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Abstract: Nondestructive in-line inspections 
become more and more common for 
assessment of pipeline integrity and fitness 
for purpose procedure. A standard practice 
includes a validation of the inspection data 
by comparison with direct nondestructive 
test data in selected sites after excavation. The 
comparison usually is on the type and size of 
defect and flaws. Once the data is validated, 
it can be used to evaluate pipeline integrity 
directly by some deterministic model. Some 
probabilistic model can predict the defect 
growth better and hence the future of pipeline 
integrity with more accuracy. Generally, this 
kind of models depend on the distribution 
of the in-line inspection measurement error, 
therefore this work is focused on the analysis 
of error distributions through 6 sets of in-line 
inspection data and direct non-destructive 
field measurement data. The Kolmogorov-
Smirnov test was employed for this analysis, 
and the distributions of Normal, Lognormal, 
Gamma, and Exponential were verified to 
obtain the best distribution. The final aim of 
the analysis is to offer evidence to develop a 
probabilistic model for prediction of corrosion 
rate.
Keywords: In-Line Inspection; Field 
Measurement; Lognormal distribution; Pits

HIGHLIGHTS

• Nondestructive in-line inspections 
data usually is on the type and size of 
defects.

• Comparison between inspection 
data and nondestuctive test data after 
excavation for a validation.

• Pipeline integrity can be predicted by 
probabilistic models.

• Probabilistic models need probabilistic 
distributions from the validation 
measurement error.

INTRODUCTION
Pipelines are considered the fastest, safest, 

and most economical means to transport 
hydrocarbons. To ensure safe transportation 
and distribution, pipelines are often buried 
exposed directly to corrosive soil [1, 2]. The 
main feature of the pipeline corrosion damage 
identified by various diagnostic tools is wall 
thickness losses due to general and pitting 
corrosion of the pipe steel. The wall damage of 
high-pressure gas or oil pipelines need to be 
controlled by their operators through integrity 
management [3, 4]. With the aging of pipeline 
infrastructure and the increasing economic 
and regulatory constraints, maintaining the 
integrity of pipelines becomes an area of 
increasing relevance for pipeline operators. 
Due to the complexity of most pipelines 
being buried, non-destructive testing 
(NDT) turns out to be the best method to 
evaluate the system. There is a wide variety of 
NDT’s, among which the In-Line Inspection 
(ILI) stands out, the ILI have a regulatory 
framework to validate the obtained data. ILI 
assessment (NACE SP0102-2017 Standard) 
is a non-destructive technique often used to 
establish a clear perspective of the inner and 
outer condition of the pipe using magnetic 
(MFL) or ultrasonic tools (UT) to identify 
and measure metal loss. The results of an ILI 
inspection are of central importance to define 
a maintenance policy [5-8]. However, this 
detection process goes beyond a threshold, 
which determines whether a defect is detected 
or not [9]. The API 1163 method can be 
used to validate the ILI data [10]. The data 
validation process is comparing an ILI data set 
with previous ILI data and/or excavation data 
[11, 12]. The data of the ILI’s tend to have a 
normal distribution, due to the Central Limit 
Theory in most cases, when the variables are 
independent and identically distributed [13]. 
Usually, the reporting precision regarding the 
depth measurement is around ±0.3 to ±0.6 



3
Journal of Engineering Research ISSN 2764-1317 DOI 10.22533/at.ed.3173202307065

mm for UT, and the confidence level is at 95% 
versus a level of 80% for MFL [14]. 

On the other hand, the corrosion rate has 
been studied with different models and theories, 
mainly with an electrochemical perspective, 
some in a deterministic way while others with 
a statistical and probabilistic approach [15]. 
Before the smart ILI technique appeared, the 
corrosion rate was used to be quantified by 
chemical and electrochemical analysis. The 
model developed by de Waard and Milliams 
[16] is the most frequently employed model 
in evaluating internal corrosion. Anderko 
model [17] has been developed to calculate 
the corrosion rates of carbon steels in the 
presence of CO2, H2S. The NORSOK model 
[18] is an empirical corrosion rate model for 
carbon steel in water at different temperatures, 
pH, CO2 concentration, and wall shear 
stresses. Deterministic models have been used 
to predict the corrosion rate through basic 
calculations using two or more ILI data, which 
does not consider factors affecting localized 
corrosion [19]. Probability and statistics can 
be more adequate method to analyze ILI data 
[20]. Some researchers have studied corrosion 
using a probabilistic approach. Papavinasam’s 
model [21] predicts internal pitting corrosion 
of oil and gas pipelines, the model accounts the 
statistical nature of the pitting corrosion and 
predicts the growth of internal pits based on 
the readily available operational parameters 
from the field. Caleyo et al. [22] carried out an 
analysis of the evolution of the underground 
pipeline’s structural reliability.

As the pipeline industry is increasingly 
focusing on the reliability/risk-based 
pipeline integrity management practice 
[23-25], it is desirable to understand the 
probabilistic characteristics of measurement 
errors associated with ILI-reported defect 
dimensions [26]. If two or more ILI data 
sets and field measurements are available on 
the same pipeline, then the rate prediction 

model can be updated by using Bayesian 
theory [27-29]. The objective of this study is 
to analyze the measurement error associated 
to the ILI-detected pitting depths and lengths 
to offer distribution model and evidence for 
developing a probabilistic corrosion rate 
prediction model based on one set or more 
sets of ILI data.

METHODOLOGY
In probability theory, a normal distribution 

is a type of continuous probability distribution 
for a real-valued random variable. The general 
form of its probability density function is [30]:

(1)

The normal distribution function has a 
parameter mean value µ and the standard 
deviation .

The lognormal distribution is used 
for a wide variety of applications. The 
distribution applies in cases where a natural 
log transformation results from a normal 
distribution. The continuous random variable 
X has a lognormal distribution if the random 
variable Y = ln(X) has a normal distribution 
with parameters λ and ξ. These parameters 
are related with the mean μ=exp(λ+ 1̅2  ξ

2) and 
standard deviation σ=μ(eξ2-1)1/2. The resulting 
probability density function of X is [30]:

(2)

A probabilistic model remains an 
abstraction until it has been related to 
observations of the physical phenomenon. 
These data yield numerical estimations of the 
model’s parameters and provide an opportunity 
to verify the model by comparing the 
observations against model predictions. The 
former process is called estimation. The latter, 
comparative, process includes verification 

https://en.wikipedia.org/wiki/Probability_theory
https://en.wikipedia.org/wiki/Continuous_probability_distribution
https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/Probability_density
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of the entire model, but more broadly it 
includes the search for significance in a batch 
of statistical data [30]. Having developed a 
model of the physical phenomenon leading 
to a proposed functional form (e.g., normal, 
lognormal) of the governing probability 
distribution. Subsequently, the parameters 
must be estimated and then the model can be 
validated. Both these processes, estimation 
and verification, require data for the 
resolution. No single sequence of observations 
in a finite number can be expected to give 
exact model parameter values, because the 
data itself is a product of the “randomness” 
which is characteristics of the phenomenon. 
One must be ready to accept a data-derived 
parameter value as an estimate of the true 
value, subject to an error of uncertainty 
but, not unquantifiable magnitude. A very 
common and most challenging problem is 
the assessment of significance in scattered 
statistical data. In this work, we concentrate 
on relatively simple model assumptions, test 
hypotheses, and treat the verification of the 
model or distribution. There are several ways 
of comparing the form of the model and the 
observed data, one of them is to plot each 
observation as a specific point side by side 
with the complete, continuous Cumulative 
Distribution Function (CDF) of the model. 
In practice, the comparison of cumulative 
curves can be simplified by scale changes, 
that is, through special plotting paper. It is 
so called probability paper. This probability 
paper provides properly scaled coordinates 
such that the cumulative distribution function 
of the probability plots as a straight line. In 
this paper, we considered normal, lognormal, 
exponential, and Gamma probability papers. 
To “test” a hypothesis is to conduct an 
experiment related to the state of nature. 
Based on the outcome of the experiment, 
to decide whether the hypothesis can be 
“accepted” or should be “rejected”. To accept 

a hypothesis does not mean the same thing 
to all investigators or all situations. It does 
not mean, in a statistical experiment, that 
the hypothesis is “proved” in any rigorous 
sense, because the data in a sample give only 
incomplete information about a population 
and can easily be misleading [31].

A test of a hypothesis is a rule that assigns 
one of the inferences accept it or reject it to 
each foreseeable result of an experiment. 
The hypothesis to be tested is called the null 
hypothesis, and the set of other states of nature 
or models admitted as possible for a given 
experiment is called the alternate hypothesis. 
The null hypothesis will usually be denoted by 
H0 and the alternative either by HA or by H1. 
Another way to verify that the data follows 
a distribution (e.g. normal, lognormal) is to 
subject the data to the Kolmogorov-Smirnov 
(K-S) test [31], which would indicate whether 
our hypothesis is to be accepted or rejected. On 
this work our null hypothesis is the data have 
a lognormal distribution, other researchers 
have also attempted to apply the distribution 
in their development of corrosion prediction 
models without a previous test [32], [33].

RESULTS AND DISCUSSION ON 
CASE STUDY
Six case studies, using ILI data and field 

measurements for corrosion defects in real 
pipelines, were carried out to establish the 
application of the model previously presented. 
From case 1 to case 4; the depths of pits were 
analyzed, and for the last two cases; the lengths 
of pits were studied.

CASE 1: A PIPELINE WITH 20” IN 
DIAMETER
A 78.4 km long pipeline has a nominal 

outside diameter of 508 mm (20 in) and a 
nominal wall thickness (WT) of 5.56 mm 
(0.21 in), which transports natural gas and was 
inspected three times in 2004, 2007, and 2009 
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respectively [34]. For this case, the 298 pits of 
field measurements and the three inspections 
using a MFL ILI tool were displayed in figure 
1. The difference between the maximum and 
the minimum values were significantly large. 
Also, it should be noted that the ILI tool tend 
to understimate the depths of the corrosion 
defects. 

The figure 2 (a), (b), (c) and (d) presented 
all the probability papers of the four differents 
probabilistic distributions for this case. It can 
be observed that the best fit is the lognormal 
distribution. What follows is to calculate 
through K-S test whether the lognormal 
distribution is the best fit for the data of case 
1 with 95% of confidency level. The model 
was applied and the probability paper with 
test parameters and results is shown in figure 
2(b) for the lognormal distribution, the results 
showed that the lognormal distribution was 
accepted, and the distribution has mean value 
of 1.70931 and standard deviation of 2.5323 
and the minimum rate was 0.10585, and the 
maximum rate was 30.1576.

CASE 2: A PIPELINE WITH 18² IN 
DIAMETER
A 110 km long pipeline transports crude 

oil. The diameter of the pipeline is 457.2 mm 
(18 in), and the wall thickness is 6.35 mm (0.25 
in). The inspection was carried out in 2010, 
the pipeline has between 35 and 42 years of 
service [35]. 40 pits data detected with an UT 
tool was used and are shown in figure 3. Here 
the UT tool underestimated the corrosion 
defects in the pipeline. In figure 4(a), (b), 
(c) and (d), the four probabilistic papers are 
plotted, and it showed that the data might 
have a lognormal or a Gamma distribution.

The outcome of the K-S test for the 40 pits, 
figure 4(b) demonstrates that the data prefer a 
lognormal distribution with a mean value of, 
a minimum value of 0.14575 and a maximum 
value of 10.27581 and almost all values are in 

the range except for one data point.

CASE 3: A PIPELINE WITH 28² IN 
DIAMETER
A segment of a 145 km long high-pressure 

gas pipeline, with an outside diameter of 
711mm (28 in) and nominal wall thickness of 
10.5 mm (0.41 in) [3] was analysed and the 
model was applied to 18 pits. The dimension 
of 18 pits is between 17 and 79 %WT for the 
field measurement and between 24 and 72 
%WT for the ILI measurement as shown in 
figure 5, the minimum value of the dataset is 
0.3832 and the maximum value is 39.2162, 
while the mean is 3.00012. According to the 
figure 5 the tool correctly detected most of the 
corrosion defects. a MFL tool was used for the 
ILI.

In figure 6(a), (b), (c) and (d), the four 
probabilistic papers are presented, the figure 
6(b) displayed that even though there are 5 
pits out of the minimum and maximum range, 
it still has a lognormal distribution. 

CASE 4: A PIPELINE WITH 36² IN 
DIAMETER
The oil pipeline has an external diameter 

of 914 mm (36 in) and wall thickness of 11 
mm (0.43 in). During the inspection a total 
of 42 internal pits were detected, localized, 
and sized [14]. The minimum, maximum and 
mean values are 0.0235, 12.442 and 1.6338, 
respectively for the dataset. Again, the MFL 
tool underestimated the corrosion defects in 
field, this affects to the probabilistic models 
due to the errors in measures. Not even the 
larger pits are well measured, this can be seen 
in figure 7. Three distributions may fit the 
dataset as shown in figure 8 (a), (b), (c) and 
(d).

The figure 8(b) shows that the data has a 
lognormal distribution where almost all the 
pits are within range through the K-S test.
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Fig. 1. Field and ILI measurement pitting depth for case 1.

Fig. 2. Probability paper of field and ILI measurement pitting depth rate for case 1: (a) Normal, (b) 
Lognormal, (c) Exponential, and (d) Gamma.
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Fig. 3. Field and ILI measurement pitting depth for case 2.

Fig. 4. Probability paper of field and ILI measurement pitting depth rate for case 2: (a) Normal, (b) 
Lognormal, (c) Exponential, and (d) Gamma.
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Fig. 5. Field and ILI measurement pitting depth for case 3.

Fig. 6. Probability paper of field and ILI measurement pitting depth rate for case 3: (a) Normal, (b) 
Lognormal, (c) Exponential, and (d) Gamma.
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CASE 5: A PIPELINE WITH 30² IN 
DIAMETER
The natural gas pipeline has an external 

diameter of 762 mm (30 in) and wall thickness 
of 12.7 mm (0.5 in) [26]. The ILI found 199 
defects as shown in figure 9. The minimum 
value was 0.0495, the maximum was 11.937, 
and the mean was 1.6301. The ILI tool 
overestimated the corrosion defects up to 11 
times its actual size. 

In figure 10(a), (b), (c) and (d), the 
four probabilistic papers are presented. 
The figure 10(b) shows the Kolmogorov-
Smirnov test result, which demonstrates that 
the distribution was lognormal for the case 
number 5 for pitting length. 

CASE 6: A PIPELINE WITH 28² IN 
DIAMETER
The pipeline is the same as in case 3, 

instead of pitting depths, the pitting lengths 
were analyzed [3]. The 18 pits are shown in 
figure 11 where the pitting lengths are in 
mm. The values for the case were as follows: 
minimum 0.3113, maximum 13.9991 and the 
mean 2.1317.

In figure 12(a), (b), (c) and (d), the four 
probabilistic papers are presented. For the 
case, the distribution accepted by the K-S test 
is a lognormal as shown in figure 12(b). 

The null hypothesis presented in this work 
was the lognormal distribution as a main 
probabilistic distribution, considering that 
data sets might not have a proper distribution 
or might have one or more distributions due 
to the number of items in those data sets, this 
work presented the null hypothesis is accepted 
in the six studied cases graphically and doing 
calculations with the K-S test.

To summarize, table 1 shows the different 
statistical values for the 6 studied cases. In the 
table it can be found that the different values 
for depth (case 1-4) and length rate (case 5 
and 6). The p-value changes according to the 

pitting number and numerical values.
As we mentioned above, a probabilistic 

model may be applied to these data sets to 
predict the damage evolution of the pitting 
depth and length. Related to it, the following 
probabilistic model can be proposed.

The measurement error in ILI’s can be 
defined as the difference between the actual 
and measured pitting dimension as such 
depth, which we will denote as ε, assuming 
data from ILI has a normal probability density 
function. Therefore, it can be defined the 
pitting depth as a random variable D1(t1) of 
the ith corrosion defect in inspection t1[36].

(3)

Given the probability density function of 
the measurement error and according to the 
probability theory, the normalized probability 
density function of the depth D1(t1) is,

(4)

Where w0 is equal to the wall thickness 
and the indicators are equal to one when 

w0. On the 
other hand, if ε is defined as quotient of the 
real depth divided by the ILI measured depth, 
damaged-associated probability would be 
null. The random variable of depth of the 
ith corrosion defect at inspection time t1 is 
defined by [37]:

(5)
Where the random variable k is lognormal. 

Probability density function of the ith damage 
depth is given by:



10
Journal of Engineering Research ISSN 2764-1317 DOI 10.22533/at.ed.3173202307065

Fig. 7. Field and ILI measurement pitting depth for case 4.

Fig. 8. Probability paper of field and ILI measurement pitting depth rate for case 4: (a) Normal, (b) 
Lognormal, (c) Exponential, and (d) Gamma.
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Fig. 9. Field and ILI measurement pitting length rate for case 5.

Fig. 10. Probability paper of field and ILI measurement pitting length rate for case 5: (a)Normal, (b)
Lognormal, (c) Exponential, and (d) Gamma.



12
Journal of Engineering Research ISSN 2764-1317 DOI 10.22533/at.ed.3173202307065

Fig. 11. Field and ILI measurement pitting length rate for case 6.

Fig. 12. Probability paper of field and ILI measurement pitting length rate for case 6: (a)Normal, (b)
Lognormal, (c) Exponential, and (d) Gamma.

Case Minimum value Maximum value Mean value Standard Deviation p-Value Distribution

1 0.1058 30.1576 1.7093 2.5323 0.4622 lognormal

2 0.1457 10.2758 1.7539 2.3660 0.7194 lognormal

3 0.3832 39.2162 3.0001 9.0442 0.0825 lognormal

4 0.0235 12.4420 1.6338 2.2297 0.3610 lognormal

5 0.0495 11.9370 1.6301 1.9031 1.0000 lognormal

6 0.3113 13.9991 2.1317 3.9574 0.9342 lognormal

Table. 1. Statistical information of the cases under study
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(6)

The probability density function of the 
equation (6) avoids the artificial truncating 
issue of normal distribution function for 
pitting depth of less than 0 and greater than 
wall thickness, which allows for the corrosion 
prediction probabilistic model based on it to 
be more reliable and accurate.

CONCLUSIONS
In this work, six sets of in-line inspection 

data and direct non-destructive test data in 
excavation sites were gathered and an analysis 
were performed by The Kolmogorov-Smirnov 
test to establish an adequate distribution 
on the in-line inspection data error, which 
were expressed as the rate of non-destructive 
direct measurement in excavation sites for 
some selected verified pitting locations on 
right of way and the in-line inspection pitting 
dimensions. Some candidate distributions 
such as Normal, Lognormal, Gamma, 
and Exponential were used to verify the 
adequate distribution. It aims to finally 
develop a probabilistic model for prediction 
of corrosion rate. It can be concluded that 
the assumption that lognormal distribution 
is more adequate for all the data set under 
study when the field and ILI rate is employed 
for the error distribution analysis. Certainly, 
it cannot be regarded that the Lognormal is 
always adequate for all data set. It is suggested 
that a good practice for establish an adequate 
distribution of in-line inspection error is 
to test it for each ILI equipment and to find 
out if the data collected from the ILI’s have a 
Lognormal or some other distribution. This 
way the subsequent developed prediction 
model of damage growth is specifically for the 

ILI data and hence it may be more accurate for 
the prediction of corrosion pitting growth and 
the assessment of the pipeline integrity and 
corresponding fitness for purpose procedure. 
An own corrosion prediction model for each 
pipeline based on the own distribution of in-
line inspection data error is a tendency for 
modern pipeline maintenance, a general use 
prediction model cannot provide the same 
reliability and accuracy.
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