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ABSTRACT: In this work, we prove the
existence and uniqueness of the solution
of the Schrédinger type homogeneous
model in the periodic distributional space
P’ Furthermore, we prove that the solution
depends continuously respect to the initial
data in P’ Introducing a family of weakly
continuous operators, we prove that this
family is a group of operators in P" Then,
with this family of operators, we get a fine
version of the existence and dependency
continuous theorem obtained. Finally, we
give some remarks derived from this study.
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11 INTRODUCTION

First, we begin by commenting that
[3] has proven the existence of a solution of
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the Schrodinger type equation in the Hilbert
space H;e,. Also in [3] a family of bounded
operators is introduced in the Hilbert space
H;, and it is proved that forms a unitary
group. Thus motivated by these ideas we
will solve the problem (P,) in the topological
dual of P: P, which is not a Banach space.

In this article, we will prove the
existence and uniqueness of the solution
of (P,). Furthermore, we will demonstrate
that the solution depends continuously with
respect to the initial data in P', considering
the weak convergence in P. And we will
prove that the introduced family of operators
forms a group of weakly continuous linear
operators. Thus, with this family we will
rewrite our result in a fine version. Our
article is organized as follows. In section 2,
we indicate the methodology used and cite
the references used. In section 3, we put
the results obtained from our study. This
section is divided into three subsections.
Thus, in subsection 3.1 we prove that the
problem (P,) has a unique solution and
also demonstrate that the solution depends
continuously with respect to the initial data.
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In subsection 3.2, we introduce families of weakly continuous linear operators in P'that
manage to form a group. In subsection 3.3 we improve Theorem 3.1.
Finally, in section 4 we give the conclusions of this study.

21 METHODOLOGY

As theoretical framework in this article we use the references [1], [2], [3], [4] and
[5] for Fourier Theory in periodic distributional space, periodic Sobolev spaces, topological
vector spaces, weakly continuous operators, group of operators and existence of solution of
a distributional differential equation.

31 MAIN RESULTS

The presentation of the results obtained has been organized in subsections and is
as follows.

3.1 Solution of the Schrédinger Equation (P,)

In this subsection we will study the existence of a solution to the problem (P,) and the
continuous dependence of the solution with respect to the initial data in P".
Theorem 3.1 Let y >0, a > 0 and the distributional problem

ue C(R, P
(Pg) atU*Z,lLO‘%U‘F@CYu:U e F'
u(0)=feP.

then (P,) has a unique solution u € C'(R, P'). Furthermore, the solution depends
continuously on the initial data. That is, given f , f € P'such that f 2. f implies u () 2. u(#),
Vte R, where u, is solution of (P,) with initial data f, and u is solution of (P,) with initial data f.

Proof.- We have organized the proof as follows.

1. Suppose there exists u € C(R, P) satisfying (P,), then taking the Fourier transform
to the equation

O — ipdiu +iau = 0,
we get
0 = 00 —ip(ik)*a +iod = O+ ipk*i + iod,
which for each k € Zis an ODE with initial data d(k, 0) = f (k).

Thus, we propose an uncoupled system of homogeneous first-order ordinary

differential equations
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ie C(IR,S'(2))
() | dalk,t) + ipk?a(k,t) +iai(k,t) =0
w(k,0) = f(k) with f € §'(Z),
Vk € Zand we get
ik, t) = e~ e ()

from where we obtain the explicit expression of u, candidate for solution:

+oo +o0 R
ut) = 3 alk e, = S e et f(k)g, (3.1)
k=—oc k=—00
o ry —iuk?t —iat
= [(f(k)e Hte )keZ (3.2)
Since f€ P'then f € S(2). Thus, we affirm that

T —ipk?t _—iat !
(flk)emsteiot) € §'(2), Vi€ R. (3.3)

Indeed, let t € R, since f € S(2) then satisfies: 3C >0, AN € IN such that If (k) <
CIKIN, Yk € Z - {0}, using this we get

|F(k)e ¥ temiot] = | F(k)| | ¥4 [e7t| = | F(k)| < C|k|™ .
=1 =1
Then,

(Fryemteior) e 5'(2).

If we define

u(t) == [(f(k)e’i”kzte’i“t)kez}v , forallte R, (3.4)

we have that u(f) € P', VYt € R, since we apply the inverse Fourier transform to(f(k)
ewtgat) € S(2).

2. We will prove that u defined in (3.4) is solution of (P,).
Evaluating (3.2) at t = 0, we obtain

u0) = [(F),.,] =17 =r.

In addition, the following statements are verified.

a) d, u(t) = iwd? u(t) — iau(t) in P, Vt € R. That is, we will prove that the following
equality

t+h)—ul(t
ilirr(l)<w,w>:iu<aiu(t),tp>—m<u(t),tp>,V(,OEP

<Opult),p>=
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is satisfied, forall te R.
Indeed, lette R, ¢ € Pand h € R - {0}, we denote

Ih,t = w‘(p > .

Thus, we get

1
Iny = 5 {<ult+h),¢>—<u(t),y>}

h | n—+

— l{ lim < Z f —w!..z(n‘,+h) —za(£+f1.}q5k o>

k=—mn

_ 111[1 < Z f 7¢;.th 77.thq-)k @ >}

’n‘) o0
k=-n

n—-+too

n——+0oc h

—ipk?h ,—iah _ 1
= lim <« Z f(k ikt ot (P ‘ )Qk,g.o>

2 , €7i11k2hp—i():h. —1
= lim ,_‘“ et 2 — T < o>
> ik (T o

n—+4occ he——n _:,_/
=2mip(—Fk)
" ’71,(.115'2}; Ifiuh _
e R e B
k=-—n !
N G—?‘,;Lkzhe—iryh -1 ~
~ e 5 b (*,I Vw9
k=—oc
Let h >0, we have
—iuk®h _—iah b ks —iasy
e e —1:/[6“6}653
0
h o
— f (—ipk® — ia)e M sem108 g | (3.6)
0
Taking norm to equality (3.6) we obtain
- . h . - )
e—wkzhe—aah_ 1‘ < f {,U‘k'V 4 ‘Q’|}|€_wk25‘ |€—wzs| ds
0 =1 =1
; h
= {ulkl +Jal} [ ds
———
=h
= {ulk]* +|al}h. (3.7)
That is, from (3.7) we get
efi,u,thefiuh _
: < ulkf? + o (38)
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Note that (3.8) is valid for h € R —{0}.

Using the inequality (3.8) and that fe S(2) we obtain
+oo i it~ e*‘iuﬁheﬂ'o{h 1
> ) e e |@(—k)] ]h

S S —

k=—00 1 ]

oo e~ -
< X OISR {ulkl* + |af}

k=—o0

S RN+ ol S 1FEIEH)

k=—00

{u S kY 2B(k)] + fof Z [V B(= )}
=J

—k)
v
k=—oc0

k=—c0 —J
N+2 = N
—Cn S PR ol S MR < o0
J=—0oc

J=—00

since ¢ € S(2).
Using the Weierstrass M-Test, the series /, , is absolute and uniformly convergent.

Then we can take limit and get

feoo DAt ot oink?ho—iah _ |
fin e = 2 3 e e g iy {
:—iu‘.;cZ—icv

?'/-L 271_ Z f 7'&,{1]&‘? 7mttp( k’)kQ

k=—c

+oo - .
—ia2m Y f(k)e R leT M G(—k) .

k=—occ

(3.9)

Using (3.9) and that <T@, @ >=(-1)2<T, @ >=<T, ¢ >for ¢ € P, T e P’ we have

+C)0 - . . o
(miger 3 flkje et p(—k) R
N —

,lim I, =
h—0
k=—o00 R
=37 <P0k>

—ia2m Z f 'i“kzte’m P(—k)

k=—cc i -
=55 <P Pr>

{

+o0
S FRe e < o R
in . f(k)e ¢ L

h=mee (k)26

+m -~ - .
—ia Y f(k)ef“”kztefmt < @, Oy >

k=—o0

— 7“ Z f 75;1th 77,at< @s(fjk(Q) >

k=—00
=< ¢y >

+DC, -~ . .
—ia Y f(k)e e < oy >

k=—00
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+oo ) )
= iu Z f(k)ef“"‘k%(f“” < g, oD >
k=—occ

oo —~ . 2 .
—ia Y0 f(k)e M T <y >

k=—oc0

. . LI ikt o .
= dp lim 0 fk)e e < gy, ) >
k=—n
no - )
_ianlil}}oc Z f(k.)efwk to—iat - b, @ >
' k=—n

n
_ E.unll}j{loo < Z f(k)efmk-zte—maték:99(2) >
k=-—n

.
—iav T,L]I},lm < Z f(k)efitr.’the—mtd)k’(p >

k=—n

= i <ult),o? > —ia < ut),p > (3.10)
= ip < ult),p > —ia < u(t),p > .
Therefore,
<Ou(t),p> = ip<dut),p>—ia<ult),p>, Vec P, VtclR.
That is,
Au(t) = ipndu(t) —iccu(t) in P, VteRR.
b) u € C(R, P). That is, we will prove that
u(t + h) 2, u(t) when h —0, Vte IR.
In effect, let t € Rand ¢ € P, we will prove that
Hyp=<u(t+h)—u(t),o>—0, when h—0.

We know that if ¢ € Pthen ¢ € S(2). Using (3.5) we have
Hyp =21 Y f(k)e #kteiat (e_i“kzh’e_mh - 1) G(—k).
Let 0 <lhl <1, from (3.8) we get
e ¥¥temi e 1| < kP[] + fol|h] < plk + ol (3.10)

Using (3.11) and that f € S(2) we obtain

+oo

iy —ipuk? —icy —ipk?h _—ioh -~
S || [T e |em R e TOn — 1 | B(— k)|
k=—00 M v

=1 =1

+o0 .
:/)‘ +C‘C&| Z ‘lk'

+oo Na
<Cp Yo [RIYEB(
] —J k=—oc

k=—o00

B(h)
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+0o0
=Cu 3 "B+ Clal Z [71M18(1)] < o0

J=—oc J=—0c¢
since ¢ € S(2).
Using the Weierstrass M-Test we conclude that the series H,, converges absolute
and uniformly. Then it is possible to take limit and obtain

+o0
—21, —iy : —ipk?h  —ic
hmH,h—Zw > f(k ink?te tB(— k);alir(l){e 1k h—l}:O.

k=—00
=0

Since t € R was taken arbitrarily, then we can conclude that
ue C(R, P).
c) du € C(R, P). That is, we will prove that

Au(t + h) 2, Ou(t) when h — 0, Vt € R.
In effect, let t € Rand @ € P, using item a) we have

< du(t+h), o > — < Gu(t), ¢ >
=ip{< Pu(t + h), o > — < Pull), o >}
—m{<ul‘+h),y>—<u Ly >}
=ip{<u(t+h),o® > — <u(t),o® >}

—ta{<u(t+h),e :0—<u( t),p >} — 0 (3.12)

—0

when h — 0, since item b) is valid with ¢ € Pfor r=0, 2.
From b) and c) we have that ue C'(R, P) .
d) Now, if f 2. fwe will prove that:

un(t) 25 u(t), Vte R.

We know that if f 2. fthen fn ¥2) f, thatis
<fo—F€>—0 when n— too, Ve S(Z). (3.13)

For t € R fixed and arbitrary, we want to prove that
< u,(t), >—<u(t),y > whenn — +oo, VipeP.
Thus, let t € R be fixed and ¢ € P, using the generalized Parseval identity, we obtain

the following equalities:

<uy(t), > = 21 < (f,,,( ek 7"”)}‘_62,*@ > (3.14)

- Fo o—ink?t  —iat -
<u(t),yy > = 2w < (f(k)e e r)kez,'@) > . (3.15)
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From (3.14) and (3.15) we obtain:

< up(t), > — < ult), >

T ~ e =
=27 Z {fa(k) = f(E)} e " ety (k) — 0
—_—

k=—o0
Epi=

when n — +e, since § := (§),., € S(2) and (3.13) holds.
Corollary 3.1 Let y >0 and a >0, then the unique solution of (P,) is

4

bl

)ier

u(t) = ic f(k)efiukue—mték _ [(f(k)e*"“k%@*ﬁﬂ

k=—o0c

where ¢,(x) = &%, x € R.

3.2 Group of Operators in P’

In this subsection, we will introduce families of operators {Tu,a(t)}telﬁ in P, withpy >0
and a > 0; and we will prove that these operators are continuous in the weak sense and
satisfy the group properties.

For simplicity, we will denote this family of operators by {T ()}

Theorem 3.2 Let t € R, we define:
T): PP — P
vV
R FrLy,, —ipk?t  —iat !
;o= = |(Fwee=) e,

then the following statements are satisfied:
1.T(0) =1
2. T (1) is C - linear and continuous Yt € R. That is, for every t€ R, iff 2. fthen T
(Of L. T (Df.
3. T(t+nN=T{)oT(n,Vtrehm.
4. T(Hf 2. fwhent— 0, Vfe P.
That is, for each f € P'fixed, the following is satisfied
<TWHf,W>-——<f, > whent—0,VPYeP.
Proof.- Let fe P'then f € S(2). Then, from (3.3) we have

(f(k)e*i“"z‘c*“'”t)kez € S8'"(Z);

taking the inverse Fourier transform, we obtain

\%
T, —ipk?t  —iat /
[(f(k)e ) |er. viem.

=T()f

That is, T () is well defined for all t € R.
1. We easily obtain:
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10)f = [(fmge e, N = [(Fw), ] = (1 =1 wer.
2. Let t € R, we will prove that T (f) : P'— P'is C -linear. In effect, let a € € and (¢,
) € P'x P', we have
T +0) = [ e a0+ o'0),,]
(

_ [ o ink?t *"ﬁ 1169 (k) + ‘F(k)])keZ}

a (ﬁ_illkztﬁ_mﬁﬁ(k))kez + (e—p,f,k%e—mtw(k))kez}
. ~ v X N %
- [(e—mk%e—mt(p(m)kez} + {(e—wkite—mtw(k’))kez}
T(t)o+T(t)w
Now, for t € R we will prove that T (f) : P'— P'is continuous. That is, if f _£. fthen

we will prove that T (f)f, 2. T (f)f. Note that the case t = 0 is obvious. We know that if f 7.
fthen f;_s. f, that i,

< fo b >—< [.€>, whenn — 400, VE e S(Z).
That is,
<fo—f.€>—0, whenn— 400, VE€S(Z). (3.16)
We want to prove that:
<T)fu, ¥ >><T()f,) > when n — +oc, Vi€ P.

Thus, let t € R fixed and ¢ € P, using the generalized Parseval identity, we obtain

the following equalities

— . . v
< T(t)fm ) > < [(f”(k)e—mk%e—zat)kez] ) >

or < (Fu(k)e et >, (3.17)

keZ

TWfe> = < [(f(k)e**ﬂ*?fgmt)kez]V’.¢,>

o 7 —ipk?t —mzl‘
= 27 < (J(k)e ™ )iy ¥ > (3.18)
From (3.17) and (3.18) we get
T(t)futb > = <TQ@)f ¥ >
— o {< (ﬁ(k)efiukztefiat)kez 1; S < (f(k.)efiumtefmt)kez ’ @A) >}

{Zf ) - 35 fh -w“-mw(k)}

k=—oc k=—00
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+o0 N - =
=21 > {falk) — f(k)} e " e Y(k) — 0
k=—c0 ‘————z;:————‘

when n — +c, since & := (§,),_, € S(2) and (3.16) holds, that is < f; -1 § >—0 when

kezZ

n — +oo.

3. Let t, re R - {0}, we will prove that T(f) o T(r) = T (t+ r). In effect, let ¢ € P,

T(t + ?‘)(b [(Q/b\(k:)e—i#k?(t+r)e—m(t+r))

keZ]

"
[(&(k)ew?rcw o e ) ] . (3.19)
EL

—_————

Since ¢ € P', using (3.3) we hav'e that

(o(k)e~kre=ier) € §(2), ¥reR. (3.20)

)keZ
Then, taking the inverse Fourier transform, we get:

—~

v
! —iuk?r —iar ’
{(o(k)e uher )kez} P, VreR.
Thus, we define:
—~ - P v
gy = [(qb(k‘)e_w'k Tﬁ_m)kez] e P
That is,
g :=T(r)o. (3.21)

Taking the Fourier transform to g we get:

— __ (7 )—iy:kzr —iar
Iy = ((p(k)c e )keZ ,
that is,

Gr(k) = d(k)e ¥ remior ke 7. (3.22)

Using (3.22) in (3.19) and from (3.21) we have:

T(t+)p = |(Gke e
= T(t)g,

Tt)(T(r)o)

[T() o T())(¢), ¥t.r e R —{0}.

A
)ker| er

So we have proven,
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Tt+r)=T({)oT(r), Vt,r € R —{0}. (3.23)
If t=0 or r=0 then equality (3.23) is also true, with this we conclude the proof of
Tt+r)=T{t)oT(r), VtrelR. (3.24)
4. Let f € P, we will prove that:
T(t)f £, f whent — 0.
That is, we will prove that
Tt)f,p >—< f,p> whent—0, VpeP.

In effect, for te R—{0}and ¢ € P, we have

Hy = <T@)f,p>—<frp>
= nﬁg_lx{< S Fk)e ety o > < Z fk) e, >}
k=—n k=—n

= lim < Z Fk ( —ikttgiat _ )(f)k,cp >

n—+oc
k=—n

-  lim Z F(k) (e7wF et — 1) < gy, 0 >

n—»+3@
k=—n

= hm 2@ Z f ( ~iuk’t —iat 1) G(—k)
nohee k=—n
= or Z Fk) (e7 et — 1) a(—k). (3.25)
k=—oc

Since t € R - {0}, from (3.8) we get

e—i,uk%efiat ~1 )
; ‘ < ulk? + |af. (3.26)
From (3.26) we obtain
jemmk*teiot 1| < {ulk[* + [of}|t], Vte R. (3.27)
From (3.27) with 0 <1l <1, we have
|emk¥temiot 1| < plk|? + |a. (3.28)

Then using (3.28) and that f € P, we obtain

+0o0

> k)|t teiot — 1 |p(—

k=—o0
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+oc oo
sc{u S MRk + ol X kI |}

k=—o0 =7 k=—00 —~

J=—00 J=—00

J
+o0 Nt +o0 N
=Cqp Yo PR + el Y0 M@ ¢ < oo

since ¢ € S(2).
Using the Weierstrass M-Test we conclude that the H, series converges absolute and
uniformly. So,

+o0 ) ,
P_T}&Hr, = 27 Z .f(k)qﬁ(—k)%LmO{e_i“k te—zat_l}

k=—o0c

=0
= 0.

Thus, we have proved

%in& <Tt)f,op>=<f.p>.

Theorem 3.3 For each f € P'fixed and the family of operators {T (1)}, from Theorem
3.2, then the application
M: R — P
t — T)f

is continuous in B. That is,
Tt +h) f 25 T()f when h—0, ¥t € R. (3.29)

(is the continuity at t).
That is, (3.29) tell us that for each t € R fixed, the following is satisfied

<Tt+h)fth>—<T@E)f,¢0 >, when h—0, ViyeP.

And if t= 0, we have the continuity of M at 0, which is item 4) of Theorem 3.2.
Proof.- Let t € R — {0}, arbitrary fixed and f€ P'then g := T (t)f € P, using item 4) of
Theorem 3.2, we have that T (h)g-%. g when h — 0. That is,

T(h)(T(t)f) 7, T(t)f when h — 0,
————

=[T(h) o T(t)]f
_\,_/
=T(h+t)f
where we use item 3) of Theorem 3.2.
Remark 3.1 The results obtain in Theorems 3.2 and 3.3 are also valid for the family

of operators{S(1)},_., defined as

tem’

Sty: P — P
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fo— sbr= {(Giﬁkzteimlﬂk))kezr )

for t € R. lts proof is similar.

3.3 Version of Theorem 3.1 using the family {T ()}

tem

We improve the statement of theorem 3.1, using a family of weakly continuous
Operators {T ()},

Theorem 3.4 Let f€ P'and the family of operators{T (1)}, from Theorem 3.2, defining
u(f) .= T()f e P, Vte R, then u € C(R, P) is the unique solution of (P,). Furthermore, u
continuously depends on f. That is, given f, f€ P'with f P, fimplies u (f) 2. u(f), Vi€ R,
where u (1) := T ())f, YVt € R (thatis, u_ is a solution of (P,) with initial data f ).

Proof.- It is analogous to the proof of Theorem 3.1.

Corollary 3.2 Let f € P’ be fixed and the family of operators {T (1)}
3.4, then 3 J,T ()f, Vt € R and the mapping

«p Irom Theorem

n: R — P
t — OT(t)f =ind;T(t)f —iaT(t)f
is continuous at R. That is,
QT+ f =5 0T()f whenh—0, VieR. (3.30)
(3.30) tells us that for each t € R fixed, it holds:
<OT({t+h)fo>— <OT(t)f,p> whenh—0, YpeP.
Proof.- Indeed,
<oTt+h)f,o>— <TH)f, ¢ >
=ip{< BT(t+h)f, o >— < Tt f, p >}
—ia{<T(t+h)f,o>—<T{)f, ¢ >}
=iy < Tt +h)f,¢? > <T(t)f,¢® >}

—0
—ta{<T(t+h)f,o>—<T)f,¢p>} — 0

—0

when h — 0, due to Theorem 3.3 with ¢ := @Y € P, for J=0, 2.
Corollary 3.3 Let f € P' be fixed and the family of operators {T (1)}

3.4, then the solution of (P,): u(f) := T ()f, Vt € R, satisfies u € C'(R, P').
Proof.- It comes out as a consequence of Corollary 3.2.

g from Theorem

Remark 3.2 If the order of the equation is even and not multiple of four, we can
obtain similar results.
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41 CONCLUSIONS

In our study of the Schrédinger type homogeneous model in the periodic distributional
space P', we have obtained the following results:

1. We prove the existence, uniqueness of the solution of the problem (P,). Thus we
also prove the continuous dependence of the solution respect to the initial data.

2. We introduce families of operators in P {T (1)}, and we prove that they are
linear and weakly continuous in P. Furthermore, we proved that they form a group of
weakly continuous operators in P.

3. With the family of operators {T (1)}, ., we improve Theorem 3.1.

}IEIR

4. Finally, we must indicate that this study can be applied to other evolution equations
in P.
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