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Abstract: Tuberculosis (TB) remains a 
significant public health challenge worldwide, 
with its transmission exacerbated by various 
risk factors including co-existing health 
conditions and socio-economic determinants 
such as high population density, poverty, and 
alcoholism. This study emphasizes the crucial 
role of efficient TB screening and monitoring 
in not only providing prompt treatment to 
patients but also in reducing the disease’s 
lethality. Responding to the Ministry of 
Health and the World Health Organization’s 
demand for advanced diagnostic methods, we 
introduce a novel approach using the Marie.
AI model for TB screening in penitentiary 
complexes. This proof of value (POV) 
repurposes Body Scan images, typically used 
for object detection on inmates, as a new tool 
for health screening.
The Marie.AI model, a multimodal artificial 
intelligence platform developed in 2020, has 
previously proven effective in Brazil for aiding 
healthcare teams in diagnosing COVID-19 
and TB. For this study, the model was trained 
on an extensive dataset of 1.5 million images, 
including X-rays and CT scans of patients 
with TB, COVID-19, and other pulmonary 
diseases, along with patient symptom data. 
A significant achievement of this study was 
the model’s ability to distinguish between 
TB-infected and non-infected individuals 
using Body Scan images, leveraging its 
previous training with X-ray and CT data. The 
model demonstrated exceptional diagnostic 
accuracy, achieving a specificity of 87.23% 
and a sensitivity of 100% in identifying 
suspected TB cases. These findings not only 
highlight the versatility of the Marie.AI 
model in non-traditional settings but also 
mark a breakthrough in early TB diagnosis, 
particularly in high-risk environments like 
penitentiary complexes. This innovative 
approach promises to enhance public health 
responses to TB, leading to more effective 

disease management and control.

INTRODUCTION
The World Health Organization (WHO) 

Global Tuberculosis Report 20221 provided 
provisional estimates of global tuberculosis 
(TB) mortality in the year 2021, attributing 
the observed increase to disruptions in health 
services caused by the COVID-19 pandemic. 
This period saw the implementation of 
various government measures aimed at 
curbing the spread of COVID-19, including 
school closures, travel bans, restrictions 
on public gatherings, as well as mandatory 
mask-wearing and hand hygiene practices2. 
The clinical manifestations of COVID-19 
closely resemble those of other respiratory 
infections, notably pulmonary tuberculosis 
(TB)3. While TB is a significant global health 
concern, it is also a curable disease with both 
affordable treatment and prevention options 
available. Despite this, TB remains one of the 
leading causes of death globally from a single 
infectious agent, akin to the mortality impact 
of COVID-192.

An examination of national monthly and 
quarterly TB reports was conducted to identify 
interruptions in essential TB services during 
the COVID-19 pandemic at the national level. 
This analysis aimed to understand the impacts 
on both the supply side (the ability of health 
systems to continue providing services) and 
the demand side (public access to health 
facilities and treatments). The findings revealed 
that the COVID-19 pandemic significantly 
affected the provision of TB health services 
in various countries. This was evidenced by 
the reallocation of healthcare professionals, 
alterations in healthcare budgets, and 
interruptions in services1. Notably, in Brazil, 
the year 2021 saw a report of 68,271 new TB 
cases, which translates to an incidence rate 
of 32.0 cases per 100,000 inhabitants (figure 
1). This statistic underlines the significant 
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impact of the COVID-19 pandemic on TB 
management and control efforts in Brazil.

Figure 1. Coefficient of incidence of general 
tuberculosis (per 100 thousand inhabit.)

In 2020, Brazil and 15 other countries 
were responsible for a 93% reduction in 
TB notification worldwide. This negative 
variation can be justified by the impacts 
caused by the COVID-19 pandemic on health 
services and systems4. Later, measures to 
remove tuberculosis became increasingly 
unlikely, as during this period, there was a 
25% decrease in diagnosis and a 26% increase 
in TB deaths worldwide. In this context, 
faced with the need to expand and qualify 
care, surveillance, and management actions 
for TB control in the country, the General 
Coordination of Surveillance of Chronic 
Communicable Respiratory Diseases (CCRD) 
of the Ministry of Health, published in 2021, 
is a guiding document for the second phase 
of the National Plan to end TB as a public 
health problem. With recommendations for 
the period 2021-2025, the Plan has goals in 
line with commitments from international 
organizations, such as the 2030 Agenda of 
the Sustainable Development Goals, and aims 
to reduce the incidence of TB to less than 10 
cases per 100,000 inhabitants and less than 
230 deaths. until 2035 (BRAZIL, 2021). The 
diagnosis of tuberculosis during COVID-19 
shows a drop in vulnerable populations, such 
as prisoners. When stratifying the frequency 
of TB cases by type of vulnerable population 
and considering the period from 2015 to 
2021, there was a variation from 5,860 to 

6,773 TB cases in a population deprived of 
liberty1. The prevention and control of TB, 
especially in the prison environment, should 
be reinforced by the diagnosis of TB, which 
is carried out through clinical evaluation and 
the request for imaging exams and collection 
of biological material for identification. 
However, to intensify the search. Process in 
this environment, the Ministry of Health1, 
proposed passive search and activation of 
TB cases among prisoners, according to the 
flowchart below (Figure 2):

Figure 2. Flowchart for screening and 
diagnosis of TB; *Population Deprived of 

Liberty (PDL)

The effective screening of individuals 
presenting with respiratory complaints to 
health services is crucial for the accurate and 
timely diagnosis of tuberculosis (TB), as well 
as other medical conditions. However, it is 
observed that not every patient exhibiting 
symptoms indicative of TB receives appropriate 
treatment or even a definitive diagnosis 
of the condition. This issue is particularly 
pronounced in prison complexes5, where TB 
screening remains suboptimal.

Within the context of Brazil’s prison 
complexes, the healthcare infrastructure 
typically includes a team comprising a nurse and 
a doctor. Despite this professional healthcare 
presence, there is a notable lack of essential 
diagnostic equipment, such as imaging and 
laboratory testing apparatus. This deficiency 
significantly hinders the ability to conduct 
thorough screenings and accurate diagnoses 
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of TB among the incarcerated population. 
The absence of these vital diagnostic tools 
underscores a critical gap in the healthcare 
provision within these settings, potentially 
leading to delayed or missed diagnoses of 
TB, thereby exacerbating the health risks not 
only to the individual prisoners but also to the 
wider prison community.

Despite the efforts made, the situation 
remains concerning in environments where 
overcrowding is prevalent. Public Health 
Security data indicate that approximately 40% 
of Brazilian prisons lack medical offices, and 
48% are devoid of a pharmacy or a designated 
area for storing medications6. This shortfall 
in healthcare infrastructure contributes to 
Brazil having one of the highest tuberculosis 
(TB) mortality rates in its penitentiary 
complexes, with a staggering 1,403 cases of 
TB per 100,000 incarcerated individuals. 
In stark contrast, the incidence of TB in the 
general population is significantly lower, at 
40 cases per 100,000 people. This disparity 
highlights the vulnerability and health risks 
faced by the prison population, in what is the 
world’s third-largest prison system. The high 
rate of TB in these settings can be attributed 
to insufficient infrastructure for healthcare 
teams, overcrowding, and inadequate hygiene 
conditions1. These factors combine to create 
an environment where infectious diseases like 
TB can spread more easily, underscoring the 
urgent need for improved health services and 
conditions in Brazilian penitentiaries. (figure 
3).

Figure 3. Data on the prison population in 
Brazil

These failures result in missed opportunities 
for early TB detection and increased 
disease severity, leading to more significant 
complications and the risk of poor outcomes 
for TB patients. The current situation results 
in a heightened burden of disease within the 
community, primarily due to an increased 
risk of transmission of Mycobacterium 
tuberculosis. This risk is exacerbated by 
the insufficient availability of diagnostic 
materials and technologies for tuberculosis 
(TB) in prison complexes. Consequently, this 
deficiency prompts various groups to focus on 
developing applications in the field of Public 
Health, aimed at addressing these critical 
gaps. The development of these applications 
is essential for improving TB diagnosis and 
management in these high-risk settings, 
ultimately contributing to better health 
outcomes both within the prison system and 
in the broader community.

An additional noteworthy aspect is that, 
during the pandemic, the general Brazilian 
population exhibited a decline in data related 
to notifications and underreporting of 
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tuberculosis, falling below the levels observed 
in previous years. This trend indicates a 
significant disruption in disease reporting 
and tracking during the pandemic period, 
underscoring the impact of COVID-19 on 
public health surveillance systems (Figure 4).

Figure 4. Number of TB notifications from 
2001-2022 in January

In the Americas, more than 70 people die 
from tuberculosis daily, and about 800 become 
ill with this disease. In 2020, there were an 
estimated 18,300 children with TB in the 
Americas, half under five. Efforts in the Region 
to combat tuberculosis have saved around 
1,270,000 people since 2000. The incidence of 
tuberculosis in Brazil was 45 cases per 100,000 
people in 2020, down from 46 cases per 
100,000 people in the previous year. This is a 
change of 2.17%. Due to the high incidence and 
a low number of notifications and adherence 
to TB treatment during the pandemic period, 
we used an artificial intelligence approach as 
a proof of concept to identify TB in prison 
complexes as a measure to promote the 
National Tuberculosis Surveillance System 
in Brazil9, given the need to investigate in 
more detail the characteristics of TB in prison 
complexes, with a view to a National Project 
for the Elimination of Tuberculosis in prison 
complexes4.

Consequently, this research proposes the 
utilization of Body Scan images for tuberculosis 
(TB) screening in prison environments7. The 

study is designed as a proof of concept, aiming 
to assess the feasibility of using Body Scan 
technology, commonly employed in Brazilian 
prison complexes for detecting objects like 
cell phones and drugs, as a potential tool 
for TB screening via artificial intelligence. It 
is important to note that the MARIE.AI8,18 
platform, which is under consideration for 
this purpose, was originally trained only 
with X-ray and CT images. This distinction 
is critical, as X-rays are high-energy, short-
wavelength waves capable of penetrating the 
human body, while body scanners operate 
using radiofrequency waves, which are of 
lower energy and longer wavelength, and 
are reflected off the body. Thus, this proof 
of concept study is intended to explore new 
possibilities in the application of pre-trained 
models and their ability to segment and 
extract pathological features from different 
types of imaging, potentially broadening the 
scope of TB screening methods in challenging 
settings like prisons.

METHODS
The set of images was acquired from the 

body image file, model Spectrum BodySca 
Dual View, serial number 1203000002, 
used in security procedures at the Chapecó 
Agricultural Penitentiary. The study was 
approved by the Ethics Committee for 
Research on Human Beings of Santa 
Catarina State University, number 4874132. 
All subjects gave their informed consent for 
inclusion before participating in the study. 
The study was performed in accordance with 
the Declaration of Helsinki. 

In this project, historical Body Scan 
images from two distinct patient groups were 
utilized: one group comprised individuals 
diagnosed with tuberculosis (TB), and 
the other included patients without any 
respiratory disease complaints. These images 
were selected from well-defined case studies. 
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It is pertinent to note that all patients involved 
had their diagnoses of either Tuberculosis or 
COVID-19 medically confirmed (Figure 5).

Figure 5. Data on the prison population in 
Brazil

VARIETIES OF IMAGING 
MODALITIES AND THEIR PHYSICAL 
CHARACTERISTICS
Body Scan imaging typically employs 

millimeter wave technology or backscatter 
X-ray systems, predominantly utilized in 
security settings such as airports and prisons. 
These systems are designed to detect objects 
concealed on or under an individual’s clothing. 
The resultant images are two-dimensional, 
effectively delineating the contour of the 
person’s body and any objects present. 
However, unlike medical imaging techniques, 
Body Scan images do not provide internal 
anatomical details.

In terms of physical properties, Body Scans 
utilize non-ionizing radiofrequency waves in 
millimeter wave scanners, or low-dose X-rays 
in backscatter systems. These technologies are 
characterized by significantly lower energy 
levels compared to those used in medical 
X-rays and Computed Tomography (CT) 
scans. Their design principle is based on the 
reflection of these waves off bodily tissues and 
other objects, rather than penetrating them as 
in medical imaging.

Consequently, the radiation exposure 
from Body Scan systems is considerably 

lower than that from medical X-rays and CT 
scans. Specifically, millimeter wave scanners 
employ non-ionizing radiation, which is 
generally deemed safer for human exposure, 
further reducing the associated health risks 
commonly linked with ionizing radiation.

MARIE.AI PLATFORM
Marie.AI8,9,10, a sophisticated multimodal 

artificial intelligence model, has been 
developed with the primary aim of facilitating 
the diagnosis of various lung diseases. In 
August 2020, this model was employed in 
specific municipalities9,10 to bolster the efforts 
of health teams in monitoring and addressing 
Tuberculosis, COVID-19, and pneumonia.

Over a span of three years, Marie.AI8,9,10 
has been operational within the Brazilian 
healthcare system. At this juncture, we 
have undertaken a detailed, case-by-case 
evaluation of the platform in collaboration 
with healthcare professionals. The evaluation 
process was grounded on two principal 
metrics: (i) Sensitivity, which is concerned 
with the model’s accuracy in identifying 
confirmed positive cases of Tuberculosis (true 
positives), where confirmation was obtained 
through AFB testing and medical diagnosis; 
(ii) Specificity, which gauges the model’s 
precision in correctly identifying individuals 
who are not suffering from the disease being 
tested.

These metrics play a pivotal role in 
ascertaining the model’s capability to 
accurately detect the presence or absence 
of the disease, especially in instances where 
an individual exhibits signs or symptoms of 
TB that correspond with the characteristics 
identified in the image.

Additionally, the synthesis of diagnostic test 
outcomes leads to the calculation of an inter 
operator agreement rate. This rate is a critical 
measure of the consistency and agreement 
level among test results. Such a metric is 
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invaluable to healthcare professionals, as it 
enhances their understanding and trust in the 
model’s consistency and reliability.

MARIE.AI 
Marie.AI stands as a seminal advancement 

in the realm of healthcare technology. This 
multimodal artificial intelligence model 
epitomizes an exhaustive compendium of 
health-related information, integrating a broad 
spectrum of medical insights and resources. 
The platform’s distinguishing feature is its 
expansive database, encompassing over 32 
million health data points.

The Marie.AI model has been meticulously 
crafted over a span of five years, employing 
a sophisticated medical ontology framework 
for data organization, utilizing the OpenEHR 
project. Throughout this period, we have 
meticulously refined computer vision and 
artificial intelligence algorithms 

In response to the COVID-19 pandemic 
in 2020, we initiated collaborations with local 
municipalities and Health Units in the State of 
Minas Gerais, Brazil, aimed at bolstering the 
diagnosis of COVID-19, Tuberculosis, and 
other respiratory infections. The development 
of our artificial intelligence models adhered 
to the foundational principles outlined in 
Shannon's Theory of Computation.

The concept of Precision Medicine has been 
recently introduced as a progressive model for 
healthcare delivery, emphasizing a predictive, 
preventive, personalized, and participatory 
approach. Integral to Precision Medicine is 
its reliance on data-intensive methodologies, 
encompassing the realms of machine learning 
and artificial intelligence, which are pivotal 
for its development. To ensure the effective 
evolution of this paradigm, we adhere to four 
foundational principles in data architecture 
and processing (Figure 6):

Figure 6. Attributes of the technological 
solution (particularities, characteristics) 

Source: Author’s compilation

(1) Have computer learning approaches 
powered by well-organized and 
sophisticated integrated data ecosystems. 
It is a multimodal model, with the input 
of scientific data, epidemiological data, 
clinical exams, imaging exams (X-ray and 
Computed Tomography);
(2) Due to the diversity of data, there is a 
system built on dynamic programming 
for pre-processing of the data and 
distribution to other deep learning models 
based on graph networks for processing 
image, textual, and biological data, which 
were modeled based on the minimum 
description length principle and stochastic 
models, and thus integrated to determine 
patterns of recognition, thus aiding in 
precision medicine. We still have an 
essential aspect: the platform has a self-
learning model, which has evolved from an 
ontology model in the last three years. The 
technology is proprietary and developed 
by the company;
(3) At this stage, we have a data lake 
structure for organizing data based on 
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medical ontology and anonymizing 
sensitive data. There is still a security 
system. We integrate the results with an 
external API or integration into multiple 
platforms for decision-making in betrayal 
and/or diagnostic support cases; 
(4) In this way, to promote better insights for 
the physician in decision making. We must 
introduce the effects of biopsychosocial 
and epidemiological aspects as intrinsic  
characteristics of individuals, as a way to 
optimize Artificial Intelligence/Machine 
Learning.
This project represents a collaborative 

public-private partnership in Brazil, aimed 
at bolstering initiatives within the Unified 
Health System (SUS). Despite SUS’s status as 
a public service, certain systemic weaknesses 
have been identified. Collaborations of this 
nature are envisioned to enhance the quality 
of services provided by SUS. In line with this 
objective, the MARIE.AI^8 platform was 
employed for a proof of concept. The primary 
goal of this initiative is to ascertain the efficacy 
of a pre-trained model, originally developed 
for X-Ray and Computed Tomography images, 
in accurately classifying Body Scan images. 
The ultimate aim is to determine whether this 
approach can be effectively utilized as a tool 
for tuberculosis tracking within penitentiary 
complexes.

One of the logical bases of MARIE.AI for 
screening tuberculosis is the characteristics 
found in patients with tuberculosis as a 
premise for the development of the logic 
(Table 1).

Condition Found in images
activity 
suggestions

• Thick walled cavities
• Centrilobular nodules with segmental 
distribution
• Confluent centrilobular nodules
• Nodules
• Consolidations
• Thickening of bronchial walls
• Bronchial thickening
• Bronchiectasis

Suggestions 
of inactivity 
(sequel)

• Thin-walled cavities
• Traction bronchiectasis
• Stretch marks
• Emphysema
• Mosaic pattern
• Nodules

Table 1. Pathological findings of TB on 
images

TEST WITH MARIE.IA PLATFORM
Based on the x-ray imaging findings, we 

performed the first tests with the MARIE.AI 
platform. To identify the presence or absence 
of TB characteristics, the platform allows the 
insertion of the patient’s clinical assessment 
data and the Body Scan image (Figure 7).

Figure 7. (A) Body Scan Image; (B) Artificial 
intelligence platform, where clinical 

evaluation data and image upload are entered; 
(C) Final result with identification of the 

altered area and the suspicion or not of TB.

CHARACTERISTICS OF IMAGES 
AND HARALICK EXTRACTOR
Studies show that chest radiographs 

are initially based on visualizing three 
characteristics10. They are (1) Anatomical 
structures, such as ribs and other bones, must 
be visible. (2) The darker (black in the image) 
the color of the lungs, the more suitable the 
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functionality. (3) The heart and peripheral 
blood vessels must be visible. Using these 
characteristics, we applied the Haralick 
method11 to extract texture characteristics 
through their attributes using a gray-level co-
occurrence matrix. The co-occurrence matrix 
is a square matrix whose size is the number 
of gray levels in the image to be analyzed. 
The developer calculates the distances in all 
possible 360 degrees and normalizes between 
0 and 100. Therefore, the co-occurrence 
matrix contains 100 rows per 100 columns 
and generates by combining the distances 
between the current angle and their respective 
combinations 10, 45, 90, and 135 degrees. 
After calculating this matrix, a matrix of the 
probability of the combinations between 
the gray levels was calculated. The following 
texture characteristics’ values were calculated 
from this matrix: energy, entropy, variance, 
homogeneity, dissimilarity, and correlation 
measures.

HYPER PARAMETRIC SEARCH
In training a learning algorithm, 

hyperparameters are variables that in some 
way govern the model space or model-fitting 
procedure in order to reduce its generalization 
error thus. If, on the one hand, this peculiar 
characteristic of the hyperparameters makes 
it possible to obtain models with better 
prediction performance, on the other hand, a 
price is paid for the effort inherent in estimating 
optimal values. The estimation Optimal hyper 
parametric has challenges that are linked to 
the type of learning algorithm used, the cost 
function employed, and the training and 
test datasets, among others. Hyperparameter 
optimization is typically approached as a non-
existent, single-objective, domain-restricted 
derivative problem12. A key issue in hyper 
parametric search is the cost of evaluating the 
objective function. Each evaluation requires 
calculating the performance of the trained 

model with a given(s) data value(s) for the 
hyperparameter(s). Depending on available 
computational resources. Due to the learning 
algorithm’s nature and the datasets’ size, each 
assessment can take minutes to several days13. 

The hyperparameter optimization of 
neural network models with deep architecture 
is a notable example of this situation, often 
requiring a large training dataset. Another 
point is that hyperparameters can have an 
evident influence on how much training time is, 
as in the case of neural network architecture14. 
Already for others, the influence can be subtle 
but of significant alteration in the performance 
of the model, given the regularization and 
kernel use cases15. Another critical factor in 
the hyperparameter search is the frequent 
existence of a stochastic component in the 
objective function12, induced by factors linked 
to the model itself, such as initial values of the 
weights of a neural network, resampling of 
data used in training (as in the construction 
of a forest random), among others. This 
stochastic behavior implies that the set of 
optimal hyperparameters found empirically 
after some evaluations may not be valuable.

SELECTION OF PROBABILISTIC 
MODEL
The model selection problem refers 

to choosing the best model among a set 
of candidates built from combinations of 
parameters. Consider a sequence of models 
M1, M2, and Mn with the corresponding 
parameters. There are many techniques 
for selecting the best model based on the 
probability ratio, and others add different 
penalty functions to the likelihood ratio. This 
is the case of the Akaike Information Criterion 
(AIC) and the Bayesian Information Criterion 
(BIC), both of which test two models at a 
time, and the two can be chosen in ascending 
order of the number of parameters. After that, 
there is a sequence of BIC and AIC values, 
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which are optimized. This results in the 
number of parameters to determine the best 
model. Therefore, in the present study, we 
used X-means16, an algorithm that efficiently 
searches the space of the clusters’ locations 
and the number of groups to optimize the 
measurement of the BIC. A decision tree 
was used to find the hyperparameter and 
inference tests to verify the training, testing, 
and validation of the model17.

RESULTS
The stratified K-Fold approach used 

three scores: a minimum score of 0.95, a 
maximum score of 0.98, and an average score 
of 0.96. These results show that the average 
score of 0.96 presents a high assertiveness 
and indicates the model’s high quality with 
actual data. Optimizing the decision tree’s 
hyperparameters was to determine the 
model’s best criteria, precision, and standard 
deviation (figure 8).

This resulted in three scores: a minimum 
score of 0.95, a maximum score of 0.98, and 
an average score of 0.96. These results show 
that the average score of 0.96 is highly accurate 
and indicates the model’s high quality with 
actual data. Optimizing the decision tree’s 
hyperparameters (figure 9) was to determine 
the model’s best criteria, precision, and 
standard deviation.

Figure 9. Most relevant characteristics for 
clustering the groups between suspected TB 

and non-suspected TB.

In this step, 510 Body Scan images were 
tested, and we obtained the following results, 
inserted in a confusion matrix (figure 10).

Figure 10. Suspected TB X non-suspected 
TB: Sensitivity = 100% ; Specificity = 87,23%; 

Positive predictive value (PPV) = 97,2%; 
Negative predictive value (NPV)= 100%.

Lung segmentation was performed on the 
MARIE.AI. platform, which processed the 
images. For this test, the experimenter was 
unaware of the patient’s signs and symptoms 
or any previous history of disease, so that 
we could observe the reproducibility of the 
results (Figure 11). 

In this next set of images, we can observe 
that even the patients presenting some 
alteration, caused by another pathology, 
MARIE.AI did not identify alterations for 
tuberculosis (Figure 12).

DISCUSSION
The 2022 World Health Organization 

report recommends new methodologies for 
tuberculosis screening. Based on this fact, we 
performed a proof of concept to verify the 
feasibility of tuberculosis screening using Body 
Scan images in prisons. Using technologies 
already used generally for the entry and exit 
of prisoners and visitors is something present 
in the routine, not adding any aggravations or 
more significant risks to the health of passers-
by in the prison complex. Also, we innovated 
in using a platform previously validated with 
radiography, computed tomography, and 
magnetic resonance18.

Another relevant aspect is that the platform 
combines data from clinical exams with 
imaging exams and, thus, follows the tracking 
and underreporting standards described by 
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Figure 8. Hyperparameters values for the inference test.

Figure 11. (A, C, E) Patient with suspected TB (B, D, F) Region with alteration detected by the 
anteroposterior image platform with alterations in the upper and middle lobes on the right side.;(G) 

Patient with suspected TB (H) Region with alteration detected by the anteroposterior image platform 
with alterations in both the right and left upper lobes.

Figure 12. (A, C, E, G) Patient has no suspicion of tuberculosis or COVID-19; (B, D, F, H) For TB and 
COVID-19 the model did not detect any pattern.

the Ministry of Health and WHO, since the 
gold standard for the diagnosis of tuberculosis 
is based on evaluating X-ray results initially 
and later after seven days of smear. Given 
the extraordinary demand and the drop 
in notifications and underreporting, using 
methodologies based on artificial intelligence 
can help the health team to identify the 
incidence and prevalence of cases in this 
population, since there is an entry of visitors 
and prisoners on holidays determined by 
Brazilian law.

The advantages of implementing this 

system are that it can reduce the time of care 
and the beginning of treatment for people 
deprived of their liberty since the data 
collected in the medical records indicate a 
delay in the conclusion of tuberculosis by the 
radiographic examination, as there is a need 
for logistics and bureaucracy between public 
security and hospitals to move this patient for 
the exam19. As a result, there is lethargy in the 
system and, as a result, diagnosis can take an 
average of 2 to 3 months, thus intensifying the 
spread of tuberculosis among all transients 
who have access to the prison complex. Also, 
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we highlight the improvement in service, 
operational efficiency, cost reduction, and 
increased productivity of the healthcare team 
in tracking, monitoring and reporting20.

In this study, we used an artificial 
intelligence platform, MARIE.AI8, to evaluate 
the Body Scan images of patients with TB and 
patients who did not have Normal TB or any 
other pulmonary pathology. We used this 
method to verify whether pattern recognition 
for TB could be distinguished from any other 
group. We decided to use the platform with 
the model already trained and used in genuine 
cases in the municipality of Itapeva-MG, 
Brazil. Currently, the model has 1.000.000 
lung images18, 268.000 of which are x-raying 
images of patients with tuberculosis.

During the pandemic, we performed 18,000 
validated cases of COVID-19, tuberculosis, 
lung cancer, and pneumonia. We are evaluated 
and confirmed by clinical and laboratory tests. 
In this way, we created two simple outputs for 
the proof of concept in the complex prison 
patients with suspected TB and patients not 
suspected of TB; in the analysis, we can see 
that the platform presented high performance 
as a screening proposal, with results of 100% 
for sensitivity and 87.23% for specificity. A 
screening test must have excellent sensitivity 
and specificity to result in low false-positive 
rates and to assure that the person does not 
have the disease when the result is negative. 
Sensitivity and specificity are inherent 
properties of each diagnostic test. These have 
a sensitivity (ability to detect individuals with 
that disease) and specificity (ability to exclude 
the diagnosis in cases of non-ill patients) that 
are never simultaneously 100%. In this way, 
our data show the quality of the experiments 
so that we can advance in the study of 
tuberculosis screening and possibly expand to 
the screening of other pulmonary pathologies. 
Another important aspect of this experiment 
was that the Body Scan images were delivered 

to the experimenter without prior knowledge 
of which of the groups he belonged to (TB or 
others).

On the other hand, we also overcame an 
obstacle, the difference in the construction 
of the images, since different wavelengths, 
and even so, produce them, the model could 
identify alterations that characterized aspects 
of tuberculosis. Still, we have that the Body 
Scan is a type of ionizing radiation; the chest 
X-ray emits about 1,000 times more radiation 
than the Body Scan21, making it an almost 
insignificant amount about the other imaging 
exams, thus suggesting that in In the future, 
we can use less radiation in imaging exams 
when associated with multimodal artificial 
intelligence model software.

Another essential factor in reducing the 
error rate in the classification of imaging 
exams is that after the results, we analyze 
patients’ histories to analyze each patient’s 
clinical observations. In the group that 
suspected TB, we observed that the patient 
whose algorithm did not identify TB had 
a result between AFB (Ziehl-Neelsen) + or 
AFB (Ziehl-Neelsen) ++. In contrast, the 
other patients had AFB (Ziehl-Neelsen) 
+++, and the reports presented a persistent 
dry or productive cough. Furthermore, the 
composition of the Body Scan images allowed 
MARIE.AI to identify a sufficient amount of 
patterns in the image to reclassify the patient 
in the TB group correctly. Our approach shows 
promising data suggesting a new approach for 
monitoring and tracking TB in prison settings 
so that isolation measures, confirmation, and 
treatment of TB can enable the search for 
the reduction and eradication of TB in these 
settings.

Our experiment corroborates with several 
machine learning models using health data 
developed and published recently, achieving 
impressive results in tasks such as bone age 
assessment22 and breast cancer detection23. 
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However, these models were built based on 
a single modality or data type, thus helping 
decision-making.

However, these models rescued little from 
artificial intelligence, which is the ability of 
technological solutions to simulate human 
intelligence, performing certain activities 
autonomously and learning independently, 
receiving input from their users.

We have observed using different modalities 
and types of data to develop artificial 
intelligence solutions. This new revolution, 
using multimodal models24, allows for finding 
different relationships between variables and 
characteristics visible or known by health 
professionals. We can also point out that these 
models can obtain a broad patient image since 
they can process millions of data in parallel, 
such as epidemiological data, risk factors, and 
tumor markers, extract image characteristics, 
and work with genomic profiles.

In our project, the gain of a multimodal 
model was apparent because even by inserting 
Body Scan images, the model was able to 
identify essential characteristics for the 
screening of tuberculosis; this new perspective 
opens a new area of ​​study in which multimodal 
models can identify small patterns and in this 
way allow the doctor a continuous follow-up 
of the patient.

Multimodal models can be a new form of 
tracking and early diagnosis of pathologies.

World Health Organization guidelines 
show that tracking pathologies have more 
significant and beneficial effects at a lower cost 
than programs carried out on demand or health 
promotion, in addition to causing less damage. 
Calling and monitoring the population make 
it possible to reach the individuals who must 
undergo the examination at the recommended 
age and frequency, reducing the possibility of 
unnecessary repetition of examinations and 
screening in individuals outside the target 
population.

CONCLUSION
For this project, our results showed that 

MARIE.AI is a potential model for tracking 
Body Scan images in penitentiary complexes, 
as a support to the staff of this place to initiate 
sanitary and disease mitigation measures. 
However, a radiologist could easily understand 
and interpret the output of a machine learning 
model that segments consolidation lesions on 
a chest CT scan. It is easy to evaluate the result, 
and if the performance is impressive, you can 
establish confidence in the model.

However, the visualization of these 
alterations can be confusing for some 
physicians due to the difficulty of some 
professionals in identifying such alterations. 
Therefore, for the model to provide confidence 
to health professionals, we need to provide 
more transparency to the logic. For that, we 
must itemize the studies of possible parameters 
that may be more abstract due to the multiple 
inputs that are inserted in multimodal models.

In general, as a future perspective, our 
goal is to study aspects of the parameters and 
data that were used and how their weights 
determined the clustering of the groups and 
also identify the logical process as a bridge of 
greater transparency for physicians and thus 
allow greater security and confidence in the 
use of these models.

For this project, it was evident that a 
radiologist could easily understand and 
interpret the output of a machine learning 
model that segments consolidation lesions on 
a chest CT scan. It is easy to evaluate the result, 
and if the performance is impressive, it can 
establish confidence in the model. However, 
we came across new model parameters that 
reached more abstract expectations due to 
multiple inputs and the difficulty for some 
professionals to identify such features in a 
Body Scan image. In this context, as future 
objectives, we have the task of identifying 
means of interpreting the logic so that health 



 14
International Journal of Health Science ISSN 2764-0159 DOI https://doi.org/10.22533/at.ed.1594152405019

professionals can have more clarity on the 
steps and parameters used and allow more 
security and confidence in using these models 
among physicians.
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