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Abstract: Evaluating changes in land cover in 
areas affected by mining activities is essential to 
understand their impact on the environment 
and carry out environmental remediation 
processes. This work presents an analysis of 
the area affected by mining activity and its 
subsequent recovery, during the exploitation 
of the San Gregorio gold project, Uruguay, 
using Landsat 5TM and Landsat 8 OLI image 
processing techniques, with the free software 
QGIS. The methodology implemented 
consisted of the preprocessing of Landsat 
images, application of RGB combinations, 
semi-automatic classification, calculation 
of the vegetation index and classification of 
areas.
The changes produced in land cover were 
identified in periods of up to 5 years, from the 
start of operations in 1996 to the closure of 
activities in 2019. For each period, the images 
were visually interpreted in false colors, 
a supervised classification was processed 
and The normalized vegetation index was 
analyzed, generating coverage maps of the 
areas affected by mining activities, as well as 
determining the spectral signatures of these 
coverages. The results show the damaged areas 
and the areas recovered during the mining 
project and how the vegetation, soil and water 
evolved over time, reflecting the changes 
produced. The use of satellite images is an 
excellent tool for environmental monitoring 
of mining activities, helping to understand 
the environmental recovery processes and the 
future territorial planning of the area.
Keywords: supervised classification, coverage 
maps, mining activity.

INTRODUCTION
In recent decades, the classification of 

land cover in areas of mining operations has 
become very important to understand the 
influence of these activities on the regional 
geoenvironment and for the procedure of how 

to evaluate their environmental impact (Chen, 
W. et al, 2018). Currently, technologies such 
as remote sensing and GIS studies are widely 
used and effective in identifying the spectral 
profile and making decisions on corrective 
measures and remediation of environmental 
impacts. The application of RGB, infrared 
and NDVI color index techniques has been 
successfully used in mining waste research 
(Wajs, 2018). The visual analysis of the 
image incorporates complex criteria, such as 
texture, structure, location or arrangement, 
which allow discriminating categories 
with a uniform spectral behavior that can 
be adequately separated, while the digital 
treatment is based on the radiometric intensity 
of each pixel, which can be very similar in 
different coverages (Chuvieco, 2010). Once 
the false color satellite image is obtained, the 
first and most important activity is the visual 
interpretation of this image. Lira (2010) states 
that the recognition of an object in images 
implies its classification. This task involves 
visually examining the reflectance levels of 
objects, recognizing and identifying them by 
their shape, color, size and other properties, 
such as a specific geographical location, if 
there is local knowledge of the area.

In Uruguay there is little history of 
research with satellite images, some of which 
refer to geological-mining studies, such as 
the application of Aster images, to detect 
mineral alterations in the eastern sector of the 
Nico Pérez Terrain ( Ferrizo, 2016 ; Ferrizo 
and Abre, 2016). Or the work of Ferrizo and 
Abre (2019), where they carry out structural 
interpretations on Isla Cristalina de Rivera 
(ICR) with Landsat 7 ETM images.

Considering that vegetation and soil are 
indicators of environmental quality, the 
main objective of this work is to quantify 
the area degraded by mining activity and the 
revegetated areas, through maps of vegetation 
cover, soil and water in the San mining district. 
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Gregorio, in the period 1996-2020. This type of 
research is unprecedented in Uruguay, which 
is why it provides relevant information on the 
environmental monitoring of these and other 
activities that involve the industrialization 
of natural resources. The interpretation of 
satellite image data allows us to identify areas 
of removed soil, revegetated or recovered soil, 
quality of vegetation and water, developing a 
spatio-temporal methodology of activities and 
analysis of anthropic changes in the mining 
district, supported with Google Earth images. 
images from the Uruguayan Spatial Data 
Infrastructure (IDEuy) viewer and calculation 
of the Normalized Differential Vegetation 
Index. With the results of this research on 
the ground, it is possible to compare and see 
its evolution over the years, as well as report 
the percentages of affected and recovered 
areas, generating important information 
for future geoenvironmental studies. The 
specific objectives are to obtain the spectral 
characteristics of the different components 
of the surface, and to determine the reference 
spectral curves of the main coatings present. 
Currently, technologies such as remote sensing 
and GIS studies are widely used and effective 
in identifying the spatial footprint and 
supporting decisions on corrective measures 
and remediation of environmental impacts. 
Finally, obtain a georeferenced database 
through Geographic Information Systems, to 
be used in other research, to help plan how 
the territory is affected in the development of 
mining projects in Uruguay.

STUDIO AREA
El área de estudio abarca aproximadamente 

12 km2, incluyendo el distrito aurífero de San 
Gregorio, ubicado a 5 km al sur de la Villa 
Minas de Corrales, departamento de Rivera, 
al Norte del territorio uruguayo. 

Figure 1: Left, map of Uruguay with location of 
the study area (red box). Right, Google Earth 
image where the mining works and Minas de 

Corrales town can be seen.

The San Gregorio gold deposits are 
mesothermal mineralizations in a shear 
zone. They are located on the Isla Cristalina 
de Rivera (ICR), within Terra Nico Pérez 
(Bossi and Gaucher, 2014). The rocks present 
are gneisses and basic rocks in granulite and 
metasediment facies, including banded iron 
formations, of Paleoproterozoic age. The 
structural control of gold mineralization is 
a NW-SE direction shear system, affected 
by E-W faults, which control mineralization 
(Ferrizo and Abre, 2019).

The most relevant natural aspects of the area 
are listed below, as an argument to understand 
the natural evolution of the affected areas. The 
predominant climate is temperate, with rain 
every month of the year. The average annual 
rainfall is 1,300 mm, with a monthly average 
of 110 mm. The average temperature is 18°C, 
with a maximum of 25°C in January and a 
minimum of 7°C in July. The relative humidity 
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of the air is 71% in the region, according to data 
from the Uruguayan Institute of Meteorology 
(www.inumet.gub.uy).

The physiography of the terrain 
corresponds to small undulations and hills 
with heights that do not exceed 230 m. 
Towards the south of the study site there are 
large areas of sedimentary plains.

The soil in the highest topographic parts 
is very scarce, alternating between rocky 
outcrops and grayish-brown sandy soils, with 
a depth of 10 cm. On the slopes and lowlands 
it reaches 40 cm deep, with a predominance of 
black soils. Land use is limited to grazing sheep 
and cattle. The predominant soils are caused by 
natural pedogenetic processes, with a sandy, 
clayey and stony texture. The slopes of the land 
are of the order of 5 to 20%. The vegetation is 
predominantly summer grassland, sometimes 
with scrub, generally associated with streams 
and low areas. In the field or natural meadow 
there is little vegetation, with a predominance 
of grasses and low, medium-sized vegetation 
such as chirca, carqueja and cardilla.

The hydrography of the area is made up 
of the Corrales stream, which separates the 
mining areas of San Gregorio and Arenal, 
and in the rest of the property there are small 
streams, with low flow but in a permanent 
regime. To the south of the area there are 
some artificial dams, which accumulate water 
for rice irrigation.

The San Gregorio mining area has had 
several phases of open pit mining since 1995, 
increasing its operational activity as satellite 
deposits were discovered and production 
increased. Therefore, areas affected by 
development vary in their location, or 
sometimes appear in the same places due to 
the expansion of the mining pit. In recent 
years, exploitation has been carried out 
through underground mining, both in the 
Arenal Mine and in the San Gregorio Mine.

METHODOLOGY
The images were downloaded from the 

United States Geological Survey (USGS, 
http://earthexplorer.usgs.gov/) website, which 
were reviewed and classified according to 
the date and the percentage of cloud cover 
covering the image.

The following table shows the dates and 
acquisition data of these images:

YEAR DATE Sensor LANDSAT
1996 02/01/1996 5 TM
2000 11/10/2000 5 TM
2005 26/11/2005 5 TM
2010 08/11/2010 5 TM
2015 06/11/2015 8 OLI
2019 17/11/2019 8 OLI

Table 1: Date data of the treated images.

The criterion for selecting Landsat 5 
images was their quality and low cloud cover. 
Most of the Landsat 7 images for this area 
have the problem of continuous scratching, 
so many images had to be searched carefully 
and discarded. Landsat 5 and 8 OLI images 
were selected, in the WGS84 reference system, 
and with similar date ranges, generally within 
the month of November, with the exception 
of 1996, to identify the development of 
vegetation in the same periods (see Table 
2). After observing the USGS database, it 
was decided to choose, for each period, the 
images from the month of November, except 
for the year 1996. The choice is related to the 
knowledge of the climate in the southern 
hemisphere, where the The season is spring 
and the vegetation is healthy and vigorous, 
and the soils are not so saturated with water, 
causing better discrimination of the land 
cover. Since the rains are not so intense, they 
do not affect the disproportionate drag of 
solid particles into the water, making them 
more cloudy.

The previous investigation included 
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the review of precipitation rates, which 
according to the historical record of the 
Agricultural Research Institute (INIA) portal, 
the accumulated amount for the month of 
November in the years 2005, 2010, 2015 and 
2019, was an average of 80 mm. of rain, a 
behavior slightly lower than the typical average 
for those dates (www.inia.uy/gras/Clima/
Precipitaciónnacional/Mapasdeprecipitación 
accumulada).

To carry out the geoprocessing of the 
information contained in the satellite images, 
the free software Qgis (Manual Qgis 3.10.; 
www.qgis.org) and the SCP (Semi-Automatic 
Classification Plugin) plugin were used.

The following flowchart presents the stages 
used for the multi-temporal analysis of the 
images. 

Figure 2: Flowchart of methodology used.

The SCP plugin provides the tools for 
pre-processing remote sensing images, 
such as atmospheric correction, radiance to 
reflectance conversion, image combination, 
raster calculator, among others (Congedo, L., 
2018). The study used bands that cover the 
visible, near infrared (NIR) and shortwave 
infrared (SWIR) spectral range (see table 
2). Band combination tests were carried out, 

opting for image compositions RGB 543 for 
Lansdat 5 and RGB 654 for Landsat 8. The 
areas affected by mining exploitation are very 
recognizable in these bands of the Landsat 
sensor, because the reflectance spectra of 
mining waste are sufficiently different to 
allow separation from other uses and land 
covers of adjacent regions. Combination 543 
in Landsat 5, in addition to vegetation, shows 
greater differentiation between soil and water. 
The Landsat 8 combination 654 is conducive 
to vegetation analysis. The characteristics of 
these bands for the different sensors are that 
they are similar in wavelengths and the same 
pixel size, according to the following table.

The visual interpretation process began 
with the recognition of the areas of mines, 
dumps, tailings dam, infrastructure, and 
revegetated areas, based on the observation of 
historical and current Google Earth images. 
The viewer of the Spatial Data Infrastructure 
Institute of Uruguay (IDE) was also used, 
which has free access to the geographical 
information of the territory (https://
visualizador.ide.uy/ideuy/core/load_public_
project/ideuy). On this page the images have 
very good definition and sharpness and there 
is also an infrared image treatment, which 
effectively discriminates the vegetation, so the 
terrain texture can be separated with excellent 
accuracy. Figure 3 compares images from these 
two servers, obtaining good discrimination 
and coincidences in soil, vegetation and water 
cover. 
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LANDSAT 5 LANDSAT 8OLI
BAND BROAD (µm) RESOLUTION (m) BAND ANCHO (µm) RESOLUTION (m)

Band3 Red 0.63– 0.69 30 Band4 Red 0.64 – 0.67 30
Band4 NIR 0.77 – 0.90 30 Band5 NIR 0.85 – 0.88 30

Band5 SWIR1 1.55 – 1.75 30 Band6 SWIR1 1.57 – 1.65 30

Table 2: characteristics of the bands used.

Figure 3: Google Earth image from March 
2019 versus IDEuy viewer image from 

February 2020.

On the other hand, and to help the 
selection of representative areas, it was 
complemented with the calculation of the 
Normalized Differential Vegetation Index 
(NDVI), in order to separate areas of bare soil 
from soils with vegetation. Water, due to its 
greater reflectance in the infrared than in the 
red, has negative values. Bare soil or soil with 
very little vegetation, or bare rocky areas, have 
values close to zero. Negative values represent 
surfaces without vegetation. While healthy 
vegetation presents the highest NDVI values. 
For example, in Figure 5, images from 1996 
are compared to those from 2019, showing 
in the latter image that the removed soil has 

values below or close to zero, indicating that 
the vegetation is practically non-existent or 
there is bare soil.

Figure 4: on the left NDVI of 1996 and on the 
right NDVI of 2019.

Once these processes were formed, the 
visual interpretation and analysis of vegetation 
began, in the combination of RGB bands 
543 for Landsat 5 and in the combination 
654 for Landsat 8. Mining areas with soil 
movement and waste collections, present 
irregular shapes, with light colors, between 
blue and pink with slight magenta tones, due 
to the high reflectance of these materials; sky 
blue color for waters with sediments; black 
for clean waters and the vegetation is shown 
in various shades of green and pink, which 



7
Journal of Engineering Research ISSN 2764-1317 DOI https://doi.org/10.22533/at.ed.317442425017

vary depending on the type and location 
conditions, highlighting the areas with native 
forest in a fluorescent green tone (Figure 6).

Figure 5: On the left RGB 543 image from 1996 
and on the right RGB 654 image for 2019.

Subsequently, training areas or Shapefile 
were generated, recorded on the RGB color 
composition, from the visual interpretation 
of the satellite images, the observations of the 
Google Earth images and the IDEuy images, 
creating regions of interest or ROIs. manually 
and digitizing polygons with pixels belonging 
to the same land cover class. This classification 
technique is based on grouping pixels that 
have similar regions of the spectrum, and that 
are associated with different coverage classes. 
So that the evaluation was representative for 
each class, on average, sampling was carried 
out with six polygons for each one. The 
sample size was also considered, to generate 
uniform sampling. These polygons are named 
according to a macroclass identification 
(MC ID) and a class identification (C ID), 
according to the Qgis Manual 3.10. Next, and 

according to the criteria previously described, 
it was decided to create a legend with seven 
types of cover, divided between soils, type of 
vegetation and water, which are shown in the 
following table: 

CLASS DESCRIPTION

Removed 
soils

It is land affected by mining activities, 
infrastructure or preparation of land for 

work.
Revegetated 

soils
It is soil that has already been restored, 

with continuous vegetation growth.

Clean water

They are reservoirs or water courses, 
which do not present significant 

detrital contributions or with little 
contamination of sediments.

Water with 
sediment

is water that is contaminated by 
suspended sediment, as in the case of 
tailings dams or an abandoned mine

Low 
vegetation

It is the vegetation composed of grasses 
typical of the natural landscape.

Dense 
vegetation

formed by chirca thickets and 
mountainous mountains

Natural 
mountains

It is an association of tree species that 
develop naturally along streams.

Table 3: Classification and description of 
classes.

Before the final classification raster, editing 
and changing colors was carried out for each 
of the classes, maintaining the same criteria 
for the entire study period, in addition to a 
field visit, to corroborate these areas.

The field visit was carried out in November 
2019, to verify if the selected regions of 
interest (ROI) corresponded to the seven 
defined coverage classes. With the support 
of employees of the mining company and 
with the use of GPS, I visited the previously 
selected areas, representative of each coverage. 
Different places were visited, such as dumps, 
mines, roads and restored areas, observing the 
corresponding vegetation, land use and water.
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Figure 6: Photographs taken during the field 
survey. In photo A you can see a pond with 
clean water and vegetation. In photo B you 
can see part of the open pits full of water and 
vegetation typical of the place. Photo B is the 
San Gregorio mine partially covered with 
water. On the right below is the location of 

these photos at the mine site.

The last stage of the research was the 
generation and interpretation of the spectral 
angle (SAM) in the visible region, for all the 
classes studied and corroborated in the field. 
Once these spectral fingerprints were obtained, 
they were compared with the available spectral 
libraries, generating conclusions according to 
the mapped surfaces.

RESULTS AND DISCUSSION
The supervised classification technique 

accurately defined all mining activity sites and 
revegetated sites, allowing their representation 
in coverage maps, as shown in Figure 6.

It is observed that in the surroundings 
of the mining activity the soils were not 
affected, except for very specific points, so the 
environmental impact in question is minimal.

To compare the impact on soils and 
vegetation, in relation to the restored areas, 
the area shown in Figure 8 was delimited, 
where the main mining operations and their 
impacts on the surrounding environment are 
located, according to the coverage map for the 
year 2019. This area delimits the entire area 

covered by the San Gregorio mining project.

Figure 8: Delimitation of the area taken to 
compare affected soils versus revegetated soils.

From the classes of removed soils and 
revegetated soils, the area of each of these 
classes and their accumulation over time was 
calculated with the Field Calculator of the 
QGIS software, generating the following table.

From the analysis of the table, it is observed 
that of the total of 492.42 hectares affected 
by the mining project during 24 years, only 
172.22 hectares were restored. That is to say, 
only 37.17% of the area affected by mining 
operations was restored. The largest land 
restoration was carried out in the last 10 years, 
being the period 2015-2019, where the largest 
area was restored, with 116.47%.

This same data is then displayed in graphs.

Figure 9: Graphs showing, on the left, the total 
occupied areas & hectares of revegetated soils 
per period. On the right, comparison between 
hectares removed & revegetated per period 

studied.

The graph on the left shows how little land 
was restored during the useful life of the project, 
while the graph on the right shows significant 
mining activity between the years 2000 and 
2010, and in the last two periods it was where 
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Figure 7: On the left, RGB color composition images and on the right, coverage maps of the mining 
exploitation area for the years 1996, 2000, 2005, 2010, 2015 and 2019.
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Period Total accumulated 
occupied hectares

Hectares of soil 
removed per period

Hectares of soils 
revegetated for periods

% restored 
by period

% restored of the 
total area

2015- 2019 492.42 109.28 127.28 116.47 25.85
2010-2015 383.14 81.91 32.64 39.85 8.52
2005-2010 301.23 145.43 12.3 8.46 2.80
2000-2005 155.8 148.97 - - -
1996-2000 6.83 6.83 - - -

Table 4: Coverage areas of removed soils and revegetated soils, by year and percentage of restored area by 
period.

The largest land restoration was carried out. 
The revegetation works targeted areas with 
great environmental and visual impact, such 
as the tailings dam, or waste dump areas with 
abandonment of exploitation. An example of 
these environmental restorations is what can 
be seen in Figure 10, where you can see the 
restoration of the slope of a waste dump.

Figure 10: Photograph of the view of the slope 
of the waste pile in Mina Arenal, reconditioned 
and revegetated, and on the right aerial image 
of the place, where the growth of vegetation 

can be seen.

Also in tailings dam 1 (Figure 11), which 
contains mining waste with cyanide, all 
surface revegetation was carried out, covering 
an area of about 80 hectares.

Figure 11: View of the tailings dam, covered 
and with revegetation on its surface.

Regarding the vegetation and according to 
the data observed in the satellite images and 
the environmental reports of the operating 
mining companies, the initial vegetation of the 
area was composed of large chirca thickets and 
typical shrub forest, classified in this work. as 
dense vegetation. In the first beginnings of the 
mining project, the environmental impact was 
minimal, as can be seen in Figure 7 (period 
1996 to 2000). Since 2005, there has been a 
significant deterioration of the vegetation, 
and this is related to the development of 
the project, with the opening and entry into 
production of new mining pits (according to 
http://spanish.orosur.ca/ Corporate Profile ).

Starting in 2010, the mining company 
began to explore and exploit nearby satellite 
deposits, with a significant deployment of 
drilling equipment and vehicles. To create 
access to drilling sites, a network of roads and 
drilling platforms is developed. Therefore, 
the vegetation cover of the environment is 
affected, especially the shrubs.
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As the operational advance of the mines 
spreads, the dense vegetation loses area. Then, 
a minimum presence of dense vegetation 
is observed during 2015, the explanation 
for which is that in that period, there was 
an important brown field type exploration 
campaign, so it was necessary to clear the land 
to carry out the corresponding prospecting 
work. Already in 2018, activities ceased and 
the vegetation began its natural recovery.

As for the wells or pits left by mining 
operations, they are generally filled with 
water, essentially free of sediment, at least 
temporarily (Fig. 12). These mining pits, in 
general, do not have a closure forecast, since 
the mineral resources at depth are probably not 
completely exhausted, and may be extracted 
in the future. It was estimated that these 
areas occupy a total of 61.6 hectares (Figure 
12). If we discard that area, the percentage of 
revegetated area becomes 40.1% of the total 
affected.

Figure 12: RGB654 image with the outline of 
the mines.

In general, land restorations focus on 
giving greater environmental care to the areas 
of waste piles, infrastructure and tailings 
dams, which have greater visibility and greater 
visual impact. In Uruguay, a mine closure or 
abandonment plan is required by law (Decree 
349/2005), with conditioning and recovery of 
the affected area, which is what the operating 
company began to carry out in recent years 
(Figure 7, period 2015- 2019).

Finally, the spectral fingerprints of the 
classes obtained were studied to corroborate 
the different surface types. The spectral 
differences of the components of these 
areas, in relation to the environment, are 
important to know the state of the vegetation 
and the bare soil. The spectral signatures or 
fingerprints were extracted with the SCP 
plugin, in the band combinations of the 
satellite image, for the different types of soil, 
water and vegetation surfaces involved in this 
investigation (Table 3). With this software 
plugin, the spectral signatures are defined in 
the training areas, and are the set of statistics 
of central tendency and dispersion (mean, 
minimum and maximum, standard deviation) 
of the reflectance, and that in theory define 
the spectral behavior of related coverage 
(Congedo, L. 2018). In areas with bare soil, 
such as mining waste dumps, the reflection 
depends on the mineralogical composition 
of the deposited mining waste and the size 
of the particles, as well as the humidity of 
the ground and its physical properties due to 
swelling in some cases, and compaction. in 
others. When the material is dumped in the 
dump, a discharge zone is formed defined by 
a slope specific to the sliding of the material, 
and therefore sponge zones. On the contrary, 
when there is circulation of equipment, 
there is compaction of the soil and dust is 
generated. This affects the water regime and 
the development of vegetation. The different 
levels or embankments, with slopes of varying 
slope in the dumps, is another factor to 
consider in the incidence and exposure of 
energy and therefore reflection. The spectral 
fingerprint for these materials presents a low 
reflection, behaving as a line declining towards 
the red band. In the case of revegetated soils, 
it resembles dense vegetation. The vegetation 
has a high reflection in the green channel 
(0.53-0.59µm) and a low reflection in the 
visible red channel (0.64-0.67µm). The rest of 
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the components present common behaviors 
for each cover (Figure 13).

Figure 13: Spectral signature graph extracted 
from the SCP (2019 images). Note that the 
vegetation separated into classes (rare, dense 
vegetation and mountains) have a peak in the 

green band (0,5613 μm). 

CONCLUSIONS
The results obtained in this work, using 

remote sensing techniques with Landsat 
images and their treatment with GIS software, 
were successful and it was possible to estimate 
the affected areas and revegetated areas in 
the San Gregorio mining project, from the 
beginning of the mining operation until 
recent years.

The supervised classification was accurate in 
identifying the characteristics of the removed 
soils and the vegetation affected by the mining 
works. Once the classification of the different 
coverages for each image has been obtained, it 
can be observed that the areas directly affected 
by mining activity are very well represented. 
Objectively, the environmentally recomposed 
areas were inferior compared to the affected 
areas, but in the same way, it is observed that 
the planted vegetation is in good condition, or 

even confused with the nature that surrounds 
it.

Dumps or waste piles, which affect huge 
areas, are easier to restore, because they can 
be easily worked by smoothing the contour 
of the surfaces. Very good surface restoration 
was also achieved in the tailings dams.

Therefore, it is concluded that research 
with satellite images is a very good tool 
for controlling areas degraded by mining 
activities, observing the progress of restoration 
on the ground and the behavior of vegetation 
over time.

Data studies and remote sensing 
techniques have been applied in many places 
in the world, with the aim of monitoring the 
environmental impact generated by mining 
exploitation, but in Uruguay to date, this 
methodology has not been applied as a mining 
monitoring tool. -environmental, or for any 
industry that interacts with the environment, 
with the objective of planned and sustainable 
development of the environment.

With this work, results begin to recommend 
recovery and restoration strategies for the 
affected surfaces, as well as generate tools to 
evaluate and promote different alternative 
uses, both agricultural and tourism, that 
generate economic benefits for the region.
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