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ABSTRACT: Nitrogen (N) fertilizer 
recommendation tools are vital to precise 
agricultural management. The objectives 
of this research were to determine how 
many variables and remote sensor data 

are needed to prescribe N fertilizer in 
corn (Zea mays L.), PFP (partial factor 
productivity), and yield integrating remote 
sensing and soil sensor technologies. The 
variables of this work were NIR, Red, Red-
Edge wavelengths, plant height, canopy 
temperature, LAI (leaf area index), and 
apparent soil electrical conductivity (ECa). 
Random Forest Classifier was used to 
select the best input to estimate N rates, 
PFP, and corn yield. A confusion matrix was 
used to identify the accuracy of the Random 
Forest Classifier to detect the best inputs to 
estimate for which input we evaluated in this 
work. According to Random Forest, the best 
inputs to estimate the N rate and PFP were 
Red-Edge, Red, and NIR wavelengths, 
plant height, and canopy temperature. For 
estimate corn yield were: NIR wavelengths, 
N rates, plant height, Red-Edge, and canopy 
temperature.
KEYWORDS: Active sensor, Random 
Forest, remote sensing, corn, yield estimate.

1 |  INTRODUCTION
By the year 2050, it is estimated that 

agricultural production levels will have to 
double to meet the rising level of population 
growth (FOLEY et al., 2011; THE ROYAL 
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SOCIETY, 2016; NARVAEZ et al., 2017). This way, strategies must be created to meet 
sustainability demands, food security (produce food for everybody), and governance. Thus, 
the application of tools that support agricultural management has been gaining more and 
more prominence. That said, developing remote sensing technologies (e.g., sensors) is now 
considered one of the most effective tools for crop monitoring.

Several studies have applied remote sensing as a data acquisition tool for fast, 
profitable, and economically elaborating solutions in this context. Determination of crop 
yields is an essential information for crop field management. Measure the variability in 
greenness is one method to use in the field, to estimate crop yield, by using the greenest 
area within the field as the N non-limiting standard (HOLLAND and SCHEPERS, 2010).
Considering this way, the integration of machine learning techniques (e.g., random forest 
(RF), artificial neural network(ANN)) are generally used for estimating crop yield out of 
remote sensing data as data-driven models.

The main objective of this experiment was to determine how many variables and how 
many remote sensor data are needed to prescribe N fertilizer in corn, PFP (partial factor 
productivity), and yield integrating remote sensing and soil sensor technologies.

2 |  MATERIAL AND METHODS
The experiment was conducted during 2019-2021 continuous corn growing seasons 

at the Louisiana State University Doyle Chambers Central Research Station, Baton Rouge, 
LA, 30.365°N, -91.166°W. The soil type are Cancienne silt loam and Thibaut silt clay. The 
experimental design was a latin square with 4 replications (0, 45, 90, 180 kgNha-1). Proximal 
sensing data were collected with a Phenom (ACS430®plus DAS43X® sensors)  active crop 
canopy sensor of Holland Scientific®. 

This sensor collects reflectance data in Red (670 nm), Red-Edge (730 nm), and NIR 
(near-infrared , 780 nm) wavelengths as well as automatically calculated NDVI and NDRE. 
Additionally, the Phenom sensor system also calculates LAI (leaf area index), and CCC 
(Canopy Chlorophyll Content) using empirical relationships with spectral bands(CUMMINGS, 
et. al., 2021), as presented on Table 1.

Table 1: Parameters calculated by Phenom Sensor®

*Where a, b, c, d and k are scaling constants.
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Biophysical characteristics as plant height, canopy temperature, were also obtained 
from V6 to tasselling growth stages. Apparent soil electrical conductivity was obtained with 
a GSSI EMP 400 Profiler®sensor using 5, 10, and 15 kHz main frequency as a proxy of soil 
fertility status. During several corn growth stages (from V6 to tasselling), this experiment was 
mapped using Profiler® and Phenom® sensors. Random forest analysis using the R package 
(caret) was performed to classify the importance of each variable plays in estimating the N 
rates. In addition, Table 2 details the hyperparameters used for Random Forest Classifier.

Classification model Hyperparameters Candidate values Variables estimates

RFC

ntree 300

For N rates, PFP, and yield
mtry 8

proximaty True
importance True

Type of random forest Classification

RFR

Random state 0

N rates
(Top 12)

Max_features sqrt
N_estimators 7
Max_depths 6

Criterion squared_error
Min_samples_leaf 4
Min_samples_split 2

Verbose 0
Bootstrap False

Random state 0

N rates
(Top 5)

Max_features sqrt
N_estimators 9
Max_depths 4

Criterion squared_error
Min_samples_leaf 6
Min_samples_split 2

Verbose 0
Bootstrap False

Random state 0

PFP

Max_features sqrt
N_estimators 9
Max_depths 5

Criterion squared_error

Min_samples_leaf 2

Min_samples_split 5
Verbose 0

Bootstrap False
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Random state 0

Yield

Max_features sqrt
N_estimators 10
Max_depths 6

Criterion squared_error
Min_samples_leaf 24
Min_samples_split 2

Verbose 0
Bootstrap False

Table 2.  Hyperparameters using Random Forest Classifier (RFC) and Regressor (RFR).

3 |  RESULTS

3.1 Machine learning to estimate N rates, PFP, and yield
Random Forest Classifier was used to select the best input to estimate N rates 

(Figures 1 a and 1 b), PFP (Figure 1 c), and corn yield (Figure 1 d). The inputs used 
were:GSSI Profiler EMP400® (soil electromagnetic induction sensor) at 5, 10, and15 kHz 
frequencies, NDVI, NDRE, NIR, Red and Red-Edge wavelengths, LAI, CCC, AIR_TMP 
(air temperature), RH (relative humidity), CAN_TMP (canopy temperature), I_PAR and 
R_PAR (incident and reflected photosynthetically active radiation), PRES (pressure),CH1 
(chlorophyll a), and CH2 (chlorophyll b).

According to RFR (Random Forest Regressor), were selected the twelve (Figure 
1a) and five (Figure 1b) inputs to estimate N rate. It was observed that the coefficient of 
determination (R2) showed adifference of 0.15, indicating that to determine the N rate to be 
used, the producer do not need several inputs for your fertilizer application. In this case, it 
wasrequired to use just parameters as Red-edge, Red, and NIR wavelengths, plant height, 
and canopy temperature. In addition, we can see the accuracy from RFC the difference 
was very low (0.03), these results were greater for farmer because to facilitate to their to 
collection data and decision making. 

PFP (Partial Factor Productivity)estimate, the top five inputs select for these inputs 
were: red-edge, red, nir, canopy temperature, plant height. For and corn yield estimate, the 
best five variables were: nir, N rate, plant height, red-edge, and canopy temperature.

The wavelengths got greater results than other inputs mainly red-ege, red, and nir to 
estimate N rate, PFP, and corn yield.
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(a)

(b)

(c)

(d)

Figure 1. Random Forest Classifier to select the best inputs to estimate N rates (a anb b), PFP - partial 

factor productivity (c), and corn yield (d).
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3.2 Random Forest Model Accuracy Validation
Confusion matrix was used to identify the accuracy to Random Forest Classifier to 

detect what the best inputs to estimate for which input that we evaluated in this work. For 
the best accuracy was yield estimate. 

Predicted
Validation Data (Number)

Accuracy (%) Overall Statistic
A B C D E

Top 12 for Nitrogen rates

A 19 6 3 3 1 72.52 Accuracy 0.5191

B 5 18 4 1 2 68.70 95% CI (0.4301, 0.6072)

C 0 4 8 5 3 30.53 No Information Rate 0.2214

D 2 0 5 11 8 41.98 P-Value [Acc> NIR] 9.718e-14

E 0 1 3 7 12 45.80 Kappa 0.3975

Top 5 for Nitrogen rates

A 18 7 3 3 2 0.6870 Accuracy 0.4885

B 5 17 3 0 3 0.6489 95% CI (0.4003, 0.5774)

C 0 2 7 7 3 0.2672 No Information Rate 0.2214

D 2 1 2 11 7 0.4198 P-Value [Acc> NIR] 1.653e-11

E 1 2 8 6 11 0.4198 Kappa 0.3596

Top 12 for Partial Factor Productivity (PFP)

A 10 0 4 4 0 38.17 Accuracy 0.5344

B 6 13 6 3 2 49.62 95% CI (0.4452, 0.6219)

C 1 7 11 2 0 41.98 No Information Rate 0.2214

D 3 2 5 15 3 57.25 P-Value [Acc> NIR] 6.227e-15

E 8 0 3 2 21 80.15 Kappa 0.4199

Top 13 for Yield

A 23 7 1 0 0 87.79 Accuracy 0.6107

B 7 14 7 0 1 53.44 95% CI (0.5216, 0.6946)

C 0 5 12 4 1 45.80 No Information Rate 0.2366

D 1 0 4 16 7 61.07 P-Value [Acc> NIR] < 2.2e-16

E 0 0 0 6 15 57.25 Kappa 0.5118

Table 2. Confusion matrix parameters from Random Forest Classifier to estimate N rates, PFP, and N 
rates.

3.2.1 Comparison of metric parameters among variables estimated as 
N rates, PFP, and yield

Yield estimate (Figure 2) had more range variable than N rates and PFP due to yield 
was affect many factors as harvest machine, labor, weather conditions, crop, soil conditions, 
area topography and other.
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Figure 2. Metrics parameters from Random Forest Regressor using MAPE, RSME, and R2 to estimate 
N rates, PFP, and yield.

4 |  DISCUSSION
The main challenge nowadays is to produce food the sustainable ways. To reduce 

excess nitrogen application, we can use remote sensing tools to verify the variables 
present within the field to allow applying the right rate and place according to the crop 
demand. Furthermore, remote sensing is increasingly used for more sustainable production 
in agriculture, in addition to helping the farmer to support decision-making quickly and 
assertively.

PFP offered a betterway to monitor how much the farmer has increased kg grain per 
N applied. This information allows farmers to apply the N rate level precisely according to 
crop needs and consequently have a low environmental impact, reduce cost, and increase 
yield.

5 |  CONCLUSIONS
The use of Random Forest established that the best inputs to estimate N rate and 

PFP were Red-Edge, Red, and NIR wavelengths, plant height, and canopy temperature. 
To estimate corn yield, the best inputs were: NIR wavelengths, N rates, plant height, Red-
Edge, and canopy temperature.
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