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Abstract: The problem of index coding 
subject to transmission errors was initially 
considered by Dau et al. [5]. In this work we 
establish a connection between index coding 
and error correcting codes, through the tree 
construction for nested cyclic codes proposed 
in [3]. We implemented the tree construction 
algorithm in Matlab language, which helped 
to solve some implementation problems 
found in [3]. We verified that for cyclic 
codes there will not always be an increase in 
the error correction capability between the 
levels of the tree. This is why we restricted 
this study, initially, to Reed-Solomon codes, 
since they are MDS codes, which guarantees 
an increase in Hamming distance at each level 
of the tree. This means that, under certain 
conditions, the knowledge of side information 
will be interpreted as an increase in the error 
correction capability of the decoder.
Keywords. Index Coding, Side Information, 
Error Correcting Codes, Finite Fields.

INTRODUCTION
The classic noise-free index coding problem 

consists of a sender with k independent 
messages w1,...,wk and a broadcast channel 
with multiple receivers, where each receiver 
demands a subset of messages, while knowing 
the values of a different subset of messages as 
side information. Let R1,...,Rn be n receivers and 
suppose that Si represents lateral information 
and Di the demand of receiver Ri, where Si, Di 
⊂ {1,...,k}. The goal is to find a coding scheme, 
called index coding, that satisfies the demand 
of all receivers and uses a minimum number 
of transmissions.

We considered the specific case of index 
coding for noisy discrete broadcast channels, 
where all receivers demand all messages from 
the source, i.e., Si U Di = {1,...,k}. Given this 
model, the possibility arises of designing error 
correcting codes whose mapping of messages 
into codewords is such that the decoder can 

increase the Hamming distance in a receiver 
that has prior knowledge of the values of some 
subset of the messages as side information.

We are assuming that the sender is 
unaware of the subset of messages already 
known to the receiver and performs encoding 
so that any possible side information can be 
efficiently used in the decoder. The notion 
of multiple interpretation was introduced in 
[9], showing that the greater the amount of 
lateral information available in the receiver, 
the greater the error correction capacity in 
decoding. Constructed codes must also be 
error correcting codes for index coding when 
the receiver has no side information, i.e., 
when Di=ø. 

The index coding technique presented here 
is given by the tree construction of nested cyclic 
codes proposed in [3]. We restrict ourselves 
to the Reed-Solomon codes because they are 
MDS (maximum separation distance) codes, 
which guarantees an increase in the Hamming 
distance at each level of the tree. This means 
that, under certain conditions, knowledge of 
lateral information will be interpreted as an 
increase in the error correction capability of 
the decoder.

PRELIMINARIES
INDEX CODING WITH SIDE 
INFORMATION
The goal of the index coding is to perform 

a joint encoding of the messages of all users, in 
order to simultaneously meet the demands of 
all receivers, while transmitting the resulting 
message at the highest possible rate. Please see 
[2] for an in-depth look at index coding.

Below we present the model through an 
example. Consider the wireless communication 
system shown in Figure 1. Receiver Ri is 
requesting the message  and 
knows other messages as side information; 
In particular, receiver 1 knows w3 as side 
information, receiver 2 knows w1 and w3, and 
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receiver 3 knows w1 and w2. The server wants 
to send messages to receivers using as few 
transmissions as possible.

Figure 1: Index coding with three receivers.

Assuming a noiseless broadcast channel, 
the server would communicate all messages by 
sending one at a time, in three transmissions. 
Alternatively, when transmitting the two 
coded messages: w1 ⊕ w3 and w2, each receiver 
can retrieve their demands message using the 
received coded messages and available side 
information as seen below:

A TREE CONSTRUCTION WITH 
NESTED CYCLIC CODES
The tree-based algebraic construction of 

nested cyclic codes, proposed by Barbosa and 
Costa [3], aims to:

i) Encode, independently, different data 
packets, providing protection against 
channel errors;

ii) Encode different data packets 
producing codewords that are added 
resulting in the packet C0;

iii) Correct the errors on C0 and, finally, 
recover the data in the receiver by 
polynomial operations.

NESTED CYCLIC CODES
A nested code is characterized by a global 

code where each element is given by a sum 

of codewords, each belonging to a different 
subcode. That is, 

where ⊕ represents an XOR operation.  For 
an information vector iℓ,1≤ℓ≤N,  the codeword    
iℓ Gℓ belongs to a subcode Cℓ of code C and c 
∈ C.

Nested cyclic codes, whose subcodes are 
generated by generator polynomials, were 
originally proposed by Heegard [6], were 
originally called under the term of partitioned 
linear block codes and can be defined as 
follows:

Let C={C(x)∈Fq[x);g(x)|C(x)} be a t-error 
correcting cyclic code having g(x) as the 
generator polynomial. Note that C=�g(x)� is 
an ideal of the ring Rn=𝔽q[x]/(xn-1), but is also 
a vector subspace of 𝔽n

q , so we can write:

where Cℓ(x)=pℓ(x)gℓ(x),1≤ℓ≤N, is an 
encoded packet belonging to the tℓ-error 
correcting subcode

Generated by gℓ(x) and satisfying the 
conditions:

1)
2)

THE TREE CONSTRUCTION METHOD
Consider a tree in which root node is 

associated with the vector subspace of an 
encompassing error correcting code. Set the 
root node of the tree to be the code C such 
that:

This subspace corresponds to a t0-cyclic 
error correcting code Ci0(n, kio), generated by 
the polynomial gi0(x).

A tree of nested cyclic codes is a finite tree 
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such that satisfies the conditions:
1)Each inner node (including the root 
node) can be subdivided into another 
inner node and a terminal node;

2)The jth inner node is associated with a 
linear subspace Cij⊂Fn

q  of dimension kij 
and can be subdivided into the subspaces 
as follows:

3)All subspaces associated with the inner 
nodes must be cyclic linear block codes 
defined by a generator polynomial;

4)If  
Então  Furthermore, 

 to any ;

5)To conclude, the last inner node will 
have no ramifications. 

If pj(x) the data packet associated with the 
terminal node, for 1≤j≤T. The encoding is 
given by:

Then, the encoded packets are summed up 
and the resulting codeword is sent out by the 
transmitter

TREE CONSTRUCTION: 
ALGORITHM AND 
CONSIDERATIONS
We describe a few algorithms in Matlab 

and considerations for fitting to the model 
of Tree Construction, which can be found 
at [1], allowing to perform the calculations 
on finite fields by making the appropriate 
transformations from integer representation 
to powers of α, based on Table 1. Below, we 
exemplify the main idea of the algorithm.

Exemple 1. For T=3 is Ci0(7,5) be a Reed-
Solomon code in GF(8) and kt1=kt2=2 the 
dimensions of subspaces Ct1=Ct2, respectively. 
The last node associated with Ci2 of dimension 
ki2=1. The packages p1(x)=x+α2, p2(x)=α3x+α 
are associated with terminal nodes and 
both have length 2, the package p3(x)=α5 is 
associated with the last node and has length 1.

Figure 2: Tree Construction.

Let α be the primitive element of GF(8), 
then the generator polynomials are:

Consider the packages 
 and 

 according to Table 1. Coding the 
packets, we have:

Then, the codeword to be transmitted is 
given by:
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Power of α GF (8) Element Binary Integer

0 0 000 0

1 1 001 1

 α x 010 2

α2 x2 100 4

α3 x+1 011 3

α4 x2+x 110 6

α5 x2+x-1 111 7

α6 x2+1 101 5

Table 1: Construction of a Galoi field: GF(8)

Considering tree construction based on 
Reed-Solomon codes and assuming that the 
receiver has side information available, when 
will there be an increase in error correction 
capability? 

Proposition 1. Due to the nesting structure, 
the variable error correctability characteristic 
can only be observed if there is a sequential 
removal of the packets associated with the 
nodes from the root to the top of the tree.

Demonstration. Suposing that Cℓ(x),1≤ℓ≤T, 
is the first coded packet  known at the receiver, 
then

therefore,  whose error 
correction capability is t0. Note that even 
though the receiver knows about other 
packages  the result does not 
change. On the other hand, if all packages 

 are known to the receiver, we 
can write:

thus,  whose error 
correction capability is is tℓ≥t0, equality occurs 
only when 

We analyze two cases of tree construction of 
nested cyclic codes, with the same parameters 
at each level.  In one of them we observe no 
increase in the error correction capability 
from the second to last internal node of the 
tree. This is due to the variety of possibilities 
of generating polynomials for a cyclic code of 
parameters (n, k). As a result, we demonstrate 
in Proposition 2, that for Reed-Solomon 
codes this feature of increasing capacity will 
be guaranteed provided that:

Exemple 2. Let Ci0(15, 10) be a cyclic code 
in GF(2) and kt1=4, kt2=2 be the dimensions of 
the subspaces Ct1, Ct2 respectively. The last node 
is associated with Ci2 with dimension ki2=4. 

We consider the factorization: 

Figura 3: Tree construction.
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Case 1. Consider the generator 
polynomials: 

Note that there was an increase in the error 
correction capacity at each level of the tree, 
which does not occur in the following case.

Case 2. Now consider the following 
generator polynomials:

Proposition 2. Given a (n, k) Reed-Solomon 
code, which has minimum distance d=n-k+1, 
it is possible to guarantee an increase in error 
correction capability at each level of the tree as 
long as 

Demonstration: We must prove that 
 Without 

loss of generality, set j=0. If  
then, we can write:

CONCLUSIONS
This work considers index coding from the 

construction of nested cyclic codes. After the 
error correction phase the jth packet pj(x) is 

decoded by the operations:

The information will be contained in 
the remainder of the division of C0(x) by 
gij(x), since the modulo operation eliminates 
the influence of all messages related to 
polynomials of degree equal to or greater 
than the degree of gij(x). Thus, the quotient 
of the final division operation provides the 
desired information, since all other messages 
have degree less than the degree of the divisor 
polynomial.  Therefore, in the case of the 
last package, only the division operation is 
required. In summary, the modulo operation 
removes the branches above the node of 
interest and the division operation removes 
the branches below.  Therefore, no side 
information is needed at the receiver in order 
to recover the data packets. 

The verification that for cyclic codes there 
will not always be an increase in the error-
correction capacity between the levels of the 
tree, as considered in [3], leads us to search 
for answers on how to correctly choose the 
generating polynomials for a parameter code 
(n, k) and its subcodes, in order to guarantee 
subcodes with larger Hamming distance, to 
the point of observing an increase in the error-
correction capacity between the levels of the 
tree.  A method for construction of chains of 
some linear block codes while maintaining 
the minimum distances (of the generated 
subcodes) as large as possible is presented in 
[8] and may be the answer to this quest.
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