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Abstract: A data science platform in a smart 
chemical plant enables simultaneity of multiple 
applications. However, in each application 
there is a wide variety of algorithms that can 
be implemented. Therefore, the objective of 
this work is to evaluate the performance of 
the algorithms to be implemented in a data 
science platform for applications related to 
fault classification, fault detection and virtual 
sensor in the Tennessee Eastman (TE) process. 
To achieve this, a synthetic data set obtained 
by simulating the TE process was built, where 
each algorithm was trained, optimized and 
evaluated according to the type of data science 
task associated with each application. The 
results show that the artificial neural network 
only achieved the best performance in fault 
classification. In the virtual sensor, gradient 
boosting (GB) and k-nearest neighbor (k-NN) 
achieved the best performance. Meanwhile, 
in fault detection, most of the evaluated 
algorithms achieved a fault detection rate 
around 88%. In conclusion, algorithms based 
on artificial neural networks did not achieve 
the best performance in all implemented 
applications, being surpassed by other non-
linear algorithms.
Keywords: predicción, clasificación, 
detección, industria 4.0, smart chemical plant.

INTRODUCTION
Currently, new data sources (e.g. social 

networks, streaming platforms, e-commerce, 
etc.) and new measurement devices 
(wearables, internet of things devices, etc.) 
are generating and storing a large amount 
and diversity of data every second. These 
data are fundamental in various sectors, 
because the analysis of this data contributes 
to competitiveness, productive growth and 
innovation (Manyika et al., 2011, as cited in 
Qin, 2014). However, the analysis of these 
new data requires the use of new tools and 
large computational resources (Rajaraman, 

2016). In this sense, data science emerges as 
a new discipline that allows knowledge and 
information to be discovered from these 
massive data (Beck et al., 2016; L. Chiang et 
al., 2017; National Academies of Sciences 
Engineering and Medicine, 2018; Qin, 2014).

Similarly, the implementation of industry 
4.0 (I4.0) and smart manufacturing (SM) 
allows the generation and storage of a large 
amount of data from different locations of 
the process plant (Dorneanu et al., 2022 ). 
Therefore, data science algorithms exploit the 
information contained in this process data for 
decision making.

The involvement of data science algorithms 
in decision making makes the chemical 
process industry “smart”; and a smart chemical 
plant is characterized by being faster, more 
flexible and more efficient to produce high-
quality services at low cost (Lin et al., 2017). 
For example, Kim (2017) reported that a 
smart chemical plant improved 0.5 to 2 times 
compared to the existing plant. However, data 
science tools must be considered within the 
design plan of new smart chemical processes 
(L. Chiang et al., 2022)

In the architecture of a smart chemical 
plant, the data science platform is designed 
to enable efficient data analysis, exponential 
growth of connected devices (scalability), 
and concurrency of multiple data science 
applications (Voigt et al, 2021). This platform 
includes a series of technologies that allow the 
collection, storage, management, processing 
and modeling of data (Kabugo et al., 2020; Lee 
et al., 2017). But, in general, the data science 
platform must have the following three 
fundamental elements for its implementation: 
process data, algorithms and infrastructure.

Figure 1 shows each of these elements 
present in a data science platform. Within 
these three elements, data science algorithms 
play a fundamental role, since they are 
responsible for extracting knowledge from 
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process data, and then using that knowledge 
for decision making. Data science algorithms 
come from the field of machine and statistical 
learning (Beck et al., 2016); and these can be 
divided according to the type of learning into 
supervised and unsupervised. Supervised 
learning algorithms seek to predict an output 
variable from a set of input variables, and 
are generally associated with the tasks of 
regression (prediction of a numerical value) or 
classification (prediction of classes). Whereas, 
unsupervised algorithms work with unlabeled 
data to learn or explore the hidden structure 
of the data, therefore, these algorithms are 
used for data clustering, anomaly detection, 
and dimensional reduction.

The problem with data science algorithms 
is that there is a wide variety of algorithms that 
can be used for each application. Furthermore, 
the No Free Lunch theorem states that, if there 
is no assumption about the data obtained 
from the process, there is no reason to prefer 
a specific algorithm (Géron, 2020, p. 63). So a 
good strategy is to evaluate all the algorithms 
and select the best performing one for each 
application. The data analytics platform 
proposed by Kabugo et al. (2020) evaluated 
and compared some regression algorithms 
in two applications related to a virtual sensor 
in a waste-to-energy plant. However, the 
evaluation of data science algorithms in the 
context of the multiple applications of a data 
science platform in a smart chemical plant is a 
still underexplored area.

One of the applications of data science in 
the smart chemical industry is fault detection. 
Fault detection consists of determining 
whether the system is in normal operating 
conditions or not (Sun et al., 2020). Then, the 
detection algorithms are trained with data 
under normal operating conditions, thus 
finding a function that differentiates the new 
observations between normal operation or 
failure (Quiñones-Grueiro et al., 2020, p. 5). 

Some algorithms traditionally used in fault 
detection are principal component analysis 
(PCA), independent component analysis 
(ICA) and partial least squares (PLS) (Ge 
et al., 2013; Park et al., 2020 ; Qin, 2012; 
Quiñones-Grueiro et al., 2020, p. 70 - 74; Yin 
et al., 2014). However, these techniques have 
been adapted to the nonlinear and complex 
nature of chemical processes, thus creating 
new nonlinear fault detection algorithms, 
such as Kernel PCA (Fazai et al., 2016; Samuel 
& Cao, 2016 ; Y. Zhang, 2009) or automatic 
autoencoder type neural network (Loy-
Benitez et al., 2020; Lv et al., 2016; Neubürger 
et al., 2021; Qiu & Dai, 2019; Yan et al., 2016; 
C. Zhang et al., 2021; Z. Zhang et al., 2018).

Failure classification is another application 
of data science in the smart chemical 
industry. Failure classification occurs after 
the failure has been detected, and consists 
of identifying the variable or part of the 
process that is failing (Quiñones-Grueiro et 
al., 2020, p. 5). In general, fault classification 
can be considered as a pattern classification 
problem, and some algorithms used in fault 
classification highlight the Bayesian classifier 
(Quiñones-Grueiro et al., 2021), the random 
forest (RF) (Chai & Zhao, 2020; Liu & Ge, 
2018; Quiñones-Grueiro et al., 2021), the 
support vector machine (SVM) (Jing & Hou, 
2015; Quiñones-Grueiro et al., 2021; F. Wu 
et al., 2021; al., 2014) and artificial neural 
networks (ANN) (Ayubi Rad & Yazdanpanah, 
2015; Heo & Lee, 2018; Quiñones-Grueiro 
et al., 2021). Pero, Heo and Lee (2018) 
highlight that neural networks Deep learning 
methods have shown better performance in 
fault classification than other data-driven 
methods. Then, deep learning architectures 
have been used in the classification of failures 
in industrial processes, highlighting the 
convolutional neural network (CNN) (H. Wu 
& Zhao, 2018), the deep belief network (DBN) 
(Z. Zhang & Zhao, 2017) and LSTM-type 
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recurrent neural networks (Lei et al., 2019; 
Lomov et al., 2021; Omar et al., 2020; Zhao et 
al., 2018).

The virtual sensor is another commonly 
used application within smart chemical 
processes. Several authors (Kadlec et al., 2009; 
Souza et al., 2016) define the virtual sensor as 
an inferential model that predicts a variable 
that is difficult or expensive to measure (e.g. 
quality of a product or KPI) through other 
variables continuously. measurements in the 
industrial process (e.g. temperature, pressure, 
flow, etc.). If the variable to be predicted 
corresponds to a numerical value, the virtual 
sensor is related to the regression task. Among 
the simplest regression algorithms to use in the 
virtual sensor, multivariate linear regression, 
principal component regression (PCR) (Ge, 
2018), partial least squares regression (PLS), 
and Gaussian process regression stand out. 
(GPR) (Wang et al., 2016) and the support 
vector machine for regression (SVR) (Meng 
et al., 2019; Zhongda et al., 2016). However, 
if the phenomenon modeled by the virtual 
sensor has a non-linear nature, the most 
appropriate would be to use non-linear 
regression algorithms, such as artificial 
neural networks (Wang et al., 2016), extreme 
learning machines (ELM ) (He et al., 2015, 
2016), k-nearest neighbors (k-NN) regression 
and deep belief network (Shang et al., 2014). 
Meanwhile, if the dynamics of the process 
affects the regression models, it is necessary to 
insert the past values into the output variable 
and the input variables. Some regression 
models with dynamic considerations are 
the NARMAX model (Acuña et al., 2014) 
or dynamic PLS (Shang et al., 2015). But, 
in the field of deep learning there are also 
architectures that can model the temporal 
dynamic behaviors of sequential data, these 
architectures are recurrent neural networks 
(RNN) and their extensions (LSTM and GRU) 
(Kwon et al., 2021; Yuan et al. al, 2020).

In summary, there are a wide variety of 
algorithms used in fault classification, fault 
detection, and virtual sensing, but there are 
still certain algorithms that have little or no use 
cases in these applications. So, the objective 
of this work is to evaluate the performance 
of supervised and unsupervised learning 
algorithms, to be implemented in a data 
science platform for applications related to 
fault classification, fault detection and virtual 
sensor in the Tennessee process. Eastman 
(TE). To this end, the hypothesis stated states 
that algorithms based on artificial neural 
networks will have better performance in all 
applications implemented in the TE process. 
The results obtained by this work contribute to 
the knowledge of the performance of different 
algorithms in the multiple applications 
(multiclass fault classification, fault detection 
and virtual sensor) that can be implemented 
in a data science platform in a smart chemical 
plant.

Therefore, the article is organized into the 
following sections: the methodology section 
presents the data acquisition, preprocessing 
and modeling steps carried out in the three 
applications; In the results and discussions 
section, the performance of the different 
data science algorithms in each application is 
evaluated; and in the conclusions section the 
proposed hypothesis is verified and the most 
appropriate algorithms to implement in each 
application are proposed.

METHODOLOGY

TENNESSEE EASTMAN PROCESS
The data science platform for applications 

in chemical processes was implemented in 
the Tennessee Eastman (TE) process. The TE 
process was described by Downs and Vogel 
(1993); and is composed of five process units: 
reactor, condenser, liquid-vapor separator, 
stripper column and compressor. Figure 2 
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presents the flow chart of the TE process.
The TE process is characterized by its 

high complexity, because it has the following 
characteristics:

(a) High dimensionality: in total the TE 
process has 12 manipulated variables 
(XMV) and 41 measured variables 
(XMEAS, 22 continuous variables and 
19 sampled type current compositions 
variables). But, in the last revision of the 
TE process, 32 new measured variables 
were added (eight continuous variables 
and 24 composition variables) (Bathelt et 
al., 2015).

(b) Multimode process: The TE process 
has six modes of operation at three 
different mass ratios of G and H in the 
product stream.

(c) Multiple failures: Table 1 details the 
20 disturbances that affect different 
variables of the TE process.

TENNESSEE EASTMAN PROCESS 
DATABASE CONSTRUCTION
To implement fault detection, fault 

classification, and virtual sensor applications 
in the TE process, process data is required. 
These data were obtained through a 
dynamic simulation of the TE process. For 
this, Simulink models were used with the 
decentralized control strategy proposed by 
Ricker (1996). These models are stored in 
the repository Tennessee Eastman Challenge 
Archive (Ricker, 2015).

The Simulink models were implemented 
with a code programmed in MATLAB of the 
TE process developed by Braun and Rivera 
(1999). In addition, the MATLAB code was 
adapted to add the 32 new measured variables 
(XMEAS) from the article by Bathelt et al. 
(2015). Consequently, the MATLAB code of 
the TE process with the decentralized control 
strategy allows the extraction of a total of 85 

variables (12 manipulated variables and 73 
measured variables).

The dynamic simulation of the TE process 
consisted of a total of 40 runs, one in normal 
operation and 19 with disturbance activated 
(IDV6 disturbance is excluded from Table 1) 
for operation modes 1 and 3. Each simulation 
run had a duration of five days (120 h), with 
a process data storage rate of 0.01 h (36 s). In 
the case of simulation runs with perturbation 
enabled, the perturbation was introduced 
after the first 8 h of simulation.

TENNESSEE EASTMAN PROCESS 
DATABASE PREPROCESSING
Table 2 shows that the TE process database 

is composed of 480,040 rows and 88 columns. 
The variables (columns) contain numerical 
and categorical data. The columns with 
numerical variables are related to the measured 
(XMEAS) and manipulated (XMV) variables 
of the TE process. While, the categorical 
variables identify the mode of operation (1 or 
3) and type of disturbance that affects the TE 
process. Furthermore, Table 2 shows that the 
TE process database does not contain missing 
values, so treatment of missing values was not 
required in the preprocessing stage.

Data science applications were 
implemented for each mode of operation of 
the TE process. Then, the original database 
was divided by each mode of operation. Each 
data set was then manipulated according to 
each data science application.

In the case of failure classification, the 
manipulation of the database consisted 
of eliminating the columns related to the 
measured variables of composition of the 
TE process (XMEAS23 to XMEAS41 and 
from XMEAS50 to XMEAS73). This way, the 
resulting data set is made up of the manipulated 
variables (XMV) and continuous measures 
(XMEAS1 to XMEAS22 and from XMEAS42 
to XMEAS49) with the respective column 
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that indicates the type of disturbance present 
in the sample. The dimensions of the data set 
used in fault classification have 240,020 rows 
and 44 columns for each mode of operation.

In the case of the virtual sensor and fault 
detection, the manipulation of the data 
set began with the synchronization of the 
composition variables of the currents with 
the continuous measured variables. This 
synchronization allowed the generation rate 
of product G in the reactor to be calculated. 
Once calculated, the non-synchronized 
samples were removed and columns related 
to the measured composition variables were 
eliminated. The result of this manipulation 
allowed us to obtain a data set that has 4,780 
samples and 45 columns for each mode of 
operation.

In each database of the TE process, the 
samples whose sampling time was within the 
fifth day of operation (between 96 h to 120 h) 
were selected. This set will be used to evaluate 
the generalization capacity of results on data 
unknown to the models. While, in the rest of 
the data, the samples were selected between 8 
h and 96 h of operation, and then in this set 
the division was carried out in the training 
and test set using the following division 
reasons: (a) in the case For the classification 
of failures, the division ratio was set at 75% 
training and 25% testing; (b) in the case of 
the virtual sensor, the division ratio was set at 
80% training and 20% testing.

Finally, in each of the data sets (training, 
test and fifth day of operation) the detection 
and treatment of inconsistent data (negative 
values in certain measurements) was carried 
out. In addition, the Local Outlier Factor 
(LOF) was used to detect and remove outliers. 
The preprocessing stage culminated with 
feature selection in the test set by measuring 
the feature importance obtained by the Extra 
Tree ensemble algorithm. Table 3 indicates the 
selected input variables and target variable 

in the fault classification and virtual sensor 
applications. However, it must be noted that the 
fault detection considered all the manipulated 
variables and continuous measures indicated 
in Table 2, because an unsupervised algorithm 
approach is used for fault detection.

IMPLEMENTATION OF A DATA 
SCIENCE PLATFORM FOR 
APPLICATIONS IN THE TENNESSEE 
EASTMAN PROCESS
The algorithms were programmed in 

Python using the Scikit-Learn (machine 
learning algorithms) and Tensorflow (artificial 
neural networks and autoencoders) libraries. 
The execution of the algorithms was carried 
out in the Google Colab cloud computing 
environment.

Table 4 shows the supervised algorithms 
used in the fault classification (multiclass 
classification) and virtual sensor (regression) 
applications. Fault classification in the 
TE process is related to the multiclass 
classification problem with slightly balanced 
classes. Therefore, binary classification 
algorithms, such as logistic regression (RL) 
and support vector machine with radial basis 
kernel function (SVM-rbf), used the binary 
decomposition technique to overcome the 
multiple problem. classes. Meanwhile, the 
regression algorithms used in the virtual 
sensor did not require any adjustment, because 
only the numerical value of the G generation 
rate in the reactor is predicted based on the 
input variables described in Table 3.

The algorithms used in fault detection 
were Principal Component Analysis (PCA), 
Independent Component Analysis (ICA) 
and Kernel PCA (KPCA). In addition, fault 
detection techniques based on artificial neural 
networks such as simple autoencoder (AE), 
stacked autoencoder (SAE) and variational 
or probabilistic autoencoder (VAE) were 
used. Table 5 specifies the procedure used 
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by the algorithms to detect failures in the TE 
process, which uses the squared prediction 
error statistic.(squared prediction error, SPE) 
for fault detection.

The hyperparameters of the algorithms 
were optimized by the grid search method 
(GridSeachCV) in order to obtain the best 
possible result by the algorithm in each 
application. Meanwhile, the artificial neural 
networks and autoencoders were optimized 
through trial and error. Hyperparameter 
optimization seeks to obtain the best 
possible result from the algorithms in fault 
classification, fault detection and virtual 
sensor.

Finally, cross validation techniques with 
five iterations (5-Fold Cross Validation) 
were used in order to train the algorithm 
with different partitions of the training set. 
Then, the trained algorithms were evaluated 
on the test set, where the different metrics 
were calculated that allow measuring and 
comparing the performance of the different 
algorithms.

EVALUATION OF ALGORITHMS 
IN THE DEVELOPMENT OF A 
DATA SCIENCE PLATFORM FOR 
APPLICATIONS IN THE TENNESSEE 
EASTMAN PROCESS
To evaluate the performance of the 

algorithms in fault classification, the indicators 
of precision (PREC), sensitivity or detection 
rate (FDR), missed detection rate (MDR) 
and false alarm rate (FAR) were used for each 
fault of the TE process. Equations (1) to (4) 
allow each of these metrics to be calculated 
according to the values obtained in the 
confusion matrix represented in Table 6. Also, 
the general performance of the algorithms 
in classifying process failures was measured. 
TE through the accuracy metric (ACC, see 
equation (5)), weighted average precision and 
weighted average sensitivity.

To evaluate the fault detection, the fault 
detection rate (equation (2)) and the missed 
detection rate (equation (3)) were used. In 
this, true positives (TP) were considered as 
those samples that were correctly detected as 
a failure, while, if the sample was incorrectly 
detected as normal operation, it was counted 
as a false positive value (FN). Furthermore, 
it must be noted that, in the case of normal 
operation detection, the definition of true 
positives and false negatives are based on the 
number of samples under normal operation.

Finally, the virtual sensor application used 
the root mean square error metrics(mean 
square error, MSE) and mean absolute error 
(mean absolute error, MAE) to evaluate 
regression algorithms. Equations (6) and (7) 
allow these two indicators to be calculated.

Where ŷi represents the predicted value 
obtained by the algorithm in the virtual 
sensor,  yi represents the current value of the 
output and m is the sample number of the 
testing or evaluation set.

The metrics used to evaluate the 
classification of faults and virtual sensor in the 
TE process were extracted from the module 
metrics from the library scikit-learn. While, 
in the case of fault detection, a function was 
programmed that allows calculating the fault 
detection rate according to the value obtained 
from the SPElim.
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RESULTS AND DISCUSSIONS

EVALUATION OF ALGORITHMS 
FOR THE CLASSIFICATION OF 
MULTICLASS FAULTS IN THE 
TENNESSEE EASTMAN PROCESS
To evaluate the general performance of 

the algorithms in classifying faults in the TE 
process, the indicators of accuracy, average 
precision and average sensitivity were used.

Figure 3 shows that artificial neural 
network 1 (ANN 1) achieved the highest 
accuracy in fault classification in operation 
modes one and three. However, the random 
forest (RF) and support vector machine 
with radial basis function kernel (SVM-rbf) 
algorithms achieved similar accuracy to the 
neural network in the respective modes one 
and three of operation.

In the case of the average precision, Figure 
4 shows that the ANN neural network 1 
and the RF algorithm achieved the best 
average precision in mode one of operation. 
Meanwhile, the SVM-rbf algorithm achieved 
a higher average precision in mode three, 
surpassing the performance achieved by 
artificial neural networks in this mode of 
operation.

The average sensitivity or detection rate 
also reached a similar trend to the other two 
indicators. Therefore, Figure 5 shows that ANN 
algorithm 1 achieved the best performance 
on this evaluation metric in mode one of 
operation. However, the SVM-rbf algorithm 
matched the sensitivity achieved by the ANN 
algorithm 1 in mode three, consequently, both 
algorithms achieved the best performance 
in fault classification in mode three by the 
sensitivity metric.

Therefore, these results demonstrate that 
artificial neural networks did not achieve the 
best performance in fault classification. The 
good performance achieved by the RF and 
SVM-rbf algorithms is explained because 

it also has the ability to establish nonlinear 
decision boundaries in pattern classification. 
Therefore, if the nature of the TE process data 
has high nonlinearity (Quiñones-Grueiro et 
al., 2021), the nonlinear algorithms (ANN 
1, ANN 2, RF and SVM-rbf) are capable of 
adequately dividing the multiple faults of the 
TE process, thus achieving the best results in 
fault classification.

Other nonlinear algorithms, such as 
k-nearest neighbors (k-NN), decision 
tree (DT) and gradient boosting (GB), also 
achieved acceptable performance, given that 
in their three metrics they achieved a range of 
values between a 84% to 88%. On the contrary, 
classification algorithms that establish 
linear decision boundaries, such as logistic 
regression (RL) and linear discriminant 
analysis (LDA), achieved poor performance 
in classifying TE process failures, obtaining 
an accuracy, average precision and average 
sensitivity between 56% to 60%.

Figure 6 and Figure 7 allow evaluating the 
performance achieved by each algorithm in 
each disturbance of the TE process in both 
operating modes. The results show that the 
nonlinear classification algorithms managed 
to correctly classify most of the disturbances, 
because they obtained a high precision and 
detection rate (over 84%), with a low missed 
detection rate and false alarm rate. On the 
contrary, the linear algorithms only managed 
to correctly classify faults IDV1 to IDV7 
(step type disturbance), while the rest of the 
disturbances exhibited a greater tendency 
to misclassify certain samples, affecting the 
evaluation indicators.

Figure 6 and Figure 7 also show that 
all algorithms presented difficulties in 
classifying IDV15 and IDV16 failures. Several 
articles have also reported this problem 
in the classification of IDV15 and IDV16 
perturbations using different algorithms 
(Li et al., 2020; H. Wu & Zhao, 2018; Yin 
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et al., 2012; Z. Zhang & Zhao, 2017). This 
classification problem is explained because 
these perturbations are small and have little 
influence on the process (L. H. Chiang et al., 
2001, p. 137; Ge & Song, 2013, p. 19; F. Zhang 
& Ge, 2015; Y Zhang, 2009). Furthermore, 
Isermann (2006) points out that a failure must 
generate a large permanent deviation in the 
controlled and manipulated variables to be 
detected. Therefore, disturbances IDV15 and 
IDV16 were correctly controlled by the TE 
process control strategy, resulting in no large 
deviation from normal operation occurring.

Figure 8 shows the effect of removing 
perturbations IDV15 and IDV16 from the data 
set. The results demonstrate that all algorithms 
improved classification performance by 
removing these faults, increasing the three 
indicators between 4.8% to 16% in both 
modes of operation. However, Figure 8 shows 
that the non-linear classification algorithms 
presented better performance than the linear 
ones, reaching an accuracy greater than 95%. 
Therefore, nonlinear classification algorithms 
are able to cope with the complexity and 
nonlinearity of the TE process.

EVALUATION OF ALGORITHMS 
FOR FAULT DETECTION IN THE 
TENNESSEE EASTMAN PROCESS
Table 7 Table 6. highlights that most of 

the algorithms achieved good performance 
in detecting faults in the TE process, because 
the average detection rate was over 85%. 
Therefore, it was not possible to demonstrate 
the superiority of fault detection using 
algorithms based on artificial neural networks 
(AE, SAE and VAE). However, the stacked 
autoencoder (SAE) neural network and 
Kernel PCA (KPCA) achieved slightly better 
performance in fault detection in modes one 
and three of the TE process.

Figure 9 and Figure 10 break down the 
detection rate achieved by each algorithm 

in each disturbance in modes one and three 
of operation. The results show that there 
were easy-to-detect perturbations for all 
algorithms in both modes of operation; These 
disturbances were IDV1, IDV2, IDV3, IDV4, 
IDV5, IDV7, IDV8, IDV9, IDV10, IDV11, 
IDV12, IDV14 and IDV19. While, faults 
IDV15 and IDV16 were the most difficult to 
detect for all algorithms, experiencing the 
same problem as in fault classification.

Meanwhile, the group of perturbations 
composed of the lDV18 in mode one and the 
IDV13, IDV17 and IDV20 in mode three, it 
was obtained that the principal component 
analysis (PCA) and independent component 
analysis (ICA) achieved the highest rate. 
detection compared to the other algorithms. 
But, the PCA and ICA algorithms achieved 
low detection of the normal operation of the 
TE process. In contrast, the autoencoders 
(AE, SAE, and VAE) achieved better detection 
of normal operation. Indeed, the variational 
autoencoder (VAE) achieved a normal 
operation detection rate of 100% in both 
operation modes.

The results obtained by the PCA algorithm 
do not agree with the results achieved in other 
works, where the PCA algorithm obtained a low 
failure detection rate in the TE process (Yin et 
al., 2012). So, the good performance achieved 
by PCA can be explained by the nature of the 
data set used in this application. Therefore, it 
must be noted that the failure detection was 
carried out with a synchronized subsample of 
the TE process, and it is possible that, in this set 
with a smaller amount of sample, the variables 
have a lower linearity with a greater Gaussian 
behavior. Consequently, the characteristics of 
the synchronized sample were more similar to 
the PCA, and this allowed good fault detection 
with this algorithm.

The size of the subsample used in fault 
detection could also affect the fault detection 
achieved by the autoencoders. The reason is 
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because autoencoders, like any artificial neural 
network, perform best when a large amount 
of data is available. When a neural network 
is trained with few samples, it tends to overfit 
to the training data. To avoid overfitting, the 
autoencoders were implemented with the 
early training detection technique and with 
autoencoder configurations with a small 
number of neurons and hidden layers. But, the 
small number of neurons and hidden layers 
could limit the ability to differentiate normal 
operation from a failure state. Therefore, 
it is possible that the autoencoders have 
suffered from this problem and that explains 
the lower detection rate achieved in certain 
perturbations.

EVALUATION OF ALGORITHMS 
FOR THE VIRTUAL SENSOR IN THE 
TENNESSEE EASTMAN PROCESS
The results demonstrate that the neural 

network (ANN) was not the most effective 
in the application of the virtual sensor in the 
TE process. Table 8 shows that the Gradient 
Boosting (GB) algorithm was the one that 
obtained the lowest mean square error 
(MSE) in both operating modes, therefore, it 
obtains the best performance in this metric. 
Meanwhile, Table 9 shows that the k nearest 
neighbors (k-NN) algorithm obtained the 
best performance in the virtual sensor when 
the algorithms are evaluated by the mean 
absolute error (MAE) metric.

Thus, the poor results achieved by the 
artificial neural network on the virtual sensor 
contrast with the performance achieved in 
fault classification. In the virtual sensor, the 
neural network was also configured with a 
small number of neurons and hidden layers, 
added to the small number of samples used 
in training, the neural network could not 
adequately model the phenomenon of the 
generation rate of G in the reactor. In the case 
of fault classification, the two neural network 

models were trained with a large number 
of samples, which allowed the use of neural 
network configurations with a greater number 
of parameters, which better captured the fault 
classification of the TE process. So, this finding 
demonstrates the effect of data set size on the 
performance of artificial neural network in 
different applications. Therefore, in this TE 
process data set with few samples, the k-NN 
and GB algorithms presented a greater ability 
to model the G generation rate in the reactor.

EVALUATION OF THE 
GENERALIZABILITY OF RESULTS 
ON THE FIFTH DAY OF OPERATION 
OF THE TENNESSEE EASTMAN 
PROCESS
The fifth day of operation of the TE 

process was used to evaluate the ability of the 
algorithms in generalizing results in the three 
applications.

In the case of fault classification, Figure 11 
shows that the algorithms experienced a slight 
reduction in all three classification evaluation 
metrics. In the case of mode one of operation, 
the reduction in predictive ability was on 
average 2.57% in accuracy, 2.44% in precision, 
and 2.71% in sensitivity. While, mode three 
of operation experienced a reduction of 
2.49% in accuracy, 2.94% in precision and 
2.47% in sensitivity. Despite this, most of 
the classification algorithms managed to 
maintain a good generalization capacity of 
results against the new unknown data that 
corresponds to the fifth day of operation.

In the case of fault detection, Figure 12 
shows that the detection algorithms on 
average improved the fault detection rate 
compared to the results achieved in the test 
set. Furthermore, it is observed that the 
PCA and ICA algorithms not only presented 
the greatest improvement in this indicator, 
but also achieved the best performance in 
detecting faults in this data set corresponding 
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to the fifth day of operation.
However, when breaking down this result 

for each failure, Figure 13 shows that the 
PCA and ICA algorithms experienced an 
excessive increase in the detection of IDV15 
and IDV16, with a decrease in the detection 
of normal operation. Similarly, the KPCA, 
AE, and SAE algorithms also experienced 
a decrease in detecting normal operation. 
Consequently, the implementation of these 
algorithms would bring about the problem 
of excessive false positives, since many data 
obtained under normal conditions would be 
incorrectly detected as a failure.

This result can be explained by a possible 
overfitting of the detection algorithms. 
Therefore, these algorithms characterized 
normal operation to certain specific patterns. 
So, when they were evaluated on unknown 
data from normal operation, they were 
most likely detected as failures. Similarly, 
the overfitting detection algorithms better 
detected the IDV15 and IDV16 perturbations, 
because these perturbations that caused a 
slight deviation from normal operation are 
easier to detect when normal operation was 
characterized with specific patterns.

Finally, Figure 14 shows that most of 
the regression algorithms lost their ability 
to generalize results when comparing the 
metrics achieved on the test set and fifth day 
of operation.

Despite this, the algorithm that showed 
the least deterioration was multivariable 
linear regression (LR). Furthermore, linear 
regression achieved the best performance on 
this data set corresponding to the fifth day of 
operation. However, the results achieved by 
the LR algorithm on the test set demonstrate 
that this algorithm could not model the 
phenomenon of the G generation rate in the 
reactor. So, these results would indicate that the 
LR algorithm is underfit to the problem; and 
underadjusted models do not capture all the 

relevant information about the phenomenon, 
but they present a better generalization of 
results when faced with unknown data.

On the other hand, the loss in the 
generalization of results observed by the non-
linear regression algorithms (ANN, SVM-rbf, 
DT, RF and GB) presents a possible overfitting 
of the models. However, it must be noted that 
the performance achieved on the test set was 
also obtained on data not seen by the model. 
Therefore, the loss of generalization of results 
is due to the fact that the set of the fifth 
trading day contained new patterns that the 
algorithms could not generalize.

So, to overcome the problem observed in 
fault detection and virtual sensor, methods 
can be implemented that allow increasing 
the training data of the models. So, one way 
is to include some samples obtained from 
the fifth day of operation or apply a method 
that increases the data by sample repetition 
(bootstrapping method) (Emmert-Streib & 
Dehmer, 2019; Raschka, 2018).

CONCLUSIONS
In this work, different learning algorithms 

for fault classification, fault detection and 
virtual sensor were evaluated in the context of 
the development of a data science platform in 
the Tennessee Eastman process. The hypothesis 
raised in this work was rejected, because 
artificial neural networks only achieved the 
best performance in fault classification. In 
virtual sensor and fault detection applications 
there were other nonlinear algorithms 
that equaled or exceeded the performance 
achieved by algorithms based on artificial 
neural networks.

In general, several nonlinear algorithms 
simpler than the neural network managed to 
adequately model the phenomenon of each 
application, achieving the best value in the 
evaluation metrics of each application. In that 
sense, the support vector machine with radial 
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basis function kernel (SVM-rbf) is a good 
option to implement in fault classification 
in mode three of operation. Whereas, the 
k-nearest neighbors (k-NN) algorithm 
would be a good option to implement in the 
virtual sensor in both modes of operation. 
Meanwhile, model assembly algorithms, 
such as algorithms Random Forest (RF) and 
Gradient Boosting (GB), They are a good 
option to use in fault classification and virtual 
sensor.

In fault detection it was difficult to 
determine the most appropriate algorithm 
to implement, because all algorithms 
obtained similar performance. However, it 
is worth highlighting the effect of the size of 
the data set used on the results of the fault 
detection application. The synchronized 
subsample of the TE process has a greater 
Gaussian distribution and lower linearity, 
which explains the anomalous performance 
achieved by the principal component analysis 
(PCA). Furthermore, the small sample size 
could have affected the performance achieved 
by the auto-scramblers.

The effect of the size of the data set is also 
evident when comparing the generalizability 
of results on the fifth day of operation. In 
that sense, the generalization of the result 
was favored when the training set has a 
large amount of sample, for example, the 
classification of failures on the fifth day of 
operation experienced a slight deterioration. 
Meanwhile, the small amount of sample could 
affect the generalization of results, because 
possibly the fifth day of operation brings with 
it new samples that the algorithms cannot 
generalize.

Finally, the evaluation of the virtual sensor 
in the context of few training samples can be 
further explored. To this end, it is proposed to 
continue the evaluation of the virtual sensor 
using the data repetition method technique 
(bootstrapping method) in order to increase 
the training data.

GRATITUDE
This work was funded by ANID-PFCHA/

Doctorado Nacional/2018- 21180498.

REFERENCES
Acuña, G., Curilem, M., & Cubillos, F. (2014). Desarrollo de un sensor virtual basado en modelo NARMAX y máquina de 
vectores de soporte para molienda semiautógena. RIAI - Revista Iberoamericana de Automatica e Informatica Industrial, 11(1), 
109-116. https://doi.org/10.1016/j.riai.2013.09.008

Ayubi Rad, M. A., & Yazdanpanah, M. J. (2015). Designing supervised local neural network classifiers based on EM clustering 
for fault diagnosis of Tennessee Eastman process. Chemometrics and Intelligent Laboratory Systems, 146, 149-157. https://doi.
org/10.1016/j.chemolab.2015.05.013

Bathelt, A., Ricker, N. L., & Jelali, M. (2015). Revision of the Tennessee Eastman Process Model. IFAC-PapersOnLine, 48(8), 309-
314. https://doi.org/10.1016/j.ifacol.2015.08.199

Beck, D. A. C., Carothers, J. M., Subramanian, V. R., & Pfaendtner, J. (2016). Data science: Accelerating innovation and discovery 
in chemical engineering. AIChE Journal, 62(5), 1402-1416. https://doi.org/10.1002/aic.15192

Braun, M., & Rivera, D. E. (1999). Tennessee Eastman Process Control Test Problem Re-Written in MATLAB 5.2 [MATLAB]. 
Control Systems Engineering Laboratory at Arizona State University.

Chai, Z., & Zhao, C. (2020). Enhanced random forest with concurrent analysis of static and dynamic nodes for industrial fault 
classification. IEEE Transactions on Industrial Informatics, 16(1), 54-66. https://doi.org/10.1109/TII.2019.2915559

Chiang, L., Braun, B., Wang, Z., & Castillo, I. (2022). Towards artificial intelligence at scale in the chemical industry. AIChE 
Journal, 68(6). https://doi.org/10.1002/aic.17644

Chiang, L. H., Russell, E. L., & Braatz, R. D. (2001). Fault Detection and Diagnosis in Industrial Systems. Springer London.



13
Journal of Engineering Research ISSN 2764-1317 DOI 10.22533/at.ed.3173332325091

Chiang, L., Lu, B., & Castillo, I. (2017). Big Data Analytics in Chemical Engineering. Annual Review of Chemical and Biomolecular 
Engineering, 8(1), 63-85. https://doi.org/10.1146/annurev-chembioeng-060816-101555

Dorneanu, B., Zhang, S., Ruan, H., Heshmat, M., Chen, R., Vassiliadis, V. S., & Arellano-Garcia, H. (2022). Big data and machine 
learning: A roadmap towards smart plants. Frontiers of Engineering Management. https://doi.org/10.1007/s42524-022-0218-0

Downs, J. J., & Vogel, E. F. (1993). A plant-wide industrial process control problem. Computers & Chemical Engineering, 17(3), 
245-255. https://doi.org/10.1016/0098-1354(93)80018-I

Emmert-Streib, F., & Dehmer, M. (2019). Evaluation of Regression Models: Model Assessment, Model Selection and 
Generalization Error. Machine Learning and Knowledge Extraction, 1(1), 521-551. https://doi.org/10.3390/make1010032

Fazai, R., Taouali, O., Harkat, M. F., & Bouguila, N. (2016). A new fault detection method for nonlinear process monitoring. The 
International Journal of Advanced Manufacturing Technology, 87(9-12), 3425-3436. https://doi.org/10.1007/s00170-016-8745-7

Ge, Z. (2018). Distributed predictive modeling framework for prediction and diagnosis of key performance index in plant-wide 
processes. Journal of Process Control, 65, 107-117. https://doi.org/10.1016/j.jprocont.2017.08.010

Ge, Z., & Song, Z. (2013). Multivariate Statistical Process Control. Springer London.

Ge, Z., Song, Z., & Gao, F. (2013). Review of Recent Research on Data-Based Process Monitoring. Industrial & Engineering 
Chemistry Research, 52(10), 3543-3562. https://doi.org/10.1021/ie302069q

He, Y. L., Geng, Z. Q., & Zhu, Q. X. (2015). Data driven soft sensor development for complex chemical processes using extreme 
learning machine. Chemical Engineering Research and Design, 102, 1-11. https://doi.org/10.1016/j.cherd.2015.06.009

He, Y. L., Geng, Z. Q., & Zhu, Q. X. (2016). Soft sensor development for the key variables of complex chemical processes using a 
novel robust bagging nonlinear model integrating improved extreme learning machine with partial least square. Chemometrics 
and Intelligent Laboratory Systems, 151, 78-88. https://doi.org/10.1016/j.chemolab.2015.12.010

Heo, S., & Lee, J. H. (2018). Fault detection and classification using artificial neural networks. IFAC-PapersOnLine, 51(18), 470-
475.

Isermann, R. (2006). Fault-diagnosis systems: An introduction from fault detection to fault tolerance. Springer.

Jing, C., & Hou, J. (2015). SVM and PCA based fault classification approaches for complicated industrial process. Neurocomputing, 
167, 636-642. https://doi.org/10.1016/j.neucom.2015.03.082

Kabugo, J. C., Jämsä-Jounela, S.-L., Schiemann, R., & Binder, C. (2020). Industry 4.0 based process data analytics platform: 
A waste-to-energy plant case study. International Journal of Electrical Power & Energy Systems, 115, 105508. https://doi.
org/10.1016/j.ijepes.2019.105508

Kadlec, P., Gabrys, B., & Strandt, S. (2009). Data-driven Soft Sensors in the process industry. Computers and Chemical 
Engineering, 33(4), 795-814. https://doi.org/10.1016/j.compchemeng.2008.12.012

Kim, J.-Y. (2017). Smart chemical plant architecture development based on a systems engineering. 1-5. https://doi.org/10.1109/
SysEng.2017.8088315

Kwon, H., Oh, K. C., Choi, Y., Chung, Y. G., & Kim, J. (2021). Development and application of machine learning‐based prediction 
model for distillation column. International Journal of Intelligent Systems, 36(5), 1970-1997. https://doi.org/10.1002/int.22368

Lee, J. Y., Yoon, J. S., & Kim, B.-H. (2017). A big data analytics platform for smart factories in small and medium-sized 
manufacturing enterprises: An empirical case study of a die casting factory. International Journal of Precision Engineering and 
Manufacturing, 18(10), 1353-1361. https://doi.org/10.1007/s12541-017-0161-x

Lei, J., Liu, C., & Jiang, D. (2019). Fault diagnosis of wind turbine based on Long Short-term memory networks. Renewable 
Energy, 133, 422-432. https://doi.org/10.1016/j.renene.2018.10.031

Li, S., Luo, J., & Hu, Y. (2020). Semi-supervised process fault classification based on convolutional ladder network with local and 
global feature fusion. Computers and Chemical Engineering, 140, 106843. https://doi.org/10.1016/j.compchemeng.2020.106843

Lin, Y. C., Hung, M. H., Huang, H. C., Chen, C. C., Yang, H. C., Hsieh, Y. S., & Cheng, F. T. (2017). Development of Advanced 
Manufacturing Cloud of Things (AMCoT)-A Smart Manufacturing Platform. IEEE Robotics and Automation Letters, 2(3), 1809-
1816. https://doi.org/10.1109/LRA.2017.2706859



14
Journal of Engineering Research ISSN 2764-1317 DOI 10.22533/at.ed.3173332325091

Liu, Y., & Ge, Z. (2018). Weighted random forests for fault classification in industrial processes with hierarchical clustering 
model selection. Journal of Process Control, 64, 62-70. https://doi.org/10.1016/j.jprocont.2018.02.005

Lomov, I., Lyubimov, M., Makarov, I., & Zhukov, L. E. (2021). Fault detection in Tennessee Eastman process with temporal deep 
learning models. Journal of Industrial Information Integration, 23, 100216. https://doi.org/10.1016/j.jii.2021.100216

Loy-Benitez, J., Li, Q., Nam, K., & Yoo, C. (2020). Sustainable subway indoor air quality monitoring and fault-tolerant 
ventilation control using a sparse autoencoder-driven sensor self-validation. Sustainable Cities and Society, 52, 101847. https://
doi.org/10.1016/j.scs.2019.101847

Lv, F., Wen, C., Bao, Z., & Liu, M. (2016). Fault diagnosis based on deep learning. Proceedings of the American Control Conference, 
2016-July(2), 6851-6856. https://doi.org/10.1109/ACC.2016.7526751

Meng, Y., Lan, Q., Qin, J., Yu, S., Pang, H., & Zheng, K. (2019). Data-driven soft sensor modeling based on twin support 
vector regression for cane sugar crystallization. Journal of Food Engineering, 241(June 2017), 159-165. https://doi.org/10.1016/j.
jfoodeng.2018.07.035

National Academies of Sciences Engineering and Medicine. (2018). Data Science: Opportunities to Transform Chemical Sciences 
and Engineering: Proceedings of a Workshop in Brief (L. Casola & E. Mantus, Eds.; Vol. 60, pp. 285-286). National Academies 
Press. https://doi.org/10.17226/25191

Neubürger, F., Saeid, Y., & Kopinski, T. (2021). Variational-Autoencoder Architectures for Anomaly Detection in Industrial 
Processes.

Omar, A. M. S., Osman, M. K., Ibrahim, M. N., Hussain, Z., & Abidin, A. F. (2020). Fault classification on transmission line using 
LSTM network. Indonesian Journal of Electrical Engineering and Computer Science, 20(1), 231-238. https://doi.org/10.11591/
ijeecs.v20.i1.pp231-238

Park, Y.-J., Fan, S.-K. S., & Hsu, C.-Y. (2020). A Review on Fault Detection and Process Diagnostics in Industrial Processes. 
Processes, 8(9), Article 9. https://doi.org/10.3390/pr8091123

Qin, S. J. (2012). Survey on data-driven industrial process monitoring and diagnosis. Annual Reviews in Control, 36(2), 220-234. 
https://doi.org/10.1016/j.arcontrol.2012.09.004

Qin, S. J. (2014). Process data analytics in the era of big data. AIChE Journal, 60(9), 3092-3100. https://doi.org/10.1002/aic.14523

Qiu, Y., & Dai, Y. (2019). A Stacked Auto-Encoder Based Fault Diagnosis Model for Chemical Process. En Computer Aided 
Chemical Engineering (Vol. 46, pp. 1303-1308). Elsevier. https://doi.org/10.1016/B978-0-12-818634-3.50218-6

Quiñones-Grueiro, M., Llanes-Santiago, O., & Neto, A. J. S. (2020). Monitoring Multimode Continuous Processes: A Data-Driven 
Approach (Vol. 309). Springer Nature.

Quiñones-Grueiro, M., Llanes-Santiago, O., & Silva Neto, A. J. (2021). Fault Classification with Data-Driven Methods. En M. 
Quiñones-Grueiro, O. Llanes-Santiago, & A. J. Silva Neto, Monitoring Multimode Continuous Processes (Vol. 309, pp. 99-122). 
Springer International Publishing. https://doi.org/10.1007/978-3-030-54738-7_5

Rajaraman, V. (2016). Big data analytics. Resonance, 21(8), 695-716. https://doi.org/10.1007/s12045-016-0376-7

Raschka, S. (2018). Model Evaluation, Model Selection, and Algorithm Selection in Machine Learning.

Ricker, N. L. (1996). Decentralized control of the Tennessee Eastman Challenge Process. Journal of Process Control, 6(4), 205-
221. https://doi.org/10.1016/0959-1524(96)00031-5

Ricker, N. L. (2015). Tennessee Eastman Challenge Archive. https://depts.washington.edu/control/LARRY/TE/download.
html#Updated_TE_Code

Samuel, R. T., & Cao, Y. (2016). Nonlinear process fault detection and identification using kernel PCA and kernel density 
estimation. Systems Science & Control Engineering, 4(1), 165-174. https://doi.org/10.1080/21642583.2016.1198940

Shang, C., Huang, X., Suykens, J. A. K., & Huang, D. (2015). Enhancing dynamic soft sensors based on DPLS: A temporal 
smoothness regularization approach. Journal of Process Control, 28, 17-26. https://doi.org/10.1016/j.jprocont.2015.02.006

Shang, C., Yang, F., Huang, D., & Lyu, W. (2014). Data-driven soft sensor development based on deep learning technique. Journal 
of Process Control, 24(3), 223-233. https://doi.org/10.1016/j.jprocont.2014.01.012



15
Journal of Engineering Research ISSN 2764-1317 DOI 10.22533/at.ed.3173332325091

Souza, F. A. A., Araújo, R., & Mendes, J. (2016). Review of soft sensor methods for regression applications. Chemometrics and 
Intelligent Laboratory Systems, 152, 69-79. https://doi.org/10.1016/j.chemolab.2015.12.011

Sun, W., Paiva, A. R. C., Xu, P., Sundaram, A., & Braatz, R. D. (2020). Fault detection and identification using Bayesian recurrent 
neural networks. Computers and Chemical Engineering, 141, 106991. https://doi.org/10.1016/j.compchemeng.2020.106991

Voigt, T., Migenda, N., Schone, M., Pelkmann, D., Fricke, M., Schenck, W., & Kohlhase, M. (2021). Advanced Data Analytics 
Platform for Manufacturing Companies. 2021-September, 01-08. https://doi.org/10.1109/ETFA45728.2021.9613499

Wang, L., Jin, H., Chen, X., Dai, J., Yang, K., & Zhang, D. (2016). Soft Sensor Development Based on the Hierarchical Ensemble 
of Gaussian Process Regression Models for Nonlinear and Non-Gaussian Chemical Processes. Industrial and Engineering 
Chemistry Research, 55(28), 7704-7719. https://doi.org/10.1021/acs.iecr.6b00240

Wu, F., Yin, S., & Karimi, H. R. (2014). Fault detection and diagnosis in process data using support vector machines. Journal of 
Applied Mathematics, 2014. https://doi.org/10.1155/2014/732104

Wu, H., & Zhao, J. (2018). Deep convolutional neural network model based chemical process fault diagnosis. Computers and 
Chemical Engineering, 115, 185-197. https://doi.org/10.1016/j.compchemeng.2018.04.009

Yan, W., Guo, P., gong, L., & Li, Z. (2016). Nonlinear and robust statistical process monitoring based on variant autoencoders. 
Chemometrics and Intelligent Laboratory Systems, 158, 31-40. https://doi.org/10.1016/j.chemolab.2016.08.007

Yin, S., Ding, S. X., Haghani, A., Hao, H., & Zhang, P. (2012). A comparison study of basic data-driven fault diagnosis and 
process monitoring methods on the benchmark Tennessee Eastman process. Journal of Process Control, 22(9), 1567-1581. 
https://doi.org/10.1016/j.jprocont.2012.06.009

Yin, S., Ding, S. X., Xie, X., & Luo, H. (2014). A review on basic data-driven approaches for industrial process monitoring. IEEE 
Transactions on Industrial Electronics, 61(11), 6414-6428. https://doi.org/10.1109/TIE.2014.2301773

Yuan, X., Li, L., & Wang, Y. (2020). Nonlinear Dynamic Soft Sensor Modeling with Supervised Long Short-Term Memory 
Network. IEEE Transactions on Industrial Informatics, 16(5), 3168-3176. https://doi.org/10.1109/TII.2019.2902129

Zhang, C., Yu, J., & Ye, L. (2021). Sparsity and manifold regularized convolutional auto-encoders-based feature learning for fault 
detection of multivariate processes. Control Engineering Practice, 111, 104811. https://doi.org/10.1016/j.conengprac.2021.104811

Zhang, F., & Ge, Z. (2015). Decision fusion systems for fault detection and identification in industrial processes. Journal of 
Process Control, 31, 45-54. https://doi.org/10.1016/j.jprocont.2015.04.004

Zhang, Y. (2009). Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM. Chemical Engineering 
Science, 64(5), 801-811. https://doi.org/10.1016/j.ces.2008.10.012

Zhang, Z., Jiang, T., Li, S., & Yang, Y. (2018). Automated feature learning for nonlinear process monitoring – An approach using 
stacked denoising autoencoder and k-nearest neighbor rule. Journal of Process Control, 64, 49-61. https://doi.org/10.1016/j.
jprocont.2018.02.004

Zhang, Z., & Zhao, J. (2017). A deep belief network based fault diagnosis model for complex chemical processes. Computers and 
Chemical Engineering, 107, 395-407. https://doi.org/10.1016/j.compchemeng.2017.02.041

Zhao, H., Sun, S., & Jin, B. (2018). Sequential Fault Diagnosis Based on LSTM Neural Network. IEEE Access, 6, 12929-12939. 
https://doi.org/10.1109/ACCESS.2018.2794765

Zhongda, T., Shujiang,  li, Yanhong, W., & Xiangdong, W. (2016). A multi-model fusion soft sensor modelling method and its 
application in rotary kiln calcination zone temperature prediction. Transactions of the Institute of Measurement and Control, 
38(1), 110-124. https://doi.org/10.1177/0142331215573099



16
Journal of Engineering Research ISSN 2764-1317 DOI 10.22533/at.ed.3173332325091

FIGURES

Figure 1 Fundamental elements of a data science platform for the smart chemical industry.

Figure 2 Tennessee Eastman Process Flow Chart.

Note. Extracted from “The plant-wide industrial process control problem”, by J. Downs and E. Vogel, 1993, 
Computers and Chemical Engineering, 17(3), p. 246. Copyright © 1993 by Published by Elsevier Ltd.
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Figure 3. Accuracy obtained by the algorithms in the classification of failures in the Tennessee Eastman 
process.

Note. Results obtained on the test set. The error bar is the 95% confidence interval.

Figure 4. Average precision obtained by the algorithms in the classification of failures in the Tennessee 
Eastman process.

Note. Results obtained on the test set. The error bar is the 95% confidence interval.
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Figure 5 Average sensitivity obtained by the algorithms in the classification of failures in the Tennessee 
Eastman process.

(a) Detection rate in mode one (b) Mode one precision
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(c) Missed detection rate in mode one (d) False alarm rate in mode one

Figure 6 Evaluation of the performance achieved by each algorithm in each disturbance of the Tennessee 
Eastman process in mode one of operation.

(a) Detection rate in mode three (b) Mode three precision



20
Journal of Engineering Research ISSN 2764-1317 DOI 10.22533/at.ed.3173332325091

(c) Lost detection rate in mode three (d) False alarm rate in mode three

Figure 7 Evaluation of the performance achieved by each algorithm in each perturbation of the Tennessee 
Eastman process in mode one of operation.

(a) Accuracy in mode one of operation (b) Accuracy in mode three of operation

Figure 8 Comparison of the accuracy obtained in the fault classification of the Tennessee Eastman process 
without disturbances IDV15 and IDV16.
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Figure 9 Failure detection rate obtained by different algorithms in mode one of operation of the Tennessee 
Eastman process.

Figure 10 Failure detection rate obtained by different algorithms in mode three of operation of the 
Tennessee Eastman process.
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Figure 11 Comparison of the generalization of results experienced by the algorithms in the classification 
of failures in the Tennessee Eastman process.
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Figure 12 Comparison in the generalization of results obtained by the fault detection algorithms on the fifth 
day of operation of the Tennessee Eastman process.

(a) Mode one of operation of the TE process

(b) Mode three of operation of the TE process

Figure 13 Evaluation of the generalization of the results of the detection algorithms in normal operation 
and IDV15 and IDV16 disturbances in mode one and three of operation.
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Figure 14 Comparison of the generalization of results experienced by the regression algorithms in the 
virtual sensor in the Tennessee Eastman process.

TABLES

ID Process variable Type
IDV1 A/B ratio, constant B composition (current 4) Step
IDV2 Composition B, constant A/B ratio (current 4) Step
IDV3 DE supply temperature (stream 2) Step
IDV4 Reactor cooling water inlet temperature Step
IDV5 Condenser cooling water inlet temperature Step
IDV6 Power A loss (current 1) Step
IDV7 C header pressure loss - availability reduction (stream 4) Step
IDV8 Composition of feed A, B and C (current 4) Random variation
IDV9 Feed temperature D (stream 2) Random variation

IDV10 Feed temperature C (current 4) Random variation
IDV11 Reactor cooling water inlet temperature Random variation
IDV12 Condenser cooling water inlet temperature Random variation
IDV13 Reaction kinetics slow drift
IDV14 reactor cooling water valve Sticking
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IDV15 Condenser cooling water valve Sticking
IDV16 Unknown Unknown
IDV17 Unknown Unknown
IDV18 Unknown Unknown
IDV19 Unknown Unknown
IDV20 Unknown Unknown

Table 1 Disturbances of the Tennessee Eastman process.

Note. Extracted from “A plant-wide industrial process control problem”, by J. Downs and E. Vogel, 1993, 
Computers and Chemical Engineering, 17(3), p. 250. Copyright © 1993 by Published by Elsevier Ltd.

Column number Column name Queue number Counting non-null values Variable type
0 – 21a XMEAS1 – XMEAS22 0 a 480,039 480,040 Numeric

22 – 40b XMEAS23 – XMEAS41 0 a 480,039 480,040 Numeric
41 – 48a XMEAS42 – XMEAS49 0 a 480,039 480,040 Numeric
49 – 72b XMEAS50-XMEAS73 0 a 480,039 480,040 Numeric
73 – 84c XMV1 - XMV12 0 a 480,039 480,040 Numeric

85 Mode 0 a 480,039 480,040 Categorical
86 Perturbation 0 a 480,039 480,040 Categorical
87 Time 0 a 480,039 480,040 Numeric

Table 2 Tennessee Eastman Process Database Summary

Note. a: Continuous measured variables.
b: Sampled type measured variables (composition of TE process streams).

c: Manipulated variables of the TE process.

Failure classification
  Input variables Objective variable

Mode 1
XMEAS1, XMEAS10, XMEAS11, XMEAS18, XMEAS21, XMEAS22, 
XMEAS43, XMEAS45, XMEAS46, XMEAS47, XMEAS48, XMV3, 
XMV4, XMV6, XMV7, XMV8, XMV10

Process Disturbance TE 
(and = {N, IDV1, IDV2, 
IDV3 …, IDV17, IDV18, 
IDV19, IDV20})Mode 3

XMEAS1, XMEAS10, XMEAS11, XMEAS18, XMEAS20, XMEAS21, 
XMEAS22, XMEAS43, XMEAS45, XMEAS46, XMEAS47, XMEAS48, 
XMEAS49, XMV3, XMV4, XMV6, XMV10, XMV11

virtual sensor
  Input variables Objective variable

Mode 1 XMEAS17, XMEAS10, XMV6, XMEAS44, XMEAS2, XMEAS42, 
XMEAS19, XMEAS3, XMEAS14, XMEAS12, XMEAS8 Generation rate of product 

G in the reactor
Mode 3 XMEAS17, XMEAS44, XMEAS2, XMEAS42

Fault Detection
  Input variables Objective variable

Mode 1 XMEAS1, XMEAS2, …, XMEAS20, XMEAS21, XMEAS22, XMEAS42, 
XMEAS43, XMEAS44, XMEAS47, XMEAS48, XMEAS49, XMV1, 
XMV2, XMV3, …, XMV9, XMV10, XMV11, XMV12Mode 3

Table 3  Feature Selection in Data Science Applications in the Tennessee Eastman Process.
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Algorithm Failure classification
(Multi-class classification)

Virtual sensor
(Regression)

Linear Discriminant Analysis (LDA) X
Logistic regression (RL) X
Multivariable Linear Regression (LR) X
Gaussian Process Regression (GPR) X
K nearest neighbors (KNN) X X
Support Vector Machines with Radial 
Basis Kernel Function (SVM) X X

Decision tree (DT) X
Random Forest (RF) X X
Gradient Boosting (GB) X X
Artificial Neural Networks (ANN) X X

Table 4  Data Science Algorithms Used in Fault Classification and Virtual Sensor Applications in Tennessee 
Eastman Process.

Algorithm training
1.	 Select the instances under normal operation from the training set.
2.	 Normalize normal operating data by its mean and variance.
3.	 Train unsupervised algorithms with normal operation data.
4.	 Project normal operation training data into low-dimensional space.
5.	 Reconstruct training data from low-dimensional space to original space(X).
6.	 Calculate the residual between the original observation in normal operation (X) and the reconstruction (X ̂) using the equation 

(7.

(8)
7.	 Calculate the SPE of the training instance under normal operation using the equation (9.

(9)

8.	 8. Calculate the limit SPE of normal operation using equation (7, assuming that this statistic follows a Chi-square type 
distribution ( ) in the case of PCA and ICA.

(10)

Where, α is the level of significance (in this work 1% was used) g = v/(2m), h = 2m²/v, m is the mean of the SPE values calculated at 
point 5 and v is the variance of the SPE values calculated at point 5.
In the case of the KPCA, AE, SAE and VAE it was assumed that the SPE statistic does not have a Chi-square distribution. Therefore, 
kernel density estimation (KDE) was used to determine SPE limit.
Fault Detection
9.	 Normalize the new observation.
10.	 Project the new observation (X_New) to low-dimensional space using unsupervised algorithms.
11.	 Reconstruct the projection of the new observation from the low-dimensional space to the original space(XNew).
12.	 Calculate the residual between the new observation(XNew)) and reconstruction of the projection (XNew) through the equation (8.
13.	 Calculate the SPE of the new observation (SPEi, New) through the equation (9.
14.	 Fault detection in new observation.

•	 Si SPEi, New SPELim, then the new observation is detected as a fault.
•	 Si SPEi, New SPELim, then the new observation is detected as a normal operation.

Table 5. Failure detection procedure by unsupervised algorithms.

Predicted class
YEAH NO Total

Class true
YEAH True positive (TP) False negative (FN) Positive (P)
NO False positive (FP) True negative (TV) Negative (N)
Total Predicted Positives (“P") Predicted Negatives (“N”) P + N

Table 6. Confusion matrix for binary fault classification.
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  Mode 1
PCA ICA KPCA AE SAE VAE

FDR 88.3501 % 88.3501 % 88.6784 % 88.9041 % 89.0431 % 88.2184 %
MDR 11.6499% 11.6499% 11.3216% 11.0959% 10.9569% 11.7816%

  Mode 3
PCA ICA KPCA AE SAE VAE

FDR 89.5372 % 89.5372 % 89.7468 % 88.1836 % 88.2817 % 85.3703 %
MDR 10.4628 % 10.4628 % 10.2532 % 11.8164 % 11.7183 % 14.6297 %

Table 7 Average detection rate and missed detection rate obtained by data science algorithms in fault 
detection in Tennessee Eastman process.

Note. The results in this table are calculated based on the test set.

Metrics MSE [lb-mol2/min2]

Algorithm
Mode 1
***

Mode 3
***

ANN 3.0470±0.0559 3.8958±0.1744
DT 3.0131±0.0981 2.9830±0.0921
RF 1.6934±0.0279 1.9074±0.0320
GB 1.5596±0.0685 1.6875±0.0517
SVM-rbf 2.3054±0.0469 3.2051±0.0372
k-NN 1.7502±0.0254 1.9429±0.0437
GPR 3.5153±0.0640 4.0991±0.0936
LR 4.1642±0.0066 4.5351±0.0041

Table 8 Mean Square Error (MSE) obtained by each regression algorithm in the Tennessee Eastman virtual 
process sensor.

Note. The results in this table are calculated based on the test set. x̅ = average, s = Deviation standard, n = 
number of iterations of the cross validation method.

***: confidence intervals calculated at 95% confidence.

Metrics MAE [lb-mol/min]
Algorithm Mode 1a Mode 3a

ANN 1.3055±0.0188 1.5583±0.0387
DT 1.2850±0.0186 1.2779±0.0202
RF 0.8741±0.0056 0.9430±0.0069
GB 0.7801±0.0141 0.7975±0.0130

SVM-rbf 0.8880±0.0093 1.2226±0.0059
k-NN 0.6539±0.0060 0.7511±0.0097
GPR 1.5334±0.0322 1.5764±0.0301
LR 1.6434±0.0011 1.6923±0.0007

Table 9 Mean absolute error (MAE) obtained by each regression algorithm in the Tennessee Eastman 
virtual process sensor.

Note. The results in this table are calculated based on the test set. x̅ = average,  s = Standard deviation, n = 
number of iterations of the cross validation method. ***: confidence intervals calculated at 95% confidence.


