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Abstract: We study the Regularity of the 
Timoshenko system with two fractional 
dampings (−∆)τ ut and (−∆)σψt; both of the 
parameters (τ, σ) vary in the interval [0, 1]. 
We note that (τ = 0 or σ = 0) and (τ = 1 or 
σ = 1) the dampings are called frictional and 
viscous, respectively. Our main contribu- tion 
is to show that the corresponding semigroup 
S(t) = eBt, is analytic for (τ, σ) ∈ RA:= 
[1/2,1]×[1/2,1] and determine the Gevrey’s 
class ν >
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INTRODUCTION
In this paper we study the regularity 

properties of the Timoshenko system [29]:

The constant ρ denotes the density, A the 
cross-sectional area, and I the area moment of 
inertia. By S we denote the shear force, and M 
is the bending moment. The function u is the 
transverse displacement and ψ is the rotation 
angle of a filament of the beam. Here, t is the 
time variable, and x is the space coordinate 
along the beam. The constitutive laws we use 
are the following:

E and G are elastic constants, k the shear 
coefficient for measuring the stiffness of 
materials (k < 1).

To simplify the notation let us denote by 
ρ1 = ρA, ρ2 = ρI, κ = kAG, b = EI and taking 
boundary conditions of type Dirichlet–
Dirichlet

 (1)

using the operator: A : D(A) ⊂ L2(0, L) → 
L2(0, L), where

 (2)

The system in abstract form, is rewrite, as

and initial conditions

In this paper we study the regularity of the 
(u, ψ) solutions of the system (3)– (5), where 
both parameters τ and σ take values in the 
range [0, 1]. It is known that the this operator 
given in (2) is selfadjoint, positive and has 
inverse compact on a complex Hilbert space 
D(Aθ) = L2(0, L). Therefore, the operator Aθ is 
self-adjoint positive for all θ ∈ R, bounded for 
θ ≤ 0, and the embedding

is continuous for θ1 > θ2. Here, the norm 
in D(Aθ) is given by u  D(Aθ) :=  Aθu  , u 
∈ D(Aθ), where  ·  denotes the norm in the 
Hilbert space X. Some of these spaces are: 
D(A1/2) = H1

0(0, L) and D(A−1/2) = H−1(0, L).
During the past several decades, many 

authors have studied some physical phe- 
nomena for the Timoshenko system 
formulated into different mathematical 
models. Let us mention some results of this 
Timoshenko’s system.

Kim and Renardy have already considered 
the case of two boundary control forces [14]
(1987) for the Timoshenko beam. They 
proved the exponential decay of the energy 
by using a multiplier technique and provided 
numerical estimates of the eigenvalues of the 
operator associated with this system. Shi and 
Feng [24](2001) established the exponential 
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decay of the energy with locally distributed 
feedback (two feedbacks). Fatori et al. [8]
(2014) studied the thermoelastic beam 
system when the oscillations are defined by 
Timoshenko’s model and the heat conduction 
is given by Green and Naghdi theories. They 
showed that the corresponding semigroup is 
exponentially stable if and only if the wave 
velocities associated with the hyperbolic 
part of the system are equal. In the case of 
lack of exponential stability, they show that 
the solution decays polynomially and that 
the decay rate is optimal. Ammar- Khodja 
et al. [2](2003) showed exponential decay 
when exponential kernels are considered, 
while polynomial kernels are shown to lead 
to polynomial decay and prove that the 
polynomial rates found are optimal.

The primary motivation for choosing 
the Timoshenko model to study regularity 
(Gevrey class and Analyticity) came from two 
works. The first of the study of exponential 
decay in the Timoshenko system provided 
with two weak (frictional) dampings, 
published in Raposo et al. [22](2005), whose 
model is given by:

The second most recent work was from 
2016 [17], the authors considering the stress- 
strain constitutive law is of Kelvin-Voigt type, 
given by

Having the γ1, γ2 > 0, they demonstrated the 
analyticity of the semigroup associated with 
the model. Already if one of the coefficients 
γ1, γ2 vanishes, then S(t) is not exponentially 
stable but decays polynomially to zero, and 

the polynomial decay rate is optimal. The 
studied system was:

Both works applied a characterization 
of the theory of semigroups, together with 
spectral analysis, both for the existence and 
for the exponential stability and analyticity 
of the semigroups. This theory of asymptotic 
behavior and regular- ity (existence of Gevrey 
class and nalyticity), was initially presented 
by Gearhart. [9](1978), Pru¨s[21](1984) and 
later published in the book by Liu -Zheng( 
Theorem 1.3.2 )[16](1999).

The model investigated here is relevant 
from the mathematical point of view; it also 
has great importance in other sciences, such 
as mechanics. More precisely, the physical 
meaning of the presence of the two fractional 
dampings will guarantee that the beams that 
undergo small deformations can be quickly 
stabilized (with an exponential rate) so that the 
system with two dampings has at least Gevrey 
class solutions, the same as both. Damping is 
weak (frictional damping) and acts naturally, 
both on the small transverse vibrations u and 
the beam filaments’ angle of rotation ψ.

The Gevrey class semigroup has more 
regular properties than a differentiable 
semigroup, but is less regular than an analytic 
semigroup. The Gevrey rate  ‘measures’ 
the divergence degree of its power series. 
It should be noted that the Gevrey class or 
analyticity of the model implies three essential 
properties. The first is the property of the 
smoothing effect on the initial data; that is, 
no matter how irregular the initial data. 
The solutions of the model are very smooth 
in a finite time. The second property is that 
systems are exponentially stable. Finally, the 
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systems enjoy the property of linear stability, 
which means that the type of the semigroup 
equals the spectral limit of its infinitesimal 
operator.

About investigations of the regularity 
of semigroups associated with various 
mathematical models, we can cite, for example, 
Fatori et al.[7](2012); in that work, the authors 
study the differentiability, analyticity of the 
associated semigroup and also determine 
the optimum rate of decay. More recently 
published works explore the regularity of 
solutions using Gevrey’s class introduced in 
the thesis of Tay- lor [27](1989). Regarding 
analyticity. In the same book by Liu-Zheng, 
they also presented a theorem for analyticity. 
Among these works, we can mention Hao et 
al.[10](2015). Recently in 2023, the work [26] 
was published, in which the authors studied 
the abstract plate system:

Where the operator Aτ is selfadjoint and 
positive for all τ ∈ R and ω ≥ 0, for case ω = 0 
and A = −∆, we have the thermoelastic plate 
of Euler-Bernoulli. For ω > 0 and A = −∆, we 
have the thermoelastic plate of Kirchhoff-
Love; in this work is, determine the Gevrey 
sharp classes: for w = 0, S01 >  and s02 > σ, 
when σ ∈ (1/2, 1) and σ ∈ (1, 3/2) respectively. 

Besides for ω > 0 we have Sw >  when 
σ ∈ (1, 5/4). That work contains direct proofs 
of the analyticity of S(t): In the case ω = 0, we 
have analyticity for σ = 1 and for the case ω 
> 0, S(t) is analytic for σ ∈ [5/4, 3/2]. In the 
same direction, we can cite recent research [1, 
18, 3].

In the last decade, various investigations 
have emerged to study the stability and 
regularity of models with fractional damping. 
In this direction, we have, for example, the 
work of Sare et al.[23]; in that paper, the 
authors investigate thermoelastic- type 

coupled systems, where they address two 
cases with Fourier’s heat law and the other 
with Cattaneo considering em both cases the 
rotational inertial term, study the exponential 
stability, possible regions of loss of exponential 
stability and polynomial stability, and, more 
recently, the work of Keyantuo et al.[11]
(2020) to be published. In this last work, 
the authors studied the thermoelastic plate 
model with a fractional Laplacian between 
the Euler-Bernoulli and Kirchhoff model 
with two types of boundary conditions; in 
addition to studying the asymptotic and 
analytical behavior, the authors show that the 
underlying semigroups is of Gevrey’s class 
δ for every δ >  for both the clamped 
and hinged boundary conditions when the 
parameter θ lies in the interval (0, 1/2). At the 
same address, we can cite the investigations: 
[4, 12, 13, 19, 25, 28].

This paper is organized as follows. In 
section 2, we study the well-posedness of 
the system (3)-(5) through the semigroup 
theory. We divide section 3 into two parts, 
subsection 3.1, devoted to the Gevrey class is, 
showing that the semigroup associated with 
the Tymoshenko system has a Gevrey class ν 
>  where ϕ =

and for the parameters (τ, σ) within the 
region RGC   and finally, in section 3.2, we 
address the analyticity of the semigroup 
associated with the system S(t) = eBt, we show 
that S(t) is analytic when both two parameters 
τ and σ take values in the interval [1/2, 1].
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WELL-POSEDNESS OF THE 
SYSTEM
We will use a semigroup approach to show 

existence uniqueness of strong solutions for 
laminated beams with fractional damping, 
taking w = ut, v = ψt, and considering U = (u, 
w, ψ, v) and U0 = (u0, u1, ψ0, ψ1), the system 
(3)–(5), can be written as an abstract Cauchy 
problem

 (6)
where the operator B is given by

 (7)

for U = (u, w, ψ, v). This operator will 
be defined in a suitable subspace of the 
phase space obtained by performing duality 
products of the invariants ut and ψt with the 
equations (3) and (4), and using properties of 
the operators Aθ for θ ∈ R, defined by

It’s a Hilbert space with the inner product,

In these conditions, we define the domain 
of B as

To show that the operator B is the generator 
of a C0 −semigroup we invoke a result from 
Liu-Zheng’ book.

Theorem 1 (see Theorem 1.2.4 in [16]) Let 
B be a linear operator with domain D(B) dense 

in a Hilbert space H. If B is dissipative and 
0 ∈ ρ(A), the resolvent set of B, then B is the 
generator of a C0 −semigroup of contractions 
on H.

Let us see that the operator B in (7) satisfies 
the conditions of this theorem. Clearly, we see 
that D(B) is dense in H. Effecting the internal 
product of BU with U , we have

  (9)
that is, the operator B is dissipative.
To complete the conditions of the above 

theorem, it remains to show that 0 ∈ ρ(B). 
Let F = (f 1, f 2, f 3, f 4) ∈ H, let us see that the 
stationary problem BU = F has a solution U = 
(u, w, ψ, v). From the definition of the operator 
B given in (7), this system can be written as

Therefore, it is not difficult to see that there 
exist only one solution u and ψ of the system

from where we have that

wich in particular implies that  B−1F H ≤  
F H, so we have that 0 belongs to the resolvent 
set ρ(B). Consequently, from Theorem 1 
we have B is the generator of a contractions 
semigroup.

As a consequence of the above Theorem(1) 
we have

Theorem 2 Given U0 ∈ H there exists a 
unique weak solution U to the problem (6) 
satisfying

Futhermore, if U0 ∈ D(Bk), k ∈ N, then the 
solution U of (6) satisfies
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Theorem 3 (Lions’ Interpolation) Let α < 
β < γ. The there exists a constant

L = L(α, β, γ) such that

 (13)

for every u ∈ D(Aγ).
Proof: See Theorem 5.34 [6].

Theorem 4 (Hilla-Yosida) A linear 
(unbounded) operator B is the infinitesimal 
generator of a C0−semigroup of contractions 
S(t), t ≥ 0, if and only if

(i) B is closed and D(B) = H,

(ii) the resolvent set ρ(B) of B contains R+ 
and for every λ > 0,

Proof: See [20].

REGULARIZATION RESULTS
In this section, using the semigroup 

approach we show the corresponding semi-
group S(t)=eBt of the system (3)–(5) is of 
Gevrey class ν >  where ϕ =

and (τ, σ) ∈ RCG := (0, 1)2 and S(t) is analytic 
in the region RA := {(τ, σ) ∈ R2/(τ, σ) ∈ [ 1 , 1]2}.

For the Gevrey class we use the 
characterization results presented in [5] 
(adapted from [27], Theorem 4, p. 153]). 
And for the study of analyticity the main tool 
we use is the characterization of analytical 
semigroups due to Liu and Zheng (See book 
by Liu-Zheng - Theorem 1.3.3).

In what follows: C, Cδ and Cε will denote 

positive constants that assume different values 
in different places.

Next, we present two lemmas where two 
estimates are tested that are funda- mental for 
the determination of the Gevrey class and the 
analytics of the associated semigroup S(t) = 
eBt.

Lemma 5 Let δ > 0. There exists a constant 
Cδ > 0 such that the solutions of (3)–(5) for |λ| 
≥ δ satisfy the inequality

      (14)

Proof: If λ ∈ R and F = (f 1, f 2, f 3, f 4) ∈ 
H then the solution U = (u, w, ψ, v) ∈ D(B) 
the resolvent equation (iλI − B)U = F can be 
written in the form

Using the fact that the operator is dissipative 
B, we have

 

 (19)
On the other hand, performing the duality 

product of (16) for ρ1u, and recalling that the 
operator Aθ for all θ ∈ R is self-adjoint, we 
obtain

now performing the duality product of 
(18) for ρ2ψ, and recalling that the operator A 
is self-adjoint, we obtain
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Adding the last 2 equations, we have

Taking real part, using norm F H and U 
H and applying Cauchy-Schwarz and Young 

Inequalities, obtain

From estimative (19) and the fact 0 ≤ 
and 0 ≤  the continuous embedding

D(Aθ2 ) ‹→ D(Aθ1 ), θ2 > θ1, we have

 (21)
Finally, from estimates (19) and (21), we 

complete the proof of this lemma.

Lemma 6 Let δ > 0. There exists a constant 
Cδ > 0 such that the solutions of (3)–(5) for |λ| 
≥ δ satisfy the inequality

                          (22)
Proof: Performing the duality product of 

(16) for ρ1λu, and recalling that the operator 
A is self-adjoint, we obtain

Now performing the duality product of 
(18) for ρ2λψ, and recalling that the operator

A is self-adjoint, we have

Adding the last 2 equations, we have

On the other hand, from (16) and (18), we 
have

Using the identity (24) in the (23) equation 
and simplifying, we get

Taking the real part, e applying the Cauchy-
Schwarz and Young inequalities and using the 
definitions of the F and U norm, we complete 
the proof of this lemma.

GEVREY’S CLASS
Definition 7 Let t0 ≥ 0 be a real number. A 

strongly continuous semigroup S(t), defined on 
a Banach space H, is of Gevrey class ν > 1 for t 
> t0, if S(t) is infinitely differentiable for t > t0, 
and for every compact set K ⊂ (t0, ∞) and each 
µ > 0, there exists a constant C = C(µ, K) > 0 
such that
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Theorem 8 ([27]) Let S(t) be a strongly 
continuous and bounded semigroup on a 
Hilbert space H. Suppose that the infinitesimal 
generator B of the semigroup S(t) satisfies the 
following estimate, for some 0 < ϕ < 1:

Then S(t) is of Gevrey class ν for t > 0, for 
every ν > 

Our main result in this subsection is as 
follows:

Theorem 9 The semigroup S(t) = eBt 
associated to system (3)–(5) is of Gevrey  for 

Proof: From the resolvent equation F = (iλI 
− B)U for λ ∈ R, we have U = (iλI − B)−1F . 
Furthermore to show (27) this is Theorem 8 it 
is enough to show:

 (28)

Next, we will estimate 

Let’s start by estimating the term  
We assume λ ∈ R with |λ| > 1, we shall borrow 
some ideas from [15]. Set w = w1 + w2, where 
w1 ∈ D(A) and w2 ∈ D(A0), with

Firstly, applying the product duality the 
first equation in (29) by w1, then by Aw1 and 
recalling that the operator A is self-adjoint, we 
have

In follows from the second equation in 
(29) that

then, as 

and 0 ≤ , taking into account the 
continuous embedding D(Aθ2 ) ‹→ D(Aθ1 ), θ2 
> θ1, we have

Using the exponential decay estimates (14) 
and estimative (30), considering |λ| > 1 as -1

,we have

Then

On the other hand, from w2 = w − w1, (19) 
and as τ

2 ≤  the inequality (30), we have
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Now, by Lions’ interpolations inequality 
for 0 ∈  we derive

Using (32) and (33) in (34), we have

Now, as , 
estimates (30) and (35) and as −2 ≤ we 
get

Finally, let’s now estimate the missing term 
 we assume |λ| > 1. Set v = v1 + v2, 

where v1 ∈ D(A) and v2 ∈ D(A0), with

Firstly, applying the product duality the 
first equation in (37) by v1, then by Av1 and 
recalling that the operator A is self-adjoint, we 
have

      (38)
In follows from the second equation in 

(37), that

then, as 

 

and σ −  ≤  ≤  , taking into account 
the continuous embedding D(Aθ2) ‹→ D(Aθ1), 
θ2 > θ1 and using (38) and −1 ≤ −  we 
have

then

On the other hand, from v2 = v − v1, (19) 
and as  ≤  the inequality (38), we have

Now, by Lions’ interpolations inequality 
Theorem 3 for 0 ∈  we derive

  (41)
Using estimates (39) and (40) in (41), we 

have

On the other hand, as 
 from 

inequality (38)

 (43)

Finally using the estimates (36) and (43) in 
the inequality of Lemma 6, we arrive at the

Therefore
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Finally from estimates(36), (43) and (45). 
We finish the proof of this theorem.

ANALYTICITY OF  FOR 

Theorem 10 (see [16]) Let S(t) = eBt be C0-
semigroup of contractions on a Hilbert space H. 
Suppose that

 (46)

Then S(t) is analytic if and only if

holds.
Before proving the main result of this 

section, we will prove the following lemma.

Lemma 11 Let δ > 0. There exists a constant 
Cδ > 0 such that the solutions of

(3)–(5) for |λ| ≥ δ satisfy the inequality

Proof: We will initially show the item (i) 
of this lemma, performing the duality product 
of (16) for ρ1A

−τ λw, and recalling that the 
operator Aθ is self-adjoint for all θ ∈ R, we 
obtain

Noting that:

taking real part and considering that ≤ τ 
≤ 1 using estimative (19) and using Cauchy-
Schwarz and Young inequalities, for ε > 0 
exists Cε such that

As 0 ≤  , then from estimative (19) 
v  2 ≤ Cδ  F H  U H. From the continuous 
embedding for |λ| ≥ 1, we finish the proof of 
item (i) of this lemma.

Again similarly, performing the duality 
product of (18) for ρ2A

−σλv, using (17), and 
recalling the self-adjointness of Aθ, θ ∈ R, we 
obtain

Noting that:  
taking real part and considering that 1 ≤ σ 
≤ 1 and using Cauchy-Schwarz and Young 
inequalities, for ε > 0 exists Cε such that

As . Considering 
|λ| ≥ 1 and using estimative (14), we finish the 
proof of item (ii) of this lemma.

The main result of this subsection is the 
following theorem
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Theorem 12 The semigroup S(t) = eBt 
associated to the system (3)–(5) is analytic 
when both parameters τ and σ vary by the 
interval [  , 1].

Proof: We will prove this theorem using 
Theorem (10), so we must prove the conditions 
(46) and (47).

Let us first check the condition (46) the 
Theorem(10).  It’is prove that iR ⊂ ρ(B) by 
contradiction. Since B is the infinitesimal 
generator of a C0−semigroup of contractions 
S(t),t≥0, from Theorem 4, B is a closed 
operator, and D(B) has compact embedding 
into the energy space H, the spectrum σ(B) 
contains only eigenvalues. Suppose that iR⊄ 
ρ(B). As 0 ∈ ρ(B) and ρ(B) is open, we consider 
the highest positive number λ0 such that the 
interval (−iλ0, iλ0) ⊂ ρ(B) then iλ0 or −iλ0 is 
an element of the spectrum σ(B). We Suppose 
iλ0 ∈ σ(B) (if −iλ0 ∈ σ(B) the proceeding is 
similar). Then, for 0 < ν < λ0 there exist a 
sequence of real numbers (λn), with 0 < ν ≤ λn 
< λ0, λn → λ0, and a vector sequence Un = (un, 
wn, ψn, vn) ∈ D(B) with unitary norms, such 
that

as n → ∞. From (21) for 0 ≤ τ ≤ 1 and 0 ≤ σ 
≤ 1, we have

In addition to the estimative (19) for 0 ≤ τ 
≤ 1 and 0 ≤ σ ≤ 1, we have

Consequently, Un  2 → 0. Therefore, we 
have Un  H → 0 but this is absurd, since  Un 
 H = 1 for all n ∈ N. Thus, iR ⊂ ρ(B). This 

completes the proof of condition (46) of the 
Theorem(10).

Finally let’s prove the condition (47), note 
that proving this condition is equiv- alent to 
showing, let δ > 0. There exists a constant Cδ > 
0 such that the solutions of (3)–(5) for |λ| ≥ δ 
satisfy the inequality

 (50)

It is not difficult to see that this inequality 
(50) follows from the inequalities of the 
Lemmas 6 and 11, so the proof of this theorem 
is finished.
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