Journal of Engineering Research

BORING METHOD ON AISI 4140 STEEL BASED ON FE2B IN DRY POWDER AND PRESSURE

Juan Hernández Garduño

Instituto Politécnico Nacional Unidad Profesional Interdisciplinaria de Ingeniería Campus Hidalgo

All content in this magazine is licensed under a Creative Commons Attribution License. Attribution-Non-Commercial-Non-Derivatives 4.0 International (CC BY-NC-ND 4.0). **Abstract:** The present work studies the properties of an AISI 4140 steel subjected to the process of thermochemical surface treatment, borided with Fe2B in dry powder with a variable compaction that helped to correlate the compaction of Fe2B with surface hardness, and diffusion of the boron layer on the surface of the steel.

METHODOLOGY

Specimens H and L of AISI 4140 steel of identical geometry were placed in boxes of the same steel, covered below and above with Fe2B powder 5-10 μ m particle size, covered with steel plates and the lids were closed with controlled pressure by 4 screws. L specimen 50 Ncm cover bolt torque and H specimen 10 Ncm.

They were placed in the muffle for 20 hours, at a working temperature of 900°C, with an incremental temperature adjustment of 1 hour prior to the cycle. Same decremental adjustment finished the cycle.

Muffle Brand:MELLEN/Model: SX2-6-12-TP

Metallographic Test Equipment/ Brand:PACE// Microscope Invert/Brand: Nikon/Model: MA100/Series: 102762

RESULTS

1) Coating thickness of 13.35 μ m of Fe2B was observed by applying a torque of 10 Ncm to the cap screws.

Coating thickness of 17.05 μ m of Fe2B was observed by applying a torque of 50 Ncm to the cap screws

2) Taking the reference of the material without coatings with a

hardness equivalent HV of 207.5

An increase in surface hardness was observed in sample L of 8.2%

An increase in surface hardness was observed in sample H of 98.7%

CONCLUSION

The present work shows a correlation between pressure, coating thickness and surface hardness. This correlation is shown by 1 reference material and 2 analyzed samples, it is estimated in later stages of this investigation to be able to count on greater ranges of the variables analyzed.

Sample	Espesor de Recubrimiento/Coating Thickness µm										
ID	1	2	3	4	5	6	7	8	9	10	Prom. Ave.
Н	14.99	8.15	13.74	13.09	20.94	9.82	9.02	17.62	12.43	13.74	13.35

HV average 224.7

Sample	Espesor de Recubrimiento/Coating Thickness μm										
ID	1	2	3	4	5	6	7	8	9	10	Prom. Ave.
L	11.78	15.7	17.67	13.09	16.04	17.68	22.25	16.36	20.29	19.63	17.05

HV average 412.5