
1
Journal of Engineering Research ISSN 2764-1317 DOI 10.22533/at.ed.317312301011

Journal of
Engineering
Research

v. 3, n. 1, 2022

All content in this magazine is
licensed under a Creative Com-
mons Attribution License. Attri-
bution-Non-Commercial-Non-
Derivatives 4.0 International (CC
BY-NC-ND 4.0).

DIFFERENT
APPROACHES TO
INTEGRATING APIS
INTO THE MOST
POPULAR ANDROID
FRAMEWORKS – A
CROSS-PLATFORM
MIDDLEWARE FOR
BUSINESS AUTOMATION
DEVICES

Rodrigo Choji de Freitas
Universidade do Estado do Amazonas – UEA
/ Escola Superior de Tecnologia
Manaus-AM
http://lattes.cnpq.br/3915653613278294

Neide Ferreira Alves
Universidade do Estado do Amazonas – UEA
/ Escola Superior de Tecnologia
Manaus-AM
http://lattes.cnpq.br/4068095206484923

Ramayana Assunção Menezes Júnior
Universidade do Estado do Amazonas – UEA
/ Escola Superior de Tecnologia
Manaus-AM
http://lattes.cnpq.br/5941666476087346

Eduardo de Souza Nogueira
Universidade do Estado do Amazonas – UEA
/ Escola Superior de Tecnologia
Manaus-AM
http://lattes.cnpq.br/9747117584343324

http://lattes.cnpq.br/3915653613278294
http://lattes.cnpq.br/4068095206484923
http://lattes.cnpq.br/5941666476087346
http://lattes.cnpq.br/9747117584343324

2
Journal of Engineering Research ISSN 2764-1317 DOI 10.22533/at.ed.317312301011

Luiz Felipe Duarte Alves
Universidade do Estado do Amazonas – UEA
/ Escola Superior de Tecnologia
Manaus-AM
http://lattes.cnpq.br/1974711758279794

Douglas Silva de Melo
Universidade do Estado do Amazonas – UEA
/ Escola Superior de Tecnologia
Manaus-AM
http://lattes.cnpq.br/4559258194990884

Abstract: This work presents the research
and development process carried out for the
creation of a software layer that behaves as a
driver between the commercial automation
application developed in the market and
commercial automation hardware. This
middleware aims to provide an environment
where the developer does not have to stick
to specific details of commercial automation
equipment to create their applications,
thus accelerating the software development
process. This framework eliminates or
mitigates programming difficulties with
hardware, leaving software companies only to
worry about the business rule.

1. INTRODUCTION
Software development aimed at Commercial

Automation equipment is migrating from
Windows and Linux operating systems to
Android, consequently, applications are
changing from desktop to mobile. Considering
that the Android operating system is aimed at
the universe of mobile devices, such as tablets
and smartphones. This means that the seven
thousand commercial automation companies
existing in Brazil will have to adapt their
systems to the Android platform.

Manufacturers of equipment aimed at this
market have been investing in the Android
platform, as there are not many commercial
automation manufacturers in Brazil working
with this operating system in their products,
that is, the vast majority still work with the
Windows platform, and in this environment
there are about 80% of the commercial
automation market, so the main motivation
for migrating from desktop to mobile is the
strategic look at changing this market, since
the American market is dominated by the
Android platform, as well as the European
one, so it will be a matter of time and breaking
some technological barriers for the Brazilian
market to also migrate to Android.

http://lattes.cnpq.br/1974711758279794
http://lattes.cnpq.br/4559258194990884

3
Journal of Engineering Research ISSN 2764-1317 DOI 10.22533/at.ed.317312301011

Therefore, there is a segment of products
aimed at the point of sale, the so-called POS
(Point of Sale or Point of Service), these
allow applications to be executed directly
on the POS machine, remembering that
they run the Android operating system,
therefore, it allows software programmers
to develop their own solutions for this type
of equipment, but there are a multitude of
languages or even frameworks aimed at the
mobile environment, making development
time difficult and increasing, because if a
programmer uses a language other than Java,
that is the native language of Android, your
codes will have to align with this language
and it is not always possible or in some cases
it is very laborious or difficult.

The difficulty arises from the lack of
domain and intellectual capital to develop
without libraries and tools that help
development on the Android platform.

Thus, the objective of this research is
to accelerate the development process
of commercial automation applications,
delivering to the Brazilian market a low-level
communication framework on the hardware
side, but very high-level on the integration
side with the software developer, that is,
encapsulating the POS machine requests,
such as printing, camera and configuration, as
these are activities performed by the operating
system, through the native Java language
Android.

THEORETICAL FRAMEWORK
AND RELATED WORK
Given that, in general, the ecosystem of

applications for commercial automation is in
a process of transition from desktop to mobile
devices, so there is a lack of research focused
on this topic. To the best of our knowledge,
the results of this research constitute the first
Brazilian publication of its kind.

Fincotto’s work (2014) presents a case
study on the use of mobile applications for
commercial automation using the Android
platform in the corporate environment. The
article shows that Android can be used as a
mobile operating system for such applications,
exposing the main features of its architecture.

The work by Santos (2018) highlights
the diversity of platforms and the difficulty
for companies to develop applications for
different operating systems, so the work
compared the performance and usability
of some components in relation to native
development for iOS with Swift and with
React Native, this generates a unique code
for Android and iOS. In the proposal of this
article, several frameworks were also worked
in order to generate a single platform for the
same application.

The development of mobile applications
for business automation is increasingly
integrated into software development
companies. Currently, software houses expect
applications with good performance in less
time and at a lower cost. In the work by Brito
et.al (2019), a comparative analysis of the
development time of the main functionalities
of an application for Java (Android), Swift
(iOS) and React Native (Android and iOS)
is made.

AUTOMATION FRAMEWORK-
CONCEPT, OPERATION AND
IMPLEMENTATION
As a way to provide a mobile application

strategy or model that will serve as an
intermediate software layer between
the application focused on commercial
automation and the equipment that uses
Android, a framework was developed with
some of the most used technologies available
in the development market. applications for
the Android operating system.

4
Journal of Engineering Research ISSN 2764-1317 DOI 10.22533/at.ed.317312301011

The purpose of this framework is to
provide an environment where developers
do not have to stick to specific details
of the equipments Androids to create
your applications, thus accelerating the
development process of your software aimed
at commercial automation. With that, the
developed framework also has the objective
of carrying out a work that can be considered
more complex of communication with
the hardware of the equipment, allowing
software companies and their developers to
be only concerned with their business rules.

This way, the methodology adopted for
the implementation and development of
this framework was first to separate which
technologies would be used, where a total of
9 were selected, they are: i - Java Android, ii
– Delphi FireMonkey, iii – Flutter, iv – React
Native, v – Ionic, vi – Xamarin Forms, vii –
Xamarin Android, viii – App Inventor e ix –
B4A (Figure 1).

All selected technologies are aimed at
developing mobile applications, and in some
of them it is possible with the same source
code to generate executables that can be used
not only on ANDROID platforms, but also
on iOS and DESKTOP, as is the case with
Flutter, React Native and Ionic. However,
considering that the equipment only uses
Android, and the library that was used to
communicate with the Hardware of these
equipment is only possible to communicate
with the native Java language, it was necessary
to create strategies that also meet the needs
of technologies that have other source code
languages. To facilitate the development of
the framework with other technologies, one
of the strategies was to create the settings
and classes in Java Android and use the
application and source code developed as
the basis of the framework. Thus, to continue
with the creation of the framework, the first
step was to develop one of the Features with

Figure 1. Automation Framework proposed in this work.

5
Journal of Engineering Research ISSN 2764-1317 DOI 10.22533/at.ed.317312301011

this native technology, and then carry out
a study of which alternatives were made
available by the other technologies for use
and adaptation to the implemented classes.

During some of these studies, some
alternatives were found that can be divided as
Communication Channels and Plugins. More
information about the technologies and the
alternatives used by each one can be found in
the next sections.

COMMUNICATION CHANNELS
Technologies such as Flutter and React

Native do not support libraries that have
an.aar extension, libraries developed with
Java, however, offer the possibility of direct
communication with Java classes, even if their
own source code is a different language. Thus,
it is possible to make and receive calls via
“Communication Channels”.

Flutter, um framework Multiplatform
which has characteristics of being fast,
productive, free and open source. Its launch
took place in December 2018 by Google, and
its source code language is Dart (FLUTTER,
2022). To develop and adapt the features of the
framework developed with this technology, a
native technology communication channel
known as Method Channel, This strategy
allows the Flutter communicate with native
Android by making function calls from
classes implemented in Java and receiving
your feedback. Figure 2 illustrates the
representation of how this method serves
as a bridge for sending and receiving calls
made. In detail, the solution presented uses
the common parameters of each commercial
automation device, passing the parameters
and the type of action to be performed. When
the function returns, the output is mapped to
select similar attributes. Therefore, with this
strategy, an application completely validated
in Flutter itself was obtained, making the
specific communication APIs.

Figure 2. Representation of the operation of
Method Channel.

React Native, a framework for creating
native applications mobile, it’s a project
Open Source launched in the year 2015
by Facebook where it is continuously
maintained and updated. Its source code
language is JavaScript, considered an easy-
to-learn language. This technology also
provides a communication channel, known
as Native Modules, with it, it is possible to
send and receive information from methods
and functions on the native (Java) side of
the application (REACT, 2022). Figure 3 is
a representation of the way native modules
serve as a bridge between different languages.

Figure 3. Native Modules flow representation.

This way, the use and availability of both
these communication channels within the
frameworks developed in each of these two

6
Journal of Engineering Research ISSN 2764-1317 DOI 10.22533/at.ed.317312301011

technologies, managed to achieve its objective
of delivering a software intermediary that
facilitated the use and development of software
companies that use these technologies. The
functionality of the Java API (React Native)
has similarities with the Dart API (Flutter),
but the communication between Dart-Java
and JavaScript-Java are very different. For
React-Native, a module was used to make the
communication, that is, classes in Android
(Java) created in the project itself with an
extension of a context in React and a base in
Java modules were used.

The framework FireMonkey is a tool that
allows the development of cross-platform
applications using the Delphi IDE, using
the Object Pascal language, considered a
programming language already consolidated
in the market. FireMonkey allows the same
source code to be compiled for different
devices, generating native code for different
platforms, such as Windows, Mac, Android
and iOS2. As Delphi does not support Android
libraries in Android Archive (.aar) format.; it
is necessary to unpack the library. Right after
extraction, a file is generated that will make
the bridge (native bridge file) between Object
Pascal and the Java library files (.jar), thus
enabling the use of frameworks developed by
the project (FIREMONKEY, 2022).

In the context of the multiplatform
framework presented in this work, a study was
carried out on FireMonkey technology and
the source language used for development,
with the aim of having a better adaptation of
the project. After being able to communicate
with commercial automation devices (Figure
4), specific functions were developed for the
integration of printing and NFC resources.

Figure 4. Representation of the FireMonkey-
Android communication flow.

The Xamarin, currently owned by the
company Microsoft, it is a free and open
source platform that allows building and
embedding iOS and Android applications
using the C# language. As the use of Android
Archive is also not supported in Xamarin, it
is necessary to create a Java Binding Library
(Figure 5), which generates a Dynamic
Link Library (DLL) to be imported into
the Xamarin project, generating the bridge
between the C# language and the Java library.
In the context of the Framework, three
functions were developed: access to Barcode
V2, Printing and NFC Reading and Writing
(XAMARIN, 2022).

Figure 5. Java flow representation Binding Files.

7
Journal of Engineering Research ISSN 2764-1317 DOI 10.22533/at.ed.317312301011

App Inventor, is an open source application
that allows the creation of applications
for Android systems in an easy and fast
way using the concept of dragging blocks,
originally created by Google in 2010. This
application is widely used to introduce the
concepts of application creation and logic of
programming. The logic behind the blocks
is carried out through the Java Android
programming language (APP INVENTOR,
2022).

In this technology, it is possible to
communicate with the native side to use aar
and jar library, necessary for communication
with the native automation library, but this
does not occur directly in the App Inventor
editor, to carry out the communication it is
necessary to go directly to the open source
of the App Inventor and create an extension
(“.aix”) using the Java language directly (Figure
6). There are some examples of how to create
extensions in App Inventor, but there are few
that create extensions communicating with
aar and jar, which makes the activity complex.

However, by researching technology
communities and exploring open source, it
was possible to develop an extension that can
be used in the App Inventor editor and that
calls native Android functions.

Figure 6. Integração App Inventor – Java
Android.

Ionic, It is an open source cross-
platform framework capable of producing
high quality mobile, desktop and web apps
using technologies such as HTML, CSS and
Javascript (IONIC, 2022).

In order to achieve the native
functionalities of Android by the application
in Ionic, Cordova was used, an open source
mobile development framework that allowed
the operation of modules that need to
communicate with Android Native through
the creation of a plugin (Figure 7).

Cordova includes plugins that have the
code referring to native calls and bridges the
gap between it and Javascript, offering this
support to various frameworks such as Ionic.

Figure 7. Access native functionality through
Cordova.

PLUGIN
Basic4Android, or as it is known B4A,

is a tool that has a source code language
similar to Visual Basic and Visual Basic.NET,
however it is adapted to run native Android
environments. Its proposal is to develop
in a short period of time applications for
mobile devices known as Rapid Application
Development (RAD). Its communication
with the native side of the applications takes
place through the development of Java classes
that are later converted to ‘.jar’ and ‘.xml’ files
and included in the B4A project, enabling
communication. Figure 8 represents how this
flow occurs (B4A, 2022).

8
Journal of Engineering Research ISSN 2764-1317 DOI 10.22533/at.ed.317312301011

Figure 8. Representation of the Communication
flow via.jar and.xml files.

RESULTS AND ASSESSMENTS
Considering the ecosystem and the need

for commercial automation on Android and
also the vast number of frameworks that arise
with the objective of delivering applications
for the Android operating system, it was
necessary to research and develop techniques
that promoted the integration of firmware
resources from POS machines to the different
Android Frameworks.

To achieve this integration, it was
necessary to design and implement some
“bridge resources” that would interconnect
“low-level” services (programming closer to
machine understanding, direct to hardware
or communication through bytes) to the
different “high-level” Android frameworks.
level” (programming closest to human
understanding). More specifically, the
following scenarios of difficulties encountered
and overcome can be highlighted:

1. Technologies such as Flutter and React
Native do not natively support libraries
with the “. aar” extension. Because the
library that communicates with the
equipment’s printer has exactly this “. aar”
extension, it was necessary to understand
the operation of some communication
protocols in order to then carry out
research and development of mechanisms

that would enable their use. In the end,
a communication bridge was created
between the Java language, native Android
code, and the source code languages of
two other technologies, Dart for Flutter
and JavaScript for React Native.
2. Some technologies do not have their
own libraries for functionalities inherent
to POS equipment, such as, for example,
NFC and barcode reader. So, to fill
such gaps, it was necessary to carry out
research and implement specific features
so that they could work natively in the
technology.
3. Some technologies like App Inventor
and B4A have a limitation on what can be
natively implemented in the technology.
So, a technique based on intents combined
with the development of an APK (Android
Package) was developed exclusively to
meet the need of the technology.

FINAL CONSIDERATIONS
The commercial automation framework

presented in this work provides resources
necessary for accessing the following
resources available in commercial automation
equipment:

• Access module to gateways and credit
card payment – enables the developer
to perform credit card transactions with
EFT (Electronic Funds Transaction)
operators. There are commands in this
module that allow access to payment
gateways available in the commercial
automation market and their use for the
transaction of a purchase;

• Native class printer access module – the
main functionality of this module is the
printing of formatted text, barcode and
QRCode;

• Display access module – this module
has as the main functionality the display
of text on the screen (display) and the

9
Journal of Engineering Research ISSN 2764-1317 DOI 10.22533/at.ed.317312301011

REFERENCES
H. Brito, Á. Santos, J. Bernardino and A. Gomes, “Mobile development in Swift, Java and React Native: an experimental
evaluation in audioguides,” 2019 14th Iberian Conference on Information Systems and Technologies (CISTI), 2019, pp. 1-6, doi:
10.23919/CISTI.2019.8760864.

Marcos Apolinário Fincotto, Marilde Terezinha Prado Santos. Automação Comercial utilizando Aplicativos Móveis - Um Foco
na Plataforma Android Tecnologias, Infraestrutura e Software, vol 3, n2,. 151-161, 2014.

Tutoriais App Inventor. Acessado em 05/12/2022. Disponível em: https://appinventor.mit.edu/explore/ai2/tutorials

Tutoriais FireMonkey. Acessado em 01/12/2022. Disponível em: https://www.devmedia.com.br/firemonkey-introducao-ao-
desenvolvimento-com-banco-de-dados-revista-clube-delphi-136/23066

Tutoriais Flutter. Acessado em 05/12/2022. Disponível em: https://docs.flutter.dev/reference/tutorials.

Tutoriais Ionic. Acessado em 05/12/2022. Disponível em: https://www.b4x.com/android/documentation.html

Tutoriais Ionic. Acessado em 29/11/2022. Disponível em: https://ionicframework.com/docs

Tutoriais React-Native. Acessado em 04/12/2022. Disponível em: https://reactnative.dev/docs/getting-started

Tutoriais Xamarin. Acessado em 06/12/2022. Disponível em: https://dotnet.microsoft.com/en-us/apps/xamarin

display of QRCode for payments with
electronic wallet;

• Magnetic Card Access Module
(Magnetic Stripe) – the main
functionality of this module is the
reading of the three tracks (or one
of them) on the card that is passed
through the device;

• Chip card access module (Smartcard)
– this functionality works in private
mode and not in open mode. These
are commands for reading Smartcard
trails and password digits typed (even if
encrypted) on the device’s keyboard;

• Access module to the equipment’s NFC
device – its purpose is to read an NFC
card (approximation) when approached
to the device;

• Consumer electronic invoice printing
module – this module receives an
XML file. Upon receiving the XML,
it is read and interpreted, identifying
the mandatory fields for printing an
electronic consumer invoice.

https://appinventor.mit.edu/explore/ai2/tutorials
https://www.devmedia.com.br/firemonkey-introducao-ao-desenvolvimento-com-banco-de-dados-revista-clube-delphi-136/23066
https://www.devmedia.com.br/firemonkey-introducao-ao-desenvolvimento-com-banco-de-dados-revista-clube-delphi-136/23066
https://docs.flutter.dev/reference/tutorials
https://www.b4x.com/android/documentation.html
https://ionicframework.com/docs
https://reactnative.dev/docs/getting-started
https://dotnet.microsoft.com/en-us/apps/xamarin

