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Abstract: The açaí (Euterpe oleracea) is a 
natural fruit from the Amazon, which has 
high nutritional values, being a food that is 
gaining national and international attention, 
because from it, it is possible to extract açaí 
juice. To guarantee the quality of the juice 
during storage, it is necessary to clarify it, 
thus facilitating other conservation processes 
and avoiding the generation of turbidity. 
The clarification process can be carried out 
by crossflow microfiltration using ceramic 
membranes. The use of this method for 
clarification has many benefits, among them 
are less energy use, in addition to not having to 
do thermal and chemical treatment. However, 
in addition to the benefits, this process 
also has the disadvantage of decreasing the 
permeate flux as a function of time, due to 
the obstruction of the membrane pores. In 
view of the above, this work presents a neural 
model capable of estimating the permeate flux 
of biphasic mixtures of water and oleic acid, 
from açaí, which can obstruct the pores of the 
membranes. The neural model results were 
satisfactory with a mean percentage error of 
9.4%.
Keywords: Artificial neural networks. 
Crossflow microfiltration. Oleic acid. Learning 
algorithm.

INTRODUCTION 
Açaí is an endemic fruit from the northern 

region of Brazil, which, although it has good 
nutritional qualities, cannot be consumed  in 
natura because of its physical characteristics, 
and its pulp must be processed beforehand 
(CEDRIM; NASCIMENTO, 2018; CORRÊA 
et al., 2010).

Currently, there is a national and 
international interest in the consumption 
of açaí, which can be explained in part by 
its chemical composition, which has high 
nutritional values. However, both the fruit 
and its pulp are highly perishable, requiring 

the application of conservation methods for 
the export of these products to be possible. 
The clarification of açaí juice can facilitate the 
performance of some of these conservation 
processes (such as heat treatment and 
concentration of the juice), in addition to 
preventing the generation of unwanted 
turbidity in the juice during storage (COUTO, 
2012; CEDRIM; NASCIMENTO, 2012; 
CEDRIM; NASCIMENTO), 2018; CORRÊA 
et al., 2010). Thus, clarification is a very 
important step in the storage of açaí juice.

The açaí juice can be clarified through 
the crossflow microfiltration process with 
ceramic membranes. The application of this 
process has some advantages such as low 
consumption and there is no need for thermal 
or chemical modifications of the juice to apply 
the method. Some advantages of using ceramic 
membrane in crossflow microfiltration is its 
resistance to high temperatures and organic 
solvents, in addition to not undergoing 
changes to biological attacks. Although, for 
these reasons, the use of this process is very 
promising in the food industry, this method 
has the disadvantage that the permeate flux 
passing through the membrane decreases as 
a function of time, due to the obstruction of 
membrane pores by materials retained in it 
(in the case of açaí juice, these materials are 
present in the açaí pulp, which has a complex 
composition) (CAMINOTO, 2012).

Thus, it is very useful to monitor the 
permeate flow throughout the microfiltration 
process and a methodology that has been 
drawing the attention of researchers for 
this purpose is artificial intelligence, more 
specifically, Artificial Neural Networks 
(ANNs), which have many advantages such 
as high accuracy, low computational cost, 
robustness, and the ability to generalize 
responses to data not used in your training.

Some interesting works that used ANNs to 
estimate the permeate flux are listed below: 
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Silva, Silva and Filletti (2021) used ANNs 
to estimate the permeate flux in a crossflow 
microfiltration process with ceramic tubular 
membranes for vinasse clarification, obtaining 
a good correlation between the estimated data 
and the experimental data, with an average 
percentage error of 1.62% using a membrane 
with 0.8 μm diameter pores, and an average 
percentage error of 4.66% for the data from the 
membrane with pores of 1.2 μm in diameter. 
Jokic et al. (2020) developed a neural model 
to monitor the permeate flux of a broth from 
the cultivation of Bacillus velezensis, in the 
microfiltration process. The ANN input 
variables were microfiltration time, surface 
feed velocity, transmembrane pressure, surface 
air velocity and the presence or absence of 
Kenics static mixer (a tool used to mix the 
broth). The results were satisfactory, showing 
that the neural model is able to provide the 
permeate flow values   throughout the process. 
Proni, Haneda and Filletti (2020), proposed 
the application of ANNs using the Levenberg-
Marquardt algorithm to estimate the permeate 
flux of an açaí-based beverage in crossflow 
microfiltration (two ceramic membranes 
with pores of 0 .8 μm and 1.2 μm). The 
input parameters of the neural models were 
the Reynolds number, the transmembrane 
pressure and the microfiltration time. The 
results obtained by the ANNs had low mean 
percentage errors, being 7.6% for the 0.8 μm 
membrane and 9.9% for the 1.2 μm membrane 
for the test data, thus validating the use of this 
tool. 

Thus, the purpose of this work was to 
investigate the use of neural networks to 
estimate the permeate flux of a biphasic 
mixture of water and oleic acid from açaí, 
using the experimental data obtained by 
Caminoto (2012), and thus create a tool 
alternative computational tool to assist in the 
monitoring of the tangential microfitration 
process, in order to have more information at 

the time of evaluating whether obstructions 
are occurring in the pores of the ceramic 
membranes, through the observation of the 
decline of the permeate flux as a function of 
time.

ARTIFICIAL NEURAL NETWORKS
According to Braga, Carvalho and 

Ludermir (2000), Artificial Neural Networks 
are distributed parallel systems composed of 
simple processing units, called neurons, which 
calculate mathematical functions, normally 
non-linear. Neurons are arranged in one or 
more layers and interconnected by a large 
number of connections, which are associated 
with weights, which store the knowledge 
represented in the model and serve to weight 
the input received by each neuron in the ANN.

The development of a neural model initially 
goes through a learning phase, in which a 
set of examples is presented to the ANN, 
which automatically extracts the necessary 
characteristics to represent the information 
provided and generate answers to the problem, 
according to a learning algorithm. The ability 
to learn through examples and to generalize 
the information learned is the main advantage 
of problem solving through ANNs. 

An algorithm widely used in the 
development of artificial neural networks is 
the Levenberg-Marquardt algorithm, which 
consists of a modification of the Gauss-
Newton method (HAGAN and MENHAJ, 
1994, BURKE and FERRIS, 1995), and uses 
the residual error function. quadratics. This 
algorithm calculates the function obtained by 
the difference between the desired response 
and the response obtained by the neural 
model, given by

                                  (1)
Where di is the desired response for neuron 

i, and yi is the response obtained by the neural 
model and minimizes the error function in 
the iteration n given by
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                                          (2)

where C is the set of all neurons in the neural 
model and the vector x=(x1,...,x2) represents 
the weights associated with neurons. The 
Levenberg-Marquardt algorithm can be 
described by the following steps (CUSTÓDIO, 
FILLETTI and FRANÇA, 2019):

(i) All input variables with the 
corresponding output are presented to the 
neural model;

(ii) The neural model parameters (weights) 
are started with random values;

(iii) New values are calculated for the 
output, referring to the input variables;

(iv) The errors of equations (1) and (2) are 
calculated, and the root mean square error for 
the N training examples, given by

                            (3)
(v) Calculate the Jacobian matrix

 
                                     (4)

and solve the equation
            (5)

where the parameter μ>0 appears 
diagonally from JT(x)J(x) and is called the 
Levenberg-Marquardt parameter, I is the 
identity matrix, e(x) is the error, and J is the 
Jacobian matrix.

(vi) The neural model weights are modified 
according to the search direction of the 
Levenberg-Marquardt algorithm (equation 
(5));

(vii) It iterates from (iii) to (vi), successively 
modifying the neural model weights until a 
suitable stopping criterion is reached, such 
as, for example, the root mean square error 
reaches the desired value or the number of 
epochs reaches an established value. 

The Levenberg-Marquardt parameter µ 
is multiplied by a factor β when propagation 
increases the value of the error function, but 
when there is a decrease in its value, µ is divided 
by the factor β. Thus, the parameter µ adjusts 
the approximation avoiding propagations 
that could lead to a convergence error, and 
therefore, a positive and significant value of µ 
will be enough to restore the matrix JT(x)J(x) 
and produce a good error search direction by 
the neural model (BENATTI, 2017; PRONI, 
HANEDA and FILLETTI, 2019).

DEVELOPMENT OF THE NEURAL 
MODEL
From the results presented by Caminoto 

(2012), a database was built to train the 
neural model. The input variables were the 
microfiltration time and the transmembrane 
pressure, and thus, the feedforward neural 
model had two neurons in the input layer, one 
for each of the variables. By trial and error, 7 
neurons were defined in the intermediate layer, 
and the learning algorithm that provided the 
best results was that of Levenberg-Marquardt 
(PRONI, HANEDA and FILLETTI, 2020). 
The error backpropagation algorithm was 
also tested, but it did not provide satisfactory 
results. The output layer had only one neuron, 
which was responsible for estimating the 
permeate flux of the mixture of water and 
oleic acid.

For the development of the neural model, 
the database, which contained a total of 108 
examples, was randomly divided into 3 sets, 
being one set for training (made up of 70% 
of the data, that is, by 76 examples), one set 
for validation (consisting of 15% of the data, 
that is, it contained 16 examples) and the 
third set for testing (also comprising 15% of 
the data). The neural model was developed 
in Matlab 2020a software with the tool 
nnstart – fitting app. 
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RESULTS AND DISCUSSIONS
In this section, the results provided by 

the neural model developed to estimate the 
permeate flux of the biphasic mixture of water 
and oleic acid will be presented. 30 epochs were 
performed during the training of the neural 
model and the best performance occurred at 
epoch 24, as shown in Figure 1. The average 
percentage relative error obtained for the 
training samples was 7.6%, for validation it 
was 6, 4% and for the test it was 14.3%. Thus, 
the average of percentage relative errors was 
9.4%, which is a very satisfactory result.

Figure 1 – Performance of the neural model 
during its training.

Source: Matlab 2020.

Figure 2 shows the distribution of errors 
(difference between the real values of the 
permeate flow and the values estimated by 
the neural model) of the training, validation 
and test sets. From this graph, it is possible 
to notice that the errors remain close to zero 
and present randomness, thus showing that 
the results obtained do not have trends. These 
observations can be confirmed by analyzing 
Figure 3, which contains the histogram of the 
errors obtained during the development of the 
neural model. Note a normal distribution of 

absolute errors centered on zero.

Figure 2 – Distribution of errors.

Source: The authors.

Figure 3 – Histogram of absolute errors for the 
best developed neural model.

Source: The authors.

Figure 4 shows the relationship between 
the values of the permeate flux of the real 
biphasic mixture of water and oleic acid and 
the values obtained by the neural model in 
the training, in the validation and in the test, 
whose coefficients of determination were 0.98, 
0.98 and 0.95 respectively, values very close to 
the ideal value, which is equal to 1.
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Figure 4 – Values of the permeate flow 
estimated by the ANN versus real values for 

the training, validation and test sets.

Source: The authors.

The equations that best fit the data are y 
= 0.98 x + 2.03 for the training set, y = 1.03 
x – 3.47 for the validation set and y = 1.04 x 
– 6.69 for the test set and, thus, it is possible 
to observe that the permeate flow values 
estimated by the neural model are very close 
to the real values, which were experimentally 
obtained by Caminoto (2012), showing that 
the developed neural model is capable of 
estimating the permeate flow of the biphasic 
mixture of water and oleic acid satisfactorily.

FINAL CONSIDERATIONS
This article showed that it is possible to use 

Artificial Intelligence to monitor the crossflow 
microfiltration process, in order to identify 
clogged pores of ceramic membranes due to 
encrustation of process residues. The neural 
model developed to estimate the permeate 
flux of the biphasic mixture of water and 
oleic acid provided satisfactory results, with 
an average percentage error of 9.4%, and also 
obtained coefficients of determination very 
close to 1, in addition to presenting a good 
approximation of the results with the central 
tendency line, evidencing once again that the 
results estimated by the ANN were close to 
the real values.

Given the above, future works include the 

application of Neural Networks, and other 
Artificial Intelligence methodologies, such as 
Random Forests, for example, to analyze the 
permeate flow of other solutions, as well as 
estimating other parameters of the crossflow 
microfiltration process, such as the Reynolds 
number or transmembrane pressure.
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