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Abstract: The tropical climate of the 
metropolitan region of Rio de Janeiro is 
especially susceptible to air pollutants such 
as Ozone and Particulate Matter, which are 
directly connected to serious cardiopulmonary 
illnesses. The goals of the present work were: 
to explore the local meteorological data to 
find useful patterns among the information 
and to exam the performance of an ensemble 
model of Recurrent Neural Networks on 
the prediction of daily maximum pollutant 
levels. The analyzed dataset is provided by 
the Rio de Janeiro local government and it 
is composed by hourly-levels for pollutants 
and meteorological features from eight 
different locations. The Spearman correlation 
test among the variables of different stations 
showed that adjacent locations have similar 
data, with values up to 95% of correlation 
depending on the examined variable. The 
experiments showed that the ensemble model 
has superior performance to simpler models 
in 3 out of 4 studied scenarios.
Keywords: Air-Quality, Recurrent Neural 
Networks, Computer Systems. Environmental 
Engineering.

INTRODUCTION
According to the World Health 

Organization (WHO) [1] since 2018, 4.1 
million people have died from air pollution-
related diseases. 91% of these deaths occurred 
in third-world countries like Brazil. The fast 
industrial development of these nations is 
associated with big climate changes, which 
make these areas essentially vulnerable to 
this kind of misfortune. In this scenario, the 
tropical climate of the metropolitan region 
of Rio de Janeiro seems to be particularly 
susceptible to air pollutants that are directly 
linked to cardiopulmonary illnesses. Therefore 
air quality monitoring technologies must be 
able to precisely forecast extreme events.

Previously Ghoneim et al. [2], Luna et al. 

[3] and Li et al. [4] tested the performance of 
classical models such as Feed-Forward Neural 
Networks and Support-Vector Machines 
(SVM) on the task of predicting hourly Ozone 
and Particulate Matter levels, acquiring 
reasonable results. Nevertheless given the 
nonlinear nature of the meteorological data, 
classical methods for statistical forecast might 
not have satisfactory performance on the 
aforementioned task.

In order to better learn the intricacies 
among air-quality data, the literature 
recommends employing more robust time-
series specific models, such as Recurrent 
Neural Networks (RNN). Kok et al. [5], Fan 
et al. [6], Li et al. [7], Bui et al. [8], Sak et al. 
[9], Pardo and Malpica [10], Wang et al. [11], 
Navares and Aznarte [12] applied Long-
Short Term Memory (LSTM) on the task 
of prediction of hourly-pollutant levels in 
several cities around the World. This variant 
of RNN has the capacity of leaning the long 
term dependencies amongst time-series data 
and showed very promising results in many 
different fields. However when employed 
with air-pollution data the LSTM seems to 
increasingly lose performance when it comes 
to predict 4 hours ahead and above. 

Once short time spam predictions would 
have no practical use, Hossain et al. [13] 
proposed using RNN and its variants to 
forecast maximum daily levels for each 
pollutant. To further increase the accuracy 
of the predictions given by the RNN, Du 
et al. [14] and Zhang et al. [15] suggested 
ensembling LSTM and Convolutional Neural 
Networks (CNN) so each neural network 
would be in charge of learning different facets 
of the data.  

With that in mind, in its initial stages the 
present work proposes an ensemble model, 
using three different recurrent-type neural 
networks for the task of prediction of daily 
maximum pollutant levels. Supposedly 
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in all of the previously mentioned works, 
it would be necessary to train one model 
to forecast each different variable, which 
could be impractical with large datasets. To 
solve this issue and to better understand the 
performance of the proposed models, the 
current work used the multiple-input and 
multiple-output technique, so the model will 
provide predictions to all the variables of the 
studied dataset at once. 

The contributions of this work are:
1. a clear guide on how to transform 
the air-quality data to obtain more 
meaningful forecast results with neural 
networks. 

2. an underexplored technique to provide 
predictions to all the features from the 
data at once, which could potentially 
produce a lighter model in production.

3. a thorough investigation of the 
evidence that local nearby air-quality 
stations have similar data.

4. an investigation of several neural 
network architectures that will lead to 
a deep learning architecture in future 
works.

5. an ensemble of neural networks 
that outperforms single networks on 
forecasting air-quality daily levels.

OBJECTIVES
The objective of this work is to employ 

data mining techniques to understand the 
patterns amongst de air-quality data of the 
metropolitan region of Rio de Janeiro. The 
exploratory data analysis will be used to 
plan an alert-system that will warn the local 
population about possibly harmful pollution 
levels.

METHODOLOGY

Figure 1 Location of the air-quality collect 
stations

DATA DESCRIPTION
The raw data is composed by information 

collected over the last 10 years in eight 
different districts: Centro, Copacabana, 
São Cristóvão, Tijuca, Irajá, Bangu, Campo 
Grande e Pedra de Guaratiba. Each air-quality 
station can collect hourly levels of Carbon-
Monoxide (CO), Particulate-Matter (PM10 
and PM2.5,) Ozone (O₃), Sulfur-Dioxide 
(SO₂), and Nitrogen-Oxides (NOx). The same 
data set also provides hourly variations for 
wind speed, wind direction, solar radiation, 
rainfall, relative humidity, temperature, and 
atmospheric pressure. The UTM coordinates 
of all the stations are also part of the set.

All of the stations had missing data issues 
that had to be corrected before its usage. It’s 
possible to notice that some of the data collect 
locations are geographically closer than 
others. The next stage of the work was to find 
out if the nearby stations had similar enough 
data, so it could be used to fill-in missing 
adjacent station values.

SPEARMAN CORRELATION AND 
MISSING VALUE TREATMENT
The following figures show the Spearman 

Correlation coefficient among the same 
pollutants in different locations. The values 
vary between -1.0 (color blue) for complete 
inverse correlation and 1.0 for complete 
direct correlation. Some variables are absent 
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in certain stations so it is omitted from the 
graphs.

Figure 2 Spearman correlation levels for SO2

Figure 3 Spearman correlation levels for CO

Figure 4 Spearman correlation levels for O3

Figure 5 Spearman correlation levels for PM10

It is possible to notice from the figures 
above that apparently the closer the collect 
stations are from each other, the more directly 
correlated is the data. From the Figure 1 it is 
noticeable that there is a cluster of stations 
formed by Tijuca, São Cristóvão, Centro and 
Copacabana. The missing values treatment 
proceeded taking it into account, as it is 
explained ahead. Once the other four stations 
are too far from each other, the current 
work continued only with the data from the 
aforementioned cluster.

The filling of missing values followed the 
Inverse Distance Weighting technique as 
seen in [16] and more recently in [17]. In 
this relatively underexplored method, the 
blank values are obtained in according to the 
following formula:

Where:
xA: value for a variable from the dataset A 

at a given time 
xN: value  for a variable from the dataset N 

at a the same given time 
dAN: distance between the stations A and N
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MULTIPLE-INPUT AND MULTIPLE 
OUTPUT METHOD
Given the nature of the multivariate 

time-series, the most common approach for 
building forecast models seems to be training 
one neural network to predict each variable 
separately. Petersen et al. [18] suggested that 
modern neural networks might be capable of 
forecasting multiple variables at once without 
any loss of performance. The main difference 
between this method and the previous one 
is that instead of outputting a single value, 
the model will provide a vector containing 
predictions for each variable served as input. 

After the preparation stage, the data 
set for each station contained 12 variables, 
six meteorological and six related to air-
pollutants. The input vector will contain data 
from the last seven days and will forecast the 
maximum levels for the next day. With that in 
mind, the input vector will have the shape (84 
x 1), 12 variables times 7 days, and the output 
vector will have the shape (12 x 1) containing 
one prediction for each variable served as 
input to the model.  

CROSS-VALIDATION FOR TIME-
SERIES DATA
Cross-Validation is an established method 

to acquire better generalizing models. Besides 
preventing over fitting of the trained neural 
network, this technique is supposedly a more 
reliable way to evaluate its performance, once 
the final error obtained by it is an average of 
k-values.

Once time-series data has a sequential 
nature, classical methodologies for Cross-
Validation are not easily applied to it. It is not 
possible to randomly associate data to the 
training and test sets, since it could violate 
its sequential configuration, and it would not 
make sense to use future values to forecast the 
past.

Cerqueira et al. [19] and Schnaubelt [20] 

presented several attempts to overcome this 
limitation and apply the Cross-Validation 
technique to time-series data.  One of the 
exposed methods is the Time Series Split. Its 
main idea is to split the data set in two blocks, 
a training block and a test block, in each 
training iteration (fold), always maintaining 
the test block ahead of the training block, 
which will be increased at each time, as shown 
in the following figure. All the models of the 
present work were trained with 5-fold Time 
Series Split Cross-Validation technique.

Figure 6 Time Series Split Cross-Validation 
sche

RECURRENT NEURAL NETWORKS 
In a classical neural network, also known as 

Feed-Forward (FNN), each layer is composed 
by neurons and the connections between 
these unities always follow the same direction. 
A Recurrent Neural Network (RNN) is a 
variant of FNN that possess cyclical nature. In 
a RNN each neuron has also a self-connection 
that allows a type of memorization of the data 
input, so it will have influence over the output 
of the network.

The inference process of a RNN with one 
input layer containing I neurons, one hidden 
layer with H neurons and one output layer 
containing K neurons, where the input of the 
neural network is as sequence X of length T, is 
given by the formula:
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Where:
x t

i : value for the ith dimension on timestep 
t

wij: weight between neuron i and j
ɑ t

h : input of neuron j at timestep t
b t

h : ativation of neuron j at timestep t
θh: activation function of neuron h
In a FNN the model training is executed 

in according to the basic Back Propagation 
algorithm (BP). However, once the RNN has 
sequential data, the memory transference has 
to be taken into account. So the training stage 
has to stack results from BP over the time 
dimension, which is done the by the Back 
Propagation Through Time algorithm, given 
by the following formula:

Where:
L: loss function
δ t

j : gradient of loss function over input of 
neuron j at timestep t

After obtaining the gradients, the weights 
of the neural networks are updated by the 
gradient descent algorithm. One issue of 
the RNN is that through the time steps the 
gradient values may become too small, causing 

the model to take far too long to train, this 
drawback is known as Vanishing Gradient. 

To resolve that problem changes on the 
recurrent unity from the RNN were proposed. 
Hochretiter and Schmidhuber [21] created the 
Long-Short Term Memory (LSTM) in which 
the neurons are replaced by memory unities, 
each containing three gates: an input gate, 
that helps on the identification of important 
elements that need to be added to the cell state; 
an forget gate that controls the information 
that should be forgotten and a output gate 
that extracts useful information from the cell 
and presents it as an output. The gates ensure 
that gradient information of LSTM will not 
vanish during the back propagation. Chung 
et al. [22] proposed a further optimization 
of the memory unity creating the Gated-
Recurrent Unity (GRU), that is similar to the 
LSTM but with fewer gates. The GRU has only 
a hidden state for memory transfer between 
the recurrent units, resulting in no separate 
cell state. 

COMBINATION OF PREDICTIONS 
WITH ENSEMBLE METHOD
Given the stochastic nature of the neural 

networks, each time a model is trained one 
different version of the function that maps 
the output is learned, resulting in different 
performances for the same training and test 
sets. One method to reduce this variance 
is to train multiple models and combine 
their prediction. This technique, known 
as ensemble, adds a bias that balances the 
variance from the neural networks and usually 
improves the quality of the given predictions.

The simplest way to combine predictions 
is to get the average value returned from all 
the different models. This work used weighted 
averages as suggested from Bishop [23]. The 
weights varied between 1 and 3 and were 
assigned to each neural network results 
(RNN, GRU and LSTM) in according to their 
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performance on the previous tests.

RESULTS AND DISCUSSION
The performance of each model was 

measured by RMSE and MAE:

In some cases the studied neural networks 
had very close performance, so the total time 
to finish the training had to be taken into 
consideration as well. Through the whole 
train process of all the models the optimizer 
was the Adam Algorithm and the Learning 
Rate was kept fixed at 0.0005. 

The first test aimed to define both the 
ideal batch size and the number of training 
epochs for the models. Three sizes of batch 
were tested, 32, 64 and 128 with 50, 100 and 
150 epochs for training duration. For the four 
stations, the best results were obtained by the 
models trained for 150 epochs with batch 
sizes of 32 or 64.

The proceeding test studied the 
performance variation of the three neural 
networks when the number of neurons on the 
hidden layer was changed. Results showed that 
overall the GRU had the best performance on 
the task, followed by the simple RNN and by 
the LSTM. The optimal number of neurons 
seems to be around 64, although networks 
with less neurons had faster train.

The next test studied the hypothesis 
that deeper models would have better 
performances on the task. Results showed that 
when the number of training epochs was kept 
the same, the best configuration contained 
only one hidden layer. It is possible that the 
deeper models should have larger training 

duration to acquire optimal results, once the 
number of trainable hyperparameters was 
increased with more layers. 

The fourth experiment tested the hypothesis 
that the results obtained in previous stages 
could be further improved by the usage of 
dropout and batch normalization techniques. 
The results showed that batch normalization 
didn’t do any good for the predictions and in 
most cases it increased the total duration of 
the training. On the other hand, the dropout 
of 20% cut half of the training time without 
harming the results, which could be useful 
when dealing with larger data sets.

The last stage studied the hypothesis that 
an ensemble of neural networks could have 
the best performance on the prediction task. 
The following table shows the results for the 
station of Copacabana. It is possible to notice 
a slight discrepancy between the RMSE and 
MAE for the same variables. That may occur 
due to the RMSE being more sensible to 
outliers or extreme cases, once the error is 
squared to obtain the metric values.

From the same table, it is clear that for most 
variables the ensemble of models performed 
better than the singular networks. Other two 
stations, Centro and Tijuca, had very similar 
results, with the ensemble model also being 
the best. The results from the São Cristóvão 
station showed that on this scenario the 
ensemble had the same performance as the 
LSTM.  
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Variable Metrics Ensemble RNN LSTM GRU 

Temperature RMSE 3,05 3,33 3,22 3,09

NOx RMSE 23,88 24,20 24,18 24,64

CO RMSE 0,20 0,20 0,20 0,20

Rain RMSE 0,89 0,92 0,89 0,89

Atm. Pressure RMSE 2,87 3,20 2,94 2,92

Wind Speed RMSE 0,27 0,28 0,28 0,28

SO₂ RMSE 4,45 4,60 4,50 4,45

PM10 RMSE 18,68 18,68 19,17 18,62

O₃ RMSE 12,28 12,67 12,39 12,66

Relative Humidity RMSE 6,81 6,99 6,89 6,97

NO RMSE 15,69 16,13 15,28 16,04

NO₂ RMSE 14,45 14,50 14,43 14,85

Temperature MAE 2,37 2,62 2,58 2,41

NOx MAE 18,46 18,80 18,81 19,31

 CO MAE 0,17 0,17 0,17 0,17

Rain MAE 0,60 0,62 0,63 0,62

Atm. Pressure MAE 2,24 2,52 2,28 2,29

Wind Speed MAE 0,22 0,23 0,22 0,22

SO₂ MAE 3,66 3,80 3,63 3,65

PM10 MAE 15,17 15,10 15,62 15,11

O₃ MAE 9,87 10,20 9,97 10,19

Relative Humidity MAE 5,41 5,46 5,47 5,51

NO MAE 12,05 12,42 11,85 12,42

NO₂ MAE 11,31 11,26 11,22 11,56

Tabela 1 model results for the Copacabana air-quality station

The F-test of the standardized results for the 
Copacabana station model gave F=9.195 and 
p=0.00015, meaning that the null hypothesis 
(there is no difference among any pairs of 
average metrics) can be rejected, or that there 
is a meaningful statistical difference on at least 
two pairs metrics means.

CONCLUSIONS
This work studied a method to fill in missing 

values and proposed a way to ensemble neural 
network predictions. The tests showed that 
the ensemble of models outperforms simple 
neural networks. The acquired results will be 
used to guide the further development of the 
models into deep learning neural networks in 
the future. Once the same configuration was 

used to compose the three neural networks 
of the ensemble, further tests are necessary 
to validate if different model architectures 
for each networks could further improve the 
given results.  
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