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Abstract: This work presents a study on the 
identification of the mineralogical composition 
of soil by using reflectance spectroradiometry. 
For this, we have used reflectance data 
obtained for 49 samples of a haplic planosol 
located in the Experimental Station Terras 
Baixas at Capão do Leão, Rio Grande do Sul 
state. Additionally, these data were processed 
using the continuum removal technique 
and the resulting spectral signatures were 
compared to the reference values   found in the 
literature. Results of this comparison indicated 
that the spectral signatures of the soil showed 
absorption features predominantly related to 
kaolinite, muscovite, wood fragments, and 
dry vegetation. Specifically, concentrations 
were observed varying between 30.10% and 
57.09% for the element kaolinite with low 
crystallinity, between 32.40% and 34.19% for 
muscovite, 37.48% corresponding to wood 
fragments, and between 32.43% and 42.91% 
corresponding to dry vegetation. Finally, it 
was concluded that the technique used was 
effective in estimating the mineralogical 
composition of the soil and can be reliably 
applied in future studies.
Keywords: Reflectance spectroradiometry; 
Planosols; Mineral composition.

INTRODUCTION
Reflectance spectroradiometry is a 

technique that quantifies the interaction 
of terrestrial objects (e.g. rocks, water, 
vegetation, soil) with electromagnetic 
radiation in terms of reflected, transmitted 
and absorbed energy. (FILIPPINI-ALBA, 
2007; NOVO, 2008). Thus, this technique 
allows analyzing the spectral characteristics 
of radiating objects in order to estimate their 
various chemical and physical properties. 
In this sense, each terrestrial target presents 
different spectral responses, depending on the 
wavelength range considered (e.g. ultraviolet, 
visible, infrared, among others). Therefore, 

the spectral responses of soils estimated using 
reflectance spectroradiometry are directly 
associated with their chemical, biological, 
physical and mineralogical composition. 
(SOUSA-JUNIOR et al., 2008).

Soil spectroradiometry consists of 
analyzing the reflectance of soil samples both 
collected and in situ, with the objective of 
estimating several characteristics, such as the 
concentration of a given mineral and the content 
of other elements. In addition, several authors 
of studies using reflectance spectroradiometry 
for edaphic characterization demonstrate 
that this technique is effective in identifying 
minerals present in soil samples. (NGUYEN 
et al., 1991; VISCARRA-ROSSEL et al., 
2006; FANG et al., 2018). Thus, the authors 
state that reflectance spectroradiometry 
allows obtaining information about soil 
characteristics in a fast and non-invasive way. 
Finally, despite being a relatively recent line 
of research, studies of soil parameters using 
spectral reflectance data have also proved to 
be an important tool in precision agriculture, 
which aims at the efficient and conscious use 
of soil for cultivation.

Therefore, this study is motivated to 
contribute to the understanding of the 
relationship between the behavior of spectral 
reflectance and different minerals, serving 
as a tool for the scientific study of extensive 
areas of soil.

METHODOLOGY
CHARACTERIZATION OF THE 
STUDY AREA
The study area is located at the Terras Baixas 

Experimental Station (EETB), of Embrapa 
Clima Temperado, located in the Municipality 
of Capão do Leão – RS, as can be identified in 
figure 1. soils in the lower right quadrant.

According to Filippini-Alba (2007), this 
area comprises a region characterized as 
low altitude (~10 m), with a drainage profile 
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classified as “bad”. It is a sandy eutrophic 
haplic planosol with moderate A horizon and 
sandy/clay texture, derived from sediments 
from the Quaternary period. (FILIPPINI-
ALBA et al., 2019). The authors also state 
that the region has primary vegetation of the 
subtropical grassland type. Finally, the land 
has as main use the cultivation of rice in a no-
tillage system (conservation of straw), with 
alternations to pasture in periods of 2-3 years, 
in the case of a poorly drained soil where there 
is no evidence of erosion.

COLLECTION OF SAMPLES 
AND SPECTRORADIOMETRIC 
MEASUREMENTS 
Using a cutting shovel, samples were 

collected in the study area, where portions of 
soil were extracted in a mesh of 7 x 7 sampling 
points, at depths of 0-10 cm and 10-20 cm. 
Thus, 7 transects were determined, where 
7 sample points with 15 m spacing were 
collected, totaling 49 sampling points. In 
addition, the sampling grid was adjusted with 
the aid of a total station and a topographic 
GPS receiver. It must be noted that the sample 
collection and preparation procedure can be 
found in more detail at Filippini-Alba et al. 
(2020).

After collection, the soil samples went 
through the drying and sieving process, 
being reduced to a fraction of less than 2 mm. 
Then, spectroradiometric measurements were 
performed using a FieldSpec 3 portable ER 
equipment. For these measurements, only 
samples obtained between 10 and 20 cm deep 
were selected, according to the procedure 
described in Sousa Júnior et al. (2011). Thus, 
spectroradiometric measurements were 
performed in a range of wavelengths ranging 
from 350 nm to 2500 nm, with a spectral 
resolution of 1 nm. Specifically, measurements 
were performed by positioning the tip of the 
ER sensor approximately 10 cm away from 

each sample, using a halogen light source 
and calibration performed using a Spectralon 
reference plate (~100% reflectance). Three 
reflectance measurements were performed on 
each sample, allowing the generation of soil 
spectral reading graphs.

DATA PROCESSING
Spectroradiometer data were processed 

using The Spectral Geologist (TSG) software 
to obtain reflectance values for each of the 
49 samples. These parameters were analyzed 
in the form of graphs containing the spectral 
reflectance curves of the soil samples, in which 
it is possible to observe different properties, 
such as albedo, noise and absorption features. 
(PONTUAL et al., 2008). In this context, the 
features are associated with the chemical, 
physical and mineralogical characteristics of 
the analyzed materials and are useful in the 
identification of minerals through comparison 
with reference values.

The spectral curves of the samples were 
analyzed using the continuum removal 
technique, which is a simple procedure that 
allows to accentuate features, reduce external 
effects and identify elements present in the 
samples. (CLARK e ROUSH, 1984). By 
removing the continuum, the spectral curves 
of the samples are normalized with reference 
to a common baseline that represents the 
trend of larger-scale variations observed in 
the spectral curve. It is noteworthy that this 
baseline must be tangent to the spectral curve 
and unite as many points as possible from 
each reflectance curve close to 1nm.

After performing the continuum removal, 
the intensities of the absorption features 
observed in the samples were estimated using 
the concept of absorption depth described in 
Meneses e Almeida (2012). For this, Equation 
3.1 was used:

D = 1 - R',                    (3.1)
where D is the depth of the absorption band 
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Figure 1 – Location map of the study area in the state, municipal and local context (experimental design).

Source: Author’s production.

Figure 2 – Comparison of the kaolinite and muscovite spectrum with the spectral signatures of the samples 
to estimate the proportion of these elements. The color bar represents the variation in the intensity of the 

spectral signatures in relation to the total weight of the samples.

Source: Author’s production.
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and R' is the reflectance value corresponding 
to the absorption point in the spectrum with 
the continuum removed.

After determining the intensities of the 
features, the values of each of the samples 
were compared to the references found in 
the literature (PONTUAL, 2008; MENESES 
et al, 2019). This comparison is necessary to 
identify the minerals/elements present in each 
of the samples and to estimate the proportions 
through the intensity of the spectral signatures 
observed.

Figure 2 illustrates an example of a 
comparison between the characteristic 
spectral signatures of kaolinite and muscovite 
together with the reflectance curves of all 
samples used.

Table 1 presents some of the reference 
values used for the diagnosis of absorption 
features referring to each of the elements 
identified in the samples used in this study.

RESULTS AND DISCUSSIONS
SPECTRAL ANALYSIS OF SOIL 
SAMPLES
Figure 3 shows graphs of wavelength 

variation versus reflectance for all samples. 
Specifically, this figure illustrates the stacking 
of spectral signature curves for each of the 49 
soil samples studied. In these, the wavelengths 
of the absorption features are identified for 
each of the four elements analyzed (kaolinite, 
muscovite, wood fragments and dry 
vegetation). 

In summary, the spectral signatures of 
the samples were analyzed using the TSG 
Core software, in which absorption features 
predominantly referring to kaolinite, 
muscovite, wood fragments and dry vegetation 
were identified. Then, the wavelengths were 
compared to the reference values found in 
the bibliography, for later estimation of the 
proportion of each element in relation to the 
total weight of the sample. (PONTUAL, 2008; 

MENESES et al., 2019). 

COMPOSITION OF SOIL SAMPLES
The absorption features of each sample 

were analyzed using the TSG Core software, 
through which the analyzes were performed 
considering the elements of interest, together 
with the reference values   presented in Table 
1. Thus, the intensity of the features present 
in each sample was compared to reference 
values   to estimate the proportion of each 
element in the total weight of the sample. 
Starting from the verification of these 
data, the average percentage values   of the 
concentrations of each element were obtained 
considering all the samples. However, it was 
observed that not all samples presented the 
simultaneous occurrence of the four elements 
studied: kaolinite, muscovite, wood and 
dry vegetation. Therefore, the samples were 
organized into three groups to better analyze 
the concentrations of each element in relation 
to the average of the group of samples.

Figure 4 shows the vertical bar graph of the 
average concentration of kaolinite, muscovite, 
wood fragments and dry vegetation present in 
the samples from Group 1.

Figure 5 shows the vertical bar graph of the 
average concentration of kaolinite, muscovite, 
wood fragments and dry vegetation present in 
the samples from Group 2.

Figure 6 shows the vertical bar graph of the 
average concentration of kaolinite, muscovite, 
wood fragments and dry vegetation present in 
the samples from Group 3.

Through these results, the proportion of 
the main components of the samples of each 
group was quantified:

• Group 1: 30.10% low crystallinity 
kaolinite, 32.40% muscovite and 
37.48% wood fragments. In this group, 
the occurrence of dry vegetation was 
not observed.

• Group 2: showed 33.40% of low 
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Element
Diagnostic absorption features

Pontual, 2008 Meneses et al, 2019

Kaolinite
3 features between 2300 and 2400nm; 
diagnostic double absorption of AlOH 

between 2160 and 2210 nm.

970f; 1403-1413F (pair);
1810md; 1915f; 2169inf – 2205F;

2311f; 2355f; 2381f

Muscovite
2 absorption features at 2345 and 2435 nm. 

Absorption to water at 1910 nm weak to 
absent.

900f; 1139md; 1410mF; 1912f;
2119f; 2205mF; 2346f; 2435f

TSG Manual
Wood 500–700 nm (low) 750–1000 nm (high)

Zhang et al, 2006

dry vegetation 1650, 2100 nm and 2300 nm
where f: weak, md: moderate, F: strong, mF: very strong and inf: inflection.

Table 1 – Reference values used for the diagnosis of absorption features.
Source: Author’s production.

Figure 3 – Wavelength graphs relative to the reflectances of the studied soil samples. The vertical lines 
indicate the absorption features associated with the elements studied (kaolinite, muscovite, wood fragments 
and dry vegetation). The color bar represents the variation in the intensity of the spectral signatures in 

relation to the total weight of the samples.
Source: Author’s production.
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Figure 4 – Mean concentrations of kaolinite, muscovite, wood fragments and dry vegetation present in the 
samples from Group 1.

Source: Author’s production.

Figure 5 – Mean concentrations of kaolinite, muscovite, wood fragments and dry vegetation present in the 
samples from Group 2.

Source: Author’s production.

Figure 6 – Mean concentrations of kaolinite, muscovite, wood fragments and dry vegetation present in the 
samples from Group 3.

Source: Author’s production.
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crystallinity kaolinite, 34.19% of 
muscovite and 32.43% of dry vegetation. 
In this group, the occurrence of wood 
fragments was not observed.

• Group 3: presented 57.09% of low 
kaolinite and 42.91% of dry vegetation. 
In this group, the occurrence of other 
elements was not observed.

Therefore, it is noteworthy that these 
results indicate the dominant presence of the 
kaolinite mineral in the studied soil, but with 
a similar proportion of muscovite.

Figures 7, 8 and 9 present sector graphs 
illustrating the distribution of the proportions 
of kaolinite (red sector), muscovite (green 
sector), wood fragments (dark blue sector) 
and dry vegetation (light blue sector) present 
in the samples of each group.

Starting from figures 7, 8 and 9, it was 
observed that the proportions of muscovite 
are predominant in relation to the total 
weight of the sample in 52.8% of the samples. 
Wood fragments correspond to the dominant 
element in 27.8% of the samples, followed by 
muscovite (13.9% of the samples) and dry 
vegetation (5.6% of the samples).

Therefore, it can be stated that 52.8% of the 
soil samples had a high content of kaolinite 
and 13.9% of the samples had a high content 
of muscovite.

STATISTICAL ANALYSIS OF THE 
COMPOSITION OF SOIL SAMPLES
With the objective of evaluating the 

sampling statistical deviation of the proportion 
of each element in relation to the mean, the 
percentage variation of the concentrations 
calculated for each of the samples was 
calculated. This variable was obtained through 
the following equation (PICANÇO, 2019):

where VP corresponds to the percentage 
change in the concentration of a given 
element in a sample with respect to its mean, 
qsample is the concentration of the element in a 
sample and qaverage is the average concentration 
of the same element considering all samples. 
This way, the closer the VP value is to zero, 
the closer the concentrations of each element 
in each sample will be to its average value. 
(PICANÇO, 2019).

Figure 10 shows the VP graph of the 
concentrations in each sample in relation to 
the mean values, considering the following 
elements: kaolinite (red symbols), muscovite 
(green symbols), wood fragments (dark blue 
symbols) and dry vegetation (symbols in light 
blue). It is noteworthy that this analysis was 
performed considering the averages of each 
group of samples.

From Figure 10, it can be seen that the 
kaolinite and muscovite concentrations show 
some variability in samples 5, 11, 17, 18, 20 
and 25, but in general tend to remain close to 
the mean, since the VP value remains low in 
most samples. On the other hand, wood and 
dry vegetation concentrations showed high 
variability in relation to the average in all 
samples, which may be directly linked to the 
form of land use and vegetation density.

DISTRIBUTION OF MINERALS IN 
THE STUDY AREA
In order to evaluate the kaolinite and 

muscovite content in the studied soil, maps of 
mineral distribution were generated, having 
as a starting point the results presented in the 
section on composition of the soil samples.

In this context, figures 11 and 12 present, 
respectively, maps of distribution of kaolinite 
and muscovite in the study area, where the 
color bars represent the proportion of the 
weight of the samples that corresponds to 
that mineral, as determined by the methods 
presented in Chapter 3 Both maps were 
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Figure 7 – Concentrations of kaolinite, muscovite, wood fragments and dry vegetation present in the 
samples from Group 1.

Source: Author’s production.

Figure 8 – Concentrations of kaolinite, muscovite, wood fragments and dry vegetation present in the 
samples from Group 2.

Source: Author’s production.
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Figure 9 – Concentrations of kaolinite, muscovite, wood fragments and dry vegetation present in the 
samples from Group 3.

Source: Author’s production.

Figure 10 – Percentage variation in the concentration of kaolinite, muscovite, wood fragments and dry 
vegetation in relation to the average of all samples.

Source: Author’s production.
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interpolated using the Kernel interpolation 
method (SILVA, 2015).

From the results presented in Figure 11, it 
is observed that the soil of the southeast and 
northwest regions of the study area has the 
highest kaolinite contents. In this sense, it is 
important to emphasize that kaolinites are 
clay minerals that do not exhibit physical-
chemical expansibility, so the reduced distance 
between the structural layers makes it difficult 
for water to enter the soil, resulting in weak 
surface adsorption. (PEREIRA, 2004).

From the results presented in Figure 12, 
it is observed that the soil of the southwest, 
south and central regions of the study area 
has the highest levels of muscovite. Since 
muscovite acts as a clay former and a source of 
potassium in the soil, it can be said that these 
regions are associated with the initial phases 
of mineralogical transformations that result 
in the formation of kaolinite and other clay 
minerals. (CARVALHO, 2013). 

Figure 13 shows a map with symbols 
indicating the dominance of kaolinite (red 
symbols) or muscovite (blue symbols) in the 
weight of the analyzed samples.

In summary, it can be said that the Capão 
do Leão region comprises a soil with a certain 
degree of weathering, however, with the 
occurrence of points where the process is in 
its initial stages. This can be evidenced by the 
results presented in figure 13, where the map 
indicates that kaolinite is identified as the 
main mineral in the soil, but muscovite also 
appears as a predominant and/or subordinate 
mineral in a considerable amount of the 
analyzed samples.

CONCLUSIONS
The study showed how chemical, physical 

and mineralogical characteristics of the soil 
influence its spectral behavior, allowing the 
identification of its composition and can be 
performed automatically through the TSG 

Core™ software. However, the software did not 
present high reliability to its results, requiring 
a manual analysis using other sources of 
spectral libraries to check the results. Still, 
spectroradiometrics can be considered an 
effective and low-cost way to estimate soil 
attributes.
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Figure 11 – Distribution map of kaolinite concentrations in the study area.

Source: Author’s production.

Figure 12 – Distribution map of muscovite concentrations in the study area.

Source: Author’s production.
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Figure 13 – Map indicating the dominant mineral in each of the analyzed samples. Red symbols correspond 
to kaolinite dominance and blue symbols correspond to muscovite dominance.

Source: Author’s production.
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