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Abstract: This study performs a comparative 
analysis of the performance of Machine 
Learning, neural networks and traditional 
survival analysis techniques. The techniques 
compared are the traditional Cox proportional 
hazards (CPH) model, Machine Learning 
Random Survival Forest (RSF) technique 
and neural networks such as DeepSurv. 
These techniques are applied to the study of 
Covid-19 cases of patients diagnosed in the 
city of Bucaramanga between March 2020 and 
March 2023. This study demonstrates better 
performance was obtained with the Random 
Survival Fores technique in predicting the 
survival function measured through the C – 
index, Brier score and AUC. 
Keywords: Survival analysis; Covid-19; 
Random Survival Forest; proportional 
hazards; Deepsurv.

INTRODUCTION
The health emergency declared by 

Covid-19 worldwide by the WHO has 
perhaps been that milestone in the history of 
all governments, which allows us to determine 
the socioeconomic implications of it, in terms 
of international public health; that beyond 
the damages and losses that its nature reveals, 
it brought with it effects after the social 
confinement to which the world population 
was subjected and its implications that are 
recorded in its high mortality rates as well as 
the survival rates compared. by the different 
entities allied to this problem.

Talking about survival in a contingency 
like this means talking about all those 
socioeconomic efforts formulated and 
implemented for periods of time by 
government entities in conjunction with 
related health authorities, in order to favor the 
implementation of measures that safeguard 
lives, regardless of the situation. the robustness 
of the effectiveness of the treatments carried 
out or their secondary implications.

This article provides an overview of 
survival analysis in Covid-19 research, 
which is intended to provide a practical tool 
for understanding the variety of statistical 
approaches to address outcomes observed 
during the time to event.

In this study, prediction models are 
developed using a Cox proportional hazards 
model, Random Survival Forest, and 
DeepSurv. Their performance is compared in 
terms of time-dependent C-index, Brier score 
and area under the AUC curve.

DATA
The data analyzed corresponds to 141,394 

patients with Covid-19 who attended the 
medical service in the city of Bucaramanga 
between March 2020 and March 2023, data 
that was taken from the digital platform 
“Colombian Open Data”, where a follow-up 
of patients from the beginning of treatment 
until their death or event of interest, or until 
the end of the study, so some observations are 
censored.

STATISTIC ANALYSIS
During the development of the process, the 

survival function was estimated by applying the 
estimator (Kaplan & Meier, 1958). Comparing 
the variables of sex and age. There, several 
Cox models (1972) were adjusted in order to 
obtain significant covariates, eliminating non-
significant variables. Then, a residual analysis 
was applied to the final models to verify the 
assumptions of the model of (Cox, 1972).

ELEMENTS OF SURVIVAL 
ANALYSIS THEORY
The purpose of survival analysis is to verify 

the follow-up time until the occurrence of the 
event of interest, highlighting its application 
at the time when censored observations are 
evident. According to Rebasa, (2005), there 
are different types of censorship: right, left 
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and intervals. In this case, censorship with 
common application or right-wing censorship 
will be addressed, which occurs until the last 
moment in which the individual has been 
followed and at that moment the event of 
interest has not yet occurred.

BASIC DEFINITIONS

SURVIVAL FEATURES
Considered as any probability that a person 

will survive or that an event of interest will 
not occur, at least until time t. Likewise, the 
survival function is given under the condition 
that T is a positive (or non-negative) random 
variable with distribution function F(t) and 
probability density function f(t). The survival 
function S(t) Arribalzaga, E. B. (2007).

HAZARD RATIO FUNCTION 
(HAZARD RATE)
Denoted as the instantaneous failure rate 

⋋(t) and specifies the quotient between the 
density function and the survival function, 
expressed as follows: 

It is explained as the probability that 
the event of interest occurs to an individual 
in the next unit of time.: Δ(t), and that this 
probability has occurred until the time: 

This function is derived from the average 
failure rate, which gives us the conditional 
probability of failures in the period (t; t + 
Δt) since the person survives in the period 
(0;t), the average failure rate (AMR), said by 
Estévez, G. and Quintela, A. (2001), is defined 
as:

KAPLAN AND MEIER ESTIMATOR
The most widely used estimator of the 

survival function is that of Kaplan & Meier 
(1958), expressed as follows:

Where, r(ti) y d (ti) are the number of 
individuals at risk and the number of deaths 
(or occurrence of the event of interest at the 
time: ti). The confidence interval, calculated 
by default by statistical programs, affects 
the identity interval or flat scale, given for 
a confidence level of 90% by the following 
expression:

Where, ee(ŜKM(t)), is the standard error of 
estimation of the Kaplan & Meier estimator.

LOG RANK TEST (LOG RANK)
Based on the same assumptions as the 

Kaplan Meier survival curve, according to 
Bland JM, Altman DG (1998), so censoring is 
not related to prognosis; Survival probabilities 
are the same for subjects recruited at the 
beginning and end of the study, and for events 
occurring at the specified times. Deviations 
from these assumptions are more important 
if they hold differently in the groups being 
compared, for example, if censoring is more 
likely in one group than another. Bouliotis, G., 
& Billingham, L. (2011).

COX REGRESSION MODEL
The Cox regression model (1972) is the 

most used for survival data in the medical 
area. In this, the risk for the ith individual is 
expressed as follows: 

Where, Zi(t) is the vector of covariates 
for the ith individual at time t. Also called a 
semiparametric model, since it includes a 
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parametric part and a non-parametric part:
1. The parametric part is expressed as,ri(t) 
= eB`Zi(t), so-called risk score (risk score) yβ 
is the regression parameter vector.
2. The non-parametric part is expressed as, 
⋋0(t), called basis risk function and is an 
arbitrary unspecified function.
The Cox regression model, also called the 

proportional hazards model, since the ratio 
between the risk for two subjects with the 
same vector of covariates is constant over 
time, and is expressed as follows:

Where, if a death has occurred at time t^*, 
it is related to the likelihood that the death will 
occur to the ith individual and not to another, 
expressed as follows:

As it is, the product: L(B) = ∏ Li(B) or 
partial likelihood and the maximization of 
Log(L(B)) gives an estimate for the B without 
needing to estimate the noise parameter the 
⋋0(t)

PROPORTIONAL HAZARDS 
ASSUMPTIONS

STATISTICAL METHOD THROUGH 
HYPOTHESIS TESTING
This method offers greater reliability, since 

graphic inspection can often be misleading. It 
is done through a linear correlation between 
the scaled Schoenfield residuals and the 
study time. Under the null hypothesis that 
the absence of correlation (Ho = p = 0) is 
synonymous with proportional risks. Values 
p<0.05 mean rejecting the null hypothesis of 
proportional hazards (Domenech, Navarro 
2008).

HYPOTHESIS CONTRAST FOR COX 
MODEL
After adjusting the Cox model, there 

are three hypothesis tests that aim to verify 
the significance of the model. These tests 
are characterized by being asymptotically 
equivalent. However, this characteristic is not 
always externalized in the practical exercise of 
its implementation. 

•	 Wald test
•	 Likelihood ratio test
•	 Score test

RANDOM SURVIVAL FORESTS
Random forests are one of the most 

interesting machine learning techniques for 
classification and regression. This technique 
was applied to survival analysis. (Ishwaran, 
Kogalur, Blackstone, Lauer. 2008)

An advantage of this model is that it is 
completely nonparametric and therefore does 
not assume a distribution for the relationship 
between the predictors and the response 
variable. Furthermore, it captures the linear 
and non-linear relationships between the 
explained variable and the predictor variables. 
Perhaps, another important characteristic is 
that it finds interactions between variables 
because the learning comes from the set of 
decision trees (Ishwaran, Kogalur, Blackstone, 
Lauer. 2008)

The RSF method is an extension of Breiman’s 
random forest method for right-censored 
survival data by using a forest of survival 
trees for prediction. Similar to regression 
and classification configurations, RSF is an 
ensemble learner formed by averaging a tree 
base learner. In survival environments, a 
binary survival tree is the base learner, and the 
ensemble learner is formed by averaging the 
Nelson - Aalen cumulative hazard function 
of each tree (Ishwaran, Kogalur, Chen, Minn. 
2011).

This model does not require the 
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CPH model’s assumption that there are 
proportional risks between individuals, 
but rather allows survival functions to be 
constructed with different shapes for each 
insured. Furthermore, the assumption of 
the same basic hazard rate for all insured is 
avoided because it is inconsistent with reality 
(Hothorn, Lausen, Benner. 2004).

Survival trees are constructed by splitting 
each parent node into two child nodes from 
the root, which comprises the entire data set. A 
division is performed according to a survival 
criterion that maximizes the difference 
between the child nodes; this division is 
repeated in each subsequent node in a binary 
manner. 

HYPERPARAMETERS
There are several tunable hyperparameters 

to consider when training a model. The main 
ones include:

1. The number of trees in the forest.
2. The number of functions to be considered 
in any given division.
3. The division rule to use during tree 
construction.

DEEPSURV
DeepSurv is a deep feedback neural 

network that predicts the effects of a patient’s 
covariates on their hazard rate parameterized 
by network weights θ. The input to the 
network is the reference data of patient x. The 
hidden layers of the network consist of a fully 
connected node layer, followed by a dropout 
layer. (Katzman, Shaham, Cloninger, Bates, 
Jiang, Kluger. 2018). Network output:  
It is a single node with a linear activation that 
estimates the log-hazard function in the Cox 
model. We train the network by setting the 
objective function as the average negative log 
partial likelihood with regularization:

Where, NE=1 is the number of patients with 
an observable event and is the regularization 
parameter: ℓ2. We then use gradient descent 
optimization to find the network weights that 
minimize the equation.

METHODOLOGY
A quantitative analysis that allows obtaining 

Covid-19 data, where the measurement 
system is through the screening technique 
and antigen and PCR tests.

Obtaining the source information lies in 
choosing those data that were processed and 
analyzed, in order to estimate the survival 
function using the Kaplan & Meier (1958) 
estimator and the techniques used to compare 
the C - index of each model.

1. Understanding of the data and 
formulation of the problem. Identify the 
set of data with which you are going to 
work, understand the limitations at the 
level of data availability (NA, etc.), be able 
to understand the different variables that 
are included in the base, and the possibility 
of developing new attributes that serve to 
improve the understanding and disposition 
of data for subsequent analysis.
2. Development of survival analysis 
through each model. Once the database 
is analyzed, prepared, and understood, 
the survival analysis will be developed 
through different models, which take into 
account the information from different 
perspectives. To do this we will use non-
parametric, semi-parametric and Machine 
Learning models. We will analyze the 
behavior/performance of each of the 
models in relative terms.
3. Comparative analysis of the models. 
Once the analyzes defined in the previous 
stage are available, the Machine Learning 
Random Survival Forest model is used. 
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Under the assumptions that performance 
will have relevant differences, a comparison 
will be made based on the main 
performance indicators of the statistical 
models.
4. Conclusion and recommendation. 
Depending on the results, different 
conclusions and recommendations will 
be drawn up for future theoretical and 
empirical work. As a summary, an outline 
of the methodological process is presented:

Figure  1. Flowchart methodology

Source: Own elaboration

RESULTS 

KAPLAN AND MEIER ESTIMATOR
The values obtained with the Kaplan & 

Meier estimator with the interval, the standard 
error and the 95% confidence interval can be 
seen in Table 1. Performed with the RStudio 
statistical software.

Table 1 includes the following information:
•	 Time: Number of months of follow-up
•	 Risk number: Number of individuals 
at risk before time.
•	 Number of events: Number of deaths 
between the time and the following week 
in which a death occurs.
•	 Survival: Probability that an individual 
will survive for a greater number of weeks 
than the time.
•	 Err.st: Standard error of survival.
•	 LCI 95%: Lower 95% confidence limit 

for survival.
•	 LCS 95%: Upper 95% confidence limit 
for survival.

The probability of survival of patients with 
covid-19 until week 15 is 75%, 47% manage 
to survive up to 24 weeks, 25% survive until 
week 31 and 0.0493% of patients survive more 
than 53 weeks. The mean survival time was 
24 weeks, with a standard error of 1.33e-03 
weeks. 

Figure  2. Covid-19 survival curve with the 
Kaplan & Meier estimator 

Source: Own elaboration

MODELS TO BE COMPARED
We compare the performance of survival 

models for a Covid-19 dataset consisting of 
survivors and deceased patients. The study is 
applied to an open data set called “Covid-19” 
to compare the performance of the models:

•	 Cox model
•	 Random Survival Forest
•	 DeepSurv

COX MODEL
The best Cox model adjusted for the 

Covid-19 data and death as an event of interest 
is shown in Table 2. It can be stated that the 
variable age and sex are significant at the 5% 
level, because the p-value is less than 0.05.
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Time Number of risk Number of events Survival Err.est Lower 95% CI Upper 95% CI
1 141393 3279 0.976809 4.00e-04 0.97601 0.977581
2 138034 6144 0.933331 6.64e-04 0.93202 0.934619
3 131798 6911 0.884390 8.51e-04 0.88271 0.886047
4 124748 7140 0.833772 9.91e-04 0.83182 0.835704
5 117456 3855 0.806407 1.05e-03 0.80434 0.808459
6 113472 2795 0.786544 1.09e-03 0.78440 0.788673
7 110607 1418 0.776460 1.11e-03 0.77428 0.778625
8 109139 1140 0.768350 1.12e-03 0.76614 0.770543
9 107962 653 0.763702 1.13e-03 0.76148 0.765911

10 107284 469 0.760364 1.14e-03 0.75813 0.762583
11 106804 347 0.757893 1.14e-03 0.75565 0.760121
12 106445 383 0.755166 1.15e-03 0.75291 0.757402
13 106049 387 0.752411 1.15e-03 0.75015 0.754655
14 105645 585 0.748244 1.16e-03 0.74597 0.750501
15 105033 1090 0.740479 1.17e-03 0.73818 0.742759
16 103915 1349 0.730866 1.18e-03 0.72854 0.733174
17 102514 1987 0.716700 1.20e-03 0.71434 0.719046
18 100450 2202 0.700989 1.22e-03 0.69859 0.703373
19 98153 3522 0.675836 1.25e-03 0.67338 0.678274
20 94491 3074 0.653849 1.27e-03 0.65136 0.656329
21 91327 3680 0.627503 1.29e-03 0.62497 0.630024
22 87505 4452 0.595577 1.31e-03 0.59300 0.598139
23 82927 9122 0.530063 1.33e-03 0.52745 0.532673
24 73626 8303 0.470287 1.33e-03 0.46767 0.472900
25 65171 7811 0.413921 1.32e-03 0.41134 0.416504
26 57190 7723 0.358025 1.28e-03 0.35551 0.360543
27 49294 5017 0.321586 1.25e-03 0.31913 0.324042
28 44163 3743 0.294330 1.22e-03 0.29193 0.296729
29 40329 1924 0.280288 1.21e-03 0.27793 0.282654
30 38336 2053 0.265278 1.19e-03 0.26296 0.267605

Table 1. Kaplan and Meier estimate

Source: Own elaboration

Covariable Coefficient p-value
Age 0.069523 <2e-16

Gender -0.003668 <2e-16

Table 2. Significant covariates

Source: Own elaboration

This model is significant by any of the two 
criteria for a 5% significance level, because the 
p-values are all less than 0.05. For the Wald 
test it was <2e-16.

PROPORTIONAL HAZARDS 
ASSUMPTIONS

Figure  3. Verification of the assumptions of 
the Cox model

Source: Own elaboration



 8
International Journal of Health Science ISSN 2764-0159 DOI https://doi.org/10.22533/at.ed.15941224230110

It must be noted that systemic deviations 
from a horizontal line indicate that the 
proportional risk assumption is not met, since 
proportional risks assume that the estimates 
of the β’s coefficients do not vary much over 
time.

Verification of the proportional hazards 
assumption can be carried out through a 
hypothesis test, where the null hypothesis 
is associated with compliance with the 
proportional hazards assumption. The 
results of this contrast indicate that the 
risk assumption is violated. Therefore, we 
can say that Ho is rejected and there is no 
proportionality.

The main component of the Cox 
proportional model is the proportionality 
assumption, in this case we observe that the 
proportionality assumptions are not met, 
it is possible that the large sample size is 
responsible for the apparently strong evidence 
against the PH assumptions, the p-values 
are a function of the sample size and their 
usefulness decreases when the sample size 
grows a lot (Talavera, Rivas, Bernal 2011). 
Some alternatives are classic methods such as 
stratify and Aalen model, on the other hand, 
more recent models such as random forests 
and neural networks.

The calculation of the stratified cox model 
was carried out, where it was also possible to 
identify that it does not comply because the 
proportionality assumption is violated.

Since the assumption of proportional 
hazards is not met, the idea that some 
covariates depend on time can be considered. 
As an alternative, we calculate the additive 
Aalen model, in this case (AGE GROUP and 
SEX) using the timereg library and the Aalen 
function in the statistical software. RSTUDIO, 
this gives us an output of a Cramer Vos Mises 
and Kolmogorov-Smirnov hypothesis test to 
validate the effects with respect to time, where 
the null hypothesis is rejected and has an 

effect that depends on time, which is evident 
in Table xx where the age group category that 
depends on time is early childhood, adulthood 
and older people according to the p-value.

Furthermore, in this model the covariate 
has separate effects on the response variable. 
For this reason it is called the additive risk 
model or Aalen additive model (Alayo, 2016).

On the other hand, rejecting the null 
hypothesis for a covariate means that there is 
sufficient evidence to say that this covariate is 
significant, therefore, it will remain as part of 
the model.

Kolmogoorv-
Smirnov test

p-valor Ho: 
Constant effect

Intercept 2.820 0.000
Gender: women 0.117 0.730
Age group - Adulthood 0.680 0.019
Age group – Childhood 0.467 0.679
Age group – Young 
people 0.508 0.184

Age group – Older 0.681 0.050
Age Group – Early 
Childhood 1.980 0.004

Table 3. Test Kolmogorov Smirnov

Source: Own elaboration

In Table 3, it is statistically evident that the 
age group covariate depends on time in some 
categories, because as time passes the patients 
possibly changed categories.

RANDOM SURVIVAL FOREST
A survival random forest ensures that 

individual trees are uncorrelated by building 
each tree on a different bootstrap sample of 
the original training data and at each node, 
evaluating only the splitting criterion for 
a randomly selected subset of features and 
thresholds.

To demonstrate Random Survival 
Forest, we use Covid-19 data in the city of 
Bucaramanga in a period from March 2020 
to March 2023, on the treatment of diagnosed 
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patients. It contains data from 75,959 women, 
65,434 men and 4 prognostic factors: 1. age, 2. 
year, 3. sex, 4. age group.

The goal is to predict recurrence-free time 
in the following steps:

1. We load the data
2. We divide into 75% for training and 25% 
for testing, so that we can define how well 
our model generalizes.
3. The most widespread criterion is based 
on the log-rank test, which you are probably 
familiar with when comparing survival 
curves between two or more groups. Using 
the training data, we fit a random survival 
forest comprising several tests with 50, 100, 
200, and 500 trees.
4. Check how well the evaluated model 
works with the test data.
5. Estimate C index, AUC and Brier score.

Hyperparameter Value
Number of trees 50, 100, 200, 500

Variables used in division 4
Division rule Log-rank

Table 4. Hyperparameters

Source: Own elaboration

MODEL TRAINING
Random SurvivalForest (min_samples_

leaf=10, min_samples_split=7, n_jobs=-1, 
random_state=1234, verbose=1)

RESULTS OF THE MODEL

Figure  4. Survival estimation and Hazard 
function

Source: Own elaboration

INDEXES
In survival analysis, a common way to 

evaluate a model, can be done by calculating the 
probability of agreement or the concordance 
index C index, Brier score and AUC (Gönen, 
Heller 2005).

Concordance Brier score AUC
0.863 0.918 0.607

Table 6. C-index, AUC and Brier Score 
Random Survival Forest model

Source: Own elaboration

We also obtained a concordance index of 
0.863, Brier score of 0.918 and AUC of 0.607, 
considering that it is a strong model indicating 
the capacity of the model to correctly provide 
a reliable classification of survival times based 
on individual risk scores.

DEEPSURV
Personalized treatment recommendation 

system using a Cox proportional hazards deep 
neural network.

We performed a series of experiments 
training DeepSurv with real and simulated 
survival data. We demonstrate that DeepSurv 
performs as well as or better than other state-
of-the-art survival models and validate that 
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DeepSurv successfully models increasingly 
complex relationships between a patient’s 
covariates and her risk of failure.

The network has multiple hidden layers, 
and the number of nodes in each layer is 
determined by the node list. In this case, all 
hidden layers have 256 nodes. Therefore, 
the network architecture would be a fully 
connected network with four hidden layers, 
each with 256 nodes.

Input and output:
The number of input features is determined 

by the way of training. The network expects 
each training example to have this number of 
features.

The output layer has a single node, since 
out features is equal to 1. This suggests that 
the network is designed for regression, where 
a continuous value is predicted (in this case, 
possibly related to survival time).

Batch Normalization:
This implies that after each hidden layer, 

the output values are normalized before 
moving to the next stage, this helps to stabilize 
and speed up the training of the network.

Dropout:
It is applied at a rate of 0.4 after each hidden 

layer. Dropout is a regularization technique 
that helps prevent overfitting by randomly 
“turning off ” some nodes during training.

Output Bias:
The output layer has a bias (output_bias). If 

true, a bias will be added to the output layer.
Optimizer:
The Adam optimizer is used for training. 

Adam is a popular optimization algorithm in 
deep learning.

We defined the neural network
n_nodes = 256
in_features = x_train.shape[1]
num_nodes = [n_nodes, n_nodes, n_
nodes, n_nodes]
out_features = 1
batch_norm = True

dropout = 0.4
output_bias = False
net_ds = tt.practical.MLPVanilla(in_
features, num_nodes, out_features,   batch_
norm, dropout, output_bias = output_bias
model_ = CoxPH(net_ds, tt.optim.Adam

CURVE: KAPLAN & MEIER

Figure  5. Kaplan and Meier survival curve

Source: Own elaboration

INDEXES
In survival analysis, a common way to 

evaluate a model, can be done by calculating the 
probability of agreement or the concordance 
index C index, Brier score and AUC (Gönen, 
Heller 2005).

Concordance Brier score AUC
0.428 0.918 0.586

Table 7. Concordance index DeepSurv Model

Source: Own elaboration

We obtain a concordance index of 0.428, 
Brier score of 0.918 and AUC of 0.586, 
considering that it is a poor model since its 
C-index is below 0.5 and the Brier score value 
is close to one, with one being the worst model. 
and the AUC reflects the rate of true positives 
as a percentage of 58.6% of events that occur.
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MODEL EVALUATION
We compare the performance of the above-

mentioned models through the concordance 
index.

C - Index
Cox Proportional Hazard Model 0,517
Random Survival Forest 0.863
DeepSurv 0.428

Table 8. Concordance index evaluation
Source: Own elaboration

Table 8 shows the concordance indices of 
the models trained on the Covid-19 data set. 
The reference models, CoxPH and DeepSurv, 
start with decent performance, but are 
outperformed by the Random Survival Forest 
model that achieved the higher agreement 
index indicating that it is a strong model.

DISCUSSION
Survival analysis is a very powerful tool 

for modeling event-time data and the most 
suitable for censored data, it is poorly linked 
to statistical study programs.

We must highlight that the field of action 
of survival analysis is not only linked to the 
medical area, but to any area where we want 
to determine the functions of the time elapsed 
from the moment at which the follow-up of a 
group of individuals begins until the an event 
of interest, and if the event of interest does not 
occur, the observations are censored.

This document presents the estimation 
of survival functions, obtaining predictive 
covariates of the survival function, verification 
of the assumptions of the Cox model and 

the application of techniques such as Cox 
Propotional, Random Survival Forest and 
DeepSurv.

The analysis presented was performed in 
R-STUDIO and PYTHON statistical software.

CONCLUSIONS 
Classic survival analysis is suitable for 

estimating survival functions and adjusting 
regression models to obtain significant 
covariates, which is evidenced in this work.

DeepSurv’s prediction and modeling 
capabilities will enable medical researchers 
to use deep neural networks as a tool in their 
exploration, understanding and prediction 
of the effects of a patient’s characteristics on 
their risk of failure.

In this study, four models are applied to 
estimate the survival function of patients 
diagnosed with Covid-19 and the predictive 
power of each of them is evaluated using 
the C-index measure, AUC and Brier score, 
obtaining better performance with the 
technique. by Random Survival Forest.

The cox model was applied, which does 
not comply with the proportional hazards 
assumption due to the amount of data and 
some categories of the age group variable that 
had a time-dependent effect; on the other 
hand, when comparing the cox model with 
some models of machine learning Random 
Survival Forest and the DeepSurv neural 
network model, it was found that the model 
with the best performance was RSF with a 
performance of 0.863.
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