—4,, )} (2.9)

Where p is the gravitational constant, r
represents the distance between the satellite
and the center of mass of the body with non-
uniform distribution of mass, Jn, Jn, m and
An, m are elements of the central body, ae is
the equatorial radius of the body central, the
indices nor represent the degree and order
of the associated Legendre polynomial, Pn,
m are the associated Legendre polynomials,
and the angles ¢ and A represent latitude and
longitude in angles.

Below are three examples of harmonics in
spherical bodies: sectoral, zonal and tesseral.

Zonal harmonics are polynomials of degree n,
being m = 0 and independent of the longitude
A, the zonal harmonics divide the sphere into
positive and negative sectors and have degrees
n = m, and the tesseral harmonics have cosm\
functions and degree 2m.

In this project, the following zonal
coefficients of ] are used2 to J, for the moon,
also highlighting the importance of the
elements ], which is still under development,
and the sectoral harmonic C..

LAGRANGE PLANETARY
EQUATIONS

Lagrange’s planetary equations allow you to
determine the speed and location of a celestial
body in an orbit, and are described in terms
of the previously mentioned Keplerian orbital
elements:

dt  nadM

de _ —Vi-e? 3R | 1-e? R 2.11)

dt  nale 8w naedM

i _ s IR cosi IRy

dt  naZy1-eZsenid? naZJ1-eZsenidw

dq 1 oR

@ _ 1 9R (2.13)

dt na?y1-e2seni 91

dw v1-e2 dR cosi R

fo — R _ or (2.14)

dt naZe de na2\1-e?seni di

dM 2 dR  1-e?0R

g2 2.15

dt nada naZe de ( )
Th ions that contain - and —

€ eXpreSSIOnS al contain aM an an’

in this case, are called short equations period,
AR QR OR oR
and those containing 3.° 3;° 3¢ and 57 are

called long period. The proposal this project
involves only long-period equations, but
the importance of short-period equational
elements is highlighted for a more elaborate
study of disturbances.
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PERTURBATION FUNCTIONS

Below are the disturbance functions as
a function of the zonal harmonics J2 to J6
and the C22 harmonic of the moon used
throughout this research, obtained from the
scientific article Planetary Satellite Orbiters:
Applications for the Moon (Carvalho et al.,
2011):

1 n?

Ry} = ~q Rl%/I sz(—2+3si2), (216)
= - n?sie gr

((Rp)) = —5 Ry Jsm (—4 +557) sinw, 2.17)
3 2

((Ry) = 128 R]‘t/l J4az(lf782)7/2 (2.18)

x (10 €57 (757 — 6) cos(2w) — (3¢* +2) (3557 — 4057 +8)) ,

(Ris) = o R Js(ﬂ(fz_‘%)m
x (146252952 — 8) cos(2w) + 2(—31557 + 44857 — 142y (2.19)
—2421s} — 2857 + 8)) sinew,
- N n?
({(Ry)) = —mRM Jsm
x (~2(15¢* + 4067 + 8)(2315° — 378s¢ + 16852 —16)  (2:20)
—63e* (1157 — 10)s cos(dw) + 210e%(e? +2)
% (335} — 4857 + 16)s7 cos(2w)) ,
B = n 5
({Rcy)) = ERMCZZW s cos(2(£2 — ymt)) (2.21)

It is necessary to mention that the equation
for RJ, is in the development process by the
author and, as RC, contains short period
terms, it was not used in the development
process in this study.

ANGULAR ELEMENT VARIATIONS

The expressions for the variation of
angular elements used as parameters in the
development of the graphics shown during
the following topics were published by B.
Morando (1974):

®=n,t+a®, =

B e e A

Q=n,t+Q, =

2
a 1 3
— sl == | g o 100
( Z[aj (1_e2)220051)t+ 0

(2.23)

M=nt+n,t+M,=

nt+[311.]2[£J2(—1+§c052 1')(1—e2)§}‘+M0
a) 4 4 (2.24)
Where n represents the average movement
in degrees per day of the celestial body, with
n= /u-a3 0, is the initial value of the
longitude at the ascending node, w, is the
initial value of the pericenter argument and
M, is the initial value of the mean anomaly.
All values of the constants used in the
calculations of such equations, as well as the
results obtained, are contained in Parameters
1 and 2 shown in the following topic.

SIMULATIONS AND RESULTS

Firstly, with the equations of the previously
mentioned perturbation functions, a program
in Python language was created to calculate the
partial derivatives of each of them considering
each zonal harmonic ], to J.. Note that in R],
there is no constant w and a, so the derivatives
of dR] /0w and 0R] /da will result in 0.

0R/0i result for R]2:

_ 1.5Jdois RaioL?in?
(1 _ 62)1.5

dR/de result for RJ2:

(2.25)

0.75JdoisRaiol er? - [3i* —2)
(1 _ 62)2.5

O0R/dw result for RJ3:

(2.26)

0.375JtresRaioL3ein® - (51 — 4) cos (w)
a(l _ 6’2 )ZAS

0R/0a result for RJ3:

(2.27)

0.375Jires Raiol*ein® - (51 — 4) sin (w)

a2(1 - ez)Zj

(2.28)
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0R/di result for RJ3:

375 iresRaiol Pein® sin () 0.375JtresRaioL%en® - (5i* — 4) sin (w)

a(1 - &) a(1 - )" (2.29)
o0R/0e result for RJ3:
1875 tresRaioL%e*in® - (5:* —4) sin (w)  0.375JtresRaioL%in® - (51 —4) sin (w)
all — ) a{l1 =)™ (2.30)
OR/dw result for RJ4:
0.46875JguatroRaioL*¢*i*n® - (7i* — 6} sin Qw)
- 55
a1 —e?) (2.31)
o0R/0a result for RJ4:
00234375  guatroRaieL*r® - (10i% - (7i* — 6)cos (2w) — (3 +2) (351 —40i +8))
21—y’ (2.32)
0R/di result for RJ4:
0.0234375JquatroRaioL'w? - (14022 cos (2uw) + 20621 (72 — 6) cos (2w) + (—3¢* —2) (140 — 801} ]
3.5
all-¢&) (2.33)
oR/de result for RJ4:
0.1640625 FguairoRaio L er® - (1022 - (712 — 6) cos (2w) — (32 +2) (351 — 408 + 8))
all—é )4 >
0.0234375 JguatroRaio L4r? - (20e + (712 — 6) cos (2w) — 6e (3514 —40i2 +8))
* 35
all—et) (2.34)
O0R/dw result for RJ5:
0.546878 FyRaiol ! e'n® - (%6 - 8) sin{w)sin (D) 001983128 F; RodolPen® - (1™ - (92 — 8] cos (Do) + ¥ (- 3154 + 4487 — 14d) — 8044 + 67247 - 192) cos ]
+
0,3(1—‘52)115 c-ﬁ(l—ez)‘i'5
(2.35)
oR/0da result for RJ5:
0.05850375.J; Raiolfein® - (1462 - (042 —8) cos (2w) + € (—315:* + 448i> — 144) — 504i* + 672¢% — 192) sin (w)
at(l — 82)4'5 (2.36)
0R/di result for RJ5:
0.01953125 JsRaioLlein® - (252e%5 cos (2w) + 2862 (942 — 8) <o (2w) + €2 (—12604° + 8961) — 2016:% 4 1344) sin (w)
3 2344
a¥(1 —e2)
0.01968128Jg Raiolfen® - (14627 - (86% — 8) cos (2w) + € (—315¢* + 44877 — 144) — 504e! 4 6724% — 192) sin (w)
a¥(1 — e2)*s (2.37)
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oR/de result for RJ5:
0.175781258Js RatolPein? - (146’ - (8¢® — 8) cos (2w) + €2 (—315¢* + 44842 — 144) — B044* + 672¢* — 102} sin (w)

a3(1 — 82)5,5
0.01953125Js RaiolPein® - (28ei® - (9:% — 8) cos (2w) + 2e (315 + 44842 — 144)) sin (w)
a1 — eg)dj
0.01983125J5 RaioL in® - (14e? - (9> — 8) cos (2w) + o (—3154* + 448:% — 144) — 504i* + 672¢% — 193) sin (w)
a1 — )5 (2.38)
J0R/0w result for RJ6:
0.001220703125 /5 Raiolfn? - (252e44* - (1142 — 10) sin (dw) — 420e22 (e + 2) (33* — 484> + 16) sin (2w))
- a%(1— e2)"° (2.39)
o0R/0a result for RJ6:

0.0048828125J; RaioL n? (—63e%* - (114% — 10) cos (dw) 4 210e%4% (? + 2} (33¢* — 484 + 16) cos (2w)

+ (—30e* — 80e* — 16) (2313" — 378:* + 168> — 16))
ad(1 — 92)5'5 (2.40)

JdR/0i result for RJ6:
0.001220703125. s ReioL n? (—1386e*4® cos (duw) — 252¢%4® - {114% — 10) cos (dw) + 2102 (® + 2) (132¢* — 961) cos (2w)

+ 420e% {e? + 2 (337" — 48i® + 16) cos (2w) + (—30e* — 80e® — 16) (13864° — 1512:* 4 3361))
a1l — 62)5'5 (241)

oR/0e result for RJ6:

0013427734375, RadoL%n?® [— 6324 - (114% — 10) cos (duw) + 21022 (® +2) (354! — 43i% + 16) eos (2w)
+ (—30et — 807 - 16) (2314* — 37844 + 16842 - 16))
- a1 - 82)5.5
0.0012207031258 7 RaioLo%? (— 25254 - (1142 — 10) cos (4u) + 42052 - (334% — 4842 + 16) cos (2w) + 420242 (2 +2) (384% — 4842 4 16) cos

(2w) + (—~120c* — 1602) (2314° — 375 + 16342 - 16))

(2.42)

ad(L - ey

After calculating the partial derivatives of Lagrange equation dw/dt for J2:

the disturbance functions, it was possible to - A
. 1.5JdoisRaioL*in cos (i) 0.75JdoisRaiol’n (312 - 2)
complete the Lagrange equations (2.16) to A T I AVRYT)
. & (1—e) sin (7) a(l—e ) (244)
(2.21) for each harmonic Jn as shown below: L tion dM/dt for T2:
Lagrange equation dQ)/dt for J2: agrange equation or J2:

. R 2 2
) | 5TdeisRaiellin 0.75JdoisRaiol nlg3z 2) h
@(l=-e)” (2.45)

21—V sin (@) (2.43)
Lagrange equation from/dt to J2: 0.
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Lagrange equation di/dt for J2: 0
Lagrange equation d€)/dt for J3:

3.75JiresRuiol*ei’n? sin (w)  0.375JtresRaiol en? (51 —4) sin (w)

a(1—e2y® a(1—e2)?*

a?n+/1 — e?sin (1) (2.46)

Lagrange equation from/dt to J3:

0.375JtresRaioLin (5i* — 4) cos (w)

a3(1— &2)*° (2.47)
Lagrange equation dM/dt for J3:

1 5 LETEJtres ReioLl  e¥in® (5 —4] =in () 1,375 tres RoioL an® (5% —4) sin ()
0.78Jtres Raiol ein (57? — 4) sin (w] ( o ) B af1-e2)™’ B af1—et)*”
2.5 2
o1 &) aZen (2.48)

Lagrange equation dw/dt for J3:

3750 tresRaiol} e2n? sin () 0.375TtreaRaioL en® (524 sin (10) .
- 5 - s cos (i)
a(1-&1" a(l-&)

a*na/1 —e?sin (i)
\/1—2 ( 1875Ttves Raiol® oin?-(5i2—4) sin () 0.375J1vesRaiol® in?-(512—4] sin (w))
P -

a(l—ezjaj a(l—ezj25

+ 2

en (2.49)
Lagrange equation di/dt for J3:

o

0.375Jtres RaioL ein (5% — 4) cos (1) cos (w)

a*(1 = )" sin (1) (2.50)
Lagrange equation dQ)/dt for J4:

0.0234375F quatroRaioL n (1406 i cos (2w) + 20671 (7# — 6) cos (2w) + (-3¢ — 2) (140:° — 80i))

@1- 92)4'0 sin (1) (2.51)
Lagrange equation from/dt to J4:
0.46875FquatroRaioL*ein (7% — 6) sin (210)

@(1-e)? (2.52)
Lagrange equation dw/dt for J4:

0.0234375 T quatroRatoLin (140e2 ¥ coz (2w + 20647 ('71‘2 - 6) cos (i) + (—3432 - 2) (1401‘3 — 801‘)) cos (1)
2 (1) sin()

Vi-&

(e. 1640625 T atvoR aioLt en (1067 (72 - &) oo (2ud)— (36742 (3524 -4047 48] + 00234375 TquatroRaioL n® (206 (7:%-8) cas (Zw)—ée(SSrf‘—40i2+S)))

+ a(l—e’z)“j a(l—e’z)”
2Pen (2.53)
Lagrange equation dM/dt for J4:
2 (—0.234375F quatroRate L' 220 - (77 — 6) cos (2w0) — (3¢ + 2) (350 — 402 + 8))

15
an(l—¢)
( 1 ez) (e. 1640625 T atroR atoL* en® { 106%7- (7576 cos (2w)— (562+42) (3504 -40:2+8)) . 0234375 Iqu aivoR aioL*n® (20ed® (767 -8) oo (2w)-Ge( 350 -40:2+8) )
a(l—e?)” a(l—e?)h”

@ en (2.54)
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Lagrange equation di/dt for J4:

0468757 quatroRaioL*e%i® n (71 — 6) sin (2u) cos (i)

{1 -2 sin(7)

(2.55)

The comparison graphs generated continue
up to harmonic J4, so the Lagrange equations
for J5 and J6 will not be necessary.

After calculating the period ne of the
variationsoftheangularelements,2 parameters
were considered for the calculations of the
integrals based on the Lagrange equations,
parameter 1 considers the constantal = radius
of the Moon + 50 km and a2 = radius of the
Moon +100km, as well as the eccentricities el
=0.01 and e2 =0.02.

We have that parameters 1 are: n: 26.05130
rad/day = 1492.629541 degrees per day, Q:
-0.25286, w: 0.60222, M: - 0.12313 and i: 30
degrees. Thus, the following graphs were
obtained:

1= variation of orbital elements with J2
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Figure 1 - Average Anomaly Graph with J2.

Source: Author’s production.
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Figure 2 - Perigee Argument Graph with J2.

Source: Author’s production.

For the J3 zonal harmonics, we obtained:
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Figure 2.6 — Average Anomaly with J3.

Source: Author’s production.
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Figure 2.7 - Perigee Argument with J3.

Source: Author’s production.
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Source: Author’s production.
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Figure 2.11 - Average Anomaly with J4.
Source: Author’s production.
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Figure 2.10 - Tilt with J3.

Source: Author’s production.

For the J4 zonal harmonics, we have:
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Figure 2.13 - Eccentricity with J4.

Source: Author’s production.
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Figure 2.15 - Longitude of the Ascending
Node with J4.
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Then it is known that the parameters 2
obtained are n: 25.69440 rad/day = 1472.180677
degrees per day, (): -0.23615, w: 0.56242, M:
-0.11488 and i: 30 degrees. This way, we obtain:

1e6 variation of orbital elements with J2.
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Figure 2.16 - Average Anomaly with ]2 for parameters 2.

Source: Author’s production.
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Figure 2.17 - Longitude of the Ascending Node
with J2 for parameters 2.

Source: Author’s production.
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Figure 2.18 - Perigee argument with J2 for
parameters 2.

Source: Author’s production.
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Figure 2.19 - Average Anomaly with J3 for
parameters 2.

Source: Author’s production.
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Figure 2.20 - Pericenter argument with J3 for
parameters 2.

Source: Author’s
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Figure 221 - Eccentricity with J3 for
parameters 2.

Source: Author’s production.
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Figure 2.22 - Slope with J3 for parameters 2.

Source: Author’s production.
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Figure 2.23 - Longitude at the Ascending Node
with J3 for parameters 2.
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Figure 2.24 - Average Anomaly with J4 for
parameters 2.
Source: Author’s production.
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Figure 2.25 - Pericenter argument with J4 for
parameters 2.

Source: Author’s




from J3 onwards, with J4 being the harmonic
that most influenced the orbits, mainly in
020 1 relation to the degrees of inclination and the
eccentricity of the orbit. Such results produced
— Eccentricity are only for the separate harmonics, and lead
010 | us to believe that J5, J6 and C22 result in even
w05 | greater influences on satellites orbiting the
l_J U L] L U u L_J Moon, and such hypotheses can be studied
oL B E—— N —— ] with subsequent studies.
vooE B0 B A Furthermore, in addition to studying
the influence of harmonics separately, for
a more complete and clear result on all
the disturbances studied in the orbits, the
000 = m—— sum of the harmonics must be taken into
ﬂmﬁ ﬂmm consideration, when calculating the graphs
=927 in order to obtain greater understanding
7358 1 regarding the influence that the harmonics
M7 | — Inclinatio together perform on the orbit in question.
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Figure 2.26 - Eccentricity with J4 for
parameters 2.
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Figure 2.28 - Longitude at the Ascending Node
with J4 for parameters 2.

Source: Author’s production.

CONCLUSION

It is verified through this study that the
influences on the disturbances considering
the zonal harmonics become noticeably large
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