CAPÍTULO 18

CARACTERÍSTICAS MORFOLÓGICAS DO SORGO FORRAGEIRO EM RESPOSTA A DIFERENTES DOSES DE SILÍCIO COMO MITIGADOR DO DÉFICIT HÍDRICO, COM OU SEM INOCULAÇÃO DE AZOSPIRILLUM BRASILENSE

Data de aceite: 01/04/2024

Francisco Naysson de Sousa Santos

Bolsista de desenvolvimento científico regional do CNPq nível C (UFMA)

Renata Costa Sousa

Mestra do Programa de Pós-graduação em Ciência Animal da Universidade Federal do Maranhão (PPCA/UFMA)

Leandro dos Santos Costa

Estudante de graduação em Agronomia (UFMA)

Guilherme Ribeiro Alves

Professor do Departamento de Zootecnia (UFBA)Daniele de Jesus Ferreira

Anderson de Moura Zanine

Professor do Centro de Ciências de Chapadinha (UFMA)

RESUMO: Objetivouavaliar se as características morfológicas do sorgo forrageiro com diferentes doses de silício (Si) como mitigador do déficit hídrico com inoculação ou não de Azospirilum brasilense. O delineamento experimental utilizado foi o delineamento em blocos casualizados, em um esquema fatorial 4 × 2, com cinco repetições, totalizando 40 unidades experimentais. O primeiro fator consistiu nas doses de Si (0, 4, 8 e 12 kg ha-1) correspondente a 0; 0,96; 1,90 e 2,85 mmol L-1 de Si na solução em cada aplicação, enquanto o segundo fator foi a inoculação das sementes com as cepas de Azospirillum brasilense (cepas Ab-V5 e Ab-V6), na proporção de 50% de cada. O cultivar utilizado foi o sorgo forrageiro (Sorahum bicolor cv. BRS Ponta Negra). A utilização do A. brasilense foi significativa para a variável altura da planta (p=0,016). em que sem inoculação com A. brasilense apresentou maior média (263,087 cm) quando comparado com inoculação com A. brasilense que teve média igual a (252,562 cm), apresentando plantas maiores sem sua utilização. Observou-se efeito quadrático para o diâmetro de panícula (DPA) (p=0,002) e diâmetro de colmo (DC) (p=0,002) com ponto de máxima de 7,2532 kg ha-1 e 7,9718 kg ha⁻¹ respetivamente. A aplicação de distintas doses de silício em combinação com a inoculação de A. brasilense resultou em resultados morfológicos satisfatórios. Nesse sentido, a dose recomendada é de 8 kg ha⁻¹ de Si associada à presença de A. brasilense.

PALAVRAS-CHAVE: entressafra, fertilização, silicato.

MORPHOLOGICAL CHARACTERISTICS OF FORAGE SORGHUM IN RESPONSE TO DIFFERENT SILICON DOSES AS A MITIGATOR OF WATER DEFICIT, WITH OR WITHOUT AZOSPIRILLUM BRASILENSE INOCULATION

ABSTRACT: The objective was to evaluate the morphological characteristics of forage sorghum under different doses of silicon (Si) as a mitigator of water deficit with or without inoculation of Azospirillum brasilense. The experimental design used was a randomized complete block design in a 4 x 2 factorial scheme, with five replications, totaling 40 experimental units. The first factor consisted of Si doses (0, 4, 8, and 12 kg ha⁻¹) corresponding to 0, 0.96, 1.90, and 2.85 mmol L-1 of Si in the solution at each application, while the second factor was seed inoculation with Azospirillum brasilense strains (strains Ab-V5 and Ab-V6), in a 50% ratio of each. The cultivar used was forage sorghum (Sorghum bicolor cv. BRS Ponta Negra). The use of A. brasilense was significant for plant height (p=0.016), where without inoculation with A. brasilense, the mean height was higher (263.087 cm) compared to inoculation with A. brasilense, which had a mean height of (252.562 cm), indicating taller plants without its use. A quadratic effect was observed for DPA (p=0.002) and DC (p=0.002) with a maximum point of 7.2532 kg ha-1 and 7.9718 kg ha-1, respectively. The application of different silicon doses in combination with A. brasilense inoculation resulted in satisfactory morphological outcomes. In this context, the recommended dose is 8 kg ha⁻¹ of Si associated with the presence of A. brasilense.

KEYWORDS: fertilization, off-season, silicate.

INTRODUÇÃO

O sorgo (*Sorghum bicolor* (L.) Moench) é uma planta que pertence à família *Poaceae*, com mecanismo fotossintético C4, o que lhe proporciona uma vantagem fotossintética significativa (ROSA, 2012). O sorgo é tolerante a altas temperaturas e à seca; no entanto, em caso de déficit hídrico, sua taxa de crescimento diminuirá, o que pode resultar na perda de seu potencial produtivo, com efeitos marcantes nas características morfológicas. Dessa forma, recorre-se a estratégias na tentativa de amortizar os efeitos do período seco, e uma dessas estratégias é o uso do silício (Si) (BISHNOI et al., 2023). A adubação adequada e a aplicação do silício podem atenuar esse estresse, uma vez que contribuem para a manutenção do potencial hídrico foliar (PEI et al., 2010), reduzem o estresse oxidativo ao diminuir a perda de eletrólitos (GONG et al., 2005) e na transpiração das plantas, com isso ocorre consequentemente o aumento da eficiência da fotossíntese. Quando as plantas têm deficiência de Si, por exemplo, ficam mais vulneráveis a ataques de pragas e fungos, tornando-se propensas ao acamamento e têm menor tolerância à salinidade (ISLAM et al., 2020).

Como o sorgo é uma gramínea de ciclo fotossintético $\mathrm{C_4}$, é comumente reportado na literatura uma alta exigência e resposta ao nitrogênio (PAULO et al., 2016). Devido ao aumento dos custos para aquisição de fertilizantes sintéticos nitrogenados, tem se buscado alternativas que aliem boa produtividade e diminuição dos custos. Umas destas

alternativas são as bactérias promotoras de crescimento como o *Azospirillum brasilense* (LEITE et al., 2019). Estas bactérias são fixadoras de nitrogênio e podem fornecer parte do nitrogênio necessário para a cultura, aumentando assim a produção e reduzem a necessidade de grandes quantidades de fertilizantes assim como a diminuição da contaminação por nitrogênio reativo (MODESTO et al., 2021). Dessa forma, objetivou- se avaliar as características morfológicas do sorgo forrageiro com diferentes doses de Si com inoculação de *Azospirilum brasilense* na entressafra agrícola.

MATERIAL E MÉTODOS

O experimento foi conduzido na Universidade Federal do Maranhão – UFMA/CCCh, localizado no Município de Chapadinha, Região do Baixo Parnaíba, situada a 03°44'33" S de latitude e 43°21'21" W de longitude. O clima predominante da região é o tropical úmido, segundo a classificação de Köppen (2013). As chuvas se concentram no primeiro semestre do ano cuja precipitação pluviométrica média é de 1.670 mm e temperatura média anual de 26,9 °C, com máxima média de 37°C e mínima de 22°C (INMET, 2018).

O delineamento experimental utilizado foi o delineamento em blocos casualizados, em um esquema fatorial 4 × 2, com cinco repetições, totalizando 40 unidades experimentais. O primeiro fator consistiu nas doses de silício (Si) (0, 4, 8 e 12 kg ha⁻¹) correspondente a 0; 0,96; 1,90 e 2,85 mmol L⁻¹ de Si na solução em cada aplicação, enquanto o segundo fator foi a inoculação das sementes com as cepas de *Azospirillum brasilense* (cepas Ab-V5 e Ab-V6), na proporção de 50% de cada. O cultivar utilizado foi o sorgo forrageiro (*Sorghum bicolor* cv. BRS Ponta Negra).

O solo presente na área experimental foi classificado como Argissolo Vermelho-Amarelo, com textura franco-argilosa. Foram coletadas amostras de solo na camada de 0-20 cm para a realização da caracterização química e textural do solo. Realizou-se a correção do solo de acordo com a necessidade identificada na análise de solo. Para isso, utilizou-se calcário dolomítico com PRNT de 115,10%, sendo aplicados 2,3 toneladas por hectare para elevar a saturação de base para 60%, conforme recomendado para a cultura do sorgo.

A adubação de plantio, com os nutrientes NPK, foi feita manualmente e calculada com base na análise de solo e nas recomendações específicas. Foram aplicados 20 kg de N por hectare, 100 kg de P_2O_5 por hectare e 30 kg de K_2O por hectare. As características granulométricas do solo registradas foram de 70% de areia, 21% de argila e 9% de silte.

A área experimental abrangeu um total de 251 m², dividida em 40 parcelas de 6 m² cada (3 x 2 m). O espaçamento entre as linhas foi de 0,6 m, e entre as covas foi de 0,5 m, mantendo um espaçamento de 0,50 m entre as parcelas e 1 m entre os blocos. Cada parcela foi composta por 20 plantas, totalizando assim 800 plantas em toda a área experimental e 31.873 plantas/ ha. A semeadura ocorreu de forma manual, com o auxílio de

enxada para que fosse realizada a abertura das covas que possuíam aproximadamente 3-5 cm de profundidade, na qual foram usadas 3 sementes de sorgo por cova.

Para a inoculação da semente foi realizada a pesagem de 0,5 kg de semente e inoculada com 2 mL do Inoculante GRAP NOD A L (1,5LT = 15 doses) - *Azospirillum Brasilense* – Agrocete. Foram selecionadas duas plantas de cada parcela (plantas essas que pertenciam as linhas centras das parcelas e de altura uniforme) para realizar as medições e coletar dados das características produtivas, totalizando assim 80 plantas avaliadas. As avaliações foram: variáveis diâmetro de panícula (DPA) (mm), altura da planta (altura máxima- cm) e diâmetro de colmo (DC) (mm).

Utilizou-se o delineamento em blocos casualizado com oito tratamentos e cinco repetições em um esquema fatorial 4×2 (yij = μ + Ti + Blj + eij), em que as médias foram submetidas a análise de variância a 5% de probabilidade, quando significativo as médias foram ajustadas ao modelo linear ou quadrático utilizando procedimento do PROC MIXED do software estatístico SAS (2004), para avaliar os dados morfológicos.

RESULTADOS E DISCUSSÃO

Para diâmetro de panícula (mm) o ponto máximo foi encontrado ao utilizar o nível 7,2532 kg ha⁻¹ a partir desse ponto houve um decréscimo (Figura 1). Na cultura do sorgo forrageiro a panícula é o principal componente para se estabelecer o ponto de colheita da planta, principalmente quando seu cultivo tem por finalidade a produção de silagem, devido sua contribuição no aumento dos teores de matéria seca da planta, além do mais, a panícula possui um maior teor de proteína bruta agregando maior valor nutritivo em relação aos demais componentes da planta, como: folha e colmo.

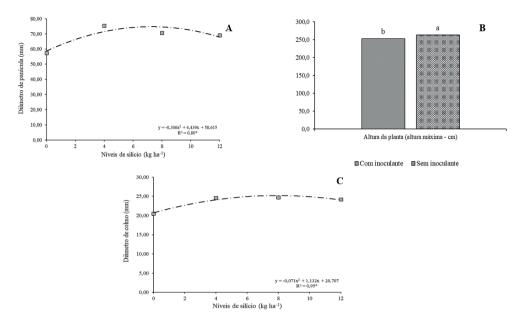


Figura 1: Regressões ajustadas e gráfico de barra para as variáveis diâmetro de panícula (mm) (A), altura da planta (altura máxima- cm) (B) e diâmetro de colmo (mm) (C) na cultura do sorgo forrageiro submetido a diferentes doses de Si e sem e com utilização de *Azospirillum brasilense*.

A utilização do *A. brasilense* foi significativa para a variável altura da planta (p=0,016), em que sem inoculação com *A. brasilense* apresentou maior média (263,087cm) quando comparado com inoculação com *A. brasilense* que teve média igual a (252,562cm), apresentando plantas maiores sem sua utilização (Figura 1). Observou-se efeito quadrático para o diâmetro de panícula (DPA) (p=0,002) e diâmetro do colmo (DC) (p=0,002) com ponto de máxima de 7,2532 kg ha ⁻¹ e 7,9718 kg ha⁻¹ respetivamente (Figura 1).

Em relação as características morfológicas, o uso das diferentes doses de Si apresentou melhoras no DPA, DC. A influência do aumento dos níveis de Si e o aumento nas variáveis pode ser explicado pois embora o Si não seja considerado um elemento essencial às plantas, estudos constatam que a aplicação de Si ao solo com o crescimento e acréscimo na produtividade das culturas, especialmente as espécies gramíneas, consideradas acumuladoras, como é o caso da cultura do sorgo (CASTRO, 2009).

CONCLUSÕES

A aplicação de distintas doses de silício em combinação com a inoculação de *A. brasilense* resultou em resultados morfológicos satisfatórios. Nesse sentido, a dose recomendada é de 8 kg ha⁻¹ de Si associada à presença de *A. brasilense*.

AGRADECIMENTOS

Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico-CNPq e a Fundação de Amparo à Pesquisa e ao Desenvolvimento Científico e Tecnológico do Maranhão – FAPEMA, pelo financiamento desta pesquisa.

REFERÊNCIAS BIBLIOGRÁFICAS

BISHNOI, A.; JANGIR, P.; SHEKHAWAT, P.K.; RAM, H.; SONI, P. Silicon supplementation as a promising approach to induce thermotolerance in plants: Current understanding and future perspectives. Springer Science and Business Media Deutschland GmbH, 2023.

CASTRO, G.S.A. Alterações físicas e químicas do solo em função do sistema de produção e da aplicação superficial de silicato e calcário. 2009. 160 p. Dissertação (Mestrado)- Programa de Pós-Graduação em Agronomia, Universidade Estadual Paulista Julio de Mesquita Filho, Botucatu.

GONG, H. et al. Silicon alleviates oxidative damage of wheat plants in pots under drought. **Plant Science**, v. 169, n. 2, p. 313-321, 2005.

INSTITUTO NACIONAL DE METERIOLOGIA- INMET. Disponível em: http://www.inmet.gov.br. Acesso em: 23 junh. 2023.

ISLAM, W. et al. Silicon-mediated plant defense against pathogens and insect pests. **Pesticide Biochemistry and Physiology**, v. 168, p. 104641, 2020.

LEITE, R. C et al. Mitigation of Mombasa grass (*Megathyrsus maximus*) dependence on nitrogen fertilization as a function of inoculation with *Azospirillum brasilense*. **Revista Brasileira de Ciência do Solo**, v. 43, 2019.

MODESTO, V. C. et al. Yield and production components of corn under straw of marandu palisade grass inoculated with *Azospirillum brasilense* in the low-land Cerrado. **Frontiers in Sustainable Food Systems**, v. 4, 2021.

PAULO, M.; CASTRO, Y. D. O.; MARQUES, R. D. C.; REGINA, D.; PEREIRA, M.; MARCONDES, M.; GODOY, D.; PATRÍCIA, N.; REGES, R. Importance of limestone and fertilization in traditional and alternative production of forage plants. p. 1–12, 2016.

PEI, Z.F. et al. Silicon improves the tolerance to water-deficit stress induced by polyethylene glycol in wheat (*Triticum aestivum L.*) seedlings. **Journal of Plant Growth Regulation**, v. 29, p. 106- 115, 2010.

ROSA, W. J. Cultura do sorgo. Departamento Técnico da Emater-MG, 2012.