
1
Journal of Engineering Research ISSN 2764-1317 DOI 10.22533/at.ed.3173362325109

Journal of
Engineering
Research

v. 3, n. 36, 2023

All content in this magazine is
licensed under a Creative Com-
mons Attribution License. Attri-
bution-Non-Commercial-Non-
Derivatives 4.0 International (CC
BY-NC-ND 4.0).

ON DISCOVERING
QUALITATIVE
KNOWLEDGE IN RULE
BASED KNOWLEDGE
BASES. AN INTELLIGENT
APPROACH

Gabriel Fiol Roig

2
Journal of Engineering Research ISSN 2764-1317 DOI 10.22533/at.ed.3173362325109

Abstract. Production rules, also called
antecedent-consequent rules, are a com- mon
way to express the knowledge base (KB) for
reactive agents. Only one of the KB’s rules
can be triggered at any specific moment in
a reactive KB. This means that an order for
evaluating the rules must be stablished. A
top-down order is typically considered, where
rules at the top of the KB have a higher priority.
Let n the number of attributes of the domain
of a KB and m the amount of rules of KB. The
KB’s computational efficiency to determine
the action to be performed is O(n´m) time
units (where O(k) refers to the asymptotic
big O nota- tion, widely used to express the
computational cost of algorithms). However,
other ways that are more efficient to describe
actions in terms of attribute-value pairs can
be considered. In this way, decision trees
constitute a simpler alternative decision
structure, whose computational efficiency
is O(n). A decision tree fits a KB if it strictly
respect the description of the actions in terms
of the attributes just like the rules of the KB
do.
This paper describes a method to discover
qualitative knowledge from a KB by generating
a fitting and optimal decision tree from it.
Whereas the considera- tion of the fitting factor
for a decision tree depends exclusively on the
KB from which it is induced, the optimality
factor depends on the nature of the problem in
hand. Thus, the resulting tree strictly respects
all the properties and priorities of the KB’s
rules as well as the optimality criterion.
Keywords: Knowledge Acquisition,
Qualitative Knowledge, Data Mining, Rule
Based Knowledge Bases, Decision Trees,
Inductive Learning.

INTRODUCTION
Data mining seeks to take advantage

of huge amounts of data, known as input
data or examples, in order to acquire useful
knowledge (i.e. qualitative knowledge) [5]
about some concepts. Such input data are
expressed extensively in terms of conjunctions
of attribute-value pairs, so that each example
is associated with a given concept or action.
The set of all input data is known as data
source. Knowledge acquisition is based on
inductive processes applied to the data source.
The results are expressed intensively, in terms
of some abstract structure (for example,
production rules, decision trees, graphs,
statistical expressions, etc.) wich constitutes
a qualitative descripcion of the conceps in
terms of the attribute values.

There is a category of poorly studied
problems whose aim is to improve the quality
and efficiency of data sources expressed in an
intensive format (for example, produc- tion
rules, graphs, etc). A rigorous improvement
in the quality and efficiency of an intensive
knowledge base requires an ingenious and
complex process, since there are several
determining factors affecting the process. The
three main issues are mentioned below.

The first issue is to consider what specific
portions of knowledge covered by the original
data source have been omitted or simply
are not part of the problem domain (it is a
common practice in rule-based systems that
a rule covers specific portions of knowledge
that are not part of the problem domain).
Since it is impossible to determine a solution
for this problem, then the only possibility is to
assume that any improvement of the original
data source must strictly respect its data cover.

The second issue is to determine how
to treat the individual specific portions of
knowledge coming from different covers.
For example, how to treat specific portions of
knowledge covered by two or more different

3
Journal of Engineering Research ISSN 2764-1317 DOI 10.22533/at.ed.3173362325109

conflicting rules. The results of this stage are
made up of a source of specific portions of
knowledge (i.e. maximally specific data).

The third issue is to determine the criteria
that should govern the improvement of
efficiency and quality of the final results.
They will be applied, by way of inductive
procedures, to the specific data source
obtained in the previous issue. Regarding
the efficiency improvement, one must decide
what kind of structure will be used (i.e.
whether a structure of the same type as the
initial (abstract) data source, or another type
of structure considered more efficient). As for
the quality of the final results, it is im- portant
to remark that it depends exclusively on the
nature of the problem in hand.

This paper is focussed on this category
of problems, particularly in those where the
initial data source is expressed in terms of a
rule-based knowledge base. The problem in
hand is stated as follows: given a data source
expressed as a rule base (KB hence- forth) for
a reactive agent, generate an optimal decision
tree that fits strictly with the KB, that is, that
strictly respect the description of the actions
in terms of the attributes just like the rules of
the KB do. The optimal factor depends on the
nature of the problem in hand.

RELATED WORKS
Only a few works to do with building

decision trees from a set of production rules
can be found in literature. However, all of them
are designed to deal with declarative rule bases
(i.e. rule bases with absence of constraints
about the order of evaluating the rules)
without conflicting rules. In contrast to this
apprach, the method proposed in this paper is
capable of dealing with both, declarative and
procedural rule bases with con- flicting rules.
Declarative rule bases are much simpler than
procedural ones, since they are just focused
the on structural description of the conceps/

actions in terms of attribute- value pairs.
Thus, a declarative rule base is much easier to
modify and adapt to different situations than
a procedural one.

In the following, a summary of the few
published methods on creating decision trees
from a declarative rule base is presented.

The AQDT-1 system [6] is the first published
work found in literature. Taking a declarative
rule base as data source, the method build a
decision tree just from the rules.

Decision rules used in this method are
learned by the AQ15 [2] or AQ17 [3] inductive
learning programs. The main issue of the
method is creating the minimum cost decision
tree (i.e., a tree that minimizes the overall cost
of making classification decisions). Thus, the
method is guided by some attribute selection
criteria in order to determine the attribute
to be placed at each node of the tree. The
method favor the attributes with the best cost.
For example, attributes appearing in the rules
describing the most frequent concepts (i.e.
equivalence classes). Three criteria based on
the rule properties are used to measure and
choose the attributes: disjointness, dominance
and extent.

The AQDT-2 system [8] constitutes a later
version of AQDT-1. It generates a deci- sion
tree from decision rules, which have also been
learned by either rule learning sys- tems, AQ15
or system AQ17. AQDT-2 includes some
new features, some of them are: a method
to make use of new attributes; a method for
controlling the degree of gener- alization; two
new attribute selection criteria; a new method
for combining different attribute selection
criteria and the ability to generate unknown
nodes in situations when there is insufficient
information for generating a complete
decision structure.

The RBDT-1 method [14] generates a
decision tree from a declarative rule base by
using three different criteria to determine the

4
Journal of Engineering Research ISSN 2764-1317 DOI 10.22533/at.ed.3173362325109

best fitting attribute for each node of the tree.
These criteria are the attribute effectiveness
(AE), the attribute autonomy (AA), and the
minimum value distribution (MVD).

MOTIVATION
The above methods were designed to

generate decision trees from declarative rule
bases without conflicting rules. They have
been conceived to be simple, allowing a fast
(on- demand) generation of adequate decision
trees.

Some important limitations of all the
previous methods are: 1) They don’t strictly
respect the description of the actions in terms
of the attributes just like the rules of the KB do.
This issue reveals the ability of the generated
decision trees to cover unknown or missing
input data that are not covered by the decision
rules. Under this situation, these methods
work correctly only for a certain (small)
number of simple problems, in particular, for
the so called problems with a closed domain.
That is, problems whose domains include
all the possible input data (i.e. no missing
or unknown input data are possible). 2)
These methods are only designed to process
declarative rules bases; there- fore, they do
not allow inducing decision trees from rules
bases with conflicting rules.

3) The methods cannot be applied to
improve the quality of the initial knowledge
base, since they do not consider criteria that
depend on the nature of the problem in hand.

Three issues strongly related to rule bases
are: accuracy, cost and efficiency. Accu- racy
refers to the possibility of the rule base to
produce wrong decisions. As the rule base is
supposed to be created by an external entity (a
learning program or a human expert) then it
is assumed to be guaranteed for any situation.
The cost of a rule base concerns that issues
demanded by the user (for example, a rule base
with a minimum cost, where the cost refers to

the sum of the explicit cost of the individual
attributes used to describe the actions; a rule
base with a minimum number of attributes;
a rule base guaranteing the fastest decision
making; etc.). Cost issues need to be improved
sometimes, since the user sometimes does
not know precisely what really is needed,
or perhaps the initial cost requirements are
no longer valid at the current moment. Effi-
ciency has to do with the computational
resources required to make use of the rule
base and it can often be improved.

The motivation of this work lies in the
improvement of the above issues. Therefore,
given an initial rule base, a more efficient
structure in decision tree format will be gen-
erated. This tree is optimal according to some
criteria that depend on the nature of the
problem; In addition, it strictly respects the
properties of the rule base.

ON RULE BASES
The most common way of expressing the

knowledge base of a reactive agent [12] is
through a set of production rules, also called
antecedent-consequent rules. The anteced-
ent of the rules is made up of conjunctions
of attribute-value pairs, whereas the conse-
quent consists of a single action (also called
a concept), which can be triggered under the
assumption of the truth of its antecedent.

A rule base is a set of rules. For example:
{ (A=x) ^ (B=1) → Ai, (C=3) ^ (B=0) → Aj,

(A=x) → Ak, (A=y) ^ (B=0) → Aj }
The rule base includes four rules, three

attributes, A, B, C and three actions, Ai, Aj and
Ak. The domain of attribute A is {x, y}, that of
B is {0, 1} and that of C is {3, Ø3}, where Ø3
means any value other than 3.

When the antecedent of a rule is true, then
the rule is said to be triggerable. In the case
of rule bases for reactive agents, only one rule
can be triggered. If the antecedent of all the
rules is false. Then the agent must not trigger

5
Journal of Engineering Research ISSN 2764-1317 DOI 10.22533/at.ed.3173362325109

any action, which is usually represented by
the empty action, skip. Thus, the previous
rule base can be extended with a new rule, as
follows:

{(A=x) ^ (B=1) → Ai, (C=3) ^ (B=0) → Aj,
(A=x) → Ak, (A=y) ^ (B=0) → Aj,

Ø[(A=x) ^ (B=1)] ^ Ø[(C=3) ^ (B=0)] ^
Ø[(A=x)] ̂ Ø[(A=y) ̂ (B=0)] → skip} In order
to preserve the initial format of the rule base,
the last rule (also called a skip rule) must first
be turned into a disjunctive normal form
(DNF format) expression. Then it is easy to
write the resultant DNF expression as a set of
skip rules whose antecedents

are made up of conjunctions of attribute-
value pairs.

Now, the question focuses on «which of
the rules with a true antecedent should be
triggered».

DOMAIN OF A RULE BASE
The domain of a rule base, also know as

Object Attribute Table (OAT from now on),
is the set of input data covered by the rules.
It constitutes an extensional representation of
knowledge. Formally, an OAT [4], [9] is a two-
dimensional structure whose rows represent
input data or examples described in terms
of the values of a set of attributes, so that
each column, except the last one, refers to an
attribute. The last column of a row represents
the action (concept) associated with the
corresponding example. The inter- section of
a row and a column represents the value of
an example for the corresponding attribute
(action in the case of the last column).

The process of obtaining the domain of a
KB is based only on the KB’s characteris- tics
and not on the initial data domain from which
the KB was induced. The basic ele- ments of
the domain of a KB are: the set of attributes
appearing in the rules, the domain of these
attributes (i.e. values that take part of some
rule) and the actions involved in the rules.

Once these elements have been setted then the
domain/OAT can be obtained by proceeding
as follows:

First, the KB must be extended with all the
skip rules. These rules cover the input data not
covered by the rule base. Thus, the resultant
rule base covers all of possible input data. This
rule base is known as the complete knowledge
base (CKB).

Next example will facilitate the discussion.
Let us consider the following KB:

r1: (A=x) → α
r2: (B=1) → β
The basic elements of the domain are: the

attributes A and B, with domains, {x, Øx} for
attribute A and {1, Ø1} for attribute B and the
involved actions, α and β.

There is only one possible skip rule, which
can be represented as: r3: (A¹ x) ^ (B¹ 1)→ skip

Thus, the CKB contains three rules: r1, r2
and r3.

Second, the condition part of each rule
of the CKB must be extended so that it con-
tains all the attributes involved in the KB. The
question that arises at this point is how to
interpret the values of those attributes that do
not take part in the conditions of the rules of
the CKB.

For example, rule r1: (A=x) → α, only
contains attribute A. How should the value
of attribute B be interpreted for this rule?
Obviously, attribute B is not necessary to
decide the action to trigger. In other words,
if the value of A is x, then it does not matter
what the value of B is to decide that α must
be the action to take. In these cases, the value
of B will be represented by an asterisk, *,
whose interpretation is « Any value of the do-
main, DB, of attribute B». Thus, rule r1 can be
rewritten as: (A=x) ^ (B=*) → α. This process
is known as rule extending process.

The set of rules resulting of applying the
two previous steps constitutes the domain of
the rule base. Figure 1 illustrates the domain/

6
Journal of Engineering Research ISSN 2764-1317 DOI 10.22533/at.ed.3173362325109

OAT of the rule base of the example.
An OAT containing unespecified values

(i.e. values represented by asterisk symbol) for
some input data is known as an incompletely
specified OAT [10], [11].

Fig. 1. OAT

INDUCING DECISION TREES
FROM DECISION RULES
In order to facilitate the discussion, let us

show first a simple example on how to create
intuitively a decision tree that strictly respect
the accuracy properties of a declarative rule
base, that is, a rule base with absence of
constraints (i.e. priorities) on the order of
evaluating the rules.

INDUCTION FROM DECLARATIVE
RULE BASES
Example. Consider the example of the rule

base of section 4, without priorities estab-
lished on the evaluation order of rules:

r1: (A=x) → α

r2: (B=1) → b
Three steps must be taken to induce a

decision tree from the considered KB: First,
extend the initial rule base by adding the skip
rules (i.e. obtain the CKB). Second, obtain the
OAT from the CKB. Figure 1 shows such an
OAT.

Third, apply an inductive procedure to the
OAT in order to acquire qualitative knowledge
in order to create a decision tree.

It is very important to note that the
inductive procedure of step 3 must be
capable of inducing qualitative knowledge
from incompletely specified examples (i.e.
examples including the asterisk value for some

attribute) and generating only decision trees
that strictly respects the accuracy properties of
the knowledge base. The only method found
in literature that guarantees such properties is
described in [10], [11].

Figure 2 shows all the possible decision trees
that can be generated from the men- tioned
inductive method. Any of both decision trees
can be selected to replace the de- clarative rule
base.

Note that decision trees are procedural
structures that determine a well defined order
on the attribute testing.

Now, we are in position to describe formally
the accuracy constraints that a decision
tree must satisfy to guarantee the accuracy
properties of the rule base from which it was
induced.

Fig. 2. Decision Trees

Definition 1. Let KB be a rule base, A is
a decision tree whose attributes, attribute
domains and actions correspond to the basic
elements of the domain of KB, and KBA the
rule base of tree A. Note that each branch
of the tree constitutes a rule, whose ante-
cedent is made up of the conjuction of the
attribute-value pairs of the inner nodes in the
branch, and the consequent term is the action
represented by the leaf node. Tree A is said to
strictly respect the accuracy properties of KB
if, and only if, KB is a logical consequence of
KBA, that is, KBA|=KB.

By applying definition 1 we can prove
formally that both trees of figure 2 strictly
respect the accuracy properties of the rule
base. Let EKB(a), EKB(b) be the sets of input

7
Journal of Engineering Research ISSN 2764-1317 DOI 10.22533/at.ed.3173362325109

data (i.e. states) covered by trees (a) and (b)
respectively. Note that EKB(a)={(A=x, B=1,
b), (A¹ x, B=1, b), (A=x, B¹1, α), (A¹ x, B¹1,
skip)} and EKB(b)= {(A=x, B=1,

α), (A¹ x, B=1, b), (A=x, B¹1, α), (A¹ x, B¹1,
skip)}. On the other hand, the set of input
data, EKB, covered by KB, is: {(A=x, B=1, α),
(A=x, B=1, b), (A¹ x, B=1, b), (A=x, B¹1, α),
(A¹ x, B¹1, skip)}. As EKB(a), EKB(b) Í EKB,
then KB(a) |= KB and KB(b) |= KB.

Any decision tree generated by the
inductive procedure described in [10], [11]
sat- isfies definition 1.

Continuing with the example, we have
only considered the accuracy properties of
the decision tree until now; however, nothing
has been said about the cost constraints that
decision trees must satisfy. It is the case, for
example, of a user that demands a minimum
cost classification of the concepts/actions,
where the cost depend on the on an explicit
cost defined for each individual attribute.
Let us consider for example that the cost of
attribute A is 3 units and the cost of B is 1 unit.
Thus, the cost of tree (a) of figure 2 is 1 unit
to classify/trigger the concept/action beta, 4
units to classify alfa and 4 units for the skip
action. The total cost of three (a) is 9 units.
In case of tree (b), its total cost is 11 units.
Therefore, tree (a) is the best of all the possible
decision trees and so, it must be selected.

As the cost constraints of a decision tree
depend on the nature of the problem (i.e.
the user demands) then there exist a wide
range of criteria based on cost requeriments.
Designing an inductive system capable of
covering all the possible cost constraints is
not a conceivable task. However, designing
a parametrized system, that is, a system that
implements some general cost constraints
from which other more particular con-
straints can be derived, is a feasible task. This
is the case of the UIB-IK system [9], which
has been applied to a wide range of practical

problems coming from different domains.
Next are some related applications. In [7]
a medical application is presented. Paper
[16] describes an application in the field of
finance and business. Work [13] pre- sents a
practical study in the field of home assistance
for disabled people. [17] is a contribution in
the domain of web page classification. Papers
[10], [11] describe an extension of the UIB-IK
system [9] to deal with incompletely specified
OATs.

INDUCTION FROM PROCEDURAL
RULE BASES
When constraints about the order of

evaluating the rules are stablished, the
resulting decision tree must respect them.
Consider the KB of the previous example with
a top- down priority (i.e. rules are evaluated
from the top to the bottom). Tree (a) of figure
2 is not correct, since rule r1 of the KB should
always have higher priority on the rest of rules.
However, tree (b) is correct since it respects
the priority order of KB.

The priorities may cause that a state (i.e.
an input data) is covered by several rules
with different actions associated to their
consequents. Such states are known as con-
flicting states and rules covering conflicting
states are called conflicting rules. There- fore,
the problem is to determine the order which
the rules covering conflicting states must be
evaluated in. This work considers the most
common order of evaluation of the rules,
known as the top-down order.

The problem is now stated as follows:
given a KB with a top-down evaluation order
stablished, create a decision tree that strictly
respect the accuracy properties of the KB
(i.e. definition 1) and the cost constraints.
Next example will facilitates the discussion.
Example. Consider the following set of four
rules, r1, r2, r3 and r4 covering all the pos-
sible states (i.e. there is no need for adding

8
Journal of Engineering Research ISSN 2764-1317 DOI 10.22533/at.ed.3173362325109

any skip rule), whose attributes, A and B, are
binary and a top-down evaluation order of
priorities is considered:

{ r1: (A=0) → α; r2: (A=1) ^ (B=0) → α; r3:
(B=1) → b; r4: (B=0) → b }

The conflicting states are: (A=0) ^ (B=0),
(A=0) ^ (B=1) y (A=1) ^ (B=0). The actions
associated with each of these states are α and b.
However, the system of prior- ities establishes
that these states have only the α action
associated. There is only one non-conflicting
state, (A=1) ^ (B=1), whose associated action
is b.

The above can easily be seen through a
Karnaugh map, as illustrated in figure 3.

Fig. 3. Karnaugh map

Cells of the Karnaught map have been
filled with the actions associated to each state
covered by the rules.

A cell containing more than one different
action represents a conflicting state. Actions in
the cells are listed in left-right order, according
to their decreasing order of priorities. Thus,
the first action of the list (i.e. the left action)
has a hightest priority (i.e. is a first order
action), the second action is a second order
action, and so on If two or more

actions have the same priority, then the
relative order among them is not relevant.

From figure 3, we have that state (A=0)
^ (B=1) is covered by rules r1 and r3. This
state has associated the actions α and b.
Since r1 has higher priority than r3, then the
corresponding actions have been sequenced
by first placing α and then b in the figure. The
same happens with states (A=0) ^ (B=0) and
(A=1) ^ (B=0), which are covered by rules (r1,
r4) and (r2, r4) respectively.

HOW TO SOLVE CONFLICTS
AMONG RULES?
Conflicts among rules can be removed by

associating each state with one single ac- tion,
the highest priority action. Figure 4 shows the
results for the previous example.

Once all the conflicts have been removed,
then the resulting rule base can be interpreted
as a declarative rule base. The OAT obtained
from the rule base of figure 4 is illustrated in
figure 5.

Fig. 4. Priority actions associated with each
state

Fig. 5. OAT of the rule base of figure 4

Now, we can create, from the OAT, a
decision tree that strictly respects the accuracy
properties and the priorities of the KB, by
applying the mentioned inductive procedures
described in [10], [11]. Figure 6 shows two of
such decision trees.

Fig. 6. Decision trees resulting from applying
the inductive process

Decision trees in Figure 6 are functionally
equivalent to the rule base (i.e. they describe
actions with strict accuracy, just as the rule
base does) which they were induced from.

9
Journal of Engineering Research ISSN 2764-1317 DOI 10.22533/at.ed.3173362325109

Any of such trees can be used as a decision
structure to replace the rule base. Note that
in this example we have not considered issues
related to the cost of the attributes.

FORMAL CONSIDERATIONS ABOUT
DECISION TREES FUNCTIONALLY
EQUIVALENT TO A KB
The following definitions specify the

formal properties of a decision tree function-
ally equivalent to a KB.

Definition 2. Intersection between two
rules. Let ri: ci → Ai y rk: ck → Ak, be two rules.
If ci ^ ck ≠ F, being F the symbol representing
the proposition False, then rules ri and rk
are said to intersect. Such rules are known as
intersection rules. Note that two rules intersect
if they cover common states. Two rules can
be intersection rules but not necessarily
conflicting rules.

Definition 3. Highest priority rules. Let
KB be a rule base and ri: ci → Ai a rule whose
antecedent (ci) and consequent action (Ai)
belongs to the attribute and action domains,
respectively, of KB. Moreover, rule ri don’t
necessarily belong to the rule base KB (i.e. ri
is not necessarily one of the rules of KB). Let
KBri be the set of rules of KB intersecting with
ri. Rule ri is said to be a highest priority rule, if
the consequent action of ri matchs with that of
the higest priority rule of KBri.

Definition 4. Decision tree functionally
equivalent to a rule base KB. Let KB be a rule
base, A a decision tree, and KBA the rule base
of tree A. Tree A is said to be functionally
equivalent to rule base KB if, and only if, KB
is a logical consequence of KBA, that is, KBA |=
KB, and any rule of KBA is a highest priority
rule.

GENERATING A DECISION TREE
FUNCTIONALLY EQUIVALENT TO A
KB
The general procedure to turn a KB (with

or without priorities) into a functionally
equivalent decision tree is as follows.

Step 1. Complete the KB with all possible
skip rules.

Step 2. Remove all the conflicts among
the rules of the KB through determining
all the conflicting states and assigning the
corresponding relevant action to each of
them (i.e. the highest priority action).

Once this step is performed, no state will
have more than one action associated. Con-
sequently, the resultant rule base is really a
declarative rule base. Now, we are ready to
build the OAT.

Step 3. Build the OAT from the KB
resulting from step 2.

Step 4. Apply the corresponding inductive
procedure to the OAT of step 3. Next
example will clarify the above four steps.

Example. Generate a decision tree for the
following binary rule base with top-down
priorities:

{r1: (A=1) ^ (B=1) → α, r2: (A=1) ^ (C=0)→
b, r3: (B=0) ^ (C=1) → α}.

Step 1. Complete the KB with all possible
skip rules.

In order to facilitate the discussion, we will
make use of the Karnaught map of figure 7,
which illustrates all the possible states of the
KB.

Fig. 7. Karnaugh map of the KB

Two simplified skip rules, r4, r5, can be
derived from figure 7. Obviously, also three
simpler skip rules could be derived. It does

10
Journal of Engineering Research ISSN 2764-1317 DOI 10.22533/at.ed.3173362325109

not matter which of these sets you choose
since it will not affect the final results.

r4: (A=0) ^ (C=0) → skip

r5: (A=0) ^ (B=1) → skip
Step 1 is now completed. The new KB

contains five rules.
Step 2. Remove conflicts. Determine the

states involved in each conflict among rules
and assign the highest priority action to each
of them.

Fig. 8. Resulting states free of conflict

It can be seen from figure 7 that there is
only one conflicting state: (A=1) ^ (B=1) ^
(C=0). According to the priorities of the KB,
action α must be assigned to this state. The
resulting assignment of actions to individual
states is illustrated in figure 8.

Once conflicts have been removed, then it
is easy to obtain the corresponding KB with-
out conflicts. As in step 1, more than one set
of rules may possibly be generated. It does not
matter which of these sets is choosen. We will
choose the next set of rules:

{r1: (A=1) ^ (B=1) → α, r2: (B=0) ^ (C=1) →
α, r3: (A=1) ^ (B=0) ^ (C=0) → b, r4: (A=0) ^
(C=0) → skip, r5: (A=0) ^ (B=1) → skip}

Step 3. Building the OAT from the KB
resulting from step 2. Figure 9 illustrates the
resultint OAT.

Fig. 9. Conflict-free OAT

Step 4. Apply the corresponding inductive
procedure to the OAT of step 3. As indicated
in section 5.1, the inductive procedure
considered is that described in [10], [11]. Re-
garding the cost of the decision tree, we will
consider, as an example, a decision tree with
a minimum number of attributes (i.e. with a
minimum number of inner nodes). This tree
can be created by considering a same explicit
cost for all the attributes, for example the unit
cost. Figure 10 shows such a tree with four
nodes.

Fig. 10. Decision tree with a minimum
number of nodes

CONCLUSIONS
Decision trees constitute a simple and

highly efficient procedural decision structure.
A formal four-stage method to turn declarative
and procedural rule bases into a decision tree
has been presented. The method is simple and
provides some relevant advantages in relation
to the methods found in literature. Among
these benefits we stand out the following:

• It allows turning both, declarative and
procedural rule bases into a decision tree.

• There is no need to distinguish
between the declarative or procedural
character of rule bases when applying the
method.
• It strictly preserves the accuracy
properties of the rule base.
• It strictly respects the priorities of
evaluating the rules.

• It allows to consider the nature of the
problem in hand (i.e. take into account

11
Journal of Engineering Research ISSN 2764-1317 DOI 10.22533/at.ed.3173362325109

the cost restrictions on the tree demanded
by the user).

Other important properties of the method
are:

• It just depends on the properties of the
rules and not on the set of training data
from which the rules were induced.

• Its computational efficiency to generate
a decision tree depends mostly on the cost
criterion used. If no cost constraints are
considered, then the method’s efficiency
is significantly reduced and it could be
used to create on-demand (i.e. online) a
decision tree.

It makes no sense to compare the proposed
method with any of the methods found in
literature, since these are designed only to
deal with declarative rules bases; in addition,

decision trees generated by these methods
do not strictly respects the properties of the
original rule base.

We have tested the described method by
developing some examples of significant size.
The main results are: all generated decision
trees strictly respect the properties of the
original rule-based knowledge bases; decision
trees are also optimal regarding the cost
criteria demanded by the user; in addition,
the application of inductive procedures based
on binarization techniques of multivalued
attributes has allowed decision trees whose
descriptive accuracy far exceeds that of the
original rule base. Such results have not been
described due to the extension of this work.
Anyway, some of them will be in- cluded in
the presentation.

REFERENCES
1. E. Horowitz and S. Sahni, Fundamentals of Computer Algorithms, Computer Science Press, USA, 1978.

2. R. S. Michalski et al, The Multi-Purpose Incremental Learning System AQ15 and its Testing Application to Three Medical
Domains, Proceedings of AAAI-86 (1986), 1041-1045.

3. E. Bloedorn and R. S. Michalski, Data Driven Constructive Induction in AQ17-PRE: A Method and Experiments, Proceedings
of the Third International Conference on Tools for AI (1991), 9-14.

4. G. Fiol et al, A New Perspective in the Inductive Acquisition of Knowledge from Examples,

Lecture Notes in Computer Science 682 (1993), 219–228.

5. G. Fiol, On Qualitative Knowledge in a Rule Based Knowledge Base, Proceedings of the IJCAI-93 workshop on Validation,
Verification and Test of KBSs (1993), 27-36.

6. I.F. Iman and R.S. Michalski, Learning Decision Trees from Decision Rules: A Method and Initial Results from a Comparative
Study, Journal of Intelligent Information Systems, 2 (1993), 279–304.

7. G. Fiol et al, Computer-Aided Causal Diagnosis of Ascites. Analysis of a Prototipe, Infor- mation, Intelligence and Systems vol.
2, (1996), 1102-1107.

8. R.S. Michalski and I.F. Iman, Learning problem-oriented Decision Structures from Decision Rules: the AQDT-2 System,
Lecture Notes in Artificial Intelligence 869 (1994), 416-426.

9. G. Fiol, UIB-IK: A Computer System for Decision Trees Induction, Lecture Notes in Artifi- cial Intelligence 1609 (1999), 601-
611.

10. G. Fiol, Inductive Learning from Incompletely Specified Examples, Frontiers in Artificial Intelligence and Applications 100
(2003), 286–295.

11. G. Fiol, Learning from Incompletely Specified Object Attribute Tables with Continuous At- tributes, Frontiers in Artificial
Intelligence and Applications 113 (2004), 145–152.

12
Journal of Engineering Research ISSN 2764-1317 DOI 10.22533/at.ed.3173362325109

12. S. Russell and P. Norvik, Inteligencia Artificial. Un enfoque moderno, 2ª Edición, Pearson Educación S.A., España, 2004.

13. G. Fiol et al, The Intelligent Butler: A Virtual Agent for Disabled and Elderly People Assis- tance, Advances in Soft Computing
vol. 50/2009 (2008), 375-384.

14. A. Abdelhalim and I. Traore, A New Method for Learning Decision Trees from Rules, Pro- ceedings of the Eighth International
Conference on Machine Learning and Applications (2009), 693-698.

15. D. Poole and A. Mackworth, Artificial Intelligence: Foundations of Computational Agents, Cambridge University Press,
Canada, 2010.

16. G. Fiol and M. Miró, Stock Market Analysis using Data Mining Techniques: a Practical Application, International Journal of
Artificial Intelligence vol. 6, num. S11 (2011), 129-143.

17. G. Fiol et al, Data Mining Techniques for Web Page Classification, Advances in Intelligent and Soft Computing vol. 89 (2011),
61-68.

