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Abstract: An analytical description for 
implementing numerical formalism, such 
as;Tight Binding Model (TBM) and Density 
Functional Theory (DFT) was performed to 
understand the semiconductor properties 
of graphene and Gallium Arsenide (GaAs). 
Such numerical models (TBM and DFT) were 
implemented to solve the time-independent 
Schroedinger equation, with the application 
of concepts about the Dirac points and 
Fermi levels of the graphene structure, in 
addition to the use of the Bohr-Oppenheimer 
approximation, which provided basis for 
considering the effects of minimizing the core-
core and electron kinetic energy, in obtaining 
the “bandgap” of the investigated materials. 
The Hartree-Fock method was also used to 
solve the Slater – Koster matrix to evaluate 
the electron-electron interaction, in the 
interaction model for each electron with an 
electron cloud in the DFT. By implementing 
the models, reduced configurations of the 
“bandgap” of Graphene and AsGa were 
obtained.
Keywords: Graphene, AsGa, bandgap, 
Semiconductor, Numerical Models.

INTRODUCTION
Graphene is a material consisting of carbon 

atoms arranged in a hexagonal structure. 
Bonding carbons share their 4 outer shell 
electrons through covalent and polar bonds. 
The energy bands associated with the bonds 
(sigma and pi) represent the bound and 
unbound electrons in the graphene structure. 
For graphene, sp2-type hybridization is the one 
that confers electronic transport properties, as 
it has lower energy levels. Graphene presents 
a typical zero-gap semiconductor behavior, 
since the Density of States (DOS) is zero at 
the K point, which is the specific point of high 
symmetry in the Brilloiun Zone (ZB). At low 
energies its dispersion versus momentum 
relationship is linear for a specific point of 

high symmetry in the ZB. At that point, the 
electrons behave like fermionic particles and 
obey the Dirac equation [1].

The most interesting electronic properties 
in graphene are at and around the K point, 
where the conduction band touches the valence 
band. At other points the energy values of the 
bands are different. For low temperatures, the 
electrons obey the Dirac Hamiltonian, which 
behave like Dirac fermions, with zero effective 
mass. Graphene is a two-dimensional material 
with a peculiar dispersion relation: ε(k) = 
±ħvFk. This particular dispersion is valid only 
for low energies and has a physical aspect 
very similar to quantum electrodynamics for 
massless fermions, since the Dirac fermions 
in graphene move with Fermi velocity in the 
order of 106 m/s. [2].

Dirac fermions behave differently when 
compared to the ordering of electrons subject 
to magnetic fields, leading to new physical 
phenomena such as plateaus in the quantum 
hall effect, giving rise to the anomalous 
quantum hall effect in graphene, due to the 
appearance of quasi-particles, which can be 
measured experimentally. Another interesting 
fact about Dirac fermions is that they are not 
modified due to the presence of an external 
electrostatic potential, due to the Klein 
paradox phenomenon [2,3]. And the fact that 
Dirac fermions present unusual behavior in 
the presence of barrier potentials, leads to the 
Zitterbewegung phenomenon [2,4] which is 
an unstable movement of the wave function 
of the Dirac problem due to the confinement 
of the Dirac electrons in a certain region.

NUMERICAL MODELS
TIGHT BINDING MODEL 
The Tight-Binding (TB) approximation 

describes crystal lattices considering the 
superposition of the wave functions of atoms, 
without taking into account the atomic 
description of the system [5]. In graphene, 
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the electrons participating in bonding have 
a completely full valence band, and therefore 
do not contribute to conduction. The free 
carbon electron will only experience slight 
perturbations from its neighbors. This allows 
us to carry out an expansion of the wave 
function in terms of linear functions of atomic 
orbitals [6] with a specific description for the 
Hamiltonian, as already developed by Ribeiro 
et al [7], in which he presents the Dirac point 
using the model TB.

DENSITY FUNCTIONAL THEORY
Density Functional Theory (DFT) has been 

the main model for calculating the electronic 
structure of materials. It is a widely used 
technique in the calculation of molecular 
structure, as it has a low computational cost 
[8]. It is a useful technique for investigations 
of medium and large molecular systems, 
describing the reality of the electronic 
properties of atoms, organic and inorganic 
molecules, metals and semiconductors. The 
central focus of the DFT is the electron density 
for the description of the Ψ wave function. 
The electron density is a much simpler 
function than the wave function, because the 
electron density depends on the coordinates 
of only one electron, while the wave function 
depends on the coordinates of N electrons. 
DFT requires concepts from the theorems 
proposed by Hohenberg and Kohn [9].

ANALYTICAL DESCRIPTION
The Hamiltonian applied in the 

description of the Tight Binding numerical 
model for graphene must consider the 
crystal as a collection of neutral atoms 
with weak interactions. It consists of an 
approximation model of allowed energies (or 
bands) for particles in the material in which, 
in graphene, we take a given fixed atom in 
a sublattice A or B and its close neighbors 
through their covalent bonds where the 

shared electron performs jumps between 
the two neighbors A and B. These jumps are 
energetically represented by the Hopping 
parameter, which contributes energetically to 
the bands [10,11]. The energy bands close to 
one of the Dirac points can then be obtained, 
as follows:

E(k) = ± t [2 cos(ka) + 4 cos(kb)]       (1)

As observed in equation (1), the spectrum 
is symmetric around zero energy if t ‘= 0. For 
finite values of t’ ( t represents is the hop energy 
of the neighbor in the same sublattice given by 
the Hopping parameter ) the symmetry of the 
electron hole is broken and the bands become 
asymmetric. This dispersion can be obtained 
by expanding the full band structure next to 
the vector K (or k'), as k' = K + q. The chemical 
bond of each carbon atom in graphene can be 
represented with a wave function. When we 
add two symmetric functions we will have a 
region with a greater probability of finding the 
electron. A very schematic and probabilistic 
model is to think that each carbon atom forms 
a potential well. When we approach two wells, 
the wave function ceases to be an eigenstate 
and starts to combine symmetrically and 
anti-symmetrically in the solution. And the 
symmetrical combination is the one that has 
the lowest energy and lowest momentum. 
By joining three wells, we can write the wave 
function as the combination of each of these 
wells which can be written according to 
equation (2).

ψ(x) = ±ψ1(x) ± ψ2(x) ± ψ3(x)          (2)

The three independent functions of each 
energy level and each well will originate the 
three energy levels, and by joining infinite 
energy levels we will obtain the origin of 
an energy band. For a chain of N atoms, an 
energy band is expected to appear. With a 
large number of atoms, there is little difference 
if you place one more node, as the energy of 
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the states will be closer to each other. The 
gap between energy levels will give rise to 
energy gaps, which is the bandgap. In this 
structure, a definition of energy bands with 
a limit of investigation called Fermi levels 
is then presented. The Fermi level energy is 
defined as the energy of the highest occupied 
level. Thus, all levels with energy less than the 
energy of the Fermi level would be occupied 
and all levels with energy above, unoccupied, 
for systems at 0 K. In systems with non-zero 
temperatures, there is no longer an abrupt 
transition of the probability of occupation, 
but a probability given by the Fermi-Dirac 
distribution [10,11].

According to Fermi’s studies and statistics, 
less energetic states are more likely to be 
occupied than more energetic states. This 
way, when a system has several electrons, 
these will occupy higher energy levels as the 
lower levels are filled. In solid state physics 
the Fermi surface is the surface in momentum 
space at which the total excitation energy 
equals the Fermi energy. This surface can 
have a non-trivial topology. It can be said 
that the Fermi surface divides the electronic 
states occupied from those that remain free. 
This concept has many applications in the 
theory of atomic orbitals and in the behavior 
of semiconductors. Specifically, for the 
Graphene bilayer, the Fermi level coincides 
with the Dirac point, which is the point where 
the valence band touches the conduction 
band. For low energies the energy dispersion 
as a function of momentum is linear, which 
differs from other semiconductors, with Dirac 
fermion-type excitations for a point of high 
symmetry in the First Brillouin Zone (ZB). 
To understand the functioning, behavior 
and electronic structure of the nucleus and 
the electron, in a crystalline lattice, the 
time-independent Schroedinger equation 
represented in equation (3) is developed: 

Hψ = Eψ                             (3)

Substituting the hamiltonian of the crystal, 
we obtain equation (4) :

(4)

The contribution of the kinetic energy 
of the nucleus can be neglected in the 
Hamiltonian, which is the Born-Oppenheimer 
approximation [12]. Furthermore, they 
assume that the nuclei are fixed and the 
coordinates R1...RN are points of the 
crystalline lattice and are invariable, thus 
υ (R1, ...RN) is constant. We assume that 
the potential energy of interaction between 
the nuclei is zero. This way we can write 
the simplified Hamiltonian, as the kinetic 
energy of the electron, the potential energy of 
electron-electron interaction and the energy 
of electron interaction with the nucleus.

Equation (4) describes the movement of 
electrons in a lattice, considering the nuclei at 
rest. For the second term of the expression that 
represents the electron-electron repulsion, 
we will use the Hartree-Fock method [13] to 
represent this interaction by another path, 
presented in equation (6),

      (5)

where Ω (r) is called a self-consistent field, 
in electronic correlation we consider that an 
electron has its repulsions and properties 
generated by its interaction with an average 
of the field generated by other electrons. This 
method does not consider the one-to-one 
interaction. And for the third term we can do 
something similar, presented in equation (6),
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        (6)

where U(r) is the potential energy of the 
i-th electron in a field of all nuclei. Rewriting 
equation (5) we get:

So the Hamiltonian of the ith electron is:

     (7)

So, we can finally write the Schroedinger 
equation as:

                 (8)

It follows that electrons move indepen-
dently of one another in a potential field. 
This allows us to consider the electrons in 
the crystal as a system of non-interacting 
particles. Next, we will use the approximation 
that the global wavefunction of the crystal 
is nothing more than the product of the 
monoelectronic wavefunction.

(9)

And the total energy of the system is 
expressed by:

       (10)

We can write the product of the wave 
eigenfunctions as:

∏iΨi = Ψ1∏  Ψ1 = Ψ2∏  Ψ2 = ΨN∏  ΨN   (11)

Writing the Schroedinger equation for 
each electron in the crystal, and dividing all 
sides of that equation by the factor ∏ ΨN, we 
can write.

(12)

Considering that each term of Equation 14 
depends on the coordinates of each electron 
independently and therefore, the Hartree-
Fock method reduces the Schroedinger 
equation, for many particles, to a single 
electron equation, that is:

         (13)

The eigenfunctions of the wave equation 
for a particle subjected to a periodic potential 
are the product of a plane wave ei(k∙r) by a 
periodic function defined uk(r) with the 
periodicity of the crystal lattice. Block’s 
function can be written as a sum of traveling 
waves[7,13]. 

Since H is the free Hamiltonian and V 
is the potential generated by the lattice, in 
general when using perturbation theory we 
want V to be very small so that we can only 
write a few terms of the expansion, but in 
this problem the solution can be written in 
perturbative series even if we have to keep 
infinite terms, and the potential is not small. 
Since |n(0)> is an eigenfunction H, we can 
obtain an eigenfunction of H in the form of 
a series |n> = |n(0)> + λ|n(1)> + λ2|n(2)> + 
(16)... writing the perturbed ket as a function 
of the unperturbed |n(0)> and the |n(1)> 
which is the first-order correction given by the 
perturbation theory given by this summation:



6
Journal of Engineering Research ISSN 2764-1317 DOI 10.22533/at.ed.317332305019

(14)

|k(0)> arises in the perturbative correction 
as long as the potential is able to connect the 
|n(0)> with the |k(0)>, that is, we start from a 
known solution that is |n(0)> when we turn 
on the perturbation the |n(0)> is no longer the 
hamiltonian eigenfunctions, but we can write 
these hamiltonian eigenfunctions with a sum 
over the unperturbed kets.

In the correction of |n(0)>, only the |k(0)> 
will appear in the first order as long as the 
potential is able to connect |k(0)> with |n(0)>. 
In second order, the expression takes the form:

(15)

|k(0)> and |l(0)> are eigenvectors of 
H0 different from |n(0)>. For the |k(0)> to 
appear in second order it is necessary that the 
potential connects the |k(0)> with |n(0)> in 
second order in perturbation theory, so that 
they are connectable from an intermediate 
state, given by:

     (16)

For k' is present it is necessary that the 
potential connects k' with k. In first order 
perturbation theory the potential V connects 
a potential k with k' only if the Laue condition 
is satisfied:

For k' to be connected with k in second 
order of perturbation theory, in this case there 
has to be a k" such that the potential connects 
k' with k" and connects k" with k, also in 
first order, so this is possible due to Laue’s 
condition.

k' = k" + K1   e   k' = k" + K2            (17)

The sum of vectors of the reciprocal lattice 
is also a vector of the reciprocal lattice, this 
stems from the fact that the reciprocal lattice 
is a Bravais lattice, that is, the fact that the 
potential is periodic, shows that to connect 
k with k' satisfying the condition of Laue, 
this works for any order, for the tenth order 
the argument is valid. Only with the Laue 
condition can we guarantee that the only k' 
that will appear in the summation are the 
k' that differ from K only by a vector of the 
reciprocal lattice, this is the essence of Bloch’s 
theorem, because precisely the summation 
can be written as an integral and we can have 
any k', but only k' will remain such that k'-K 
is a vector of the reciprocal lattice [13] and 
this way solving the equation gives us energy 
levels for the periodic crystal.

(18)
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METHODOLOGY
In this article, an analytical description 

was developed with the application of 
the Tight Binding model to investigate 
the properties of graphene and GaAs 
semiconductor materials. The behavior of 
a potential perpendicularly applied to the 
plane of the two-dimensional lattice parallel 
to the graphene π band as well as the effect 
of this compared to the type of electronic 
doping modifies its band structure. The 
effect of this behavior is studied by Density 
Functional Theory (DFT). This model was 
used to model the energy dispersion through 
an electronic state density function for the 
GaAs semiconductor material. The figures 
were plotted using the free software Octave 
6.2.0.

RESULTS AND DISCUSSIONS
In the Tight-Binding model, crystals 

are considered as a collection of weakly 
interacting neutral atoms, this is assumed 
because there are several solids whose 
atoms have relatively large potentials, so 
that electrons are mostly bound to nuclei, 
as in semiconductors and insulators. It is 
assumed then that the state of the electron 
in the crystal differs little from its isolated 
or neutral state, so the perturbation theory 
considering the Hamiltonian of the crystal as 
the atomic Hamiltonian one more correction 
to be implemented. For the one-dimensional 
chain, with independent electrons, using the 
Bohr Oppenheimer approximation we have:

A single electron in the presence of a one-
dimensional chain, the Hamiltonian will be 
composed of the kinetic energy of the electron 
plus the potential energy of interaction of 
the electron with each of the atoms. So we 
will have N terms of potential energy. It is 
an approximation in which we can write the 
wave function written as a function of only 
the fundamental level of each of the atoms. 

The electron wave function is described as a 
summation of N terms, where n is the number 
of atoms surrounding the self state that we 
would have if there was only atom i in the 
world and there were no atoms:

                    (19)

When we evaluate only one carbon atom, 
we have an associated fundamental energy 
level, for two atoms we will have two energy 
levels and for n atoms, we have functions 
described by the eigenvalues φ, which 
correspond, to solve an eigenvalue equation 
for a Hamiltonian (n x m). This way, the 
following form can be written in terms of 
components:

              (20)

There is also the need to express the 
Hamiltonian matrix. In this approach, the 
self ground state of atoms is described by a 
matrix derived from the Hamiltonian. This is 
described in terms of the kinetic energy plus 
the potential interaction energy with the n ion 
plus the remainder of the matrix interaction.

(21)

Equation 21 expresses the Atomic Energy 
for all atoms added to the term taking V0. 
And the sum of the two terms is called E0, 
applying to the lattice symmetry for all 
diagonal elements.

And, for the off-diagonal elements (m ≠ n), 
we have:
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 (22)

Which corresponds to taking the matrix 
elements of H between the n state and the m 
state, again one can write the hamiltonian this 
way by separating the kinetic energy of the 
electron plus the potential energy n, plus the 
potential due to the other atoms. Note that 
this first term of the expression on the right 
K + Vn is the Hamiltonian due to the atom n, 
which in terms of Energy comes:

as m ≠ n, we only have the sum:

            (23)

In equation 30, the term ∑ <n|V |m; (m ≠ 
n), the Vn-1 represents the potential due to the 
atom n -1, in one dimension and the Coulomb 
potential is given by:

                    (24)

where x is the position relative to the 
potential due to the position of the n −1 atom, 
and the summation for all i ≠ n. In this case, 
there will be a well of potential in each of 
them, except for the one that is not included 
in this sum. Taking that matrix element means 
computing the integral of:

(25)

ψ* is the eigenstate of n alone, ψ is the 
eigenstate of the atom m, so we assume that 
the m,n are very nm far apart, this means that 
the superposition of the ψm is almost zero, the 
places it finds -if the atoms in the ψm function 
make it impossible to find an electron of ψn, 
which means taking in the expression above, 

null value, if m is far from n. Only for the 
first approximation there are possible values, 
if m is next to n, then it is said that this sum 
will tend to zero, if n is not next to m and n, 
otherwise, if m=n±1.

It is defined that this matrix element is 
-t, which by symmetry will be the same 
whenever the first neighbors, so this t is called 
the hopping term, or Hopping parameter, 
which measures how much the electron can 
jump from one atom to a neighboring atom. 
The most rigorous would be to take into 
account that there is a coupling, albeit small or 
short-range, with other sites, but this is a first 
approximation, thus the off-diagonal term 
is -t only when the first neighbor is different 
from zero :

hnm = - t(δm,n,+1 + δm,n-1)              (26)

Obtaining the eigenstate of this 
Hamiltonian will allow determining what 
are the possible energies, as well as what 
are the eigenvectors. From then on, linear 
combinations are obtained, which will show 
the eigenstate of the problem within this 
approximation, since the eigenfunction is 
a linear combination of the lowest energy 
eigenstates of each atom separately, as 
assumed at the beginning.

Specifically, for graphene, we use a wave 
function φ(k,r), as the sum over the atomic 
wave function φ(r − R) over site j:

(j = 1, ..., n)                         (27)

Where Rj is the position of the atom and 
N is the number of unit cells, so the above 
equation satisfies Bloch’s theorem. In a solid, 
the eigenfunction ψ(k,r)j is defined as a linear 
combination of Bloch functions [13]:
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   (28)

Where the C are the coefficients to be 
determined.

The eigenvalues E(k) are given by the ratio 
between the transfer matrix, which represents 
the transition of electrons in the state between 
the different carbon atoms of the crystal 
lattice, and the matrix S. 

     (29)

Substituting the wave function, we define 
as the transfer integral matrix 

H _jj (k)=<ϕ _j |H|ϕ _j’ >
and
S _jj (k)=<ϕ _j |-||ϕ _j’ >
overlapping integral matrix :

HC _i  = E _i  (k)SC _i            (30)

We only have a non-zero solution when, 
det[H−E(k)iS]=0. The secular equation, 
which is used to find the electronic structure 
of a hexagonal lattice, whose vectors of the 
triangular sublattices of atoms A and B they 
are:

      (31)

The electronic and transport properties are 
due to the π orbital lying perpendicular to the 
plane:

 (32)

The same procedure can be applied to 
HBB. For other elements it can be calculated 
as follows:

(33)

Where we define g(k)=e^(−i_k _y . _
(a/√3) )+) 2e ^(−i_k _y . _(a/√3) ) cos((
_x a)/√3) like the geometric factor and−V 
_ppπ  =< φ(r −_R _A ) |H| φ(r-_R _B ) > 

as the hopping parameter between π orbitals 
of the A and B sublattices.

Writing the matrix of H knowing that 
H _BA  H = ^* _AB and for the overlap 
matrix elements, we have _AA  = S  _BB  = 
1, diagonalizing the last expression, we obtain 
the dispersion relation:

              (34)

where we define ω(k) as:

(35)

To simplify the analytical calculations, the 
S matrix is used as a unitary matrix, that is, an 
orthogonal Tight Binding model. And the last 
equation becomes:

             (36)

Using the equation H = −g(k)V and we 
expand the wave vector k around the points 
k and k', because when the system is excited, 
the electrons leave the valence band and 
occupy the available states in the conduction 
band. These states are located very close to 
the states
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(37)

It is proved that the electrons in graphene 
near the Dirac point behave like massless 
Dirac fermions [11].

Once the parameters of equation 39 are 
applied to the TB model, Figure 1 is plotted. 
This graph provides the behavior of electrons 
in graphene close to the Dirac point. This 
behavior shows that graphene in its hexagonal 
form behaves as a zero-gap conductor. With 
this result it becomes evident that graphene 
presents a density of states that, particularly 
at this point (center of the band) tends to 
zero. On the other hand, graphene may have 
its properties inherent to the modification of 
this density of states. This way, the desirable 
semiconductor property for graphene can be 
leveraged to a non-zero gap outside the band 
center, which depends on the different values 
for the electron k-wave vectors.

As the electron-atom interactions are taken 
as evidence, one can evaluate the bandgap 
gap of graphene, and this way, evaluate its 
semiconductor properties. It is verified 
that electronic conduction [10,14] through 
electronic doping [12] are situations that 
potentiate these interactions, and therefore 
expand the bandgap gap. In these cases, 
other methods and models are used, such 
as the Density Functional Theory (DFT), 
which is one of the most used methods for 
description and modeling used to find the 
energy dispersion of function materials and 
electronic state density theory [ 15,16].

To validate the model, a DFT study was 
investigated for a semiconductor material - 
Gallium Arsenide (GaAs) - and later apply it in 
the investigation of doped graphene. The DFT 
model was first applied in the investigation 
of that structure. AsGa features arsenic atom 

ligand, which has 5 electrons in the last layer 
known as pentavalent element and trivalent 
gallium. The electronic structure of the AsGa 
crystal is known as a zinc blend and the atoms 
form a covalent bond. [15]. The DFT Model 
presented for AsGa starts from the solution of 
the Kohn-Sham equations, which describe the 
behavior of electrons and nuclei of the AsGa 
crystal, which is associated with the resolution 
of the time-independent Schroedinger 
equation, as described in previous sections.

This allows evaluating the variation of 
the bandgap. It must be noted that instead 
of calculating the energy through the wave 
function, the charge density or electronic 
density was used, which deals with the 
Hamiltonian of many interacting bodies, thus 
making it possible to obtain energy through 
the electronic density, as well as the square of 
the wave function.

Figure 2 shows the bandgap for AsGa, 
obtained by the DFT model. The gap for the 
AsGa structure is around 1.5 eV. Therefore, 
AsGa has a semiconductor character with 
the presence of a direct gap at this point. This 
result is in agreement with that obtained in the 
literature [15]. This way, the model developed 
for AsGa allows its application to the structure 
of modified graphene.

Figure (2b) shows the scheme of the valence 
band with direct and indirect gap. These are 
the characteristics of a semiconductor like 
AsGa crystals, InS, from group III-V [1], 
typically a behavior of semiconductors with 
small gap, that is, the valence bands (below 
the gap) are completely occupied by electrons, 
while the conduction bands (above the gap) 
are completely empty. Thus, semiconductors 
must have zero conductivity at zero 
temperature. For direct semiconductors, the 
top of the valence band and the bottom of the 
conduction band occur on the same K-wave 
vector, in the case of GaAs, and the indirect, 
the top of the valence band and the bottom of 
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Figure 1: Graphene band structure, E(eV) x k. Highlight the points (Dirac points) where the energy is zero.

(a) gap around 1.5 eV; (b) energy levels for different hole locations.

Figure 2: Energy Band for AsGa obtained by the DFT model.
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the conduction band occur on points distinct 
from k distinct, in the case of other types of 
semiconductors with modified structure.

With this approximate calculation of 
free electrons in which the density of states 
decreases with the cube root of the energy, 
we can represent the band structure as a 
parabola, Figure 2 (a) and (b). In semimetals 
and insulators this dependence is more 
complicated. This result helps understanding 
how to control the charge carrier density in 
a two-dimensional layer of semiconductor 
materials, such as graphene, where the levels 
of occupied states close to the Fermi level 
and the gap opening between the conduction 
band and valence can be manipulated, such 
as the effect of the electric field, which causes 
the opening of the gap and displacement 
of the Fermi energy [18,19]. In intrinsic 
semiconductor crystals, for example, the 
Fermi level is located approximately in the 
center of the gapband. Doping is one of the 
known ways to modify the concentration of 
carriers, and consequently the position of the 
Fermi level. This modification can take place 
in two independent ways.

FINAL CONSIDERATIONS
This work presents an analytical 

description for the implementation of the 
Tight Binding model and the Density Theory 
Functional. Numerical models have their 
peculiarities and are great tools for analyzing 
electronic properties of materials, especially 
3D materials. For graphene that present 
electrons almost insensitive to disorders, 
electron-electron interactions, very long 
mean free paths; these two tools presented 
analysis contributions in two aspects: In the 
first one, the TB model was used to evaluate 
how electrons behave at points of high 
symmetry in the graphene structure, which 
configured in a region where the valence 
band touches the band of conduction, with 

a zero gap configuration (Dirac points) and 
the second is that the structure of the energy 
bands for graphene can be modified under 
the effect of doping, by the application of 
electric and magnetic fields, addition of 
layers, control of its geometry and chemical 
doping. This behavior approximates the 
characteristics of this modified graphene 
to the band structure of AsGa. As a result 
of these modifications, there is a change in 
the structure of the graphene bands and, 
therefore, in its density of states (DOS). 
To evaluate this behavior, it is necessary to 
investigate other models, such as the one 
used for the structure of AsGa, which is the 
DFT. With this, it is feasible to create a set 
of many-body effects that can be induced by 
dopants and new characteristics for graphene 
will be explored by applying concepts and 
descriptions of different numerical models 
in obtaining and understanding these 
behaviors.
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