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Abstract. Production rules, also called 
antecedent-consequent rules, are a com- mon 
way to express the knowledge base (KB) for 
reactive agents. Only one of the KB’s rules 
can be triggered at any specific moment in 
a reactive KB. This means that an order for 
evaluating the rules must be stablished. A 
top-down order is typically considered, where 
rules at the top of the KB have a higher priority.
Let n the number of attributes of the domain 
of a KB and m the amount of rules of KB. The 
KB’s computational efficiency to determine 
the action to be performed is O(n´m) time 
units (where O(k) refers to the asymptotic 
big O nota- tion, widely used to express the 
computational cost of algorithms). However, 
other ways that are more efficient to describe 
actions in terms of attribute-value pairs can 
be considered. In this way, decision trees 
constitute a simpler alternative decision 
structure, whose computational efficiency 
is O(n). A decision tree fits a KB if it strictly 
respect the description of the actions in terms 
of the attributes just like the rules of the KB 
do.
This paper describes a method to discover 
qualitative knowledge from a KB by generating 
a fitting and optimal decision tree from it. 
Whereas the considera- tion of the fitting factor 
for a decision tree depends exclusively on the 
KB from which it is induced, the optimality 
factor depends on the nature of the problem in 
hand. Thus, the resulting tree strictly respects 
all the properties and priorities of the KB’s 
rules as well as the optimality criterion.
Keywords: Knowledge Acquisition, 
Qualitative Knowledge, Data Mining, Rule 
Based Knowledge Bases, Decision Trees, 
Inductive Learning.

INTRODUCTION
Data mining seeks to take advantage 

of huge amounts of data, known as input 
data or examples, in order to acquire useful 
knowledge (i.e. qualitative knowledge) [5] 
about some concepts. Such input data are 
expressed extensively in terms of conjunctions 
of attribute-value pairs, so that each example 
is associated with a given concept or action. 
The set of all input data is known as data 
source. Knowledge acquisition is based on 
inductive processes applied to the data source. 
The results are expressed intensively, in terms 
of some abstract structure (for example, 
production rules, decision trees, graphs, 
statistical expressions, etc.) wich constitutes 
a qualitative descripcion of the conceps in 
terms of the attribute values.

There is a category of poorly studied 
problems whose aim is to improve the quality 
and efficiency of data sources expressed in an 
intensive format (for example, produc- tion 
rules, graphs, etc). A rigorous improvement 
in the quality and efficiency of an intensive 
knowledge base requires an ingenious and 
complex process, since there are several 
determining factors affecting the process. The 
three main issues are mentioned below.

The first issue is to consider what specific 
portions of knowledge covered by the original 
data source have been omitted or simply 
are not part of the problem domain (it is a 
common practice in rule-based systems that 
a rule covers specific portions of knowledge 
that are not part of the problem domain). 
Since it is impossible to determine a solution 
for this problem, then the only possibility is to 
assume that any improvement of the original 
data source must strictly respect its data cover.

The second issue is to determine how 
to treat the individual specific portions of 
knowledge coming from different covers. 
For example, how to treat specific portions of 
knowledge covered by two or more different 
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conflicting rules. The results of this stage are 
made up of a source of specific portions of 
knowledge (i.e. maximally specific data).

The third issue is to determine the criteria 
that should govern the improvement of 
efficiency and quality of the final results. 
They will be applied, by way of inductive 
procedures, to the specific data source 
obtained in the previous issue. Regarding 
the efficiency improvement, one must decide 
what kind of structure will be used (i.e. 
whether a structure of the same type as the 
initial (abstract) data source, or another type 
of structure considered more efficient). As for 
the quality of the final results, it is im- portant 
to remark that it depends exclusively on the 
nature of the problem in hand.

This paper is focussed on this category 
of problems, particularly in those where the 
initial data source is expressed in terms of a 
rule-based knowledge base. The problem in 
hand is stated as follows: given a data source 
expressed as a rule base (KB hence- forth) for 
a reactive agent, generate an optimal decision 
tree that fits strictly with the KB, that is, that 
strictly respect the description of the actions 
in terms of the attributes just like the rules of 
the KB do. The optimal factor depends on the 
nature of the problem in hand.

RELATED WORKS
Only a few works to do with building 

decision trees from a set of production rules 
can be found in literature. However, all of them 
are designed to deal with declarative rule bases 
(i.e. rule bases with absence of constraints 
about the order of evaluating the rules) 
without conflicting rules. In contrast to this 
apprach, the method proposed in this paper is 
capable of dealing with both, declarative and 
procedural rule bases with con- flicting rules. 
Declarative rule bases are much simpler than 
procedural ones, since they are just focused 
the on structural description of the conceps/

actions in terms of attribute- value pairs. 
Thus, a declarative rule base is much easier to 
modify and adapt to different situations than 
a procedural one.

In the following, a summary of the few 
published methods on creating decision trees 
from a declarative rule base is presented.

The AQDT-1 system [6] is the first published 
work found in literature. Taking a declarative 
rule base as data source, the method build a 
decision tree just from the rules.

Decision rules used in this method are 
learned by the AQ15 [2] or AQ17 [3] inductive 
learning programs. The main issue of the 
method is creating the minimum cost decision 
tree (i.e., a tree that minimizes the overall cost 
of making classification decisions). Thus, the 
method is guided by some attribute selection 
criteria in order to determine the attribute 
to be placed at each node of the tree. The 
method favor the attributes with the best cost. 
For example, attributes appearing in the rules 
describing the most frequent concepts (i.e. 
equivalence classes). Three criteria based on 
the rule properties are used to measure and 
choose the attributes: disjointness, dominance 
and extent.

The AQDT-2 system [8] constitutes a later 
version of AQDT-1. It generates a deci- sion 
tree from decision rules, which have also been 
learned by either rule learning sys- tems, AQ15 
or system AQ17. AQDT-2 includes some 
new features, some of them are: a method 
to make use of new attributes; a method for 
controlling the degree of gener- alization; two 
new attribute selection criteria; a new method 
for combining different attribute selection 
criteria and the ability to generate unknown 
nodes in situations when there is insufficient 
information for generating a complete 
decision structure.

The RBDT-1 method [14] generates a 
decision tree from a declarative rule base by 
using three different criteria to determine the 
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best fitting attribute for each node of the tree. 
These criteria are the attribute effectiveness 
(AE), the attribute autonomy (AA), and the 
minimum value distribution (MVD).

MOTIVATION
The above methods were designed to 

generate decision trees from declarative rule 
bases without conflicting rules. They have 
been conceived to be simple, allowing a fast 
(on- demand) generation of adequate decision 
trees.

Some important limitations of all the 
previous methods are: 1) They don’t strictly 
respect the description of the actions in terms 
of the attributes just like the rules of the KB do. 
This issue reveals the ability of the generated 
decision trees to cover unknown or missing 
input data that are not covered by the decision 
rules. Under this situation, these methods 
work correctly only for a certain (small) 
number of simple problems, in particular, for 
the so called problems with a closed domain. 
That is, problems whose domains include 
all the possible input data (i.e. no missing 
or unknown input data are possible). 2) 
These methods are only designed to process 
declarative rules bases; there- fore, they do 
not allow inducing decision trees from rules 
bases with conflicting rules.

3) The methods cannot be applied to 
improve the quality of the initial knowledge 
base, since they do not consider criteria that 
depend on the nature of the problem in hand.

Three issues strongly related to rule bases 
are: accuracy, cost and efficiency. Accu- racy 
refers to the possibility of the rule base to 
produce wrong decisions. As the rule base is 
supposed to be created by an external entity (a 
learning program or a human expert) then it 
is assumed to be guaranteed for any situation. 
The cost of a rule base concerns that issues 
demanded by the user (for example, a rule base 
with a minimum cost, where the cost refers to 

the sum of the explicit cost of the individual 
attributes used to describe the actions; a rule 
base with a minimum number of attributes; 
a rule base guaranteing the fastest decision 
making; etc.). Cost issues need to be improved 
sometimes, since the user sometimes does 
not know precisely what really is needed, 
or perhaps the initial cost requirements are 
no longer valid at the current moment. Effi- 
ciency has to do with the computational 
resources required to make use of the rule 
base and it can often be improved.

The motivation of this work lies in the 
improvement of the above issues. Therefore, 
given an initial rule base, a more efficient 
structure in decision tree format will be gen- 
erated. This tree is optimal according to some 
criteria that depend on the nature of the 
problem; In addition, it strictly respects the 
properties of the rule base.

ON RULE BASES
The most common way of expressing the 

knowledge base of a reactive agent [12] is 
through a set of production rules, also called 
antecedent-consequent rules. The anteced- 
ent of the rules is made up of conjunctions 
of attribute-value pairs, whereas the conse- 
quent consists of a single action (also called 
a concept), which can be triggered under the 
assumption of the truth of its antecedent.

A rule base is a set of rules. For example:
{ (A=x) ^ (B=1) → Ai, (C=3) ^ (B=0) → Aj, 

(A=x) → Ak, (A=y) ^ (B=0) → Aj }
The rule base includes four rules, three 

attributes, A, B, C and three actions, Ai, Aj and 
Ak. The domain of attribute A is {x, y}, that of 
B is {0, 1} and that of C is {3, Ø3}, where Ø3 
means any value other than 3.

When the antecedent of a rule is true, then 
the rule is said to be triggerable. In the case 
of rule bases for reactive agents, only one rule 
can be triggered. If the antecedent of all the 
rules is false. Then the agent must not trigger 
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any action, which is usually represented by 
the empty action, skip. Thus, the previous 
rule base can be extended with a new rule, as 
follows:

{(A=x) ^ (B=1) → Ai, (C=3) ^ (B=0) → Aj, 
(A=x) → Ak, (A=y) ^ (B=0) → Aj,

Ø[(A=x) ^ (B=1)] ^ Ø[(C=3) ^ (B=0)] ^ 
Ø[(A=x)] ̂  Ø[(A=y) ̂  (B=0)] → skip} In order 
to preserve the initial format of the rule base, 
the last rule (also called a skip rule) must first 
be turned into a disjunctive normal form 
(DNF format) expression. Then it is easy to 
write the resultant DNF expression as a set of 
skip rules whose antecedents

are made up of conjunctions of attribute-
value pairs.

Now, the question focuses on «which of 
the rules with a true antecedent should be 
triggered».

DOMAIN OF A RULE BASE
The domain of a rule base, also know as 

Object Attribute Table (OAT from now on), 
is the set of input data covered by the rules. 
It constitutes an extensional representation of 
knowledge. Formally, an OAT [4], [9] is a two-
dimensional structure whose rows represent 
input data or examples described in terms 
of the values of a set of attributes, so that 
each column, except the last one, refers to an 
attribute. The last column of a row represents 
the action (concept) associated with the 
corresponding example. The inter- section of 
a row and a column represents the value of 
an example for the corresponding attribute 
(action in the case of the last column).

The process of obtaining the domain of a 
KB is based only on the KB’s characteris- tics 
and not on the initial data domain from which 
the KB was induced. The basic ele- ments of 
the domain of a KB are: the set of attributes 
appearing in the rules, the domain of these 
attributes (i.e. values that take part of some 
rule) and the actions involved in the rules. 

Once these elements have been setted then the 
domain/OAT can be obtained by proceeding 
as follows:

First, the KB must be extended with all the 
skip rules. These rules cover the input data not 
covered by the rule base. Thus, the resultant 
rule base covers all of possible input data. This 
rule base is known as the complete knowledge 
base (CKB).

Next example will facilitate the discussion. 
Let us consider the following KB: 

r1: (A=x) → α
r2: (B=1) → β
The basic elements of the domain are: the 

attributes A and B, with domains, {x, Øx} for 
attribute A and {1, Ø1} for attribute B and the 
involved actions, α and β.

There is only one possible skip rule, which 
can be represented as: r3: (A¹ x) ^ (B¹ 1)→ skip

Thus, the CKB contains three rules: r1, r2 
and r3.

Second, the condition part of each rule 
of the CKB must be extended so that it con- 
tains all the attributes involved in the KB. The 
question that arises at this point is how to 
interpret the values of those attributes that do 
not take part in the conditions of the rules of 
the CKB.

For example, rule r1: (A=x) → α, only 
contains attribute A. How should the value 
of attribute B be interpreted for this rule? 
Obviously, attribute B is not necessary to 
decide the action to trigger. In other words, 
if the value of A is x, then it does not matter 
what the value of B is to decide that α must 
be the action to take. In these cases, the value 
of B will be represented by an asterisk, *, 
whose interpretation is « Any value of the do- 
main, DB, of attribute B». Thus, rule r1 can be 
rewritten as: (A=x) ^ (B=*) → α. This process 
is known as rule extending process.

The set of rules resulting of applying the 
two previous steps constitutes the domain of 
the rule base. Figure 1 illustrates the domain/
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OAT of the rule base of the example.
An OAT containing unespecified values 

(i.e. values represented by asterisk symbol) for 
some input data is known as an incompletely 
specified OAT [10], [11].

Fig. 1. OAT

INDUCING DECISION TREES 
FROM DECISION RULES
In order to facilitate the discussion, let us 

show first a simple example on how to create 
intuitively a decision tree that strictly respect 
the accuracy properties of a declarative rule 
base, that is, a rule base with absence of 
constraints (i.e. priorities) on the order of 
evaluating the rules.

INDUCTION FROM DECLARATIVE 
RULE BASES
Example. Consider the example of the rule 

base of section 4, without priorities estab- 
lished on the evaluation order of rules:

r1: (A=x) → α

r2: (B=1) → b
Three steps must be taken to induce a 

decision tree from the considered KB: First, 
extend the initial rule base by adding the skip 
rules (i.e. obtain the CKB). Second, obtain the 
OAT from the CKB. Figure 1 shows such an 
OAT.

Third, apply an inductive procedure to the 
OAT in order to acquire qualitative knowledge 
in order to create a decision tree.

It is very important to note that the 
inductive procedure of step 3 must be 
capable of inducing qualitative knowledge 
from incompletely specified examples (i.e. 
examples including the asterisk value for some 

attribute) and generating only decision trees 
that strictly respects the accuracy properties of 
the knowledge base. The only method found 
in literature that guarantees such properties is 
described in [10], [11].

Figure 2 shows all the possible decision trees 
that can be generated from the men- tioned 
inductive method. Any of both decision trees 
can be selected to replace the de- clarative rule 
base.

Note that decision trees are procedural 
structures that determine a well defined order 
on the attribute testing.

Now, we are in position to describe formally 
the accuracy constraints that a decision 
tree must satisfy to guarantee the accuracy 
properties of the rule base from which it was 
induced.

Fig. 2. Decision Trees

Definition 1. Let KB be a rule base, A is 
a decision tree whose attributes, attribute 
domains and actions correspond to the basic 
elements of the domain of KB, and KBA the 
rule base of tree A. Note that each branch 
of the tree constitutes a rule, whose ante- 
cedent is made up of the conjuction of the 
attribute-value pairs of the inner nodes in the 
branch, and the consequent term is the action 
represented by the leaf node. Tree A is said to 
strictly respect the accuracy properties of KB 
if, and only if, KB is a logical consequence of 
KBA, that is, KBA|=KB.

By applying definition 1 we can prove 
formally that both trees of figure 2 strictly 
respect the accuracy properties of the rule 
base. Let EKB(a), EKB(b) be the sets of input 
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data (i.e. states) covered by trees (a) and (b) 
respectively. Note that EKB(a)={(A=x, B=1, 
b), (A¹ x, B=1, b), (A=x, B¹1, α), (A¹ x, B¹1, 
skip)} and EKB(b)= {(A=x, B=1,

α), (A¹ x, B=1, b), (A=x, B¹1, α), (A¹ x, B¹1, 
skip)}. On the other hand, the set of input 
data, EKB, covered by KB, is: {(A=x, B=1, α), 
(A=x, B=1, b), (A¹ x, B=1, b), (A=x, B¹1, α), 
(A¹ x, B¹1, skip)}. As EKB(a), EKB(b) Í EKB, 
then KB(a) |= KB and KB(b) |= KB.

Any decision tree generated by the 
inductive procedure described in [10], [11] 
sat- isfies definition 1.

Continuing with the example, we have 
only considered the accuracy properties of 
the decision tree until now; however, nothing 
has been said about the cost constraints that 
decision trees must satisfy. It is the case, for 
example, of a user that demands a minimum 
cost classification of the concepts/actions, 
where the cost depend on the on an explicit 
cost defined for each individual attribute. 
Let us consider for example that the cost of 
attribute A is 3 units and the cost of B is 1 unit. 
Thus, the cost of tree (a) of figure 2 is 1 unit 
to classify/trigger the concept/action beta, 4 
units to classify alfa and 4 units for the skip 
action. The total cost of three (a) is 9 units. 
In case of tree (b), its total cost is 11 units. 
Therefore, tree (a) is the best of all the possible 
decision trees and so, it must be selected.

As the cost constraints of a decision tree 
depend on the nature of the problem (i.e. 
the user demands) then there exist a wide 
range of criteria based on cost requeriments. 
Designing an inductive system capable of 
covering all the possible cost constraints is 
not a conceivable task. However, designing 
a parametrized system, that is, a system that 
implements some general cost constraints 
from which other more particular con- 
straints can be derived, is a feasible task. This 
is the case of the UIB-IK system [9], which 
has been applied to a wide range of practical 

problems coming from different domains. 
Next are some related applications. In [7] 
a medical application is presented. Paper 
[16] describes an application in the field of 
finance and business. Work [13] pre- sents a 
practical study in the field of home assistance 
for disabled people. [17] is a contribution in 
the domain of web page classification. Papers 
[10], [11] describe an extension of the UIB-IK 
system [9] to deal with incompletely specified 
OATs.

INDUCTION FROM PROCEDURAL 
RULE BASES
When constraints about the order of 

evaluating the rules are stablished, the 
resulting decision tree must respect them. 
Consider the KB of the previous example with 
a top- down priority (i.e. rules are evaluated 
from the top to the bottom). Tree (a) of figure 
2 is not correct, since rule r1 of the KB should 
always have higher priority on the rest of rules. 
However, tree (b) is correct since it respects 
the priority order of KB.

The priorities may cause that a state (i.e. 
an input data) is covered by several rules 
with different actions associated to their 
consequents. Such states are known as con- 
flicting states and rules covering conflicting 
states are called conflicting rules. There- fore, 
the problem is to determine the order which 
the rules covering conflicting states must be 
evaluated in. This work considers the most 
common order of evaluation of the rules, 
known as the top-down order.

The problem is now stated as follows: 
given a KB with a top-down evaluation order 
stablished, create a decision tree that strictly 
respect the accuracy properties of the KB 
(i.e. definition 1) and the cost constraints. 
Next example will facilitates the discussion. 
Example. Consider the following set of four 
rules, r1, r2, r3 and r4 covering all the pos- 
sible states (i.e. there is no need for adding 
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any skip rule), whose attributes, A and B, are 
binary and a top-down evaluation order of 
priorities is considered:

{ r1: (A=0) → α; r2: (A=1) ^ (B=0) → α; r3: 
(B=1) → b; r4: (B=0) → b }

The conflicting states are: (A=0) ^ (B=0), 
(A=0) ^ (B=1) y (A=1) ^ (B=0). The actions 
associated with each of these states are α and b. 
However, the system of prior- ities establishes 
that these states have only the α action 
associated. There is only one non-conflicting 
state, (A=1) ^ (B=1), whose associated action 
is b.

The above can easily be seen through a 
Karnaugh map, as illustrated in figure 3.

Fig. 3. Karnaugh map

Cells of the Karnaught map have been 
filled with the actions associated to each state 
covered by the rules.

A cell containing more than one different 
action represents a conflicting state. Actions in 
the cells are listed in left-right order, according 
to their decreasing order of priorities. Thus, 
the first action of the list (i.e. the left action) 
has a hightest priority (i.e. is a first order 
action), the second action is a second order 
action, and so on If two or more

actions have the same priority, then the 
relative order among them is not relevant.

From figure 3, we have that state (A=0) 
^ (B=1) is covered by rules r1 and r3. This 
state has associated the actions α and b. 
Since r1 has higher priority than r3, then the 
corresponding actions have been sequenced 
by first placing α and then b in the figure. The 
same happens with states (A=0) ^ (B=0) and 
(A=1) ^ (B=0), which are covered by rules (r1, 
r4) and (r2, r4) respectively.

HOW TO SOLVE CONFLICTS 
AMONG RULES?
Conflicts among rules can be removed by 

associating each state with one single ac- tion, 
the highest priority action. Figure 4 shows the 
results for the previous example.

Once all the conflicts have been removed, 
then the resulting rule base can be interpreted 
as a declarative rule base. The OAT obtained 
from the rule base of figure 4 is illustrated in 
figure 5.

Fig. 4. Priority actions associated with each 
state

Fig. 5. OAT of the rule base of figure 4

Now, we can create, from the OAT, a 
decision tree that strictly respects the accuracy 
properties and the priorities of the KB, by 
applying the mentioned inductive procedures 
described in [10], [11]. Figure 6 shows two of 
such decision trees.

Fig. 6. Decision trees resulting from applying 
the inductive process

Decision trees in Figure 6 are functionally 
equivalent to the rule base (i.e. they describe 
actions with strict accuracy, just as the rule 
base does) which they were induced from. 
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Any of such trees can be used as a decision 
structure to replace the rule base. Note that 
in this example we have not considered issues 
related to the cost of the attributes.

FORMAL CONSIDERATIONS ABOUT 
DECISION TREES FUNCTIONALLY 
EQUIVALENT TO A KB
The following definitions specify the 

formal properties of a decision tree function- 
ally equivalent to a KB.

Definition 2. Intersection between two 
rules. Let ri: ci → Ai y rk: ck → Ak, be two rules. 
If ci ^ ck ≠ F, being F the symbol representing 
the proposition False, then rules ri and rk 
are said to intersect. Such rules are known as 
intersection rules. Note that two rules intersect 
if they cover common states. Two rules can 
be intersection rules but not necessarily 
conflicting rules.

Definition 3. Highest priority rules. Let 
KB be a rule base and ri: ci → Ai a rule whose 
antecedent (ci) and consequent action (Ai) 
belongs to the attribute and action domains, 
respectively, of KB. Moreover, rule ri don’t 
necessarily belong to the rule base KB (i.e. ri 
is not necessarily one of the rules of KB). Let 
KBri be the set of rules of KB intersecting with 
ri. Rule ri is said to be a highest priority rule, if 
the consequent action of ri matchs with that of 
the higest priority rule of KBri.

Definition 4. Decision tree functionally 
equivalent to a rule base KB. Let KB be a rule 
base, A a decision tree, and KBA the rule base 
of tree A. Tree A is said to be functionally 
equivalent to rule base KB if, and only if, KB 
is a logical consequence of KBA, that is, KBA |= 
KB, and any rule of KBA is a highest priority 
rule.

GENERATING A DECISION TREE 
FUNCTIONALLY EQUIVALENT TO A 
KB
The general procedure to turn a KB (with 

or without priorities) into a functionally 
equivalent decision tree is as follows.

Step 1. Complete the KB with all possible 
skip rules.

Step 2. Remove all the conflicts among 
the rules of the KB through determining 
all the conflicting states and assigning the 
corresponding relevant action to each of 
them (i.e. the highest priority action).

Once this step is performed, no state will 
have more than one action associated. Con- 
sequently, the resultant rule base is really a 
declarative rule base. Now, we are ready to 
build the OAT.

Step 3. Build the OAT from the KB 
resulting from step 2.

Step 4. Apply the corresponding inductive 
procedure to the OAT of step 3. Next 
example will clarify the above four steps.

Example. Generate a decision tree for the 
following binary rule base with top-down 
priorities:

{r1: (A=1) ^ (B=1) → α, r2: (A=1) ^ (C=0)→ 
b, r3: (B=0) ^ (C=1) → α}.

Step 1. Complete the KB with all possible 
skip rules.

In order to facilitate the discussion, we will 
make use of the Karnaught map of figure 7, 
which illustrates all the possible states of the 
KB.

Fig. 7. Karnaugh map of the KB

Two simplified skip rules, r4, r5, can be 
derived from figure 7. Obviously, also three 
simpler skip rules could be derived. It does 
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not matter which of these sets you choose 
since it will not affect the final results.

r4: (A=0) ^ (C=0) → skip

r5: (A=0) ^ (B=1) → skip
Step 1 is now completed. The new KB 

contains five rules.
Step 2. Remove conflicts. Determine the 

states involved in each conflict among rules 
and assign the highest priority action to each 
of them.

Fig. 8. Resulting states free of conflict

It can be seen from figure 7 that there is 
only one conflicting state: (A=1) ^ (B=1) ^ 
(C=0). According to the priorities of the KB, 
action α must be assigned to this state. The 
resulting assignment of actions to individual 
states is illustrated in figure 8.

Once conflicts have been removed, then it 
is easy to obtain the corresponding KB with- 
out conflicts. As in step 1, more than one set 
of rules may possibly be generated. It does not 
matter which of these sets is choosen. We will 
choose the next set of rules:

{r1: (A=1) ^ (B=1) → α, r2: (B=0) ^ (C=1) → 
α, r3: (A=1) ^ (B=0) ^ (C=0) → b, r4: (A=0) ^ 
(C=0) → skip, r5: (A=0) ^ (B=1) → skip}

Step 3. Building the OAT from the KB 
resulting from step 2. Figure 9 illustrates the 
resultint OAT.

Fig. 9. Conflict-free OAT

Step 4. Apply the corresponding inductive 
procedure to the OAT of step 3. As indicated 
in section 5.1, the inductive procedure 
considered is that described in [10], [11]. Re- 
garding the cost of the decision tree, we will 
consider, as an example, a decision tree with 
a minimum number of attributes (i.e. with a 
minimum number of inner nodes). This tree 
can be created by considering a same explicit 
cost for all the attributes, for example the unit 
cost. Figure 10 shows such a tree with four 
nodes.

Fig. 10. Decision tree with a minimum 
number of nodes

CONCLUSIONS
Decision trees constitute a simple and 

highly efficient procedural decision structure. 
A formal four-stage method to turn declarative 
and procedural rule bases into a decision tree 
has been presented. The method is simple and 
provides some relevant advantages in relation 
to the methods found in literature. Among 
these benefits we stand out the following:

• It allows turning both, declarative and 
procedural rule bases into a decision tree.

• There is no need to distinguish 
between the declarative or procedural 
character of rule bases when applying the 
method.
• It strictly preserves the accuracy 
properties of the rule base.
• It strictly respects the priorities of 
evaluating the rules.

• It allows to consider the nature of the 
problem in hand (i.e. take into account 
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the cost restrictions on the tree demanded 
by the user).

Other important properties of the method 
are:

• It just depends on the properties of the 
rules and not on the set of training data 
from which the rules were induced.

• Its computational efficiency to generate 
a decision tree depends mostly on the cost 
criterion used. If no cost constraints are 
considered, then the method’s efficiency 
is significantly reduced and it could be 
used to create on-demand (i.e. online) a 
decision tree.

It makes no sense to compare the proposed 
method with any of the methods found in 
literature, since these are designed only to 
deal with declarative rules bases; in addition, 

decision trees generated by these methods 
do not strictly respects the properties of the 
original rule base.

We have tested the described method by 
developing some examples of significant size. 
The main results are: all generated decision 
trees strictly respect the properties of the 
original rule-based knowledge bases; decision 
trees are also optimal regarding the cost 
criteria demanded by the user; in addition, 
the application of inductive procedures based 
on binarization techniques of multivalued 
attributes has allowed decision trees whose 
descriptive accuracy far exceeds that of the 
original rule base. Such results have not been 
described due to the extension of this work. 
Anyway, some of them will be in- cluded in 
the presentation.

REFERENCES
1. E. Horowitz and S. Sahni, Fundamentals of Computer Algorithms, Computer Science Press, USA, 1978.

2. R. S. Michalski et al, The Multi-Purpose Incremental Learning System AQ15 and its Testing Application to Three Medical 
Domains, Proceedings of AAAI-86 (1986), 1041-1045.

3. E. Bloedorn and R. S. Michalski, Data Driven Constructive Induction in AQ17-PRE: A Method and Experiments, Proceedings 
of the Third International Conference on Tools for AI (1991), 9-14.

4. G. Fiol et al, A New Perspective in the Inductive Acquisition of Knowledge from Examples,

Lecture Notes in Computer Science 682 (1993), 219–228.

5. G. Fiol, On Qualitative Knowledge in a Rule Based Knowledge Base, Proceedings of the IJCAI-93 workshop on Validation, 
Verification and Test of KBSs (1993), 27-36.

6. I.F. Iman and R.S. Michalski, Learning Decision Trees from Decision Rules: A Method and Initial Results from a Comparative 
Study, Journal of Intelligent Information Systems, 2 (1993), 279–304.

7. G. Fiol et al, Computer-Aided Causal Diagnosis of Ascites. Analysis of a Prototipe, Infor- mation, Intelligence and Systems vol. 
2, (1996), 1102-1107.

8. R.S. Michalski and I.F. Iman, Learning problem-oriented Decision Structures from Decision Rules: the AQDT-2 System, 
Lecture Notes in Artificial Intelligence 869 (1994), 416-426.

9. G. Fiol, UIB-IK: A Computer System for Decision Trees Induction, Lecture Notes in Artifi- cial Intelligence 1609 (1999), 601-
611.

10. G. Fiol, Inductive Learning from Incompletely Specified Examples, Frontiers in Artificial Intelligence and Applications 100 
(2003), 286–295.

11. G. Fiol, Learning from Incompletely Specified Object Attribute Tables with Continuous At- tributes, Frontiers in Artificial 
Intelligence and Applications 113 (2004), 145–152.



12
Journal of Engineering Research ISSN 2764-1317 DOI 10.22533/at.ed.3173362325109

12. S. Russell and P. Norvik, Inteligencia Artificial. Un enfoque moderno, 2ª Edición, Pearson Educación S.A., España, 2004.

13. G. Fiol et al, The Intelligent Butler: A Virtual Agent for Disabled and Elderly People Assis- tance, Advances in Soft Computing 
vol. 50/2009 (2008), 375-384.

14. A. Abdelhalim and I. Traore, A New Method for Learning Decision Trees from Rules, Pro- ceedings of the Eighth International 
Conference on Machine Learning and Applications (2009), 693-698.

15. D. Poole and A. Mackworth, Artificial Intelligence: Foundations of Computational Agents, Cambridge University Press, 
Canada, 2010.

16. G. Fiol and M. Miró, Stock Market Analysis using Data Mining Techniques: a Practical Application, International Journal of 
Artificial Intelligence vol. 6, num. S11 (2011), 129-143.

17. G. Fiol et al, Data Mining Techniques for Web Page Classification, Advances in Intelligent and Soft Computing vol. 89 (2011), 
61-68.


