CAPÍTULO 19

DOSES DE SILÍCIO E INOCULAÇÃO COM A. BRASILENSE NAS CARACTERÍSTICAS PRODUTIVAS DO SORGO FORRAGEIRO NO PERÍODO DE DÉFICIT HÍDRICO

Data de aceite: 01/04/2024

Francisco Naysson de Sousa Santos

Bolsista de desenvolvimento científico regional do CNPq nível C (UFMA)

Renata Costa Sousa

Mestra do Programa de Pós-graduação em Ciência Animal da Universidade Federal do Maranhão (PPCA/UFMA)

Dilier Olivera-Viciedo

Universidad de O'Higgins-Chile (UOH)

Danillo Marte Pereira

Pesqusiador visitante do Departamento de Zootecnia (UFMA)

Daniele de Jesus Ferreira

Professora do Centro de Ciências de Chapadinha(UFMA)

Anderson de Moura Zanine

Professor do Centro de Ciências de Chapadinha(UFMA)

RESUMO: objetivou-se avaliar os efeitos individuais ou de interação da fertilização com silício e inoculação com Azospirillum brasilense sob as características produtivas do sorgo forrageiro no período de deficit hídrico. O delineamento experimental utilizado foi o delineamento em blocos

casualizados, em um esquema fatorial 4 x 2, com cinco repetições, totalizando 40 unidades experimentais. O primeiro fator consistiu nas doses de silício (Si) (0, 4, 8 e 12 kg ha-1) correspondente a 0; 0,96; 1,90 e 2,85 mmol L-1 de Si na solução em cada aplicação, enquanto o segundo fator foi a inoculação das sementes com as cepas de Azospirillum brasilense (cepas Ab-V5 e Ab-V6), na proporção de 50% de cada. O cultivar utilizado foi o sorgo forrageiro (Sorghum bicolor cv. BRS Ponta Negra). A combinação das doses de Si e a inoculação com A. brasilense, não apresentou efeito significativo (p>0,05) para nenhuma das características produtivas do sorgo forrageiro. Já com relação os efeitos isolados, a utilização das diferentes doses de Si foi significativa para peso de planta inteira (P<0,001), número de folhas vivas (P=0,007), peso de folhas vivas (P=0,002), peso de colmo (P<0,001) e peso de panícula (P<0,001). Os resultados indicaram que o silício exerceu influência positiva nas características produtivas do sorgo forrageiro. Recomendando-se a dose 8 kg ha⁻¹ de Si associado com *A. brasilense*. PALAVRAS-CHAVE: bactérias diazotróficas, entressafra agrícola, Sorghum bicolor.

SILICON DOSES AND AZOSPIRILLUM BRASILENSE INOCULATION ON THE PRODUCTIVE CHARACTERISTICS OF FORAGE SORGHUM DURING WATER DEFICIT PERIOD

ABSTRACT: The objective was to evaluate the individual and interactive effects of silicon fertilization and inoculation with *Azospirillum brasilense* on the productive characteristics of forage sorghum during water deficit. The experimental design used was a randomized block design in a 4 × 2 factorial scheme, with five replications, totaling 40 experimental units. The first factor consisted of silicon (Si) doses (0, 4, 8, and 12 kg ha⁻¹), corresponding to 0, 0.96, 1.90, and 2.85 mmol L⁻¹ of Si in the solution at each application. The second factor was seed inoculation with *Azospirillum brasilense* strains (strains Ab-V5 and Ab-V6) at a ratio of 50% each. The cultivar used was forage sorghum (Sorghum bicolor cv. BRS Ponta Negra). The combination of Si doses and inoculation with *A. brasilense* did not show a significant effect (p>0.05) on any of the productive characteristics of forage sorghum. Concerning individual effects, the use of different Si doses was significant for whole plant weight (P<0.001), number of live leaves (P=0.007), weight of live leaves (P=0.002), stalk weight (P<0.001), and panicle weight (P<0.001). The results indicated that silicon had a positive influence on the productive characteristics of forage sorghum, with a recommended dose of 8 kg ha-1 of Si associated with *A. brasilense*.

KEYWORDS: diazotrophic bacteria, off-season agricultural, *Sorghum bicolor*.

INTRODUÇÃO

A cultura do sorgo (*Sorghum bicolor* [L.] Moench) tem ganhado crescente importância na alimentação animal devido à sua adaptabilidade a condições tropicais e menor demanda hídrica em comparação com outras culturas (PERAZZO et al., 2017). No entanto, para garantir um desenvolvimento adequado, é essencial fornecer não apenas os nutrientes necessários, mas também a quantidade adequada de água. Apesar de ser uma alternativa para períodos de seca, as flutuações climáticas podem expor o sorgo ao estresse hídrico, resultando em perdas de biomassa e comprometendo a produtividade, dependendo da intensidade (COSTA et al., 2016; PINHO et al., 2015). Diante desse cenário, uma estratégia promissora para mitigar os efeitos do estresse hídrico em diversas culturas é a aplicação de silício. Essa prática proporciona benefícios notáveis, como o reforço das paredes celulares, melhorando a capacidade das plantas de reter água e resistir à desidratação. Além disso, o silício desempenha um papel crucial na regulação da abertura e fechamento dos estômatos, otimizando o uso da água pelas plantas (SOUZA JUNIOR et al., 2021).

Além do desafio hídrico, o sorgo é frequentemente mencionado na literatura como uma cultura com alta exigência e resposta ao nitrogênio. No entanto, devido ao aumento nos custos dos fertilizantes nitrogenados sintéticos, busca-se alternativas que combinem alta produtividade com redução de custos. Uma dessas alternativas são as bactérias promotoras de crescimento, como o *Azospirillum brasilense* (LEITE et al., 2019). Essas bactérias, além de fixadoras de nitrogênio, podem fornecer parte do nitrogênio necessário

para a cultura, aumentando a produção e reduzindo a dependência de grandes quantidades de fertilizantes, além de diminuir a contaminação por nitrogênio reativo (MODESTO et al., 2021). O presente estudo teve como objetivo avaliar os efeitos individuais e a interação entre a fertilização com silício e a inoculação com *Azospirillum brasilense* nas características produtivas do sorgo forrageiro durante o período de déficit hídrico.

MATERIAL E MÉTODOS

O experimento foi conduzido no Centro de Ciências de Chapadinha da Universidade Federal do Maranhão – UFMA/CCCh, localizado no Município de Chapadinha, Região do Baixo Parnaíba, situada a 03°44'33" S de latitude e 43°21'21" W de longitude.

O clima predominante da região é o tropical úmido, segundo a classificação de Köppen (2013). As chuvas se concentram no primeiro semestre do ano cuja precipitação pluviométrica média é de 1.670 mm e temperatura média anual de 26,9 °C, com máxima média de 37°C e mínima de 22°C (INMET, 2018).

O delineamento experimental utilizado foi o delineamento em blocos casualizados, em um esquema fatorial 4 × 2, com cinco repetições, totalizando 40 unidades experimentais. O primeiro fator consistiu nas doses de silício (Si) (0, 4, 8 e 12 kg ha-1) correspondente a 0; 0,96; 1,90 e 2,85 mmol L⁻¹ de Si na solução em cada aplicação, enquanto o segundo fator foi a inoculação das sementes com as cepas de *Azospirillum brasilense* (cepas Ab-V5 e Ab-V6), na proporção de 50% de cada. O cultivar utilizada foi o sorgo forrageiro (*Sorghum bicolor* cv. BRS Ponta Negra).

O solo presente na área experimental foi classificado como Argissolo Vermelho-Amarelo, com textura franco-argilosa. Foram coletadas amostras de solo na camada de 0-20 cm para a realização da caracterização química e textural do solo. Realizou-se a correção do solo de acordo com a necessidade identificada na análise de solo. Para isso, utilizou-se calcário dolomítico com PRNT de 115,10%, sendo aplicados 2,3 toneladas por hectare para elevar a saturação de base para 60%, conforme recomendado para a cultura do sorgo.

A adubação de plantio, com os nutrientes NPK, foi feita manualmente e calculada com base na análise de solo e nas recomendações específicas. Foram aplicados 20 kg de N por hectare, 100 kg de P_2O_5 por hectare e 30 kg de K_2O por hectare. As características granulométricas do solo registradas foram de 70% de areia, 21% de argila e 9% de silte.

A área experimental abrangeu um total de 251 m², dividida em 40 parcelas de 6 m² cada (3 × 2 m). O espaçamento entre as linhas foi de 0,6 m, e entre as covas foi de 0,5 m, mantendo um espaçamento de 0,50 m entre as parcelas e 1 m entre os blocos (Figura 2). Cada parcela foi composta por 20 plantas, totalizando assim 800 plantas em toda a área experimental e 31.873 plantas/ há. A semeadura ocorreu de forma manual, com o auxílio de enxada para que fosse realizada a abertura das covas que possuíam aproximadamente 3-5 cm de profundidade, na qual foram usadas 3 sementes de sorgo por cova.

Para a inoculação da semente foi realizada a pesagem de 0,5 kg de semente e inoculada com 2 ml do Inoculante GRAP NOD A L (1,5LT = 15 doses) - Azospirillum Brasilense – Agrocete. Foram selecionadas duas plantas de cada parcela (plantas essas que pertenciam as linhas centras das parcelas e de altura uniforme) para realizar as medições e coletar dados das características produtivas, totalizando assim 80 plantas avaliadas. As avaliações foram: PPI – peso da planta inteira, NFV – número de folhas vivas, NFM – número de folhas mortas, PFV – peso de folhas vivas, PFM – peso de folhas mortas, PCOL – peso de colmo, PPA – peso de panícula, RFC – relação folha colmo, MSFV – matéria seca de folhas, MSC- matéria seca do colmo, MSP- matéria seca da panícula, MSPI- matéria seca de planta inteira.

Utilizou-se o delineamento em blocos casualizado com oito tratamentos e cinco repetições em um esquema fatorial 4x2 (yij = μ + Ti + Blj + eij), em que as médias foram submetidas a análise de variância a 5% de probabilidade, quando significativo as médias foram ajustadas ao modelo linear ou quadrático utilizando procedimento do PROC MIXED do software estatístico SAS (2004), para avaliar os dados agronômicos e produtivos

RESULTADOS E DISCUSSÃO

Observou-se efeito quadrático para o PPI (p<0,001), PFV (p=0,002), PCOL (p<0,001) e PPA (p<0,001) com ponto de máxima de 8,4375 kg ha⁻¹, 8,0 kg ha⁻¹ e 9,125 kg ha⁻¹ respetivamente (Figura 1 A, C e D). Houve efeito linear positivo utilizando doses de silício para a variável NFV (P=0,007) (Figura 1 B).

O peso de planta inteira foi influenciado pelos diferentes níveis de Si, isso pode ser explicado pela influência do número de folhas vivas, peso de folhas vivas, peso de colmo e peso de panícula onde a soma das variáveis apresentou plantas mais pesadas, o uso do Si pode ter vindo influenciar a planta a aumentar sua capacidade fotossintética, havendo assim maior desenvolvimento de algumas características a medida em que se aumentou os níveis de Si, isso pode estar associado à presença do elemento, que possibilita um bom desenvolvimento da estrutura foliar das plantas, possibilitando com que as folhas permaneçam eretas (MENEGALE et al., 2015).

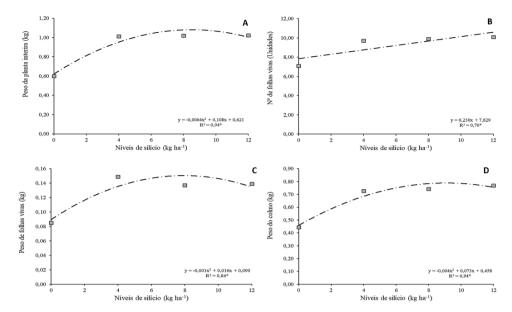


Figura 1: Regressões ajustadas para as variáveis peso da planta inteira (kg), número de folhas vivas (unidades), peso de folhas vivas (kg) e peso do colmo (kg) (Figuras A, B, C e D) respectivamente na cultura do sorgo forrageiro submetido a diferentes doses de Si e sem e com utilização de *Azospirillum brasilense*

CONCLUSÕES

Os resultados indicaram que o silício exerceu influência positiva nas características produtivas do sorgo forrageiro. Recomendando-se a dose 8 kg ha⁻¹ de Si associado com *A brasilense*

AGRADECIMENTOS

Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico-CNPq e a Fundação de Amparo à Pesquisa e ao Desenvolvimento Científico e Tecnológico do Maranhão – FAPEMA, pelo financiamento desta pesquisa.

REFERÊNCIAS BIBLIOGRÁFICAS

COSTA, R. F. et al. Agronomic characteristics of sorghum genotypes and nutritional values of silage. **Acta Scientiarum. Animal Sciences**, v. 38, p. 127–133, 2016.

INSTITUTO NACIONAL DE METERIOLOGIA- INMET. Disponivel em : http://www.inmet.gov.br. Acesso em: 23 junh. 2023.

LEITE, R. et al. Mitigation of Mombasa grass (Megathyrsus maximus) dependence on nitrogen fertilization as a function of inoculation with *azospirillum Brasilense*. **Revista Brasileira de Ciencia do Solo**, v. 43, 2019.

MENEGALE, M. L. C. et al. Silício: interação com o sistema solo-planta. **Journal of Agronomic Sciences**, v. 4, n. especial, p. 435- 454, 2015.

MODESTO, V. C. et al. Yield and Production Components of Corn Under Straw of Marandu Palisade Grass Inoculated With Azospirillum brasilense in the Low-Land Cerrado. **Frontiers in Sustainable Food Systems**, v. 4, 2021.

PERAZZO, A. F. et al. Agronomic Evaluation of Sorghum Hybrids for Silage Production Cultivated in Semiarid Conditions. **Frontiers in Plant Science**, v. 8, n. June, p. 1–8, 2017.

PINHO, R. M. A. et al. Sorghum cultivars of different purposes silage. **Ciência Rural**, v. 45, n. 2, p. 298–303, 2015.

STATISTICAL ANALYSES SYSTEM-SAS. Base SAS® 9.0 Procedures Guide; SAS Institute, Inc.: Cary, NC, USA, 2004.

SOUZA JUNIOR, J. P. et al. Silicon fertigation and salicylic acid foliar spraying mitigate ammonium deficiency and toxicity in Eucalyptus spp. Clonal seedlings. **Plos one**, v. 16(4), p. e0250436, 2021.